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Abstract

Raindrop Size Distributions (RSDs) samples from 15 flight missions though 6 hurricanes collected by Precipitation Imaging

Probe (PIP) during National Oceanic and Atmospheric Administration’s hurricane field program in 2020 are used to study

gamma fits of the RSDs in hurricanes. The method of moment (MM) is adopted for solving for the three parameters in gamma

distribution. The results show that the usage of lower (higher) moments produces large biases for integral rain variables (IRV)

of higher (lower) moments. These biases can be alleviated by extracting the best fits from five groups that use increasing higher

orders of moments for MM. An intercept (N0)— slope (λ) relation identified from the fitted gamma distributions captures 92%

of the variance of the data, where the majority of remaining 8% can be further captured by including the impact of liquid water

content (LWC), as shown in the results from a random forest regression model.
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Key Points: 7 

● Method of moments produces bias when fitting raindrop size distribution (RSDs) but the 8 

bias can be alleviated by composite moment fitting. 9 

● The identified  𝑁଴ − 𝜆 relation captures 92% of the variance in the fitted RSDs that have 10 

correlation coefficients larger than 0.9.  11 

● A random forests regression model taking both 𝑁଴ and Liquid Water Content as inputs 12 

captures most of remaining 8% of variance in the data. 13 

  14 
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Abstract 15 

Raindrop Size Distributions (RSDs) samples from 15 flight missions though 6 hurricanes 16 

collected by Precipitation Imaging Probe (PIP) during National Oceanic and Atmospheric 17 

Administration’s hurricane field program in 2020 are used to study gamma fits of the RSDs in 18 

hurricanes. The method of moment (MM) is adopted for solving for the three parameters in 19 

gamma distribution. The results show that the usage of lower (higher) moments produces large 20 

biases for integral rain variables (IRV) of higher (lower) moments. These biases can be 21 

alleviated by extracting the best fits from five groups that use increasing higher orders of 22 

moments for MM. An intercept (𝑁଴) — slope (𝜆) relation identified from the fitted gamma 23 

distributions captures 92% of the variance of the data, where the majority of remaining 8% can 24 

be further captured by including the impact of liquid water content (LWC), as shown in the 25 

results from a random forest regression model.  26 

Plain Language Summary 27 

How well an assumed statistical distribution can represent the number of raindrops in each size 28 

bin is crucial to both accurate rainfall estimation from observed radar echo and successful 29 

forecasts of numerical weather models. Gamma distribution, one of statistical distributions, is 30 

often used and the three parameters (i.e. intercept, slope and shape) of gamma distribution are 31 

obtained by solving three equations. Different set of three equations can lead to different 32 

solutions, each of which has its advantage and disadvantage. In this study, we explore five 33 

different sets of three equations, extract the solutions that have low bias and high correlation 34 

coefficient from each set, and develop composite solutions. We investigate the relationships 35 

between each pair of the three parameters for the composite solutions and find intercept and 36 

slope are closely related. A linear fit that represents intercept-slope relationship very well already 37 

is further improved by using a machine learning model that takes into account both intercept and 38 

the mass of raindrops. 39 

 40 
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1 Introduction 41 

With the rapid advancement of computational technology, numerical models have become the 42 

most important tool in forecasting hurricane intensity and precipitation. In operational numerical 43 

models, bulk microphysics parameterization schemes are used due to their computational 44 

efficiency. The bulk schemes assume the size distributions of each hydrometeor category to be 45 

certain statistical distribution. The formulations of all the microphysical processes can then be 46 

derived from these assumed statistical distributions and other assumptions made in the scheme. 47 

The microphysical processes play a significant role in the distribution of diabatic heating, which 48 

is one of the primary driving forces of a tropical cyclone’s intensity change. The realistic 49 

representation of microphysical processes in numerical models is crucial to simulating the 50 

intensity and structure evolution of hurricanes accurately. Early studies (e.g., Marshall and 51 

Palmer 1948; Mueller and Sims 1966; Sulakvelidze 1969) have proposed many different 52 

statistical distributions representing RSDs. Among them the gamma distribution has been widely 53 

used due to their generalized representation for RSD. The gamma distribution,54 

                                                𝑁(𝐷) = 𝑁଴𝐷ఓ𝑒ିఒ஽   (eq. 1) 55 

as shown above, with three parameters, intercept 𝑁଴, shape parameter 𝜇, and slope 𝜆, is able to 56 

adequately describe the small spatiotemporal-scale variations of RSDs in most situations 57 

(Ulbrich and Atlas 1998). It reduces to the exponential distribution when the shape parameter µ 58 

is zero. The gamma distribution also makes it particularly easy to calculate the moments and 59 

formulate microphysical processes in the bulk schemes. The original interest of RSD studies is to 60 

estimate IRVs, such as rainfall (e.g., Seliga and Bringi 1976; Gorgucci et al. 1994; Ulbrich and 61 

Atlas 1998). As stated in Kozu and Nakamura (1991), assuming RSDs to be a two- or three-62 

parameter statistical distribution, measuring two or three IRVs can determine the RSD 63 

parameters, thereby enabling an accurate estimation of other IRVs. For this purpose, the method 64 

of moments (MM) has been widely used. However, studies (Haddad et al. 1996, 1997; Smith and 65 

Kliche 2005; Smith et al. 2009) pointed out MM produced biases. These biases might not have 66 

significant impact on the application of estimating certain IRVs but can drastically change the 67 

outcome of microphysics processes that are formulated based on the fitted RSDs. Therefore, for 68 

modeling purposes, it is crucial to minimize the biases while still maintain the accuracy of the 69 

calculated IRVs. 70 
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The data used this study is briefly introduced in section 2. The remainder of the paper is 71 

organized as follows. In section 3, the results of the gamma fitting to the RSDs are presented. 72 

The identified  𝑁଴ − 𝜆 relation is presented in section 4. An improved 𝑁଴ − 𝜆 relation using 73 

random forests (RF) regression model is demonstrated in section 5 and followed by a discussion 74 

and conclusion section. 75 

2. Data 76 

The RSD observations are from National Oceanic and Atmospheric Administration’s hurricane 77 

field program in 2020. They were collected by the Droplet Measurement Technologies (DMT) 78 

Precipitation Imaging Probe in 6 hurricanes from 15 flights, i.e., 1 flights from Hanna, 3 flights 79 

from Isaias, 4 flights from Laura, 3 flights from Sally, 1 flight from Zeta, and 3 flights from 80 

Delta. Observations taken within the 500-km radius of the storm center with LWC < 12 g m−3 are 81 

included. The number of total RSD observations used is 18076 in this study. The detailed 82 

description of the data set is provided in Leighton et al. (2022), which shows that the majority of 83 

the observations are taken in stratiform environment with relatively weak vertical motion. A 84 

closer look at individual storm reveals that most of convective environments are present in 85 

Hurricane Isaias (Fig. S1 in the Supporting Information).  86 

3 Methodology 87 

The moment of a raindrop size distribution is defined as: 88 𝑀௠ = ׬  𝐷௠𝑁(𝐷)𝑑𝐷              (Eq. 2) 89 

Where 𝑚 is the number of moments, 𝑁(𝐷) is the raindrop size distribution as the function of 90 

diameter 𝐷. Inserting Eq. 1 into Eq.2 above, we arrive at 91 

𝑀௠ =  𝑁଴ ୻(௠ାఓାଵ)ఒ೘శഋశభ                  (Eq. 3) 92 

Given the special property of gamma function, 93 Γ(𝛼 + 1) =  𝛼 Γ(𝛼)       (Eq. 4) 94 
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any group of three consecutive moments gives a set of unique solutions of the three parameters 95 

for the gamma distribution. After manipulating Eq.3 for three consecutive moments (e.g. m, m+1 96 

and m+2), we obtain the solutions as following, 97 

           𝜇 = ஼௠ା஼ି௠ିଶଵି஼               (Eq. 5) 98 

                                                           𝜆 = 𝐵(𝑚 + 𝜇 + 1)        (Eq. 6) 99 

                                                                   𝑁଴ =  ெ೘ ఒ೘శഋశభ୻(௠ାఓାଵ)              (Eq. 7) 100 

Where 𝐶 is ெ೘ ெ೘శమெ೘శభమ  and B is ெ೘ெ೘శభ. 𝑀௠, 𝑀௠ାଵ, 𝑎𝑛𝑑 𝑀௠ାଶ are three consecutive moments 101 

calculated from Eq. 2 where 𝑁(𝐷) is the observed RSDs.  102 

In this study, we explore five different combinations of three consecutive moments, i.e. moments 103 

0, 1, 2 (m012), moments 1, 2, 3 (m123), moments 2, 3, 4 (m234), moments 3, 4, 5 (m345), and 104 

moments 4, 5, 6 (m456). It is worth noting that the moments above are calculated directly from 105 

the observed RSDs and the calculated moments might not correspond to the IRVs of the same 106 

moments. For example, the 3rd moment calculated above is not the same as LWC since the 107 

density of water is not taken into account. The performance of gamma fits is evaluated from two 108 

aspects: 1) comparing the IRVs calculated from the fitted gamma distributions and that from the 109 

observed RSDs, and 2) comparing RSD shapes by calculating the correlation coefficient between 110 

the fitted RSD and the observed RSD. The five IRVs used for evaluating the performance of the 111 

fitted RSDs are total number of concentrations, mass-weighted-diameter, LWC, radar reflectivity 112 

and rainfall rate. The calculations of these IRVs are shown in the following from equations 5-9: 113 

𝑁௧ = ׬  𝑁(𝐷)𝑑𝐷ஶ଴              (Eq. 8) 114 

𝐷௠ = ׬  ஽రே(஽)ಮబ ௗ஽׬ ஽యே(஽)ಮబ ௗ஽             (Eq. 9) 115 

𝐿𝑊𝐶 =  గ଺ 𝜌௪ ׬ 𝐷ଷ𝑁(𝐷)ஶ଴ 𝑑𝐷             (Eq. 10) 116 

𝑅𝑒𝑓 = 10 𝑙𝑜𝑔ଵ଴ ׬ 𝐷଺𝑁(𝐷)𝑑𝐷ஶ଴              (Eq. 11) 117 
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each plot shows where the IRVs calculated from the fitted gamma distributions equals that 134 

calculated from the observed distributions.  135 

Fig. 1 shows the calculated IRVs from gamma fitting using different combination of moments. 136 

Each dot denotes each sample of the RSD observations. As shown in Fig. 1, the IRVs calculated 137 

from the gamma fitting that uses three lowest moments (m012) have the highest correlation 138 

coefficients, and 76% of fits having correlation coefficients >0.9. This ratio decreases with the 139 

increasing order of moments and is only 23% for m456. This is consistent with Smith and Kliche 140 

(2005) and Smith et al. (2009), who showed that errors of the estimates of the RSD parameters 141 

using MM are usually larger when higher-order moments are employed and suggested using the 142 

lowest-order sample moments. However, when evaluated by the calculated IRVs, the MM using 143 

the lowest-order moments has the worst performance for most of the calculated IRVs. Figure 1 144 

(panel 1-5) shows that m012 slightly overestimates the total number concentration but severely 145 

underestimates mass-weighted-diameter, especially for the large drops. Consequently, radar 146 

reflectivity is drastically underestimated in m012. The rainfall rate is also underestimated for 147 

rainfall rates <100 mm hr-1. The LWC from m012 is in good agreement with the observation. As 148 

the order of moments increases to 3, 4 and 5 in Fig 1 (panel 16-20)), the calculation of higher 149 

moments reaches the optimum. The LWC, reflectivity and rainfall rate all agree well with the 150 

observation. Yet the number concentration degrades significantly, even compared to m234. As 151 

the order of moments increases to 4, 5 and 6, mass-weighted-diameter is mostly overestimated 152 

and so is the LWC. However, this overestimation is offset by the underestimation of number 153 

concentration and consequently both reflectivity and rainfall rate showed good agreement with 154 

the observation. This highlights the deficiency of evaluating the fits based on only one IRV. For 155 

example, Tokay and Short (1996) showed that calculated rainfall rates from fitted distributions 156 

are in excellent agreement with rainfall rates obtained from observed RSDs in their Fig. 1. 157 

However, the excellent agreement for rainfall rates alone does not guarantee that fitted 158 

distributions represent the observed RSDs well. As seen in Fig. 1, lower order moments produce 159 

good agreement with the observations for IRVs such as total number concentration, and higher 160 

order moments produce good agreement with the observations for IRVs such as reflectivity and 161 

rainfall rate. Middle moments, such as m234, show a good balance that generates overall good 162 

agreement for the calculated IRVs, which is consistent with Cao and Zhang (2009). Therefore, 163 

our approach is to composite the moment fits from all five groups so that best fits of each group 164 
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can be utilized. The composite is compiled according to the following approach. First, the fits 165 

from M456 are selected if their correlation coefficient is >0.9 and the error of total number 166 

concentration is <10 𝑚ିଷ. The same selection criteria are applied to the remaining samples (total 167 

samples minus selected samples from M456), but the fits are selected from M345. Next, for the 168 

updated remaining samples (total samples minus the selected samples from M456 and minus the 169 

selected samples from M345), the fits from M234 are selected if their correlation coefficient 170 

is >0.9. For the new remaining samples (total samples - selected samples from M456 - selected 171 

samples from M345 - selected samples from M234), the fits from M123 are selected if their 172 

correlation coefficient is >0.9 and the error of Dm is <10%.  The same screening process is 173 

performed for the remaining samples, but the fits are selected from M012. The rest of the fits 174 

come from M234. The overall pattern of this composite MM fitting will resemble M234 but the 175 

correlation coefficient is expected to improve. As shown in the last column of Fig. 1 (panel 26-176 

30), the calculated IRVs agree well with the observation in general, as in M234. Yet the ratio of 177 

fits that have correlation coefficients >0.9 increases from 44% from M234 to 63% in the 178 

composite MM. The distributions of the three parameters for the fits with correlation 179 

coefficient >0.9 from the composite MM are shown in Fig. 2. 180 

4.2 𝑵𝟎 –  𝝀 relationship from fitted gamma distributions 181 

Many studies (e.g. Ulbrich 1983; Zhang et al. 2001, 2003; Brandes et al. 2003, 2004; 182 

Vivekanandan et al. 2004; Ulbrich and Atlas 2007) have explored the relationships among the 183 

three parameters in the fitted gamma distributions of RSDs. Ulbrich (1983) showed the 184 

relationship between 𝑁଴ and 𝜇 that is deduced from empirical relations between IRVs, such as Z-185 

R relationship, from early studies. Other studies (Zhang et al. 2001, 2003; Brandes et al. 2003, 186 

2004; Vivekanandan et al. 2004; Ulbrich and Atlas 2007, Chang et al. 2009) deduced 𝜇 −  𝜆 187 

relationships based on fitted RSDs from different data sources. They show that this relationship 188 

provides useful information to describe RSDs and improves the accuracy of the retrieved RSDs 189 

from polarimetric radar measurements. The relationship between any pair of parameters can also 190 

be used in microphysics parameterization schemes. For a one-moment scheme that uses the 191 

gamma distribution for RSDs, when one parameter is prescribed, the second parameter can be 192 

calculated from the relationship between this pair, and the third parameter can be diagnosed from 193 

the prognostic variable LWC and the two known parameters. For a two-moment scheme, two 194 
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6 Discussion and Conclusions 234 

Raindrop Size Distributions collected by PIP from 15 flights through 6 hurricanes during 235 

hurricane field program in 2020 are used to study gamma fits in hurricanes. The results from 236 

gamma fitting using MM showed that using the lowest orders of moments produces the best fits 237 

when evaluated by the correlation coefficient between the fitted and the observed RSDs. Yet, the 238 

IRVs, especially radar reflectivity and rainfall rate, are significantly underestimated due to the 239 

underestimated mass-weighted-diameter. In contrast, radar reflectivity and rainfall rate 240 

calculated from high order MM fits are in excellent agreement with the observations. This 241 

excellent agreement is the result of overestimated mass-weighted-diameter and underestimated 242 

total number concentration, especially for large drops. The correlation coefficient is much lower 243 

for high order MM fits. The central moments, M234, shows overall good performance, yet only 244 

44% of fits represent the observed RSD well, evaluated by the correlation coefficient between 245 

the fitted and the observed RSDs. By compiling composite MM fits to extract best fits in each 246 

group, the ratio of fits with correlation coefficient larger than 0.9 increased from 44% to 63% 247 

without compromising the calculated IRVs. 248 

The distribution of the intercept  𝑁଴ and slope  𝜆 showed a strong correlation. A linear empirical 249 

relationship that is obtained by fitting the entire dataset captures 92% of the variance of the data. 250 

The remaining 8% of variance is shown to be closely related to LWC. A RF regression model is 251 

able to capture 98% of the variance of the data if inputs include both 𝑁଴ and LWC. The 252 

distributions of  𝜇 −  𝑁଴ and 𝜇 −  𝜆 also show correlation in each pair (Fig. 2b and Fig. 2c) but 253 

the scatter is significantly larger than that in 𝑁଴ –  𝜆, making a fitted empirical relationship less 254 

representative. 255 

The identified 𝑁଴ –  𝜆 relationship obtained from the RF regression model can not only improve 256 

the accuracy of the retrieved RSDs from polarimetric radar measurements by providing useful 257 

information to describe RSDs but also reduce the uncertainties and increase the accuracy of bulk 258 

microphysics parameterization schemes in numerical models. For a one-moment scheme that 259 

uses gamma distribution for RSDs, if 𝑁଴ is provided, then 𝜆 can be calculated from this 𝑁଴ –  𝜆 260 

relationship with high confidence and the shape parameter 𝜇 can be diagnosed from 𝑁଴ , 𝜆, and 261 

the prognostic variable LWC. For a two-moment scheme, the 𝑁଴ –  𝜆 relationship along with two 262 
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prognostic variables, LWC and total number concentration, can fully determine the RSD. The 263 

accuracy of the microphysics processes in the bulk scheme can therefore be better formulated 264 

and so potentially improves the overall performance of the microphysical parameterization 265 

schemes.   266 

All the observation data used in this study are from hurricane environment. How well the results 267 

from this study can generalize into other weather scenarios needs further investigation using the 268 

observation data from various weather scenarios. Nevertheless, the same methodology presented 269 

in this study can be adopted. 270 
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