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Abstract

This study assesses the potential of a hierarchical space-time model for monthly low-flow prediction in Austria. The model

decomposes the monthly low-flows into a mean field and a residual field, where the mean field estimates the seasonal low-flow

regime augmented by a long-term trend component. We compare four statistical (learning) approaches for the mean field, and

three geostatistical methods for the residual field. All model combinations are evaluated using a hydrological diverse dataset

of 260 stations in Austria, covering summer, winter, and mixed regimes. Model validation is performed by a nested 10-fold

cross-validation. The best model for monthly low-flow prediction is a combination of a model-based boosting approach for the

mean field and topkriging for the residual field. This model reaches a median R2 of 0.73. Model performance is generally higher

for stations with a winter regime (best model yields median R2 of 0.84) than for summer regimes (R2 = 0.7), and lowest for

the mixed regime type (R2 = 0.68). The model appears especially valuable in headwater catchments, where the performance

increases from 0.56 (median R2 for simple topkriging routine) to 0.67 for the best model combination. The favorable performance

results from the hierarchical model structure that effectively combines different types of information: average low-flow conditions

estimated from climate and catchment characteristics, and information of adjacent catchments estimated by spatial correlation.

The model is shown to provide robust estimates not only for moderate events, but also for extreme low-flow events where

predictions are adjusted based on synchronous local observations.
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Key Points:6

• Model-based boosting of the seasonal low-flow regime and topkriging for the resid-7

ual field improve monthly low-flow predictions.8

• Model accuracy is particularly high in the alpine areas, where low-flow occurs pre-9

dominantly in winter.10

• The hierarchical model structure is especially valuable in headwater catchments,11

and shows good performance for extreme events.12
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Abstract13

This study assesses the potential of a hierarchical space-time model for monthly14

low-flow prediction in Austria. The model decomposes the monthly low-flows into a mean15

field and a residual field, where the mean field estimates the seasonal low-flow regime16

augmented by a long-term trend component. We compare four statistical (learning) ap-17

proaches for the mean field, and three geostatistical methods for the residual field. All18

model combinations are evaluated using a hydrological diverse dataset of 260 stations19

in Austria, covering summer, winter, and mixed regimes. Model validation is performed20

by a nested 10-fold cross-validation. The best model for monthly low-flow prediction is21

a combination of a model-based boosting approach for the mean field and topkriging for22

the residual field. This model reaches a median R2 of 0.73. Model performance is gen-23

erally higher for stations with a winter regime (best model yields median R2 of 0.84) than24

for summer regimes (R2 = 0.7), and lowest for the mixed regime type (R2 = 0.68). The25

model appears especially valuable in headwater catchments, where the performance in-26

creases from 0.56 (median R2 for simple topkriging routine) to 0.67 for the best model27

combination. The favorable performance results from the hierarchical model structure28

that effectively combines different types of information: average low-flow conditions es-29

timated from climate and catchment characteristics, and information of adjacent catch-30

ments estimated by spatial correlation. The model is shown to provide robust estimates31

not only for moderate events, but also for extreme low-flow events where predictions are32

adjusted based on synchronous local observations.33

1 Introduction34

Droughts and low-flows are significant hydrological and environmental hazards that35

threaten a wide range of water-related sectors, such as navigation, hydropower produc-36

tion and water management in general. Currently, prediction of low-flow is mainly fo-37

cused on the spatial scale (Euser et al., 2013; Salinas et al., 2013; Castiglioni et al., 2009;38

Laaha et al., 2014; Tyralis et al., 2021; Worland et al., 2018; Laimighofer et al., 2022a),39

whereby deterministic models, or statistical models are applied. Spatio-temporal low-40

flow prediction is still rare, although space-time information on monthly low-flow is cru-41

cial for assessing ecological impacts on water quality, or estimating the risk of naviga-42

tion disruptions. Space-time models are currently used in a wide range of environmen-43

tal research fields (Kyriakidis & Journel, 1999), e.g. soil moisture modelling (Rodŕıguez-44

Iturbe et al., 2006), distribution of atmospheric pollution (Szpiro et al., 2010; Sampson45

et al., 2011; Lindström et al., 2014; Lindstrom et al., 2019; Mercer et al., 2011), down-46

scaling meteorological variables (Wilby et al., 1998), or risk of wildfire outbreaks (Opitz47

et al., 2020). Transferring these space-time models to streamflow poses a particular chal-48

lenge due to the tree-like structure of river catchments. Nevertheless, space-time mod-49

els for streamflow are of particular interest, as they can be used for prediction in ungauged50

basins (Hrachowitz et al., 2013, PUB). This study aims to transfer an existing approach,51

originally adapted for air pollution modelling (Szpiro et al., 2010), to the space-time pre-52

diction of monthly low-flow.53

Conceptually, statistical space-time models can be divided into individual space-54

time models, models that use temporal functions (deterministic or stochastic) that are55

correlated in space, or spatial functions that are correlated in time (Kyriakidis & Jour-56

nel, 1999). The latter are less common for streamflow. Individual space-time models for57

prediction in ungauged basins (PUB) are mainly based on data-driven approaches such58

as long short-term memories (Kratzert, Klotz, Herrnegger, et al., 2019; Kratzert, Klotz,59

Shalev, et al., 2019; Lees et al., 2021, LSTM), artificial neural networks (Solomatine &60

Ostfeld, 2008; Cutore et al., 2007, ANN), or other machine learning methods such as tree-61

based models (Laimighofer et al., 2022a). These models typically use auxiliary space-62

time information on precipitation or evapotranspiration for streamflow estimation. In63

contrast, spatio-temporal geostatistical approaches exploit the similarity of hydrographs64
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from nearby catchments. The simplest case is to apply ordinary kriging to the runoff time65

series, neglecting temporal correlations. In this context, Farmer (2016) found that such66

a simple model requires only a single (pooled) variogram to yield a median Nash-Sutcliffe67

efficiency of 0.7 for daily streamflow predictions on 182 stations in the United States. Or-68

dinary kriging may not be the best choice for runoff, due to the nested and tree-like struc-69

ture of the catchments. Therefore, other methods have been developed to take into ac-70

count the peculiarities of catchment runoff. For example methods constraining the spa-71

tial covariance function by the water balance (Müller & Thompson, 2015), or methods72

that incorporate the river network hierarchy (Gottschalk, 1993; Sauquet et al., 2000),73

such as topkriging (Skøien et al., 2006; Skøien & Blöschl, 2007, TK). Farmer (2016) com-74

pared ordinary kriging to topkriging and showed a similar performance for both approaches.75

This is in contrast to studies in Austria and France (Skøien & Blöschl, 2007; Viglione76

et al., 2013; de Lavenne et al., 2016), which showed a favorable performance of topkrig-77

ing also for daily and hourly runoff. Skøien and Blöschl (2007) additionally found, that78

in their topkriging application it was sufficient to estimate each time step separately, and79

no temporal dependency structure needed to be considered to achieve adequate perfor-80

mance.81

Space-time models of the type where a temporal function (stochastic or determin-82

istic) is correlated in space, are more common for runoff applications. They can be used,83

for instance, to improve the predictions of a hydrological model, when considering the84

output of a hydrological model as a deterministic function, which is interpolated in space85

by its model parameters. This regionalization of model parameters is performed on dif-86

ferent temporal and spatial resolutions (Guo et al., 2021; Razavi & Coulibaly, 2013). Ap-87

plications that use a stochastic temporal function are less frequent. For instance, Pumo88

et al. (2016) used a time series model for estimating monthly runoff in 59 basins in Sicily,89

with NSE values ranging from 0.7 to 0.8, but the model was validated only on a small90

subset of catchments. The time series model of Pumo et al. (2016) was determined a pri-91

ori and only the coefficients of the parameters were estimated in space. A more flexible92

approach, that involves less information loss, is to use empirical ortoghonal functions (EOF).93

Gottschalk et al. (2015) and Li et al. (2018) applied EOFs for filling gaps in monthly dis-94

charge time series and Sauquet et al. (2008) tested spatially weighted EOFs for predic-95

tion of normalized mean monthly runoff in France. Studies, intended to model air pol-96

lutants, extended the approach of weighted EOFs, by adding a residual field (Szpiro et97

al., 2010), altering the methods for estimating the weights of the EOFs (Sampson et al.,98

2011; Mercer et al., 2011), or including spatio-temporal variables (Lindström et al., 2014;99

Lindstrom et al., 2019). All these studies analysed air pollutants in the United States,100

and reported cross-validated R2 from 0.6 to about 0.75. The flexible model structure and101

the already highlighted use of EOFs for streamflow variables (Gottschalk, 1993; Li et al.,102

2018; Sauquet et al., 2008) demonstrate the potential for transferring this model to monthly103

low-flow. Such a transfer would involve incorporating both the average low-flow regime104

and the nested structure of river networks into the model.105

The main objective of this study is to develop a hierarchical spatio-temporal model106

for monthly low-flow in Austria. The model consists of a mean field which should cap-107

ture the seasonal cycle and the long-term trend of monthly low-flow and a residual field108

where geostatistical approaches are deployed. We test four different models for the mean109

field: (i) spatially weighted smoothed EOFs, (ii) a model-based boosting approach, which110

only estimates the seasonal cycle, (iii) a model-based boosting approach, which estimates111

the seasonal cycle and the long-term trend and (iv) a combination of model (ii) and (i).112

For the residual field we compare three kriging approaches - ordinary kriging (OK), phys-113

iographic kriging (PK) and topkriging (TK). The models are evaluated on a comprehen-114

sive Austrian dataset by 10-fold nested cross validation (CV) to emulate prediction in115

ungauged basins. The following research questions will be addressed:116

1. Can a combination of statistical learning approaches and kriging methods improve117

spatio-temporal low-flow prediction in Austria?118
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2. What approach is best suited to model the seasonal low-flow regime?119

3. Which kriging variant is best suited to model the space-time residual field?120

4. How does prediction performance vary between headwater and non-headwater catch-121

ments?122

5. What is the performance for summer, winter and mixed low-flow regimes?123

2 Data124

2.1 Hydrological data125

This study is performed on a hydrological diverse dataset in Austria. We use 260126

stations with a continuous daily streamflow record between 1982 to 2018. The same dataset127

was already used in a study on spatial low-flow prediction (Laimighofer et al., 2022b)128

and spatio-temporal low-flow prediction in Austria (Laimighofer et al., 2022a). The hy-129

drological data can be downloaded from the Hydrographic Service of Austria (HZB). Our130

study focuses on a space-time model for low-flow. Hence, the daily streamflow time se-131

ries is used to calculate the 0.05 quantile of discharge for every month (444 months at132

every station). We will refer to this index as monthly Q95 (P (Q > Q95) = 0.95). The133

monthly Q95 was standardized by catchment area, which results in the monthly specific134

low-flow (q95) time series (l s−1 km−2). For all modelling approaches q95 is transformed135

by the square root, to approximate a normal distribution.136

Occurrence of low-flow in Austria is more dominant in the winter half-year (Novem-137

ber to April, winter regime type) for alpine catchments, where summer discharge is in-138

creased by snowmelt and increasing precipitation (Laaha & Blöschl, 2006; Laaha et al.,139

2017). In the northern parts of Austria and the Eastern low-lands low-flow mainly is present140

in the summer half-year (May to October, summer regime type). Nevertheless, not all141

catchments have this strong seasonality, and the occurrence of low-flow is alternating be-142

tween winter and summer. This type of low-flow regime will be referred to as mixed regime143

type (Laaha & Blöschl, 2006; Laaha, 2023). The regime types are defined based on the144

seasonality ratio (SR)145

SR = Q95summer/Q95winter, (1)

where Q95summer is the 0.05 quantile of daily discharge for the summer period (May to146

November), and Q95winter the corresponding 0.05 quantile for the winter period of the147

respective station. A SR below 0.8 indicates a summer regime, a SR above 1.25 (1/0.8)148

determines a winter regime, and a SR between 0.8 and 1.25 is defined as a mixed regime.149

A graphical illustration of the defined regime types is given in Fig. 1. Despite the mod-150

els developed here are on monthly time scale and thus not restricted to a particular regime151

type, we will use the seasonality regime types for an in-depth analysis of the results.152

2.2 Catchment characteristics153

In this study we apply several geostatistical and statistical learning methods, which154

all rely on catchment characteristics, that are supposed to be static over time in our ap-155

proach. Ordinary kriging uses the geographic coordinates of the gauging stations, top-156

kriging requires the river network as input, and physiographic kriging is based on a prin-157

cipal component analysis of all catchment characteristics. The catchment characteris-158

tics can be subdivided into landuse variables, topographic descriptors, geological predic-159

tors and climatic characteristics. An overview of all variables is given in Table 1. For a160

more detailed description of the computation of the catchment characteristics we refer161

to Laaha and Blöschl (2006) and Laimighofer et al. (2022b). How the temporal infor-162

mation is added to the space-time models will be explained in Sect. 3.2.163
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Figure 1. Overview of the study area. The colours indicate the seasonality regime type of

the station, defined by the SR. The curves of each station is the scaled seasonal low-flow at each

station for illustration of the different regime types.

3 Methods164

3.1 Model structure165

The basic model structure is given by166

y(s, t) = µ(s, t) + υ(s, t), (2)

where y(s, t) is the monthly low-flow at a station s and time point t, µ(s, t) is defined167

as the mean field and υ(s, t) is the residual field of our model. Similar model designs were168

used by e.g. Szpiro et al. (2010), Lindstrom et al. (2019) or Sampson et al. (2011). In169

this model conceptualization the mean field should capture the seasonal cycle and the170

long-term trend of the response variable. Szpiro et al. (2010) used ordinary kriging for171

prediction of the space-time residual field, where only one variogram is estimated for all172

timesteps. A graphical overview specific to low-flow is shown in Fig. 2. In this study we173

extend the model introduced by Szpiro et al. (2010) to capture the nested structure of174

river catchments. We employ a hierarchical modeling framework, that (i) considers four175

different modeling approaches for the mean field, and (ii) three forms of kriging for the176

space-time residual field, to find the best-performing model combination for monthly low-177

flow prediction.178

3.2 Mean field179

The objective for modelling the mean field is to estimate the seasonal cycle and the180

long-term trend in the spatio-temporal model. In the context of low flows, the seasonal181

cycle corresponds to the average monthly low-flow regime (seasonal low-flow regime), which182

is augmented to transient conditions by the long-term trend component. Szpiro et al.183

(2010) or Lindström et al. (2014) used weighted empirical orthogonal functions (EOF),184

which were initially proposed by Fuentes et al. (2006), for estimating the mean field. Their185

–5–
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Table 1. Description of the catchment characteristics used in this study. The climatic char-

acteristics as precipitation, climatic water balance, potential evapotranspiration, aridity index,

snowmelt and temperature are computed on an annual and a summer/winter half-year basis.

These different accumulation periods are indicated in the subscript: no subscript for annual char-

acteristics (e.g. P), win for winter (e.g. Pwin), sum for summer (e.g. Psum).

Variable Description Unit

A catchment area km2

Lat, Lon Latitude and longitude of gauging station
decimal de-
grees

H+, H0, HM , HR
Maximum, minimum, mean and range of catchment
altitude

m

E Altitude of gauging station m
SM Mean catchment slope %

SSL, SMO, SST
Fraction of slight (¡ 5 %), moderate (5 to 20 %)
and steep slope (¿ 20 %) in the catchment

%

LU , LA, LC , LF ,
LG, LR, LW , LWA

Fraction of urban areas, agricultural areas, perma-
nent crop, forest, grassland, wasteland, wetlands,
water surfaces

%

GB , GG, GT , GF ,
GL, GC , GGS ,
GGD, GSO

Fraction of bohemian massif, quaternary sediments,
tertiary sediments, flysch, limestone, crystalline
rock, shallow and deep groundwater table, source
region in catchment

%

D Stream network density 102 m km−2

P Precipitation mm
ETP Potential Evapotranspiration mm
AI Aridity index -
MCWB Mean climatic water balance mm
S Snowmelt mm

T+, T0, TM , TR
Maximum, minimum, mean and range of tempera-
ture

°C

P0
Average number of days without precipitation (< 1
mm)

days

PH
Average number of days with precipitation > 5
times the mean

days

approach can be written as186

µ(s, t) =

m∑
i=1

βi(s)fi(t). (3)

The fi(t) are smoothed empirical orthogonal functions, which are spatially weighted by187

regression coefficients (βi), so that the temporal structure can vary in space (Lindström188

et al., 2014). The number of EOFs is given by m, whereas f1(t) is always an intercept189

term. In this study, we compare four different methods for estimating the mean field.190

First, we will use the basic approach from Szpiro et al. (2010), by estimating the mean191

field with spatially weighted smoothed EOFs. This approach will be referred to as EOFsimple,192

and will serve as a benchmark for the other three methods. The second and third method193

use a model-based boosting approach for estimating the mean field. One implementa-194

tion will only estimate the seasonal cycle of low-flow at each station (BoostSC), while195

the other implementation will further include the long-term trend of low-flow at each sta-196

tion (BoostST ). Finally, we combine the two approaches BoostSC and EOFsimple, by first197
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Figure 2. Model structure, exemplified for monthly Q95.

predicting the seasonal cycle and using the residuals for estimating the long-term effect198

by spatially weighted EOFs (BoostEOF ).199

3.2.1 Smoothed empirical orthogonal functions200

In our hierarchical model framework EOFs are used for estimating the mean field201

(EOFsimple), and in combination with seasonal boosting (BoostEOF ). In both cases, the202

first step is to build a matrix xEOF (T×S), where each column either corresponds to203

the monthly low-flow (EOFsimple), or to the residuals (BoostEOF ) at station s. The di-204

mension T (T = 444) is the length of each monthly low-flow series at each station, and205

S (S = 260) is the number of stations. The matrix xEOF is centered and scaled be-206

fore applying a singular value decomposition. The smoothed EOFs are then calculated207

by fitting a spline on each singular value vector.208

The number of EOFs (m) is determined by fitting a linear model (as in Eq. 3, for209

each s) to each column of xEOF against m EOFs, where m is ranging from 1 (only an210

intercept term) to a maximum of 50 EOFs. For each single model the Bayesian infor-211

mation criterion (BIC) is calculated and averaged over all stations, resulting in a vec-212

tor of BIC values (BICm) for each number of EOFs. As this approach would give only213

one realization for the entire set of stations and thereby lead to overfitting, we perform214

a bootstrap procedure with 25 repetitions (where a fraction of 70 % of the stations is215

sampled) to optimize the parameter m for the prediction at ungauged sites. The final216

number of EOFs is then determined by averaging every BICm over all 25 bootstrap sam-217

ples and for a more parsimonious model we add 1 standard deviation to the minimized218

BIC value, which then serves as the threshold. The minimum number of EOFs with an219

average BIC below this threshold are then selected as the final number of EOFs (m). A220

graphical description of this selection is shown in Fig. 3. For any number of EOFs, f1221

is an intercept term which is a vector of 1s, with length S.222

The fi are then weighted in space by the regression coefficients βi, where each βi223

is a vector of regression coefficients for all stations. To obtain predictions at ungauged224

locations, every βi is estimated by a linear model, which can be formulated as225

βi = α0i +

J∑
j=1

xjαij , (4)

where α0i is an intercept term, x is the matrix of the spatial predictors presented in Sect.226

2, and αi are regression coefficients. J is the number of predictor variables that needs227

to be optimized. As it is a priori not clear which variables to include in the βi-regression228
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Figure 3. The number of EOFs are selected by a bootstrap procedure - with 25 samples. For

each of the bootstrap samples the average BIC is calclulated. The number of EOFs is selected

(the yellow line indicates the number of EOFs) by adding 1 standard deviation (shown by the red

dashed line) to the minimum BIC value (shown by the red solid line).

model, possible approaches are to use shrinkage approaches as Lasso (Mercer et al., 2011),229

or dimension reduction methods as partial least-squares (Sampson et al., 2011, PLS).230

In this study we apply an approach that has already been shown to be useful for low-231

flow estimation in Austria (Laimighofer et al., 2022b). The variable selection is based232

on a recursive feature elimination (Granitto et al., 2006, RFE), which consists of an ini-233

tial variable ranking and a backward variable selection. The initial variable ranking is234

estimated by a linear model-based boosting approach (a description of model based-boosting235

follows in Sect. 3.2.2). The variables are ranked after their absolute coefficients, and to236

obtain more robust results, the variable ranking is repeated 25-times by bootstrapping.237

For each βi, a linear model is fitted to the first p (p = 1, 2, 3, ..., 59) ranked variables238

and the error is calculated and averaged over 25-bootstrap samples. The final number239

of variables (J) is defined by using 1.05 times the minimum error as a threshold to pro-240

duce parsimonious models. The variable selection is performed for each βi individually.241

3.2.2 Model-based boosting242

Model-based boosting (Bühlmann & Hothorn, 2007) is an iterative algorithm, where243

in each step a baselearner is selected, which best minimizes a predefined loss function244

(squared error in this study). To avoid overfitting the boosting algorithm uses a learn-245

ing rate, to slowly approximate the final coefficients of the model. A baselearner can be246

e.g. a linear, a non-linear, random or spatial effect. Model-based boosting provides an247

intrinsic variable selection (Hofner et al., 2011), supports penalization of the effects and248

is robust against multicollinearity (Mayr & Hofner, 2018). The only parameter of the249

model that was tuned in this study was the number of boosting iterations, which was250

optimized using a 10-fold cross validation (CV) approach.251

–8–
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Based on this framework, the model for seasonal boosting (BoostSC) can be for-252

mulated as253

µ(s, t) = β0 + f1(month) +

K∑
k=2

fk(x) + f1(month)x. (5)

The model captures the average monthly low-flow regime. In the equation, β0 is the in-254

tercept of the model and x is the predictor matrix with all spatial predictor variables.255

The spatial predictors can be parameterized by fk(.), either as a linear or a non-linear256

effect. We decomposed all non-linear effects into a linear and a non-linear part, as pro-257

posed by Kneib et al. (2009), to distinguish between linear and non-linear effects for each258

spatial variable. Further, a cyclic B-spline f1(month) according to Hofner et al. (2016)259

was added, which should represent the seasonal cycle of monthly low-flow. Finally, the260

term f1(month)x was added to allow the seasonal cycle to vary in predictor variable space,261

in analogy to a varying-coefficient model (Hastie & Tibshirani, 1993; Fahrmeir et al., 2004).262

This leads to a total of 3p+1 (178) baselearners for BoostSC . For faster computation263

this model was not fitted to the full data, but only to the monthly averages at each sta-264

tion (seasonal low-flow cycle with 12 values per station).265

In case of our spatio-temporal boosting approach (BoostST ), the before mentioned266

model is extended by a long-term trend component to account for a transient seasonal267

low-flow regime. This trend component is captured by adding a sequence of all months268

(T = 1, 2, 3, ..., 444) as effect f2(time) to the model, which then can be written as269

µ(s, t) = β0 + f1(month) + f2(time) +

K∑
k=3

fk(x) + f1(month)x+ f2(time)x. (6)

The long-term trend is modeled by a constant term and a spatially varying term, as it270

is done for the seasonal cycle. This results in 4p+ 2 (238) baselearners for BoostST .271

3.3 Residual field272

Following Szpiro et al. (2010) and Lindström et al. (2014), the residual field υ(s, t)273

is estimated by a kriging structure,274

υ̂st =

S∑
s=1

λsυst, (7)

where υst are the fitted residuals at location s and time t and λs are the kriging weights.275

Note that the kriging weights (λs) are static over all timepoints. Hence, only one var-276

iogram model is used across time. The original approach employs an ordinary kriging277

estimator that is based spatial proximity, which appears well suited for air-quality mod-278

els, in which context the proposed model was first introduced (Szpiro et al., 2010; Samp-279

son et al., 2011; Lindström et al., 2014).280

Considering river discharge, geographic kriging may not be fully appropriate, as281

it does not include the nested structure of catchments. Therefore, we estimate the resid-282

ual field not only by ordinary kriging (OK), but additionally use physiographic kriging283

(PK) and topkriging (TK). Physiographic kriging was introduced by Castiglioni et al.284

(2011) and computes the first two principal components (PC) on a set of catchment char-285

acteristics. These two PCs then span up the physiographic space for the kriging struc-286

ture. Topkriging (Skøien et al., 2006; Laaha et al., 2014) takes into account not only the287

size and distance of the catchments, but also their nested structure along the river net-288

work. This makes the method particularly well suited for interpolation of river discharge.289

To obtain the kriging weights λs, we need to estimate a variogram model for each290

of the three kriging approaches. Lindström et al. (2014) proposes to use a maximum like-291

lihood approach for estimation of the residual field, that includes variogram estimation.292

As it is not straightforward to estimate a topkriging variogram through a maximum like-293

lihood approach, we introduce a simple framework for the optimization of the variogram294
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for all three kriging methods. The procedure starts by calculating the coefficient of de-295

termination R2
t for every timestep:296

R2
t = 1−

∑S
s=1(yst − µ̂st)

2∑S
s=1(yst − yt)2

, (8)

where µ̂st at this point is the prediction of one of the four models for the mean field, yst297

are the observations, and yt is the spatial average at the specific timepoint. If only a krig-298

ing approach is used alone (no estimation of the mean field), µ̂st is simply the average299

low-flow at every station. Next, we compute the average R2
t over all R2

t and select the300

timestep (tstep) in which the deviation of R2
t is minimal to R2

t . The variogram is then301

optimized at the unique residual timeslice υststep . For the optimization of the variogram302

we use a 10-fold CV and a grid search over the parameter space. For each combination303

of the parameters the R2
CV of υststep is calculated and the parameters with the highest304

R2 are used for the final prediction.305

3.4 Model validation306

Model evaluation is performed by a nested 10-fold cross validation (Varmuza & Filz-307

moser, 2016, CV). A nested CV consists of an inner and an outer loop. The inner loop308

in this study is used for tuning the boosting model, select the number of EOFs, variable309

selection for the regression coefficients of the EOFs, and optimizing the variogram pa-310

rameters. The outer loop is solely used for assessing the model performance. This nested311

CV-scheme was already applied in two studies for low-flow in Austria (Laimighofer et312

al., 2022a, 2022b). However, in this study some parts of the inner loop are altered, due313

to the hierarchical structure of the model. An illustration of the scheme is given in Fig.314

4.315

3.4.1 Performance metrics316

We assess performance using three main metrics. They are calculated using cross317

validated predictions and should therefore provide an unbiased estimate of the model er-318

ror. First, we compute the root mean squared error (RMSE) by319

RMSE =

√√√√1/N

N∑
i=1

(yi − ŷi)
2, (9)

where N is the total number of observations (N = S ∗ T ), yi are the observations and320

ŷi are the predictions. Further, we calculate the median absolute error (MDAE):321

MDAE = median(|yi − ŷi|), (10)

and the R2:322

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − yi)2
. (11)

The RMSE, MDAE and R2 are computed based on all data points. Since we are par-323

ticularly interested in how well the models can reproduce the mean field and thus pro-324

vide an estimate of the mean seasonal low-flow regime, we additionally calculate all three325

metrics (RMSEmonth, MDAEmonth, R
2
month) for the seasonal predictions. This is shown326

exemplarily for the RMSE:327

RMSEmonth =

√√√√1/SM

S∑
s=1

M∑
m=1

(ysm − ŷsm)2, (12)

where M is the number of months (12) and ysm is:328

ysm = 1/(N/M)

M∑
m=1

ysm. (13)
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Figure 4. Schematic overview of the nested CV, that is used for model validation. We use

different bootstrap samples for determination of number of EOFs and the selection of the βi.

Additionally the inner 10-fold CV is altered between optimization of the boosting models and the

optimization of the variograms.
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The ratio N/M can also be specified by the number of years (37 years of observations)329

at each station, and ysm is every monthly low-flow value in month m at station s. The330

equation can be written accordingly for the predictions ŷsm. Finally, we are interested331

in the performance of our models at each station, hence the R2 is calculated for each sta-332

tion separately. Note that the equation of R2 is equivalent to the formulation of the Nash–Sutcliffe333

efficiency (NSE, including the bias) in many hydrological studies (Blöschl et al., 2013).334

4 Results335

4.1 Mean field model components336

Before proceeding with an overview of model performance, we shortly discuss some337

intrinsic features of the individual mean field model components - the inherent variable338

selection for the two boosting approaches, the weighted coefficients for the empirical or-339

thogonal functions, and the determination of the number of EOFs.340

4.1.1 Seasonal and spatiotemporal boosting341

Model-based boosting includes an inherent variable selection procedure. Hence, we342

can analyse the selected variables and compare the structure of the two boosting mod-343

els - seasonal boosting (BoostSC) and spatiotemporal boosting (BoostST ). Both boost-344

ing approaches used the maximum number of boosting steps over all ten folds that were345

predefined for each model (3000 for BoostSC , 5000 for BoostST ). In the seasonal boost-346

ing approach 45 baselearners were added on average to the model, whereas BoostST ex-347

ploited 67 baselearners on average. For both models the monthly cyclic spline (f1(month))348

was the most important variable. In both cases spatial covariabes were not added as sin-349

gle linear or non-linear baselearners, but solely as interaction effect of the cyclic spline,350

or the long-term trend. Figure 5 displays a graphical overview of the most important in-351

teraction effects for BoostSC . The main important spatial predictors for BoostSC and352

BoostST were topographic variables such as average catchment altitude and stream net-353

work density, landuse variables such as the fraction of wasteland, grassland and forest354

and, finally, meteorological conditions such as summer precipitation or snowmelt in win-355

ter. The long-term trend in the BoostST model was added as a linear and non-linear ef-356

fect and also weighted by spatial variables, but was generally negligible over all folds.357

4.1.2 Smoothed empirical orthogonal functions358

The smoothed empirical orthogonal functions (EOFs) were used as a single spa-359

tiotemporal framework (EOFsimple) and in combination with the seasonal boosting ap-360

proach, where the EOFs (BoostEOF ) were estimated on the residuals of the seasonal pre-361

dictions. In both cases, the number of EOFs were selected by a bootstrap procedure. EOFsimple362

used 5 EOFs over all ten folds (Fig. 3 shows the selection of the number of EOFs), whereas363

the number of EOFs was slightly higher for the BoostEOF approach, ranging from 6 to364

8 EOFs.365

The EOFs were weighted by the meteorological, geological, landuse and topographic366

predictor variables in space. Our initially described variable selection (Sect. 3.2.1) re-367

duced the number of variables for EOFsimple to 6 predictors for the intercept term and368

7 to 23 variables (from 59) for the other EOFs. In contrast, the BoostEOF approach pro-369

duced more parsimonious models with only 2 spatial variables for the intercept, and 2370

to 18 variables for the other EOFs.371

Interpreting the selected variables is only straightforward in the case of the weighted372

intercept, which can be described as the mean low-flow for every station. This also ex-373

plains the low number of variables used in the BoostEOF method, where the mean low-374

flow should already have been approximated by the seasonal boosting model. The left-375

over variables were the fraction of quarternary sediments, source region or stream net-376
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Figure 5. Partial predictions of the mean field with interaction effects of spatial predictors

and the cyclic spline in the BoostSC model, stratified by low-flow regime type. Shown are the

partial predictions for the 20%, 50% and 80% quantile of each spatial predictor variable within

the considered regime type. The variable with the highest range in the spline coefficients is shown

on the left, with a decreasing range to the right. Only the ten most important spatial variables

are shown. As each fold leds to different results, the underlying model is the equivalent to the

model produced by the first cross-validation run.
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work density. The intercept of EOFsimple was mainly modeled by topographic descrip-377

tors as maximum and average catchment altitude, average slope and meteorological con-378

ditions as the aridity index in summer and days without precipitation in summer.379

4.2 Model performance380

This section assesses model performance from different perspectives. In a first step,381

we investigate how well the mean seasonal low-flow regime is represented by the indi-382

vidual mean field models. This is followed by an analysis of the predictive performance383

of the individual components of the hierarchical model, i.e. the four mean-field models384

and the three kriging approaches when they are used on their own. Finally, we evalu-385

ate the full hierarchical models composed of these components.386

4.2.1 Representation of the seasonal low-flow regime387

Table 2. Three different error measures (RMSE, R2, MDAE) for the mean seasonal low-flow

regime are presented. For the calculation the predicted and observed low-flow is averaged for

each month and station.

Model structure R2
month RMSEmonth MDAEmonth

BoostSC 0.84 5.76 1.56
BoostST 0.82 6.15 1.65
EOFsimple 0.74 7.47 1.87
BoostEOF 0.85 5.70 1.57

In a first step of assessing model performance, we evaluate the four approaches used388

for modelling the mean field and how well they can estimate the seasonal low-flow regimes389

across Austria. Table 2 presents the RMSEmonth, the R2
month and the MDAEmonth for390

the four approaches. Generally, the seasonal low-flow regime was well predicted by all391

four methods, but the EOFsimple approach showed a weaker performance on all three392

error metric with a RMSEmonth of 7.47, compared to 6.15 (BoostST ) and 5.76 (BoostSC)393

for the two boosting approaches. The best performance was reached by the stacked model394

of seasonal boosting and the use of EOFs for the residuals (RMSEmonth = 5.7), albeit395

the differences to the seasonal boosting approach is almost negligible and also the spa-396

tiotemporal boosting approach yields only slightly weaker performance metrics.397

Examining the estimates for the three different regime types (Fig. 6) gives a more398

detailed picture of model performance. The weaker performance of EOFsimple was ap-399

parent for all three regime types, with a R2
month ranging from 0.59 to 0.66, but is neg-400

ligible for the mixed low-flow regime. EOFsimple resulted in smoother estimates of the401

seasonal cycle, which probably led to the lower performance especially for the summer402

and winter regime. Assessing the performance of the three other methods, the winter403

regime was best predicted with a R2
month ranging from 0.78 to 0.81. For the summer regime404

the R2
month was between 0.74 to 0.76, where for the mixed regime it dropped to 0.62 (0.6405

for BoostST ).406

4.2.2 Performance of individual components407

In a next step of model evaluation we assess the individual performances of the com-408

ponents of the hierarchical model framework: models for the mean field and the sole use409

of the three different kriging structures without considering the mean field. Table 3 gives410

an overview of the results. The individual model components yielded a RMSE of 8.42411

(BoostEOF ) to 9.79 (EOFsimple). What is striking is that the spatiotemporal boosting412
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(a) Winter regime
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(b) Summer regime

Observations EOFsimple BoostSC BoostEOF BoostST

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

0.0

0.5

1.0

1.5

2.0

2.5

S
ca

le
d 

m
on

th
ly

 lo
w

 fl
ow

(c) Mixed regime

Figure 6. Predictions of the mean seasonal low-flow regime by various mean field models,

stratified by regime type. The seasonal low-flow cycle is scaled by the mean at each station, for

a better visualization. Each transparent line presents the seasonal cycle of one station, where the

colored thick line is the average over all stations.
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(BoostST ) approach has a weaker overall performance on all metrics compare to the sea-413

sonal boosting approach (BoostSC). Both approaches only yield a R2
0.5 of 0.15. In case414

of BoostSC this is not surprising, as the model can only capture the seasonal cycle at415

each station. However, the additional long-term trend in the BoostST approach is only416

adding noise to the model and leads to no improvement in terms of model performance.417

The long-term trend is better approximated by the stacked model of seasonal boosting418

and EOFs (BoostEOF ), which obtain the best results comparing the four mean field com-419

ponents. Generally, all three kriging approaches yielded a higher R2
0.5, ranging from 0.48420

for physiographic kriging (PK), to 0.63 for ordinary kriging (OK) and 0.75 for topkrig-421

ing (TK). These results show, that TK already provides very accurate predictions with-422

out taking any spatio-temporal information into account.423

Table 3. Overview of the error for the individual model components. R2, RMSE and MDAE

refer to the performance for all data points. R2 < 0.5 (R2 < 0) is the fraction of stations that

yield a R2 below 0.5 (0) and R2
0.5 is the median of all R2 computed per each station.

Model structure R2 RMSE MDAE R2 < 0.5 R2 < 0 R2
0.5

BoostSC 0.68 9.06 2.59 0.77 0.33 0.15
BoostST 0.67 9.29 2.61 0.79 0.34 0.15
EOFsimple 0.63 9.79 2.49 0.77 0.18 0.37
BoostEOF 0.73 8.42 2.24 0.64 0.17 0.41
OK 0.75 8.02 2.09 0.40 0.22 0.63
PK 0.69 8.96 2.34 0.52 0.26 0.48
TK 0.80 7.25 1.62 0.30 0.15 0.75

4.2.3 Performance of hierarchical models424

Table 4. Overview of the overall error for all hierarchical models. The Kriging column iden-

tifies the kriging approach which was used for the residual field. The Mean field column distin-

guishes between the different approaches for estimating the mean field of the model.

Kriging Mean field R2 RMSE MDAE R2 < 0.5 R2 < 0 R2
0.5

OK BoostSC 0.83 6.72 1.78 0.30 0.10 0.69
OK EOFsimple 0.81 6.99 1.86 0.31 0.11 0.67
OK BoostEOF 0.82 6.77 1.79 0.32 0.10 0.68
OK BoostST 0.81 6.96 1.86 0.33 0.11 0.66
PK BoostSC 0.79 7.37 1.94 0.41 0.13 0.58
PK EOFsimple 0.77 7.73 2.00 0.38 0.15 0.59
PK BoostEOF 0.79 7.42 1.92 0.39 0.13 0.58
PK BoostST 0.77 7.77 1.99 0.43 0.13 0.56
TK BoostSC 0.84 6.35 1.56 0.25 0.09 0.73
TK EOFsimple 0.83 6.56 1.60 0.25 0.09 0.73
TK BoostEOF 0.84 6.35 1.60 0.24 0.09 0.72
TK BoostST 0.84 6.44 1.64 0.27 0.08 0.70

In a next step we want to assess the prediction performance of the full hierarchi-425

cal models that combine the component models evaluated before. Table 4 gives an overview426

of the cross-validated error of all models. We can observe that the application of differ-427
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Figure 7. Cumulative distribution of station-wise R2 stratified by kriging-method. Stations

with a R2 below -1 are omitted for clarity.

ent kriging methods led to the main variation in model performance, with a better per-428

formance of TK than OK and PK. The model combinations with TK yielded a RMSE429

from 6.35 to 6.56, whereas OK resulted in a somewhat higher RMSE between 6.72 and430

6.99 and the use of PK for the residual field led to a RMSE of 7.37 to 7.77. This over-431

all trend was also visible for all other performance measures.432

In contrast, the different approaches for estimating the mean field only slightly al-433

tered the prediction performance of the models. For all kriging approaches the use of sea-434

sonal boosting, or BoostEOF yielded similar results. The models showed a somewhat weaker435

performance when the mean field was estimated by spatiotemporal boosting or EOFsimple,436

but when we look at the distribution of the R2 over all stations (Fig. 7), these differences437

almost disappear. For instance, the R2
0.5 for topkriging ranged only from 0.7 to 0.73 and438

the number of low-performing stations with a R2 below 0 was between 8 % and 9 %.439

4.2.4 Performance of hierarchical models grouped by seasonal regime440

types441

For a deeper performance analysis of the hierarchical models, we again focus on the442

three low-flow regime types (winter, summer, mixed). Figure 8 gives an overview of the443

distribution of the R2 for all three regimes. Regarding the kriging structure, hierarchi-444

cal model with TK show the best performance over all three regimes. Highest predic-445

tion accuracy is reached for winter regime, where hierarchical models with TK yield a446

median R2 of 0.8 to 0.84. Performance of OK is only slightly lower with a median R2
447

from 0.78 to 0.81, but only 0.72 to 0.76 for PK. The performance is somewhat smaller448

for summer regimes for all models, and is lowest for mixed regimes, where combinations449

with TK still reach a median R2 of 0.68 (lowest R2 of 0.62), but median R2 values for450

OK are only ranging from 0.5 to 0.57.451

A further stratification of the results by the mean field model did not reveal a sys-452

tematic picture of the performance. For example, EOFsimple in combination with OK,453

resulted in the worst performance for summer regimes, but for physiographic kriging and454

topkriging the combination with EOFsimple led to the best performance. Focusing on455

the mixed regime, the BoostST method seemed to be disadvantageous for all kriging struc-456

tures, but this was not apparent in the results of the winter or summer regime.457
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Outliers are removed from the plot for better visualization.

5 Discussion458

5.1 Comparison of performance459

In this paper, we extended an existing hierarchical model, initially proposed by Szpiro460

et al. (2010), for performing spatio-temporal predictions of monthly low-flow index se-461

ries in Austria. We tested four models to approximate the seasonal cycle and the long-462

term trend, and compared three geostatistical approaches for the residual field. Com-463

parison to existing literature is mainly limited to the study by Laimighofer et al. (2022a),464

where results can directly be compared as stations, temporal resolution, and even the465

used cross validation folds are equivalent to this study. In Laimighofer et al. (2022a) a466

single spatio-temporal framework was applied, where the best model yielded a median467

R2 of 0.67 and an overall RMSE of 6.98. In this study these measures could be improved468

to a RMSE of 6.35 and a median R2 of 0.73, for our best model (BoostSC and TK). Per-469

formance comparison to other literature is somehow difficult, as prediction studies on470

monthly streamflow data is mainly performed on monthly mean values and results are471

partially not evaluated by cross validation (Gottschalk et al., 2015; Sauquet et al., 2008;472

Pumo et al., 2016), which can best capture the error of prediction in ungauged basins.473

In a more qualitative embedding of our results, we can highlight that hierarchical474

model combinations with topkriging yield the highest prediction accuracy. This is in line475

with studies for spatial low-flow prediction (Laaha et al., 2014), or spatio-temporal stream-476

flow prediction in Austria (Skøien & Blöschl, 2007; Viglione et al., 2013), where also TK477

reaches high prediction performance. In contrast, Farmer (2016) shows that OK can per-478

form as well as TK in a spatio-temporal framework, and suggests that ordinary kriging479

should be preferred over TK, due to the lower model complexity. Our results could paint480

a similar picture, as the performance metrics are only slightly improved by TK, but this481

is only true if we consider the full hierarchical model structure, where the between-model482

differences are reduced. Studies as Farmer (2016) or Skøien and Blöschl (2007) consid-483

ered no additional seasonal cycle or long-term trend in their models. Focusing on our484

results for a single kriging structure (Table 3), the median R2 for OK is only 0.63, but485

the median R2 for TK is 0.75. However, the single TK approach only yields a RMSE of486

7.25, which is substantially higher to the RMSE of 6.35 of the combination of BoostSC487

and topkriging. We will discuss these performance issues of topkriging in more depth in488

the next section.489
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Prediction accuracy of PK is generally lower for all hierarchical model combina-490

tions and for the single kriging approach. Results for spatial low-flow prediction in Italy491

(Castiglioni et al., 2011) showed similar performance of PK and TK, but this is not re-492

flected in our space-time framework. The lower performance of PK may be caused by493

the similar information used by the mean field models and the first two principal com-494

ponents covering the physiographic space for PK.495

5.2 Effect of headwater vs. non-headwater on topkriging performance496

Albeit, several studies demonstrated the good performance of topkriging (Skøien497

& Blöschl, 2007; de Lavenne et al., 2016; Laaha et al., 2014; Farmer, 2016; Viglione et498

al., 2013), accuracy of TK is altered as a function of catchment area (Viglione et al., 2013),499

station density (Parajka et al., 2015), or the hierarchical position in the river network500

(Laaha et al., 2014; de Lavenne et al., 2016). Laaha et al. (2014) found that the R2 for501

TK in headwater catchments for spatial low-flow prediction is 0.59, whereas in non-headwater502

catchments performance increased to a R2 of 0.91. A similar trend was shown by de Lavenne503

et al. (2016), where the performance of TK increased with higher Strahler order. This504

is consistent with our results (displayed in Fig. 9), where we can see a general trend for505

all model combinations that a higher Strahler order increases the prediction performance.506

Considering the performance of each model combination, we observe that a simple top-507

kriging routine is not sufficient for headwater catchments (Strahler order 1 - 2). For ex-508

ample the median R2 for simple TK is 0.56 for catchments with a Strahler order 1. Adding509

seasonal predictions (BoostSC) to the model structure enhances prediction to a median510

R2 of 0.67. Differences between the models almost disappear when considering catch-511

ments with Strahler order 2. Here the median R2 is between 0.67 and 0.7, but simple512

TK shows a much higher variance in the results. In catchments with a Strahler order513

of 3 or more, the simple TK routine provides the most accurate predictions compared514

to the hierarchical model combinations. However, we can show that the lower performance515

of topkriging in headwater catchments can be improved by a hierarchical framework that516

that exploits the seasonal cycle in advance.517

5.3 Case study - extreme events518

So far our model assessment focused on global model performance. In a last step,519

we want to consider a concrete discharge time series, to demonstrate the potential of our520

modeling approach. As our main interest is to predict low-flows we will focus on two drought521

years 2003 and 2015 (Ionita et al., 2017; Laaha et al., 2017). We selected the hydrograph522

Altschlaining at the river Tauchenbach in eastern Austria, which already was investigated523

by Laaha et al. (2017). The Tauchenbach is a small (upstream) catchment with 89.2 km2,524

which experienced a particularly extreme low-flow event in 2003 (Fig. 10). The event525

of 2003 started with an early onset and continued over the whole year, whereas in 2015526

wetter preconditions in spring led to a later onset and prevented a more severe low-flow527

event in summer.528

The seasonal boosting approach in combination with TK yields a cross-validated529

R2 of 0.45 at Altschlaining, which is lower than about 80 % of all stations. Neverthe-530

less, the development of the low-flow events is captured quite well by model predictions,531

which can be decomposed to the mean field component and the residual field component.532

Figure 10 illustrates the complementary behaviour of these two components. In extreme533

events like 2003 and 2015, the observed low flows deviate strongly from the seasonal low-534

flow regime. For this reason, the mean field component of the hierarchical model would535

provide a biased estimate. The TK of the residual field, however, performs an adjust-536

ment of the predictions to the respective event conditions, as can be seen for both events.537

It uses synchronous information of adjacent stations to achieve enhanced space-time pre-538

dictions. Such adjustment would indeed be much smaller in a ’normal’ year, where the539

low-flow conditions are similar to the average regime.540
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Figure 9. The boxplots show all possible estimation of the mean field in combination with

topkriging, and a simple topkriging routine in which only one variogram is estimated for the full

spatio-temporal domain. The catchments are further stratified by their Strahler order (x-axis).

Due to the limited stations with Strahler order ≥ 4, these stations are condensed in one group.

Despite these favorable properties, some below-average performance can be observed541

in spring 2003, where discharges reflect the very dry preconditions that led to the severe542

low-flow event. This seasonal anomaly can be explained by a particular weather situa-543

tion where the Tauchenbach experienced a precipitation deficit over several years due544

to lee-effects behind alpline and pre-alpine mountain ranges (Laaha et al., 2017). Since545

this is a local singularity, the anomaly cannot be adjusted by information from neigh-546

boring stations, so a residual TK does not significantly improve the estimates. Further547

on, the (regionally more consistent) atmospheric water deficit of the summer drought event548

gets increasingly important. This leads to enhanced residual TK, which is reflected in549

steadily improving predictions during the ongoing low-flow event.550

6 Conclusions551

In this study we adopted a hierarchical model framework for spatio-temporal mod-552

elling of monthly low-flow in Austria. The best performing model is a combination of553

model-based boosting for the mean field, which estimates the seasonal low-flow regime,554

and topkriging for predicting the residuals. It gives a median R2 of 0.73 over all stations,555

demonstrating the high potential of the hierarchical model.556

Generally, stations with a strong winter seasonality of low-flows show a higher pre-557

diction accuracy than summer or mixed regimes. The drivers of monthly low-flow in win-558

ter regime catchments are mainly high sums of precipitation and snowmelt in the sum-559

mer months, and freezing and low sums of precipitation in the winter. The signal of monthly560

low-flow in mixed or summer regimes is more noisy, which slightly weakens the predic-561

tion performance.562

Regardless of regime type or mean field methods used, topkriging shows the best563

performance for all model combinations, followed by ordinary kriging and physiographic564

kriging. It is striking that even a simple topkriging routine without an additional mean565
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Figure 10. Comparison of two drought years (2003 and 2015), for the station Altschlain-

ing, river Tauchenbach. Each plot shows the daily discharge, predicted mean monthly q95 and

predicted monthly q95 - both are transformed back to discharge values (m3s−1).

–21–



manuscript submitted to Water Resources Research

field achieves a median R2 of 0.75, but has a higher number of poorly performing sta-566

tions (R2 < 0.5). It shows a lack of prediction accuracy, especially in headwater catch-567

ments. In these catchments the hierarchical model framework is particularly beneficial,568

whereas in catchments of Strahler order ≥ 3 the simple topkriging routine is sufficient.569

Overall, the favorable performance of the model results from its specific structure,570

which seems well suited to combine different types of information: average low flow con-571

ditions estimated from climate and catchment characteristics, and information of neigh-572

bouring catchments estimated by spatial correlation. This combination provides accu-573

rate results not only for average years, where the high prediction accuracy for the sea-574

sonal low-flow regime comes into play, but also for extreme years, where top-kriging adapts575

to the anomalous conditions of the low-flow event and can also capture the preconditions.576

The model is shown to provide robust estimates for a range of conditions, including head-577

water catchments and extreme events. It demonstrates a high degree of suitability for578

predicting gaps in the low-flow series, and for providing estimates at ungauged sites.579
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Blöschl, G. (2013). Comparative assessment of predictions in ungauged basins–766

part 2: Flood and low flow studies. Hydrology and Earth System Sciences,767

17 (7), 2637–2652. doi: 10.5194/hess-17-2637-2013768

Sampson, P. D., Szpiro, A. A., Sheppard, L., Lindström, J., & Kaufman, J. D.769

(2011). Pragmatic estimation of a spatio-temporal air quality model with ir-770

regular monitoring data. Atmospheric Environment , 45 (36), 6593-6606. doi:771

https://doi.org/10.1016/j.atmosenv.2011.04.073772

Sauquet, E., Gottschalk, L., & Krasovskaia, I. (2008, 10). Estimating mean monthly773

runoff at ungauged locations: an application to France. Hydrology Research,774

39 (5-6), 403-423. doi: 10.2166/nh.2008.331775

Sauquet, E., Gottschalk, L., & Leblois, E. (2000). Mapping average annual runoff: a776

hierarchical approach applying a stochastic interpolation scheme. Hydrological777

–25–



manuscript submitted to Water Resources Research

sciences journal , 45 (6), 799–815.778
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Key Points:6

• Model-based boosting of the seasonal low-flow regime and topkriging for the resid-7

ual field improve monthly low-flow predictions.8
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dominantly in winter.10

• The hierarchical model structure is especially valuable in headwater catchments,11

and shows good performance for extreme events.12
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Abstract13

This study assesses the potential of a hierarchical space-time model for monthly14

low-flow prediction in Austria. The model decomposes the monthly low-flows into a mean15

field and a residual field, where the mean field estimates the seasonal low-flow regime16

augmented by a long-term trend component. We compare four statistical (learning) ap-17

proaches for the mean field, and three geostatistical methods for the residual field. All18

model combinations are evaluated using a hydrological diverse dataset of 260 stations19

in Austria, covering summer, winter, and mixed regimes. Model validation is performed20

by a nested 10-fold cross-validation. The best model for monthly low-flow prediction is21

a combination of a model-based boosting approach for the mean field and topkriging for22

the residual field. This model reaches a median R2 of 0.73. Model performance is gen-23

erally higher for stations with a winter regime (best model yields median R2 of 0.84) than24

for summer regimes (R2 = 0.7), and lowest for the mixed regime type (R2 = 0.68). The25

model appears especially valuable in headwater catchments, where the performance in-26

creases from 0.56 (median R2 for simple topkriging routine) to 0.67 for the best model27

combination. The favorable performance results from the hierarchical model structure28

that effectively combines different types of information: average low-flow conditions es-29

timated from climate and catchment characteristics, and information of adjacent catch-30

ments estimated by spatial correlation. The model is shown to provide robust estimates31

not only for moderate events, but also for extreme low-flow events where predictions are32

adjusted based on synchronous local observations.33

1 Introduction34

Droughts and low-flows are significant hydrological and environmental hazards that35

threaten a wide range of water-related sectors, such as navigation, hydropower produc-36

tion and water management in general. Currently, prediction of low-flow is mainly fo-37

cused on the spatial scale (Euser et al., 2013; Salinas et al., 2013; Castiglioni et al., 2009;38

Laaha et al., 2014; Tyralis et al., 2021; Worland et al., 2018; Laimighofer et al., 2022a),39

whereby deterministic models, or statistical models are applied. Spatio-temporal low-40

flow prediction is still rare, although space-time information on monthly low-flow is cru-41

cial for assessing ecological impacts on water quality, or estimating the risk of naviga-42

tion disruptions. Space-time models are currently used in a wide range of environmen-43

tal research fields (Kyriakidis & Journel, 1999), e.g. soil moisture modelling (Rodŕıguez-44

Iturbe et al., 2006), distribution of atmospheric pollution (Szpiro et al., 2010; Sampson45

et al., 2011; Lindström et al., 2014; Lindstrom et al., 2019; Mercer et al., 2011), down-46

scaling meteorological variables (Wilby et al., 1998), or risk of wildfire outbreaks (Opitz47

et al., 2020). Transferring these space-time models to streamflow poses a particular chal-48

lenge due to the tree-like structure of river catchments. Nevertheless, space-time mod-49

els for streamflow are of particular interest, as they can be used for prediction in ungauged50

basins (Hrachowitz et al., 2013, PUB). This study aims to transfer an existing approach,51

originally adapted for air pollution modelling (Szpiro et al., 2010), to the space-time pre-52

diction of monthly low-flow.53

Conceptually, statistical space-time models can be divided into individual space-54

time models, models that use temporal functions (deterministic or stochastic) that are55

correlated in space, or spatial functions that are correlated in time (Kyriakidis & Jour-56

nel, 1999). The latter are less common for streamflow. Individual space-time models for57

prediction in ungauged basins (PUB) are mainly based on data-driven approaches such58

as long short-term memories (Kratzert, Klotz, Herrnegger, et al., 2019; Kratzert, Klotz,59

Shalev, et al., 2019; Lees et al., 2021, LSTM), artificial neural networks (Solomatine &60

Ostfeld, 2008; Cutore et al., 2007, ANN), or other machine learning methods such as tree-61

based models (Laimighofer et al., 2022a). These models typically use auxiliary space-62

time information on precipitation or evapotranspiration for streamflow estimation. In63

contrast, spatio-temporal geostatistical approaches exploit the similarity of hydrographs64
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from nearby catchments. The simplest case is to apply ordinary kriging to the runoff time65

series, neglecting temporal correlations. In this context, Farmer (2016) found that such66

a simple model requires only a single (pooled) variogram to yield a median Nash-Sutcliffe67

efficiency of 0.7 for daily streamflow predictions on 182 stations in the United States. Or-68

dinary kriging may not be the best choice for runoff, due to the nested and tree-like struc-69

ture of the catchments. Therefore, other methods have been developed to take into ac-70

count the peculiarities of catchment runoff. For example methods constraining the spa-71

tial covariance function by the water balance (Müller & Thompson, 2015), or methods72

that incorporate the river network hierarchy (Gottschalk, 1993; Sauquet et al., 2000),73

such as topkriging (Skøien et al., 2006; Skøien & Blöschl, 2007, TK). Farmer (2016) com-74

pared ordinary kriging to topkriging and showed a similar performance for both approaches.75

This is in contrast to studies in Austria and France (Skøien & Blöschl, 2007; Viglione76

et al., 2013; de Lavenne et al., 2016), which showed a favorable performance of topkrig-77

ing also for daily and hourly runoff. Skøien and Blöschl (2007) additionally found, that78

in their topkriging application it was sufficient to estimate each time step separately, and79

no temporal dependency structure needed to be considered to achieve adequate perfor-80

mance.81

Space-time models of the type where a temporal function (stochastic or determin-82

istic) is correlated in space, are more common for runoff applications. They can be used,83

for instance, to improve the predictions of a hydrological model, when considering the84

output of a hydrological model as a deterministic function, which is interpolated in space85

by its model parameters. This regionalization of model parameters is performed on dif-86

ferent temporal and spatial resolutions (Guo et al., 2021; Razavi & Coulibaly, 2013). Ap-87

plications that use a stochastic temporal function are less frequent. For instance, Pumo88

et al. (2016) used a time series model for estimating monthly runoff in 59 basins in Sicily,89

with NSE values ranging from 0.7 to 0.8, but the model was validated only on a small90

subset of catchments. The time series model of Pumo et al. (2016) was determined a pri-91

ori and only the coefficients of the parameters were estimated in space. A more flexible92

approach, that involves less information loss, is to use empirical ortoghonal functions (EOF).93

Gottschalk et al. (2015) and Li et al. (2018) applied EOFs for filling gaps in monthly dis-94

charge time series and Sauquet et al. (2008) tested spatially weighted EOFs for predic-95

tion of normalized mean monthly runoff in France. Studies, intended to model air pol-96

lutants, extended the approach of weighted EOFs, by adding a residual field (Szpiro et97

al., 2010), altering the methods for estimating the weights of the EOFs (Sampson et al.,98

2011; Mercer et al., 2011), or including spatio-temporal variables (Lindström et al., 2014;99

Lindstrom et al., 2019). All these studies analysed air pollutants in the United States,100

and reported cross-validated R2 from 0.6 to about 0.75. The flexible model structure and101

the already highlighted use of EOFs for streamflow variables (Gottschalk, 1993; Li et al.,102

2018; Sauquet et al., 2008) demonstrate the potential for transferring this model to monthly103

low-flow. Such a transfer would involve incorporating both the average low-flow regime104

and the nested structure of river networks into the model.105

The main objective of this study is to develop a hierarchical spatio-temporal model106

for monthly low-flow in Austria. The model consists of a mean field which should cap-107

ture the seasonal cycle and the long-term trend of monthly low-flow and a residual field108

where geostatistical approaches are deployed. We test four different models for the mean109

field: (i) spatially weighted smoothed EOFs, (ii) a model-based boosting approach, which110

only estimates the seasonal cycle, (iii) a model-based boosting approach, which estimates111

the seasonal cycle and the long-term trend and (iv) a combination of model (ii) and (i).112

For the residual field we compare three kriging approaches - ordinary kriging (OK), phys-113

iographic kriging (PK) and topkriging (TK). The models are evaluated on a comprehen-114

sive Austrian dataset by 10-fold nested cross validation (CV) to emulate prediction in115

ungauged basins. The following research questions will be addressed:116

1. Can a combination of statistical learning approaches and kriging methods improve117

spatio-temporal low-flow prediction in Austria?118
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2. What approach is best suited to model the seasonal low-flow regime?119

3. Which kriging variant is best suited to model the space-time residual field?120

4. How does prediction performance vary between headwater and non-headwater catch-121

ments?122

5. What is the performance for summer, winter and mixed low-flow regimes?123

2 Data124

2.1 Hydrological data125

This study is performed on a hydrological diverse dataset in Austria. We use 260126

stations with a continuous daily streamflow record between 1982 to 2018. The same dataset127

was already used in a study on spatial low-flow prediction (Laimighofer et al., 2022b)128

and spatio-temporal low-flow prediction in Austria (Laimighofer et al., 2022a). The hy-129

drological data can be downloaded from the Hydrographic Service of Austria (HZB). Our130

study focuses on a space-time model for low-flow. Hence, the daily streamflow time se-131

ries is used to calculate the 0.05 quantile of discharge for every month (444 months at132

every station). We will refer to this index as monthly Q95 (P (Q > Q95) = 0.95). The133

monthly Q95 was standardized by catchment area, which results in the monthly specific134

low-flow (q95) time series (l s−1 km−2). For all modelling approaches q95 is transformed135

by the square root, to approximate a normal distribution.136

Occurrence of low-flow in Austria is more dominant in the winter half-year (Novem-137

ber to April, winter regime type) for alpine catchments, where summer discharge is in-138

creased by snowmelt and increasing precipitation (Laaha & Blöschl, 2006; Laaha et al.,139

2017). In the northern parts of Austria and the Eastern low-lands low-flow mainly is present140

in the summer half-year (May to October, summer regime type). Nevertheless, not all141

catchments have this strong seasonality, and the occurrence of low-flow is alternating be-142

tween winter and summer. This type of low-flow regime will be referred to as mixed regime143

type (Laaha & Blöschl, 2006; Laaha, 2023). The regime types are defined based on the144

seasonality ratio (SR)145

SR = Q95summer/Q95winter, (1)

where Q95summer is the 0.05 quantile of daily discharge for the summer period (May to146

November), and Q95winter the corresponding 0.05 quantile for the winter period of the147

respective station. A SR below 0.8 indicates a summer regime, a SR above 1.25 (1/0.8)148

determines a winter regime, and a SR between 0.8 and 1.25 is defined as a mixed regime.149

A graphical illustration of the defined regime types is given in Fig. 1. Despite the mod-150

els developed here are on monthly time scale and thus not restricted to a particular regime151

type, we will use the seasonality regime types for an in-depth analysis of the results.152

2.2 Catchment characteristics153

In this study we apply several geostatistical and statistical learning methods, which154

all rely on catchment characteristics, that are supposed to be static over time in our ap-155

proach. Ordinary kriging uses the geographic coordinates of the gauging stations, top-156

kriging requires the river network as input, and physiographic kriging is based on a prin-157

cipal component analysis of all catchment characteristics. The catchment characteris-158

tics can be subdivided into landuse variables, topographic descriptors, geological predic-159

tors and climatic characteristics. An overview of all variables is given in Table 1. For a160

more detailed description of the computation of the catchment characteristics we refer161

to Laaha and Blöschl (2006) and Laimighofer et al. (2022b). How the temporal infor-162

mation is added to the space-time models will be explained in Sect. 3.2.163
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Figure 1. Overview of the study area. The colours indicate the seasonality regime type of

the station, defined by the SR. The curves of each station is the scaled seasonal low-flow at each

station for illustration of the different regime types.

3 Methods164

3.1 Model structure165

The basic model structure is given by166

y(s, t) = µ(s, t) + υ(s, t), (2)

where y(s, t) is the monthly low-flow at a station s and time point t, µ(s, t) is defined167

as the mean field and υ(s, t) is the residual field of our model. Similar model designs were168

used by e.g. Szpiro et al. (2010), Lindstrom et al. (2019) or Sampson et al. (2011). In169

this model conceptualization the mean field should capture the seasonal cycle and the170

long-term trend of the response variable. Szpiro et al. (2010) used ordinary kriging for171

prediction of the space-time residual field, where only one variogram is estimated for all172

timesteps. A graphical overview specific to low-flow is shown in Fig. 2. In this study we173

extend the model introduced by Szpiro et al. (2010) to capture the nested structure of174

river catchments. We employ a hierarchical modeling framework, that (i) considers four175

different modeling approaches for the mean field, and (ii) three forms of kriging for the176

space-time residual field, to find the best-performing model combination for monthly low-177

flow prediction.178

3.2 Mean field179

The objective for modelling the mean field is to estimate the seasonal cycle and the180

long-term trend in the spatio-temporal model. In the context of low flows, the seasonal181

cycle corresponds to the average monthly low-flow regime (seasonal low-flow regime), which182

is augmented to transient conditions by the long-term trend component. Szpiro et al.183

(2010) or Lindström et al. (2014) used weighted empirical orthogonal functions (EOF),184

which were initially proposed by Fuentes et al. (2006), for estimating the mean field. Their185
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Table 1. Description of the catchment characteristics used in this study. The climatic char-

acteristics as precipitation, climatic water balance, potential evapotranspiration, aridity index,

snowmelt and temperature are computed on an annual and a summer/winter half-year basis.

These different accumulation periods are indicated in the subscript: no subscript for annual char-

acteristics (e.g. P), win for winter (e.g. Pwin), sum for summer (e.g. Psum).

Variable Description Unit

A catchment area km2

Lat, Lon Latitude and longitude of gauging station
decimal de-
grees

H+, H0, HM , HR
Maximum, minimum, mean and range of catchment
altitude

m

E Altitude of gauging station m
SM Mean catchment slope %

SSL, SMO, SST
Fraction of slight (¡ 5 %), moderate (5 to 20 %)
and steep slope (¿ 20 %) in the catchment

%

LU , LA, LC , LF ,
LG, LR, LW , LWA

Fraction of urban areas, agricultural areas, perma-
nent crop, forest, grassland, wasteland, wetlands,
water surfaces

%

GB , GG, GT , GF ,
GL, GC , GGS ,
GGD, GSO

Fraction of bohemian massif, quaternary sediments,
tertiary sediments, flysch, limestone, crystalline
rock, shallow and deep groundwater table, source
region in catchment

%

D Stream network density 102 m km−2

P Precipitation mm
ETP Potential Evapotranspiration mm
AI Aridity index -
MCWB Mean climatic water balance mm
S Snowmelt mm

T+, T0, TM , TR
Maximum, minimum, mean and range of tempera-
ture

°C

P0
Average number of days without precipitation (< 1
mm)

days

PH
Average number of days with precipitation > 5
times the mean

days

approach can be written as186

µ(s, t) =

m∑
i=1

βi(s)fi(t). (3)

The fi(t) are smoothed empirical orthogonal functions, which are spatially weighted by187

regression coefficients (βi), so that the temporal structure can vary in space (Lindström188

et al., 2014). The number of EOFs is given by m, whereas f1(t) is always an intercept189

term. In this study, we compare four different methods for estimating the mean field.190

First, we will use the basic approach from Szpiro et al. (2010), by estimating the mean191

field with spatially weighted smoothed EOFs. This approach will be referred to as EOFsimple,192

and will serve as a benchmark for the other three methods. The second and third method193

use a model-based boosting approach for estimating the mean field. One implementa-194

tion will only estimate the seasonal cycle of low-flow at each station (BoostSC), while195

the other implementation will further include the long-term trend of low-flow at each sta-196

tion (BoostST ). Finally, we combine the two approaches BoostSC and EOFsimple, by first197
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Figure 2. Model structure, exemplified for monthly Q95.

predicting the seasonal cycle and using the residuals for estimating the long-term effect198

by spatially weighted EOFs (BoostEOF ).199

3.2.1 Smoothed empirical orthogonal functions200

In our hierarchical model framework EOFs are used for estimating the mean field201

(EOFsimple), and in combination with seasonal boosting (BoostEOF ). In both cases, the202

first step is to build a matrix xEOF (T×S), where each column either corresponds to203

the monthly low-flow (EOFsimple), or to the residuals (BoostEOF ) at station s. The di-204

mension T (T = 444) is the length of each monthly low-flow series at each station, and205

S (S = 260) is the number of stations. The matrix xEOF is centered and scaled be-206

fore applying a singular value decomposition. The smoothed EOFs are then calculated207

by fitting a spline on each singular value vector.208

The number of EOFs (m) is determined by fitting a linear model (as in Eq. 3, for209

each s) to each column of xEOF against m EOFs, where m is ranging from 1 (only an210

intercept term) to a maximum of 50 EOFs. For each single model the Bayesian infor-211

mation criterion (BIC) is calculated and averaged over all stations, resulting in a vec-212

tor of BIC values (BICm) for each number of EOFs. As this approach would give only213

one realization for the entire set of stations and thereby lead to overfitting, we perform214

a bootstrap procedure with 25 repetitions (where a fraction of 70 % of the stations is215

sampled) to optimize the parameter m for the prediction at ungauged sites. The final216

number of EOFs is then determined by averaging every BICm over all 25 bootstrap sam-217

ples and for a more parsimonious model we add 1 standard deviation to the minimized218

BIC value, which then serves as the threshold. The minimum number of EOFs with an219

average BIC below this threshold are then selected as the final number of EOFs (m). A220

graphical description of this selection is shown in Fig. 3. For any number of EOFs, f1221

is an intercept term which is a vector of 1s, with length S.222

The fi are then weighted in space by the regression coefficients βi, where each βi223

is a vector of regression coefficients for all stations. To obtain predictions at ungauged224

locations, every βi is estimated by a linear model, which can be formulated as225

βi = α0i +

J∑
j=1

xjαij , (4)

where α0i is an intercept term, x is the matrix of the spatial predictors presented in Sect.226

2, and αi are regression coefficients. J is the number of predictor variables that needs227

to be optimized. As it is a priori not clear which variables to include in the βi-regression228
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Figure 3. The number of EOFs are selected by a bootstrap procedure - with 25 samples. For

each of the bootstrap samples the average BIC is calclulated. The number of EOFs is selected

(the yellow line indicates the number of EOFs) by adding 1 standard deviation (shown by the red

dashed line) to the minimum BIC value (shown by the red solid line).

model, possible approaches are to use shrinkage approaches as Lasso (Mercer et al., 2011),229

or dimension reduction methods as partial least-squares (Sampson et al., 2011, PLS).230

In this study we apply an approach that has already been shown to be useful for low-231

flow estimation in Austria (Laimighofer et al., 2022b). The variable selection is based232

on a recursive feature elimination (Granitto et al., 2006, RFE), which consists of an ini-233

tial variable ranking and a backward variable selection. The initial variable ranking is234

estimated by a linear model-based boosting approach (a description of model based-boosting235

follows in Sect. 3.2.2). The variables are ranked after their absolute coefficients, and to236

obtain more robust results, the variable ranking is repeated 25-times by bootstrapping.237

For each βi, a linear model is fitted to the first p (p = 1, 2, 3, ..., 59) ranked variables238

and the error is calculated and averaged over 25-bootstrap samples. The final number239

of variables (J) is defined by using 1.05 times the minimum error as a threshold to pro-240

duce parsimonious models. The variable selection is performed for each βi individually.241

3.2.2 Model-based boosting242

Model-based boosting (Bühlmann & Hothorn, 2007) is an iterative algorithm, where243

in each step a baselearner is selected, which best minimizes a predefined loss function244

(squared error in this study). To avoid overfitting the boosting algorithm uses a learn-245

ing rate, to slowly approximate the final coefficients of the model. A baselearner can be246

e.g. a linear, a non-linear, random or spatial effect. Model-based boosting provides an247

intrinsic variable selection (Hofner et al., 2011), supports penalization of the effects and248

is robust against multicollinearity (Mayr & Hofner, 2018). The only parameter of the249

model that was tuned in this study was the number of boosting iterations, which was250

optimized using a 10-fold cross validation (CV) approach.251
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Based on this framework, the model for seasonal boosting (BoostSC) can be for-252

mulated as253

µ(s, t) = β0 + f1(month) +

K∑
k=2

fk(x) + f1(month)x. (5)

The model captures the average monthly low-flow regime. In the equation, β0 is the in-254

tercept of the model and x is the predictor matrix with all spatial predictor variables.255

The spatial predictors can be parameterized by fk(.), either as a linear or a non-linear256

effect. We decomposed all non-linear effects into a linear and a non-linear part, as pro-257

posed by Kneib et al. (2009), to distinguish between linear and non-linear effects for each258

spatial variable. Further, a cyclic B-spline f1(month) according to Hofner et al. (2016)259

was added, which should represent the seasonal cycle of monthly low-flow. Finally, the260

term f1(month)x was added to allow the seasonal cycle to vary in predictor variable space,261

in analogy to a varying-coefficient model (Hastie & Tibshirani, 1993; Fahrmeir et al., 2004).262

This leads to a total of 3p+1 (178) baselearners for BoostSC . For faster computation263

this model was not fitted to the full data, but only to the monthly averages at each sta-264

tion (seasonal low-flow cycle with 12 values per station).265

In case of our spatio-temporal boosting approach (BoostST ), the before mentioned266

model is extended by a long-term trend component to account for a transient seasonal267

low-flow regime. This trend component is captured by adding a sequence of all months268

(T = 1, 2, 3, ..., 444) as effect f2(time) to the model, which then can be written as269

µ(s, t) = β0 + f1(month) + f2(time) +

K∑
k=3

fk(x) + f1(month)x+ f2(time)x. (6)

The long-term trend is modeled by a constant term and a spatially varying term, as it270

is done for the seasonal cycle. This results in 4p+ 2 (238) baselearners for BoostST .271

3.3 Residual field272

Following Szpiro et al. (2010) and Lindström et al. (2014), the residual field υ(s, t)273

is estimated by a kriging structure,274

υ̂st =

S∑
s=1

λsυst, (7)

where υst are the fitted residuals at location s and time t and λs are the kriging weights.275

Note that the kriging weights (λs) are static over all timepoints. Hence, only one var-276

iogram model is used across time. The original approach employs an ordinary kriging277

estimator that is based spatial proximity, which appears well suited for air-quality mod-278

els, in which context the proposed model was first introduced (Szpiro et al., 2010; Samp-279

son et al., 2011; Lindström et al., 2014).280

Considering river discharge, geographic kriging may not be fully appropriate, as281

it does not include the nested structure of catchments. Therefore, we estimate the resid-282

ual field not only by ordinary kriging (OK), but additionally use physiographic kriging283

(PK) and topkriging (TK). Physiographic kriging was introduced by Castiglioni et al.284

(2011) and computes the first two principal components (PC) on a set of catchment char-285

acteristics. These two PCs then span up the physiographic space for the kriging struc-286

ture. Topkriging (Skøien et al., 2006; Laaha et al., 2014) takes into account not only the287

size and distance of the catchments, but also their nested structure along the river net-288

work. This makes the method particularly well suited for interpolation of river discharge.289

To obtain the kriging weights λs, we need to estimate a variogram model for each290

of the three kriging approaches. Lindström et al. (2014) proposes to use a maximum like-291

lihood approach for estimation of the residual field, that includes variogram estimation.292

As it is not straightforward to estimate a topkriging variogram through a maximum like-293

lihood approach, we introduce a simple framework for the optimization of the variogram294
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for all three kriging methods. The procedure starts by calculating the coefficient of de-295

termination R2
t for every timestep:296

R2
t = 1−

∑S
s=1(yst − µ̂st)

2∑S
s=1(yst − yt)2

, (8)

where µ̂st at this point is the prediction of one of the four models for the mean field, yst297

are the observations, and yt is the spatial average at the specific timepoint. If only a krig-298

ing approach is used alone (no estimation of the mean field), µ̂st is simply the average299

low-flow at every station. Next, we compute the average R2
t over all R2

t and select the300

timestep (tstep) in which the deviation of R2
t is minimal to R2

t . The variogram is then301

optimized at the unique residual timeslice υststep . For the optimization of the variogram302

we use a 10-fold CV and a grid search over the parameter space. For each combination303

of the parameters the R2
CV of υststep is calculated and the parameters with the highest304

R2 are used for the final prediction.305

3.4 Model validation306

Model evaluation is performed by a nested 10-fold cross validation (Varmuza & Filz-307

moser, 2016, CV). A nested CV consists of an inner and an outer loop. The inner loop308

in this study is used for tuning the boosting model, select the number of EOFs, variable309

selection for the regression coefficients of the EOFs, and optimizing the variogram pa-310

rameters. The outer loop is solely used for assessing the model performance. This nested311

CV-scheme was already applied in two studies for low-flow in Austria (Laimighofer et312

al., 2022a, 2022b). However, in this study some parts of the inner loop are altered, due313

to the hierarchical structure of the model. An illustration of the scheme is given in Fig.314

4.315

3.4.1 Performance metrics316

We assess performance using three main metrics. They are calculated using cross317

validated predictions and should therefore provide an unbiased estimate of the model er-318

ror. First, we compute the root mean squared error (RMSE) by319

RMSE =

√√√√1/N

N∑
i=1

(yi − ŷi)
2, (9)

where N is the total number of observations (N = S ∗ T ), yi are the observations and320

ŷi are the predictions. Further, we calculate the median absolute error (MDAE):321

MDAE = median(|yi − ŷi|), (10)

and the R2:322

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − yi)2
. (11)

The RMSE, MDAE and R2 are computed based on all data points. Since we are par-323

ticularly interested in how well the models can reproduce the mean field and thus pro-324

vide an estimate of the mean seasonal low-flow regime, we additionally calculate all three325

metrics (RMSEmonth, MDAEmonth, R
2
month) for the seasonal predictions. This is shown326

exemplarily for the RMSE:327

RMSEmonth =

√√√√1/SM

S∑
s=1

M∑
m=1

(ysm − ŷsm)2, (12)

where M is the number of months (12) and ysm is:328

ysm = 1/(N/M)

M∑
m=1

ysm. (13)
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Figure 4. Schematic overview of the nested CV, that is used for model validation. We use

different bootstrap samples for determination of number of EOFs and the selection of the βi.

Additionally the inner 10-fold CV is altered between optimization of the boosting models and the

optimization of the variograms.
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The ratio N/M can also be specified by the number of years (37 years of observations)329

at each station, and ysm is every monthly low-flow value in month m at station s. The330

equation can be written accordingly for the predictions ŷsm. Finally, we are interested331

in the performance of our models at each station, hence the R2 is calculated for each sta-332

tion separately. Note that the equation of R2 is equivalent to the formulation of the Nash–Sutcliffe333

efficiency (NSE, including the bias) in many hydrological studies (Blöschl et al., 2013).334

4 Results335

4.1 Mean field model components336

Before proceeding with an overview of model performance, we shortly discuss some337

intrinsic features of the individual mean field model components - the inherent variable338

selection for the two boosting approaches, the weighted coefficients for the empirical or-339

thogonal functions, and the determination of the number of EOFs.340

4.1.1 Seasonal and spatiotemporal boosting341

Model-based boosting includes an inherent variable selection procedure. Hence, we342

can analyse the selected variables and compare the structure of the two boosting mod-343

els - seasonal boosting (BoostSC) and spatiotemporal boosting (BoostST ). Both boost-344

ing approaches used the maximum number of boosting steps over all ten folds that were345

predefined for each model (3000 for BoostSC , 5000 for BoostST ). In the seasonal boost-346

ing approach 45 baselearners were added on average to the model, whereas BoostST ex-347

ploited 67 baselearners on average. For both models the monthly cyclic spline (f1(month))348

was the most important variable. In both cases spatial covariabes were not added as sin-349

gle linear or non-linear baselearners, but solely as interaction effect of the cyclic spline,350

or the long-term trend. Figure 5 displays a graphical overview of the most important in-351

teraction effects for BoostSC . The main important spatial predictors for BoostSC and352

BoostST were topographic variables such as average catchment altitude and stream net-353

work density, landuse variables such as the fraction of wasteland, grassland and forest354

and, finally, meteorological conditions such as summer precipitation or snowmelt in win-355

ter. The long-term trend in the BoostST model was added as a linear and non-linear ef-356

fect and also weighted by spatial variables, but was generally negligible over all folds.357

4.1.2 Smoothed empirical orthogonal functions358

The smoothed empirical orthogonal functions (EOFs) were used as a single spa-359

tiotemporal framework (EOFsimple) and in combination with the seasonal boosting ap-360

proach, where the EOFs (BoostEOF ) were estimated on the residuals of the seasonal pre-361

dictions. In both cases, the number of EOFs were selected by a bootstrap procedure. EOFsimple362

used 5 EOFs over all ten folds (Fig. 3 shows the selection of the number of EOFs), whereas363

the number of EOFs was slightly higher for the BoostEOF approach, ranging from 6 to364

8 EOFs.365

The EOFs were weighted by the meteorological, geological, landuse and topographic366

predictor variables in space. Our initially described variable selection (Sect. 3.2.1) re-367

duced the number of variables for EOFsimple to 6 predictors for the intercept term and368

7 to 23 variables (from 59) for the other EOFs. In contrast, the BoostEOF approach pro-369

duced more parsimonious models with only 2 spatial variables for the intercept, and 2370

to 18 variables for the other EOFs.371

Interpreting the selected variables is only straightforward in the case of the weighted372

intercept, which can be described as the mean low-flow for every station. This also ex-373

plains the low number of variables used in the BoostEOF method, where the mean low-374

flow should already have been approximated by the seasonal boosting model. The left-375

over variables were the fraction of quarternary sediments, source region or stream net-376
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Figure 5. Partial predictions of the mean field with interaction effects of spatial predictors

and the cyclic spline in the BoostSC model, stratified by low-flow regime type. Shown are the

partial predictions for the 20%, 50% and 80% quantile of each spatial predictor variable within

the considered regime type. The variable with the highest range in the spline coefficients is shown

on the left, with a decreasing range to the right. Only the ten most important spatial variables

are shown. As each fold leds to different results, the underlying model is the equivalent to the

model produced by the first cross-validation run.
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work density. The intercept of EOFsimple was mainly modeled by topographic descrip-377

tors as maximum and average catchment altitude, average slope and meteorological con-378

ditions as the aridity index in summer and days without precipitation in summer.379

4.2 Model performance380

This section assesses model performance from different perspectives. In a first step,381

we investigate how well the mean seasonal low-flow regime is represented by the indi-382

vidual mean field models. This is followed by an analysis of the predictive performance383

of the individual components of the hierarchical model, i.e. the four mean-field models384

and the three kriging approaches when they are used on their own. Finally, we evalu-385

ate the full hierarchical models composed of these components.386

4.2.1 Representation of the seasonal low-flow regime387

Table 2. Three different error measures (RMSE, R2, MDAE) for the mean seasonal low-flow

regime are presented. For the calculation the predicted and observed low-flow is averaged for

each month and station.

Model structure R2
month RMSEmonth MDAEmonth

BoostSC 0.84 5.76 1.56
BoostST 0.82 6.15 1.65
EOFsimple 0.74 7.47 1.87
BoostEOF 0.85 5.70 1.57

In a first step of assessing model performance, we evaluate the four approaches used388

for modelling the mean field and how well they can estimate the seasonal low-flow regimes389

across Austria. Table 2 presents the RMSEmonth, the R2
month and the MDAEmonth for390

the four approaches. Generally, the seasonal low-flow regime was well predicted by all391

four methods, but the EOFsimple approach showed a weaker performance on all three392

error metric with a RMSEmonth of 7.47, compared to 6.15 (BoostST ) and 5.76 (BoostSC)393

for the two boosting approaches. The best performance was reached by the stacked model394

of seasonal boosting and the use of EOFs for the residuals (RMSEmonth = 5.7), albeit395

the differences to the seasonal boosting approach is almost negligible and also the spa-396

tiotemporal boosting approach yields only slightly weaker performance metrics.397

Examining the estimates for the three different regime types (Fig. 6) gives a more398

detailed picture of model performance. The weaker performance of EOFsimple was ap-399

parent for all three regime types, with a R2
month ranging from 0.59 to 0.66, but is neg-400

ligible for the mixed low-flow regime. EOFsimple resulted in smoother estimates of the401

seasonal cycle, which probably led to the lower performance especially for the summer402

and winter regime. Assessing the performance of the three other methods, the winter403

regime was best predicted with a R2
month ranging from 0.78 to 0.81. For the summer regime404

the R2
month was between 0.74 to 0.76, where for the mixed regime it dropped to 0.62 (0.6405

for BoostST ).406

4.2.2 Performance of individual components407

In a next step of model evaluation we assess the individual performances of the com-408

ponents of the hierarchical model framework: models for the mean field and the sole use409

of the three different kriging structures without considering the mean field. Table 3 gives410

an overview of the results. The individual model components yielded a RMSE of 8.42411

(BoostEOF ) to 9.79 (EOFsimple). What is striking is that the spatiotemporal boosting412
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(a) Winter regime
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(b) Summer regime

Observations EOFsimple BoostSC BoostEOF BoostST

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

0.0

0.5

1.0

1.5

2.0

2.5

S
ca

le
d 

m
on

th
ly

 lo
w

 fl
ow

(c) Mixed regime

Figure 6. Predictions of the mean seasonal low-flow regime by various mean field models,

stratified by regime type. The seasonal low-flow cycle is scaled by the mean at each station, for

a better visualization. Each transparent line presents the seasonal cycle of one station, where the

colored thick line is the average over all stations.
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(BoostST ) approach has a weaker overall performance on all metrics compare to the sea-413

sonal boosting approach (BoostSC). Both approaches only yield a R2
0.5 of 0.15. In case414

of BoostSC this is not surprising, as the model can only capture the seasonal cycle at415

each station. However, the additional long-term trend in the BoostST approach is only416

adding noise to the model and leads to no improvement in terms of model performance.417

The long-term trend is better approximated by the stacked model of seasonal boosting418

and EOFs (BoostEOF ), which obtain the best results comparing the four mean field com-419

ponents. Generally, all three kriging approaches yielded a higher R2
0.5, ranging from 0.48420

for physiographic kriging (PK), to 0.63 for ordinary kriging (OK) and 0.75 for topkrig-421

ing (TK). These results show, that TK already provides very accurate predictions with-422

out taking any spatio-temporal information into account.423

Table 3. Overview of the error for the individual model components. R2, RMSE and MDAE

refer to the performance for all data points. R2 < 0.5 (R2 < 0) is the fraction of stations that

yield a R2 below 0.5 (0) and R2
0.5 is the median of all R2 computed per each station.

Model structure R2 RMSE MDAE R2 < 0.5 R2 < 0 R2
0.5

BoostSC 0.68 9.06 2.59 0.77 0.33 0.15
BoostST 0.67 9.29 2.61 0.79 0.34 0.15
EOFsimple 0.63 9.79 2.49 0.77 0.18 0.37
BoostEOF 0.73 8.42 2.24 0.64 0.17 0.41
OK 0.75 8.02 2.09 0.40 0.22 0.63
PK 0.69 8.96 2.34 0.52 0.26 0.48
TK 0.80 7.25 1.62 0.30 0.15 0.75

4.2.3 Performance of hierarchical models424

Table 4. Overview of the overall error for all hierarchical models. The Kriging column iden-

tifies the kriging approach which was used for the residual field. The Mean field column distin-

guishes between the different approaches for estimating the mean field of the model.

Kriging Mean field R2 RMSE MDAE R2 < 0.5 R2 < 0 R2
0.5

OK BoostSC 0.83 6.72 1.78 0.30 0.10 0.69
OK EOFsimple 0.81 6.99 1.86 0.31 0.11 0.67
OK BoostEOF 0.82 6.77 1.79 0.32 0.10 0.68
OK BoostST 0.81 6.96 1.86 0.33 0.11 0.66
PK BoostSC 0.79 7.37 1.94 0.41 0.13 0.58
PK EOFsimple 0.77 7.73 2.00 0.38 0.15 0.59
PK BoostEOF 0.79 7.42 1.92 0.39 0.13 0.58
PK BoostST 0.77 7.77 1.99 0.43 0.13 0.56
TK BoostSC 0.84 6.35 1.56 0.25 0.09 0.73
TK EOFsimple 0.83 6.56 1.60 0.25 0.09 0.73
TK BoostEOF 0.84 6.35 1.60 0.24 0.09 0.72
TK BoostST 0.84 6.44 1.64 0.27 0.08 0.70

In a next step we want to assess the prediction performance of the full hierarchi-425

cal models that combine the component models evaluated before. Table 4 gives an overview426

of the cross-validated error of all models. We can observe that the application of differ-427
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Figure 7. Cumulative distribution of station-wise R2 stratified by kriging-method. Stations

with a R2 below -1 are omitted for clarity.

ent kriging methods led to the main variation in model performance, with a better per-428

formance of TK than OK and PK. The model combinations with TK yielded a RMSE429

from 6.35 to 6.56, whereas OK resulted in a somewhat higher RMSE between 6.72 and430

6.99 and the use of PK for the residual field led to a RMSE of 7.37 to 7.77. This over-431

all trend was also visible for all other performance measures.432

In contrast, the different approaches for estimating the mean field only slightly al-433

tered the prediction performance of the models. For all kriging approaches the use of sea-434

sonal boosting, or BoostEOF yielded similar results. The models showed a somewhat weaker435

performance when the mean field was estimated by spatiotemporal boosting or EOFsimple,436

but when we look at the distribution of the R2 over all stations (Fig. 7), these differences437

almost disappear. For instance, the R2
0.5 for topkriging ranged only from 0.7 to 0.73 and438

the number of low-performing stations with a R2 below 0 was between 8 % and 9 %.439

4.2.4 Performance of hierarchical models grouped by seasonal regime440

types441

For a deeper performance analysis of the hierarchical models, we again focus on the442

three low-flow regime types (winter, summer, mixed). Figure 8 gives an overview of the443

distribution of the R2 for all three regimes. Regarding the kriging structure, hierarchi-444

cal model with TK show the best performance over all three regimes. Highest predic-445

tion accuracy is reached for winter regime, where hierarchical models with TK yield a446

median R2 of 0.8 to 0.84. Performance of OK is only slightly lower with a median R2
447

from 0.78 to 0.81, but only 0.72 to 0.76 for PK. The performance is somewhat smaller448

for summer regimes for all models, and is lowest for mixed regimes, where combinations449

with TK still reach a median R2 of 0.68 (lowest R2 of 0.62), but median R2 values for450

OK are only ranging from 0.5 to 0.57.451

A further stratification of the results by the mean field model did not reveal a sys-452

tematic picture of the performance. For example, EOFsimple in combination with OK,453

resulted in the worst performance for summer regimes, but for physiographic kriging and454

topkriging the combination with EOFsimple led to the best performance. Focusing on455

the mixed regime, the BoostST method seemed to be disadvantageous for all kriging struc-456

tures, but this was not apparent in the results of the winter or summer regime.457
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Outliers are removed from the plot for better visualization.

5 Discussion458

5.1 Comparison of performance459

In this paper, we extended an existing hierarchical model, initially proposed by Szpiro460

et al. (2010), for performing spatio-temporal predictions of monthly low-flow index se-461

ries in Austria. We tested four models to approximate the seasonal cycle and the long-462

term trend, and compared three geostatistical approaches for the residual field. Com-463

parison to existing literature is mainly limited to the study by Laimighofer et al. (2022a),464

where results can directly be compared as stations, temporal resolution, and even the465

used cross validation folds are equivalent to this study. In Laimighofer et al. (2022a) a466

single spatio-temporal framework was applied, where the best model yielded a median467

R2 of 0.67 and an overall RMSE of 6.98. In this study these measures could be improved468

to a RMSE of 6.35 and a median R2 of 0.73, for our best model (BoostSC and TK). Per-469

formance comparison to other literature is somehow difficult, as prediction studies on470

monthly streamflow data is mainly performed on monthly mean values and results are471

partially not evaluated by cross validation (Gottschalk et al., 2015; Sauquet et al., 2008;472

Pumo et al., 2016), which can best capture the error of prediction in ungauged basins.473

In a more qualitative embedding of our results, we can highlight that hierarchical474

model combinations with topkriging yield the highest prediction accuracy. This is in line475

with studies for spatial low-flow prediction (Laaha et al., 2014), or spatio-temporal stream-476

flow prediction in Austria (Skøien & Blöschl, 2007; Viglione et al., 2013), where also TK477

reaches high prediction performance. In contrast, Farmer (2016) shows that OK can per-478

form as well as TK in a spatio-temporal framework, and suggests that ordinary kriging479

should be preferred over TK, due to the lower model complexity. Our results could paint480

a similar picture, as the performance metrics are only slightly improved by TK, but this481

is only true if we consider the full hierarchical model structure, where the between-model482

differences are reduced. Studies as Farmer (2016) or Skøien and Blöschl (2007) consid-483

ered no additional seasonal cycle or long-term trend in their models. Focusing on our484

results for a single kriging structure (Table 3), the median R2 for OK is only 0.63, but485

the median R2 for TK is 0.75. However, the single TK approach only yields a RMSE of486

7.25, which is substantially higher to the RMSE of 6.35 of the combination of BoostSC487

and topkriging. We will discuss these performance issues of topkriging in more depth in488

the next section.489
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Prediction accuracy of PK is generally lower for all hierarchical model combina-490

tions and for the single kriging approach. Results for spatial low-flow prediction in Italy491

(Castiglioni et al., 2011) showed similar performance of PK and TK, but this is not re-492

flected in our space-time framework. The lower performance of PK may be caused by493

the similar information used by the mean field models and the first two principal com-494

ponents covering the physiographic space for PK.495

5.2 Effect of headwater vs. non-headwater on topkriging performance496

Albeit, several studies demonstrated the good performance of topkriging (Skøien497

& Blöschl, 2007; de Lavenne et al., 2016; Laaha et al., 2014; Farmer, 2016; Viglione et498

al., 2013), accuracy of TK is altered as a function of catchment area (Viglione et al., 2013),499

station density (Parajka et al., 2015), or the hierarchical position in the river network500

(Laaha et al., 2014; de Lavenne et al., 2016). Laaha et al. (2014) found that the R2 for501

TK in headwater catchments for spatial low-flow prediction is 0.59, whereas in non-headwater502

catchments performance increased to a R2 of 0.91. A similar trend was shown by de Lavenne503

et al. (2016), where the performance of TK increased with higher Strahler order. This504

is consistent with our results (displayed in Fig. 9), where we can see a general trend for505

all model combinations that a higher Strahler order increases the prediction performance.506

Considering the performance of each model combination, we observe that a simple top-507

kriging routine is not sufficient for headwater catchments (Strahler order 1 - 2). For ex-508

ample the median R2 for simple TK is 0.56 for catchments with a Strahler order 1. Adding509

seasonal predictions (BoostSC) to the model structure enhances prediction to a median510

R2 of 0.67. Differences between the models almost disappear when considering catch-511

ments with Strahler order 2. Here the median R2 is between 0.67 and 0.7, but simple512

TK shows a much higher variance in the results. In catchments with a Strahler order513

of 3 or more, the simple TK routine provides the most accurate predictions compared514

to the hierarchical model combinations. However, we can show that the lower performance515

of topkriging in headwater catchments can be improved by a hierarchical framework that516

that exploits the seasonal cycle in advance.517

5.3 Case study - extreme events518

So far our model assessment focused on global model performance. In a last step,519

we want to consider a concrete discharge time series, to demonstrate the potential of our520

modeling approach. As our main interest is to predict low-flows we will focus on two drought521

years 2003 and 2015 (Ionita et al., 2017; Laaha et al., 2017). We selected the hydrograph522

Altschlaining at the river Tauchenbach in eastern Austria, which already was investigated523

by Laaha et al. (2017). The Tauchenbach is a small (upstream) catchment with 89.2 km2,524

which experienced a particularly extreme low-flow event in 2003 (Fig. 10). The event525

of 2003 started with an early onset and continued over the whole year, whereas in 2015526

wetter preconditions in spring led to a later onset and prevented a more severe low-flow527

event in summer.528

The seasonal boosting approach in combination with TK yields a cross-validated529

R2 of 0.45 at Altschlaining, which is lower than about 80 % of all stations. Neverthe-530

less, the development of the low-flow events is captured quite well by model predictions,531

which can be decomposed to the mean field component and the residual field component.532

Figure 10 illustrates the complementary behaviour of these two components. In extreme533

events like 2003 and 2015, the observed low flows deviate strongly from the seasonal low-534

flow regime. For this reason, the mean field component of the hierarchical model would535

provide a biased estimate. The TK of the residual field, however, performs an adjust-536

ment of the predictions to the respective event conditions, as can be seen for both events.537

It uses synchronous information of adjacent stations to achieve enhanced space-time pre-538

dictions. Such adjustment would indeed be much smaller in a ’normal’ year, where the539

low-flow conditions are similar to the average regime.540
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Figure 9. The boxplots show all possible estimation of the mean field in combination with

topkriging, and a simple topkriging routine in which only one variogram is estimated for the full

spatio-temporal domain. The catchments are further stratified by their Strahler order (x-axis).

Due to the limited stations with Strahler order ≥ 4, these stations are condensed in one group.

Despite these favorable properties, some below-average performance can be observed541

in spring 2003, where discharges reflect the very dry preconditions that led to the severe542

low-flow event. This seasonal anomaly can be explained by a particular weather situa-543

tion where the Tauchenbach experienced a precipitation deficit over several years due544

to lee-effects behind alpline and pre-alpine mountain ranges (Laaha et al., 2017). Since545

this is a local singularity, the anomaly cannot be adjusted by information from neigh-546

boring stations, so a residual TK does not significantly improve the estimates. Further547

on, the (regionally more consistent) atmospheric water deficit of the summer drought event548

gets increasingly important. This leads to enhanced residual TK, which is reflected in549

steadily improving predictions during the ongoing low-flow event.550

6 Conclusions551

In this study we adopted a hierarchical model framework for spatio-temporal mod-552

elling of monthly low-flow in Austria. The best performing model is a combination of553

model-based boosting for the mean field, which estimates the seasonal low-flow regime,554

and topkriging for predicting the residuals. It gives a median R2 of 0.73 over all stations,555

demonstrating the high potential of the hierarchical model.556

Generally, stations with a strong winter seasonality of low-flows show a higher pre-557

diction accuracy than summer or mixed regimes. The drivers of monthly low-flow in win-558

ter regime catchments are mainly high sums of precipitation and snowmelt in the sum-559

mer months, and freezing and low sums of precipitation in the winter. The signal of monthly560

low-flow in mixed or summer regimes is more noisy, which slightly weakens the predic-561

tion performance.562

Regardless of regime type or mean field methods used, topkriging shows the best563

performance for all model combinations, followed by ordinary kriging and physiographic564

kriging. It is striking that even a simple topkriging routine without an additional mean565
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Figure 10. Comparison of two drought years (2003 and 2015), for the station Altschlain-

ing, river Tauchenbach. Each plot shows the daily discharge, predicted mean monthly q95 and

predicted monthly q95 - both are transformed back to discharge values (m3s−1).
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field achieves a median R2 of 0.75, but has a higher number of poorly performing sta-566

tions (R2 < 0.5). It shows a lack of prediction accuracy, especially in headwater catch-567

ments. In these catchments the hierarchical model framework is particularly beneficial,568

whereas in catchments of Strahler order ≥ 3 the simple topkriging routine is sufficient.569

Overall, the favorable performance of the model results from its specific structure,570

which seems well suited to combine different types of information: average low flow con-571

ditions estimated from climate and catchment characteristics, and information of neigh-572

bouring catchments estimated by spatial correlation. This combination provides accu-573

rate results not only for average years, where the high prediction accuracy for the sea-574

sonal low-flow regime comes into play, but also for extreme years, where top-kriging adapts575

to the anomalous conditions of the low-flow event and can also capture the preconditions.576

The model is shown to provide robust estimates for a range of conditions, including head-577

water catchments and extreme events. It demonstrates a high degree of suitability for578

predicting gaps in the low-flow series, and for providing estimates at ungauged sites.579
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