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Abstract

Vegetation water content (VWC) plays a key role in transpiration, plant mortality, and wildfire risk. Although land surface

models now often contain plant hydraulics schemes, there are few direct VWC measurements to constrain these models at global

scale. One proposed solution to this data gap is passive microwave remote sensing, which is sensitive to temporal changes in

VWC. Here, we test that approach by using synthetic microwave observations to constrain VWC and surface soil moisture within

the CliMA Land model. We further investigate the possible utility of sub-daily observations of VWC, which could be obtained

through a satellite in geostationary orbit or combinations of multiple satellites. These high-temporal-resolution observations

could allow for improved determination of ecosystem parameters, carbon and water fluxes, and subsurface hydraulics, relative

to the currently available twice-daily sun-synchronous observational patterns. We find that incorporating observations at four

different times in the diurnal cycle (such as could be available from two sun-synchronous satellites) provides a significantly

better constraint on water and carbon fluxes than twice-daily observations do. For example, the root mean square errors

(RMSE) of projected evapotranspiration and gross primary productivity during drought periods was reduced by approximately

40%, when using four-times-daily relative to twice-daily observations. Adding hourly observations of the entire diurnal cycle

did not further improve the inferred parameters and fluxes. Our comparison of observational strategies may be informative in

the design of future satellite missions to study plant hydraulics, as well as when using existing remotely sensed data to study

vegetation water stress response.
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Abstract 19 

Vegetation water content (VWC) plays a key role in transpiration, plant mortality, and wildfire 20 
risk. Although land surface models now often contain plant hydraulics schemes, there are few 21 
direct VWC measurements to constrain these models at global scale. One proposed solution to 22 
this data gap is passive microwave remote sensing, which is sensitive to temporal changes in 23 
VWC. Here, we test that approach by using synthetic microwave observations to constrain VWC 24 
and surface soil moisture within the CliMA Land model. We further investigate the possible 25 
utility of sub-daily observations of VWC, which could be obtained through a satellite in 26 
geostationary orbit or combinations of multiple satellites. These high-temporal-resolution 27 
observations could allow for improved determination of ecosystem parameters, carbon and water 28 
fluxes, and subsurface hydraulics, relative to the currently available twice-daily sun-synchronous 29 
observational patterns. We find that incorporating observations at four different times in the 30 
diurnal cycle (such as could be available from two sun-synchronous satellites) provides a 31 
significantly better constraint on water and carbon fluxes than twice-daily observations do. For 32 
example, the root mean square errors (RMSE) of projected evapotranspiration and gross primary 33 
productivity during drought periods was reduced by approximately 40%, when using four-times-34 
daily relative to twice-daily observations. Adding hourly observations of the entire diurnal cycle 35 
did not further improve the inferred parameters and fluxes. Our comparison of observational 36 
strategies may be informative in the design of future satellite missions to study plant hydraulics, 37 
as well as when using existing remotely sensed data to study vegetation water stress response. 38 

1 Introduction 39 

The amount of water contained in plant tissues is a key modulator of terrestrial ecosystem 40 
function. Plant water status can be quantified as vegetation water content (VWC) or as leaf water 41 
potential (ψl), which are monotonically related to each other in a given plant (Turner, 1988). 42 
During a drought, changes in VWC help determine whether plant mortality occurs and by what 43 
mechanism (i.e. carbon starvation or hydraulic failure) it tends to occur (Ding et al., 2021; 44 
Martinez‐Vilalta et al., 2019; McDowell et al., 2008; Rao et al., 2019). VWC and ψl can also 45 
help predict how transpiration and photosynthesis respond to drought (Eller et al., 2020; 46 
Matheny et al., 2017). Each of these processes depends on plant water use strategy, which can be 47 
characterized by analyzing VWC and ψl dynamics (Konings & Gentine, 2017; Y. Liu, Konings, 48 
et al., 2021; Wu et al., 2021). VWC  also reflects plant growth responses to rainfall pulses in 49 
semi-arid ecosystems (Feldman et al., 2021; Feldman, Short Gianotti, et al., 2018) and 50 
modulation of land-atmosphere interactions (Feldman et al., 2020). Lastly, VWC dynamics 51 
strongly affect wildfire activity and burned area (Nolan et al., 2016; Rao et al., 2022; Yebra et 52 
al., 2013). 53 

Global monitoring of VWC would improve our understanding of ecosystem resiliency 54 
and vulnerability to climate stress, especially considering that ecosystem responses to historical 55 
drought vary by region (Z. Yu et al., 2017), in part due to regional differences in the plant traits 56 
that modulate VWC dynamics. However, measurements of VWC and ψl are typically made in-57 
situ on individual plants (Konings et al., 2019; Novick et al., 2022). It is difficult to scale  these 58 
measurements up to coarser spatial scales with confidence, because of the high heterogeneity of 59 
plant hydraulic strategies within and across ecosystems (Anderegg, 2015; Skelton et al., 2015). 60 
Remote sensing can help address this shortcoming, as data from spaceborne sensors are spatially 61 
widespread by design (Konings et al., 2021; Steele-Dunne et al., 2012). Out of the many 62 
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wavelengths used for remote sensing, microwave observations are particularly sensitive to water 63 
content, both in the soil surface and in vegetation (Ulaby & Long, 2014).  64 

The effect of vegetation moisture on microwave observables is typically characterized as 65 
vegetation optical depth (VOD), which  is approximately linearly related to the total canopy 66 
water content in the area (Jackson & Schmugge, 1991). Total canopy water can be expressed as 67 
the product of aboveground biomass times VWC. In turn, through an ecosystem-scale (and 68 
ecosystem-specific) pressure-volume curve, VOD can be interpreted as an indirect indicator of ψl 69 
(Konings et al., 2019). Recent field and data-driven studies have shown that VOD is indeed 70 
sensitive to changes in leaf water potential on hourly, daily, and seasonal time scales (Holtzman 71 
et al., 2021; Momen et al., 2017).  72 

Based on the sensitivity of VOD to leaf water potential, VOD can be used as a constraint 73 
on plant hydraulics in a land surface model. In addition to aiding our ability to monitor and 74 
predict plant hydraulic responses to climate, such model-data fusion has been proposed as a way 75 
to estimate belowground water uptake, which is very difficult to measure directly (Konings et al., 76 
2021; Y. Liu, Konings, et al., 2021). This approach is distinct from (and could be complementary 77 
to) assimilating VOD into an ecosystem model as a constraint on biomass (Kumar et al., 2020).  78 

Liu et al (2021) fused satellite data with a simple land surface model to estimate globally 79 
resolved maps of plant hydraulic traits. That study found large between-trait differences in the 80 
ability of VOD data to constrain those traits. Using synthetic data to test the ability of their 81 
approach to retrieve traits, they found that the correlations between prescribed and retrieved 82 
values ranged from 0.46 to 0.96 among the seven traits they retrieved. Retrievals using observed 83 
VOD also showed significant uncertainty. Many factors could contribute to these uncertainties, 84 
including the model accuracy, the inherent sensitivity of the model outputs to each trait, the prior 85 
distribution used for each trait in the model-data fusion algorithm, the observation operator that 86 
connects ψl with VOD (Shan et al., 2022), and the temporal availability of the remote sensing 87 
observations. It is unclear which factors are primarily responsible for the residual uncertainty and 88 
for the lack of constraint on certain traits. 89 

In this study, we investigate one avenue for potentially improving microwave remote 90 
sensing constraints on ecosystem dynamics: the temporal frequency of observations. Existing 91 
satellites carrying passive microwave sensors are typically in sun-synchronous orbits. This orbit 92 
type produces a repeat cycle where the satellite passes over a given point on Earth at two fixed 93 
times of day, 12 hours apart. For example, the Soil Moisture Active Passive satellite (SMAP) has 94 
overpass times of 6 AM and 6 PM, revisiting every 1 to 3 days depending on latitude (Entekhabi 95 
et al., 2010). As a second example, the Advanced Microwave Scanning Radiometer 2 (AMSR2), 96 
has overpass times of 1:30 AM and 1:30 PM, with revisits every 1 to 2 days (Kachi et al., 2014; 97 
Kim et al., 2018).  98 

Viewing a location at two fixed times of day provides only limited snapshots of the full 99 
dynamics of plant hydraulic status. Furthermore, for a sun-synchronous orbit those snapshots are 100 
12 hours apart, so they will rarely capture the full diurnal amplitude of leaf water potential, 101 
which tends to have a daily maximum just before dawn and daily minimum in early afternoon, 102 
approximately eight hours apart (Katerji et al., 1986; Klepper, 1968). Nelson et al. (2018) found 103 
that the shape of the diurnal cycle of transpiration is an indicator of drought stress, which 104 
suggests that sub-daily VWC observations may enable improved characterization of drought 105 
stress. Such observations may also improve transpiration predictions, as many land surface 106 
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models fail to capture the VWC-related hysteresis that has been observed in the diurnal cycle of 107 
transpiration relative to the cycles of vapor pressure deficit and solar radiation (Matheny et al., 108 
2014; Renner et al., 2019). The degree of hysteresis is modulated partly by atmospheric variables 109 
(vapor pressure deficit and radiation), but also by vegetation hydraulic strategy and root-zone 110 
soil moisture, which could both potentially be constrained by passive microwave remote sensing 111 
(S. Xu et al., 2022; Zhang et al., 2014). 112 

Unlike a sun-synchronous orbit, a geostationary orbit provides near-continuous 113 
observations in time (revisit time under 1 hour) over a fixed field of view. Geostationary 114 
satellites are widely employed for weather monitoring, but their data have also been recently 115 
used to constrain land surface processes (Khan et al., 2021). For example, Xu et al. (2018) 116 
estimated daily sensible and latent heat fluxes based on full diurnal cycles of land surface 117 
temperature from the Geostationary Operational Environmental Satellite (GOES) constellation. 118 
Xiao et al. (2021) provide an overview of upcoming geostationary satellite missions and their 119 
potential for studying ecosystem stress responses. 120 

Konings et al. (2021) recently proposed two options for next-generation remote sensing 121 
of VWC: a geostationary satellite or a constellation of several small satellites (smallsats) with 122 
different orbits and thus different overpass times. The relevance of smallsat constellations to data 123 
assimilation is also discussed in Kumar et al. (2022). If eventually launched, the increased 124 
temporal resolution of these new mission concepts might improve our ability to constrain plant 125 
hydraulic traits and ecosystem dynamics. On the other hand, geostationary satellites are 126 
particularly expensive to engineer and launch since they orbit at a much greater distance from the 127 
Earth than satellites in sun-synchronous orbits. Thus, it is essential to determine how much 128 
benefit the increased information from possible new satellites would provide to scientific 129 
applications. 130 

Here, we investigate that question: would observations throughout the day provide 131 
improved model performance and trait identification when fused with a land surface model? Or 132 
would they simply “connect the dots” in a consistent and predictable way between the existing 133 
twice-daily observations, providing no overall increase in information content?  To quantify the 134 
potential utility of different observational frequencies, we use a simulation experiment. The 135 
simulation setting allows the sources of error in observations to be controlled, so that temporal 136 
frequency is the only difference between the experimental scenarios. We limit our focus here to 137 
passive microwave remote sensing (radiometry) rather than active (radar), because the physical 138 
processes relating VWC and remote sensing observables are better understood for radiometry 139 
than for radar (Konings et al., 2019; Shan et al., 2022). 140 

In this study, we compare the utility of data that is available twice daily (analogous to a 141 
sun-synchronous orbit), four times daily (combining data from two satellites), or hourly (a 142 
geostationary orbit). We use Bayesian model-data fusion to infer plant hydraulic trait values 143 
from simulated remote sensing observations at these temporal frequencies. Because models with 144 
many parameters typically exhibit equifinality (Khatami et al., 2019; Tang & Zhuang, 2008) and 145 
because the observables are typically more sensitive to some parameters than other parameters, 146 
the accuracy of the retrieved trait values themselves does not tell the full story of whether the 147 
retrieved parameters accurately describe the ecohydrological system being studied. Thus, we also 148 
use the retrieved trait values to predict ecosystem responses to drought, focusing on soil 149 
moisture, evapotranspiration and gross primary productivity as variables of interest. We analyze 150 
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differences in the accuracy of these predicted ecosystem dynamics (relative to the original 151 
reference model run) across the different observational scenarios. 152 

2 Materials and Methods 153 

2.1 Experimental Design 154 

Our study takes the form of an Observing System Simulation Experiment (OSSE), a 155 
simulation study in which retrieval algorithms are tested on simulated (but realistic) satellite 156 
observations to assess the accuracy of the environmental inference, which is associated with a 157 
known truth. The goal of an OSSE is to assess quantitatively how much information could be 158 
gained about an environmental process from a specific type of observation system (Arnold & 159 
Dey, 1986; Zeng et al., 2020). Here, we run different versions of the same OSSE to assess how 160 
changing microwave observational frequency affects the accuracy of the inferred 161 
ecohydrological fluxes and water pools. Since an OSSE is based on simulations of both the 162 
underlying environmental processes and the observing system (as opposed to using real 163 
observations), it does not require that the observing system be operational yet, and thus can be 164 
used to plan future observing systems (Atlas, 1997).  165 

The steps in our experiment are summarized in Fig.1. We started by running a land 166 
surface model (described in Sect. 2.2) to create simulated time series of ecosystem states and 167 
fluxes over 13 years (2005 through 2017). This model run used prescribed parameter values for 168 
plant and soil hydraulic traits. For the rest of the study, we treated the parameter values and 169 
model states from the original model run as a synthetic “truth” scenario. We then used a simple 170 
radiative transfer model (described in Sect. 2.3) and added noise to simulate realistic 171 
observations of horizontally and vertically polarized microwave brightness temperature for one 172 
year (2007), based on the land surface model outputs of surface soil moisture and vegetation 173 
water potential. We only used one year of simulated observations, rather than multiple years, due 174 
to the computational cost of the model-data-fusion algorithm. We picked the year 2007 for this 175 
purpose because it includes substantial water stress, but not the highest water stress of the entire 176 
dataset, which occurs in 2012. 177 

We ran several parallel experiments, each with a different temporal arrangement of 178 
observations corresponding to a different satellite orbit scenario, determining the retrieved traits 179 
and associated fluxes for each scenario: 180 

• “HOURLY” – observations 24 hours a day, every day (This represents a geostationary 181 
satellite.) 182 

• “1 AM/PM” – observations at 1 AM and 1 PM, every third day (This represents the type 183 
of data currently available from AMSR-E) 184 

• “6 AM/PM” – observations at 6 AM and 6 PM, every third day (This represents the type 185 
of data currently available from SMAP) 186 

• “1+6” – combination of 6 AM/PM and 1 AM/PM, with the four combined observations 187 
all coming on the same day of each 3-day cycle (This represents a combination of two 188 
satellites with different overpass times) 189 

Figure 2 shows an example time series of VOD from the “true” model, and how each 190 
observation scenario views the same time series differently due to temporal frequency. 191 
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(GPP) – by calculating the root mean square error (RMSE) of each retrieved ensemble member 227 
relative to the “true” model run. In this analysis, we used the vertically integrated soil moisture 228 
over the entire soil column, not just the surface soil moisture that directly affects the microwave 229 
brightness temperature. For each observation scenario and each model variable, we obtained a 230 
probability distribution of RMSE over the posterior retrieved parameter distribution. We 231 
compared the RMSE distributions of the different observation scenarios using a Mann-Whitney 232 
U test (a non-parametric analog to a t-test). We also calculated other error metrics (correlation 233 
and bias) to analyze the reasons for model performance differences between the observation 234 
scenarios.  235 

In addition to predicting ecosystem behavior during typical conditions, it is also 236 
important to characterize responses to climate extremes. Thus, we repeated the RMSE analysis, 237 
but instead of using 13 full years in the error calculation, we limited the analysis to the four 238 
summers with the lowest total precipitation (aside from the 2007 model-data fusion year): 2005, 239 
2012, 2013, and 2014. Here, summer was defined as June 1 through September 30.  240 

2.2 Model Structure 241 

Previous work on using VOD to constrain plant hydraulics with model-data fusion has 242 
used simple models built specifically for that purpose (Y. Liu, Holtzman, et al., 2021). In the past 243 
few years, full-fledged land surface models – of the type that are used in global climate and 244 
weather modeling – have begun to include water potential as a prognostic variable (Eller et al., 245 
2020; Kennedy et al., 2019; L. Li et al., 2021), raising the possibility of using VOD to constrain 246 
the hydraulics of land surface model. Here, we investigated model-data fusion in a new land 247 
surface model (CliMA Land) that includes a sophisticated treatment of plant hydraulics (Y. 248 
Wang et al., 2023). 249 

The land surface model used in this study is derived from the CliMA (Climate Modeling 250 
Alliance) Land model, including the SoilPlantAirContinuum, Photosynthesis, and 251 
StomatalModels modules (Y. Wang et al., 2021). The model represents vegetation in analogy 252 
with a tree, with several organs: roots, trunk, branches, and leaves (Fig. 3). The single trunk is 253 
connected at its base to several roots that extend down into different soil layers, and it is 254 
connected at its top to several branches that extend up to different heights. Each branch is 255 
connected to a leaf, and each leaf contains a sunlit part and a shaded part (not shown in Fig. 3 for 256 
simplicity). Each canopy layer, comprising a branch and shaded/sunlit leaves, is connected to a 257 
layer of air. The model can contain an arbitrary number of canopy layers to model gradients of 258 
light within the canopy; however, in this study we only use three canopy layers for reasons of 259 
computational efficiency.  260 

The processes and variables that are simulated prognostically in our model include: 261 
optical radiative transfer through the canopy, transpiration and photosynthesis in leaves, water 262 
potential and water content in each plant organ, water flow between connected plant organs, 263 
water uptake from soil to roots, vertical drainage through the soil, and runoff. Variables that are 264 
prescribed from external data include leaf area index (LAI), and meteorological data 265 
(precipitation, air temperature, humidity, and incoming solar radiation at the top of the canopy). 266 

In each time step of the model, the following processes occur: 267 
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• The transfer of light within the canopy is modeled based on incoming 268 
photosynthetically active radiation, leaf area index, and the vertical locations of leaf 269 
layers. 270 

• For each leaf layer, photosynthesis and stomatal conductance are modeled, yielding 271 
values of transpiration and carbon assimilation. 272 

• A non-steady-state plant hydraulics scheme models water flow, water storage, and 273 
water potential within the plant. 274 

• The soil moisture in each soil layer is updated to account for vertical drainage, 275 
precipitation, root water uptake, and runoff. 276 

We added steps 3 and 4 specifically for the purposes of our study, beyond the 277 
SoilPlantAirContinuum module, while steps 1 and 2 are implemented similarly to the work of Y. 278 
Wang et al. (2021). We use the two-leaf radiative transfer model based on sunlit and shaded big 279 
leaves. Photosynthetic carbon assimilation is modeled using the Farquhar model (Farquhar et al., 280 
1980). Furthermore, in the photosynthetic step we attempted to mimic a realistic situation where 281 
the observational data contains processes that are not represented completely correctly in the 282 
model, by forcing the retrieval algorithm to work with a parametrization that is not completely 283 
representative of the “true” model. Specifically, we used two different stomatal conductance 284 
schemes: the “true” model uses the Medlyn scheme while the retrieval algorithm used the Ball-285 
Berry scheme (Ball et al., 1987; Medlyn et al., 2011). This difference prevents the retrieval 286 
algorithm from being able to perfectly replicate the “true” model, 287 

In Step 3 of the model, we implemented a new non-steady-state plant hydraulics scheme 288 
within CliMA Land. We introduce a capacitance-related parameter V (specifically, the total 289 
water volume stored by the plant at saturation). This parameter allows the model to represent a 290 
spectrum of possible plant hydraulic strategies beyond a simple steady-state assumption. Our 291 
scheme uses a governing equation based on Darcy’s law, as in the FETCH2 plant hydraulic 292 
model (Mirfenderesgi et al., 2016; Silva et al., 2022). Unlike FETCH2, here we did not attempt 293 
to model gradients of water potential over the length of the vegetation components. Instead of a 294 
partial differential equation (PDE), our model is formulated as a system of ordinary differential 295 
equations (ODEs), with one differential equation for each leaf, each branch, the trunk, and each 296 
root. Details of the plant hydraulic model and its linkage with stomatal function are described in 297 
the Supplemental Information Sect. S1 and S2.  298 

In Step 4 of the model, we use the Van Genuchten equation to parametrize the soil water 299 
retention curve and the Richards equation to model water drainage through the soil (M van 300 
Genuchten, 1980; Tindall et al., 1999). There are eight soil layers in our model, with layer 301 
thicknesses increasing from top to bottom. A constant head boundary condition is assumed at the 302 
bottom of the soil column, as in the soil-plant-atmosphere continuum model of Liu et al (2017). 303 
Water runs off through saturation excess in the top layer and through drainage at the lower 304 
boundary. 305 
 306 
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Other parameter values were manually tuned so that the land model approximately 330 
matched the observed magnitude, seasonality, and interannual variation of ET, GPP, column-331 
averaged soil moisture, and pre-dawn ψl at the MOFLUX site (Pallardy et al., 2018; J. Wood & 332 
Gu, 2022). Leaf area index (LAI) was prescribed as an input time series, though future versions 333 
of the CliMA model may include prognostic LAI within the model itself. We selected LAI data 334 
at the pixel over the MOFLUX site from the Moderate Resolution Imaging Spectrometer 335 
(MODIS) satellite (Myneni et al., 2002). We then adjusted the MODIS data’s mean, amplitude, 336 
and seasonal timing to match in-situ LAI observations from the MOFLUX site. Because there 337 
were several time gaps in the in-situ LAI observations, we did not use them as direct inputs to 338 
CliMA. 339 

Figure 4 demonstrates the model’s realistic behavior by comparing model outputs with 340 
observed time series from eddy covariance and predawn ψl measurements. It should be noted 341 
that, as this study is an OSSE, our goal was not to perfectly calibrate a land surface model to a 342 
specific site, but rather to investigate model-data fusion with synthetic remote sensing data. We 343 
simply used the MOFLUX observations as a starting point to ensure the behavior of the new 344 
CliMA Land version was ecologically plausible.  345 

 346 
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Table 1. Parameters retrieved from simulated observations. A flat non-negative prior is used for 369 
the radiative transfer parameters. The other prior distributions are log-uniform. Note that the 370 
Medlyn model g1 parameter is only used in the “true model,” not in the retrieval, so it does not 371 
have a prior distribution. Also, P63x is parametrized in the MCMC as an additive constant plus 372 
the value of P63β. 373 

Parameter name and symbol Units Normalized 
by ψref? 

True value Prior range 

Radiative transfer 
parameters 

    

Single scattering albedo (ω) - no 0.05 (0, ∞) 
Sensitivity of VOD to leaf 

water potential (a) 
MPa-1 yes 0.067 (0, ∞) 

Contribution of woody 
biomass to VOD (b) 

- no 0.81 (0, ∞) 

Sensitivity of VOD to LAI (c) - no 0.051 (0, ∞) 
Stomatal parameters     

Maximum carboxylation rate 
(Vcmax) 

µmol/s per m2 
of leaf area 

no 90 (10, 300) 

g1 in Medlyn model Pa1/2 no 300 N/A (see 
caption) 

g1 in Ball-Berry model - no N/A (1, 120) 
P63β MPa yes -3 (-0.75, -15) 

Xylem parameters     
Whole-plant maximum xylem 

conductance (kplant) 
mol/s/MPa per 
m2 of basal 
area 

yes 10 (0.1, 50) 

Whole-plant maximum water 
storage volume (V) 

kg per m2 of 
ground area 

yes 12 (0.12, 120) 

P63x MPa yes -4 (0.01,10) + 
P63β 

Soil parameters     
Soil depth (Z) mm no 2000 (500, 3000) 

Soil moisture lower boundary 
condition (slower) 

m3/m3 no 0.4 (0.3, 0.5) 

Rate of exponential decrease 
for rooting profile (αroot) 

m-1 no 2 (0.01, 5) 

Shape parameter of soil water 
retention curve (n) 

- no 1.5 (1.1, 1.9) 

Water potential of soil with 
moisture of 0.21 (ψref) 

MPa N/A -1 (-0.125, -8) 

Saturated soil hydraulic 
conductivity (ksoil) 

µm/s yes 0.4 (0.05, 20) 

 374 
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2.4 Forward model for synthetic remote sensing observations 375 

Our synthetic simulation study used microwave brightness temperatures directly in the 376 
model-data fusion process, rather than using VOD and soil moisture data that has been retrieved 377 
from brightness temperature through an offline algorithm, to avoid errors due to any inaccuracies 378 
of such an algorithm. This approach is consistent with the notion of directly assimilating satellite 379 
observables instead of derived products, as advocated in two recent review papers (Kumar et al., 380 
2022; MacBean et al., 2022). When using microwave data as a constraint on soil moisture, De 381 
Lannoy and Reichle (2016) found that it was advantageous to directly assimilate brightness 382 
temperatures into a land surface model, instead of assimilating soil moisture estimates derived 383 
from those brightness temperature. Here, we extended that concept to view brightness 384 
temperature as a joint constraint on soil moisture and plant hydraulics. 385 

To simulate the propagation of microwaves near the land surface, we used the tau-omega 386 
zeroth-order radiative transfer model, which simulates brightness temperature as a function of 387 
the soil surface dielectric constant and the VOD (Mo et al., 1982; Ulaby & Long, 2014). The 388 
predicted brightness temperature depends on the single-scattering albedo,  ω. Values of ω 389 
estimated from real satellite observations have considerable spatial variability even within land 390 
cover types (Konings et al., 2017). We thus treated ω as an unknown to be estimated from the 391 
observations. For the initial “truth” model, ω was set to 0.05, the value used by the SMAP 392 
algorithm for temperate deciduous forests (O’Neill et al., 2019). Calculating brightness 393 
temperature also requires the physical temperatures of the soil and canopy. In this study we 394 
assumed these temperatures are known with perfect accuracy from external data. Future versions 395 
of the CliMA Land model will include prognostic soil and canopy temperatures, which would 396 
enable bypassing that assumption by using physical temperature outputs from the model itself.  397 

We used the Mironov dielectric mixing model (Mironov et al., 2002) to parametrize the 398 
soil dielectric constant as a function of the land model’s surface soil moisture. The dielectric 399 
model also depends on the clay content of the soil, which is 15% at the MOFLUX site (J. Wood 400 
& Gu, 2022). The effect of surface roughness on the soil reflectivity is parametrized based on the 401 
SMAP algorithm (O’Neill et al., 2019) and treated as known. 402 

Plant water content affects microwave brightness temperature through VOD. We 403 
modeled VOD in the same way as several previous studies (Holtzman et al., 2021; Y. Liu, 404 
Holtzman, et al., 2021; Momen et al., 2017), as a function of leaf water potential (ψ, output by 405 
the land surface model) and leaf area index (LAI, prescribed by the forcing input data): 406 𝑉𝑂𝐷 = (1 + 𝑎𝜓௟)(𝑏 + 𝑐𝐿𝐴𝐼) Eqn. 1 

Above, a, b, and c are constant parameters, which vary between species and ecosystems. 407 
The first term, containing leaf water potential (ψl), represents VWC (and is mathematically 408 
equivalent to VWC here, since our plant hydraulic model assumes a linear pressure-volume 409 
curve). The second term, containing LAI, represents above-ground biomass (b represents the 410 
effect of woody biomass that does not change over time). As in Liu et al. (2021), we treated 411 
these VOD parameters as unknowns to be estimated from microwave observations. Since CliMA 412 
Land represents an ecosystem comprised of multiple canopy layers and plant organs with 413 
differing water potentials, we must make an assumption about the layers/organs to which VOD is 414 
most sensitive. For example, in Eqn. 1, does ψl represent leaf water potential at the top of the 415 
canopy, averaged throughout the canopy, or some combination of leaf and stem water potential? 416 
Here, we used the average leaf water potential of the canopy layers, to represent short-417 
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wavelength microwave observations (e.g. X-band), which are relatively insensitive to the woody 418 
parts of vegetation (X. Li et al., 2021). However, further research on the relationship of VOD 419 
and 𝜓 of different components is needed to determine the accuracy of this assumption.  420 

The “true” VOD parameters (a, b, and c) were tuned to approximately match the local 421 
dynamics of remotely-sensed X-band VOD, using the Land Parameter Retrieval Model (LPRM) 422 
product based on data from the AMSR-E and AMSR2 satellites (Y. Y. Liu et al., 2011). At the 423 
scale of this dataset’s 51-by-29 km pixel size, the area of central Missouri immediately 424 
containing the MOFLUX site is a heterogeneous mix of forest and cropland, making its VOD 425 
difficult to interpret. Thus, to avoid representativeness error, we used LPRM data from a more 426 
homogeneously forested area in southeastern Missouri (Mark Twain National Forest, 427 
approximately 200 km away from MOFLUX) when tuning the “true” VOD parameters. A 428 
comparison of our model outputs with LPRM data is shown in Fig. S2.  429 

2.5 Retrieval algorithm 430 

 To accomplish the inverse process of model-data fusion – estimating the model 431 
parameters that best match the observations – we used a Markov Chain Monte Carlo (MCMC) 432 
approach. MCMC produces Bayesian estimates of model parameters, based on the likelihood of 433 
producing the observations given the parameters as well as prior probability distributions for the 434 
parameters. Compared to optimization methods that only retrieve point estimates of parameters, 435 
MCMC algorithms sample from the full joint distribution of parameters informed by data (the 436 
posterior distribution), permitting easier characterization of parameter trade-offs, equifinality, 437 
and uncertainty. The specific variety of MCMC algorithm we used was an Adaptive Metropolis-438 
Hastings algorithm (Haario et al., 2001). Within the algorithm we normalized the log-likelihood 439 
of brightness temperature by the number of data points in each observation scenario, so that the 440 
only difference between scenarios is when the observations occur, not how often they occur. 441 

 We assumed that the observational noise in brightness temperatures follows a 442 
normal distribution with zero mean, a known standard deviation, and no temporal 443 
autocorrelation, and that the distribution of noise is identical and independent between the two 444 
polarizations. The standard deviation of the noise was set at 1.3 K, the observational uncertainty 445 
of the SMAP radiometer (Chan et al., 2016). 446 

Within the MCMC algorithm, we reparametrized the model by log-transforming the land 447 
surface parameters, and also normalizing certain parameters; preliminary tests showed that 448 
without this normalization the MCMC chains converged much more slowly. For example, the 449 
parameter P63β is normalized by dividing it by the parameter ψref, the water potential of soil with 450 
a volumetric moisture of 0.21 (the soil moisture that corresponds to a water potential of -1 MPa 451 
for the “true” model’s water retention curve). Furthermore, to compare values of leaf water 452 
potential in retrievals with greatly varying soil water retention curves, we also normalized ψl in a 453 
similar way. The normalization procedure is described in more detail in Sect. S4. The MCMC 454 
implementation is described in more detail in Sect. S5.  455 

3 Results 456 

3.1 Comparison of retrievals with synthetic observations 457 

Fusing hourly synthetic brightness temperatures with the CliMA Land model effectively 458 
constrained VOD and surface soil moisture (the two retrieved variables that directly affect 459 
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brightness temperature), as shown in Fig. 5. Improved accuracy of the HOURLY posterior 460 
relative to the prior was evident in the overall mean value of the variables, their seasonal cycles, 461 
and their diurnal cycles. This success in model-data fusion occurred even though the “true 462 
model” VOD and surface soil moisture were far on the lower end of the prior distributions of 463 
those variables. (Note that the prior distribution was not directly specified in terms of VOD or 464 
soil moisture, but rather in terms of the underlying model parameters that generate those time 465 
series.) The relative difference in errors between the prior and the retrieval was much greater for 466 
VOD and surface soil moisture than it was for brightness temperature, because brightness 467 
temperature is also affected by the canopy and soil temperatures, which we treated as being 468 
known with perfect accuracy within the OSSE.  469 

3.2 Parameter retrievals 470 

The HOURLY observation scenario showed the best parameter retrieval accuracy for 471 
several soil parameters, one xylem parameter, and for most of the radiative transfer parameters, 472 
but not for other parameters (Fig. 6). Parameters retrieved relatively accurately in all four 473 
observation scenarios include the scattering albedo ω and the xylem PLC curve parameter P63x. 474 
All four scenarios retrieved the total soil depth Z without much bias but with large uncertainty 475 
relative to the prior. For the three soil hydraulic parameters (Van Genuchten n, reference soil 476 
water potential ψref, and soil saturated hydraulic conductivity ksoil), each was retrieved quite 477 
accurately in the HOURLY scenario, but had biases in the other scenarios. A similar pattern 478 
across scenarios was found with the VOD model parameters (a, b, and c) and the maximum plant 479 
water storage V. For the soil boundary condition slower and the rooting depth parameter αroot, the 1 480 
AM/PM scenario had a large bias while the other scenarios were more accurate. For the xylem 481 
conductance kplant, the HOURLY scenario was most accurate, with the 1+6 scenario having a 482 
bias and the two twice-daily scenarios having a larger bias. All observation scenarios exhibited 483 
biases in retrievals of the stomatal parameters Vcmax and P63β. This was to be expected due to our 484 
imposing the Ball-Berry stomatal model on the retrieval algorithm, in contrast to the Medlyn 485 
model used to generate the “true” data.  486 

487 
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3.2 Accuracy of retrieved fluxes and water states 511 

Over the 13-year evaluation period, the HOURLY scenario was significantly more 512 
accurate in terms of daily-mean ψl than the two twice-daily scenarios are, but significantly less 513 
accurate than the 1+6 scenario (Fig. 7a). A similar pattern held for ET (Fig. 7c). The fact that the 514 
1+6 scenario was more accurate for ψl and ET than the HOURLY scenario (despite having less 515 
data) suggests that the hourly observations contained times of day where brightness temperature 516 
is not informative of plant hydraulics. Since the likelihood calculations in each scenario were 517 
normalized by the number of observations, the addition of these superfluous times of day 518 
apparently hurt the overall accuracy of the HOURLY scenario. 519 

For column-averaged soil moisture, the HOURLY scenario was significantly more 520 
accurate than the other scenarios (Fig. 7b). This finding highlights the potential for diurnal 521 
observations to improve our estimation of multiple land surface variables, even those like soil 522 
moisture that do not change much over a single day themselves, but are influenced by variables 523 
like ET that do exhibit strong diurnal variation. Finally, for GPP, the twice-daily scenarios were 524 
significantly less accurate than the hourly one, while the 1+6 scenario has similar accuracy to the 525 
HOURLY one (Fig. 7d). Similar patterns of RMSE differences between observation scenarios 526 
were found when we calculated RMSE based on hourly model outputs instead of daily averages 527 
(Fig. S3).   528 

 The qualitative pattern of differences between observation scenarios over the 529 
driest summers was similar to the pattern over the entire 13-year period (Fig. 8). However, 530 
between-scenario differences in ET and GPP accuracy were larger in magnitude over these driest 531 
summers than over the entire 13-year period. Over the 13-year evaluation period, the posterior 532 
median RMSE of ET was 45% greater for the 1 AM/PM (worst) scenario than for the 1+6 533 
scenario, while over the four driest summers the corresponding difference was 91%. Similarly 534 
for GPP, over the 13-year evaluation period, the posterior median RMSE was 21% greater for 535 
the 6 AM/PM (worst) scenario than for the 1+6 scenario, while over the four driest summers the 536 
corresponding difference was 77%.  537 
 538 
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3.3 Drivers of differences between observational scenarios 580 

To examine the reasons why some observation scenarios perform better than others, we 581 
broke down ψl errors into the RMSE of predawn ψl (specifically 5 AM) and the RMSE of ψl 582 
diurnal amplitude (Fig. 9a,b). We also calculated additional error metrics for ET: bias and 583 
Pearson correlation (Fig. 9c,d). This analysis was performed only over the model-data fusion 584 
year (2007). If we considered the entire 13-year evaluation period, it would be more likely that 585 
errors in one variable would “spill over” into other variables, leading to uncertainty over which 586 
variable is the root cause of inaccuracy. 587 

The 1 AM/PM scenario was by far the least accurate at retrieving pre-dawn leaf water 588 
potential (Fig. 9a). This failure was presumably due to lack of observations during the predawn 589 
period when the soil and vegetation are closest to hydraulic equilibrium. The 1 AM/PM scenario 590 
thus could not constrain root-zone dynamics, and retrieved an inaccurately deep rooting depth 591 
(smaller αroot), with considerably greater error than in the other scenarios (Fig. 6). Due to this 592 
failure, the 1 AM/PM scenario predicted significantly higher ET than the true model (Fig. 9c) 593 
and had the largest RMSE in column-averaged soil moisture among the four scenarios (Fig. 7b). 594 

 By contrast, the 6 AM/PM scenario did especially poorly at capturing the diurnal 595 
amplitude of leaf water potential (Fig. 9c). (Here, diurnal amplitude was calculated as the 596 
difference of the 5 AM value minus the 2 PM value, where we assume based on an average 597 
diurnal cycle that 5 AM is near the diurnal maximum and 2 PM is near the diurnal minimum.) 598 
This inaccuracy may be explained by the fact that the 6 AM/PM scenario did not contain 599 
observations during the midday peak of water stress. The 6 AM/PM scenario also had the lowest 600 
Pearson correlation with the “true” ET, indicating that the 6 AM/PM retrieval did not model the 601 
temporal dynamics of ET correctly. This failure may be due to inaccurate representation of water 602 
stress and stomatal closure, resulting from the lack of observations during water-stressed hours. 603 
The P63β parameter (which regulates under what conditions water stress occurs) was less tightly 604 
constrained in the 6 AM/PM retrieval than in other retrievals (Fig. 6). The 6 AM/PM scenario’s 605 
inaccuracy in predicting GPP (Fig. 7d) may also be related to its lack of observations of the 606 
midday period when GPP is highest within a day. 607 

 Combining 1 AM/PM observations and 6 AM/PM observations remedied the 608 
above issues with both individual observational scenarios. The 1+6 scenario predicted ET, GPP, 609 
and soil moisture significantly more accurately than in either twice-daily scenario alone (Fig. 7b-610 
d, 8b-d, and 9c-d). This finding is not surprising, given that the 1+6 scenario is based on more 611 
observations. Our more important finding is that the 1+6 scenario has similar accuracy to the 612 
HOURLY scenario. 613 

4 Discussion and Conclusions 614 

4.1 Prospects for constraining plant water stress response from remote sensing 615 

The observing scenarios analogous to a sun-synchronous orbit, with two observations per 616 
day every three days, provide a significantly worse constraint on modeled states and fluxes 617 
relative to the “geostationary” or “HOURLY” scenario. As discussed in Sect. 3.3, the two twice-618 
daily scenarios perform poorly for different reasons related to their specific overpass times. 619 
However, combining observations from both of the sun-synchronous orbits (6 AM/PM and 1 620 
AM/PM) constrained the model fluxes with similar accuracy to the HOURLY scenario. It 621 
appears that, at least in our case study, the complete diurnal time series of ψl can be inferred with 622 
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reasonable accuracy from snapshots of brightness temperature at four adequately-spaced times of 623 
day, but not from just two times of day. Consistent with these variations, the vegetation 624 
capacitance was well constrained in the HOURLY and 1+6 scenarios, but not in the 1AM/PM 625 
and 6AM/PM. Capacitance affects the shape of the VWC diurnal cycle (for example, how 626 
quickly the xylem refills at night), which may explain why more frequent sub-daily observations 627 
improve capacitance constraints. By contrast, the plant-hydraulic model data fusion study of Liu 628 
et al. (2021) found only limited ability to constrain vegetation capacitance with sun-synchronous 629 
observations from AMSR-2 alone. 630 

In our study, model-data-fusion enhances modeled root-zone soil moisture accuracy, 631 
providing support for the idea that remote sensing of VWC could provide increased 632 
understanding of root-zone soil conditions. When sampling from the prior parameter 633 
distributions without any data constraints, the median RMSE of column-averaged soil moisture 634 
is 0.093 m3/m3 (not shown). The corresponding value even for the worst-performing model-data-635 
fusion scenario (1 AM/PM) is 0.034 m3/m3 – a 2.7x decrease in error. This improvement occurs 636 
even though the soil parameters were less tightly constrained relative to their priors than the 637 
plant hydraulic parameters (Fig. 5). In the future, additional simulation experiments could be 638 
performed to distinguish how much of this improvement is due to brightness temperatures’ 639 
sensitivity to surface soil moisture or to vegetation water content. 640 

4.2 Retrieval accuracy is on par with that of other land surface data assimilation efforts 641 

To put the results of our OSSE in a broader context, we can compare the errors in model 642 
states and fluxes we found here with error metrics in other studies where remote sensing or site-643 
level data was used to constrain a land surface model. It should be expected that our study will 644 
have lower errors than comparisons with observational data, since the only sources of differences 645 
between “true” and retrieved data in our study are the noise in brightness temperatures and the 646 
intentionally incorrect stomatal conductance scheme. Assimilation studies using observational 647 
data contain additional model structural errors, inaccuracies in the forcing data such as 648 
precipitation and radiation, and potentially scaling errors between remotely sensed data and in-649 
situ data. However, the comparison can at least provide a qualitative perspective on how much 650 
error is due to observational noise (the primary source of error simulated here) relative to other 651 
sources or inaccuracy. Here, we compare error metrics for two variables in our study with two 652 
observational data assimilation studies: Reichle et al. (2017) for root-zone soil moisture and 653 
Wang et al. (2021) for ET.  654 

Reichle et al. (2017) compared the SMAP L4 root zone soil moisture product with in-situ 655 
measurements in the United States. The SMAP L4 product is derived by assimilating SMAP 656 
brightness temperatures into the Catchment land surface model using an ensemble Kalman filter 657 
instead of the Bayesian model-data-fusion method used here. For root zone moisture, that study 658 
found unbiased RMSE (ubRMSE, found by removing additive bias before calculating RMSE) 659 
values of approximately 0.025 to 0.03 m3/m3 and correlations (R) of 0.7 to 0.85. In our study, 660 
column-averaged soil moisture ubRMSE ranged between 0.015 and 0.028 m3/m3 for the four 661 
observing scenarios and R ranged between 0.91 and 0.97. (These metrics are calculated at a 3-662 
hour time resolution to match the SMAP L4 study). The approximate similarity in soil moisture 663 
error ubRMSE between our study and the SMAP L4 product provides some confidence that our 664 
study realistically represents data assimilation of passive microwave remote sensing of soil 665 
moisture. Our substantially higher R values are probably a result of our experiment using the 666 
same forcing data for the “true” model and retrievals. 667 
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Wang et al. (2021) calibrated the CliMA model (without the modifications discussed in 668 
Sect. 2.2) to match measured ET and net ecosystem exchange (NEE) at the MOFLUX site. Their 669 
best-performing model setup had a mean absolute standardized error (MASE) of 29% for half-670 
hourly ET during the growing season. MASE is calculated by dividing mean absolute error by 671 
the standard deviation of the observed or “true” data. In our study, the median growing-season 672 
MASE of hourly ET for each of the five observation scenarios relative to the “true model” 673 
ranged from 15% to 25% across scenarios. The similarity in MASE between our simulation 674 
study and Wang et al.’s real-data comparison builds additional confidence that our simulations 675 
remain close to what might be expected in a true observational scenario, despite the various 676 
idealizing assumptions.  677 

4.3 Limitations of this study  678 

Several assumptions and simplifications in our methodology should be acknowledged. 679 
First, our entire study is based on one site and one set of “true” parameters. A follow-up study 680 
could extend our approach to multiple sites with different plant functional types and climatic 681 
conditions, and/or include multiple values of prescribed “true” parameters to retrieve. Second, 682 
we only tested one assumption about which plant components contribute to VOD (leaves, but not 683 
branches or stems). The relative contributions of different plant components to VOD may differ 684 
by wavelength and by plant type (Ferrazzoli & Guerriero, 1996). Additionally, since VOD 685 
measures total canopy water, it be affected by water on the surface of leaves (canopy interception 686 
and dew), which is not currently considered in the CliMA model. Studies that have examined the 687 
effect of this canopy surface water on microwave remote sensing observables have variously 688 
found large effects (Khabbazan et al., 2022; X. Xu et al., 2021), small and potentially 689 
negligeable effects (Hornbuckle et al., 2007), or no measurable effect (Escorihuela et al., 2009; 690 
Holtzman et al., 2021). Whether canopy surface water can be ignored while studying VOD 691 
presumably depends on local conditions including leaf area and canopy structure (smaller leaves 692 
would intercept less water), and how often meteorological conditions favorable for dew occur. 693 

We did not explore the full possible spectrum of complexity in the radiative transfer 694 
model. First, we assumed a particular and relatively simple relationship between leaf water 695 
potential, VWC, and VOD. More physically detailed parametrizations of the VWC-VOD 696 
relationship have recently been proposed (Fink et al., 2018; Humphrey & Frankenberg, 2022), as 697 
well as alternative empirical models to Eqn. 1 (Forkel et al., 2023). Second, we treated the VOD 698 
model coefficients (a, b, and c) and the scattering albedo ω as constant over time. However, in 699 
many ecosystems the scattering albedo van vary significantly over time with seasonal and 700 
interannual changes in vegetation structure (Baur et al., 2021; Konings et al., 2016; H. Wang et 701 
al., 2023). Third, we treated the effect of soil roughness on brightness temperature at our site as 702 
known a priori, when it varies spatially. Pixel-wise tuning of the roughness parametrization has 703 
been shown to reduce radiative transfer model biases in the context of passive microwave data 704 
assimilation (Lievens et al., 2015). A more realistic treatment of the roughness parametrization 705 
would also vary in time, since the roughness parametrization implicitly accounts for leaf litter, 706 
which interacts differently with microwaves when the litter is wet (after rainfall) from when it is 707 
dry (Kurum et al., 2012; Wigneron et al., 2017). Finally, the tau-omega radiative transfer model 708 
we used does not account for multiple scattering by vegetation, which can lead to errors when 709 
used in very dense forests where more complicated radiative transfer models are more 710 
appropriate (Ambadan et al., 2022; Feldman, Akbar, et al., 2018) 711 
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Another simplification we made was our assumption of perfect knowledge of soil and 712 
canopy temperatures throughout the day (these physical temperatures are used in relating VOD 713 
and surface soil moisture to microwave brightness temperatures). Future versions of the CliMA 714 
model will have prognostic soil and canopy temperatures, which would allow brightness 715 
temperature to be used as a constraint without requiring external soil/canopy temperature data, as 716 
is done in other land surface models (Han et al., 2014; Reichle et al., 2017). One challenge with 717 
this approach is that the difference between air and canopy temperatures is highly variable by 718 
time of day and vegetation type (Javadian et al., 2022; Still et al., 2022).  719 

Remotely sensed land surface temperature itself is available at high temporal resolution 720 
from geostationary satellites such as GOES and the Spinning Enhanced Visible and Infrared 721 
Imager (SEVIRI) (Sun & Pinker, 2003; Y. Yu et al., 2012). The combination of LST and 722 
microwave brightness temperature can be used to jointly constrain a land surface model (Lu et 723 
al., 2017). It is possible that some of the benefit of frequent microwave observations found in our 724 
study could also be realized from combining twice-daily microwave data with hourly LST. 725 
Simultaneously assimilating additional forms of remote sensing data might also be useful, such 726 
as solar induced fluorescence (SIF) which is linked to photosynthesis and thus GPP (Norton et 727 
al., 2019).  728 

4.4 Implications for satellite missions 729 

Our findings are encouraging for efforts to estimate ecosystem carbon and water fluxes 730 
and plant hydraulic traits by fusing existing satellite data with plant hydraulics-enabled land 731 
surface models (with the caveat that vegetation trait values retrieved from model-data fusion are 732 
specific to the land surface model used). Based on the good performance of the four-times-daily 733 
scenario, combining data from multiple microwave satellites, with overpass times covering both 734 
pre-dawn and mid-day, should be beneficial to model-data-fusion efforts. This finding has 735 
implications for planning future satellite missions. It may also be possible to realize the benefits 736 
of such an approach by combining datasets from multiple currently operating missions. 737 
However, in that case there are additional challenges. Post-processing and careful uncertainty 738 
analysis would be required to co-locate the data from sensors with different spatial resolutions 739 
onto a common grid. Also, sensors operating in different wavelengths typically have differing 740 
effective penetration depths through the canopy, so the effect of vegetation water content on 741 
VOD differs by sensor, necessitating a separate observation operator for each sensor in the 742 
model-data-fusion process. These factors were not considered in our study, where we assumed 743 
the 6 AM/PM and 1 AM/PM overpasses interacted with the vegetation in identical ways. 744 
Nevertheless, if between-sensor differences can be accounted for, using data from both SMAP 745 
and AMSR2 as a constraint, for example, should provide a significant boost in trait accuracy and 746 
modeled fluxes compared to only using observations from one microwave sensor. 747 
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