Transformation of Precursor Iron(III) Minerals in Diagenetic Fluids: Potential Origin of Gray Hematite at Vera Rubin Ridge

Abigail L. Knight¹, Kaushik Mitra², and Jeffrey G. Catalano³

¹Washington University in St. Louis ²Stony Brook University ³Washington University in Saint Louis

June 8, 2023

Abstract

Coarse-grained (> 3-5 μ m) gray hematite particles occur at Vera Rubin ridge (VRR) within Gale crater, Mars. VRR has likely undergone multiple episodes of diagenesis, at least one of which resulted in the formation of gray hematite. The precursor mineralogy and nature of the diagenetic fluids that produced coarse-grained hematite remain unknown. Analog laboratory experiments were performed on a variety of iron(III) minerals to assess the potential fluid conditions and precursor mineralogy that form coarse-grained hematite. Gray hematite formed from the transformation of jarosite after 20 days at 200 °C. Conversion was complete in chloride-rich fluids but substantial jarosite remained in sulfate-rich fluids; no transformations of jarosite occurred when aged at 98 °C. All other precursor minerals (akageneite, ferrihydrite, goethite, and schwertmannite) did not transform or produced only red, fine-grained hematite under all conditions assessed. In addition, seeding precursor iron(III) phases with red hematite and coarsening pre-existing red hematite both failed to produce gray hematite. These results suggest that jarosite was the precursor of gray hematite at VRR and the diagenetic fluids were low in sulfate and potentially chloride-rich. Jarosite produces gray hematite because the acidic conditions it generates yield both a low degree of hematite supersaturation, producing few nuclei, and high dissolved iron concentrations, enabling rapid hematite growth. Gray hematite readily forms under oxic conditions and its occurrence at VRR is not a marker for a redox interface. The associated diagenetic event was thus unlikely to have generated substantial new chemical energy for life.

Transformation of Precursor Iron(III) Minerals in Diagenetic Fluids: 1 Potential Origin of Gray Hematite at Vera Rubin Ridge 2 3 A. L. Knight¹, K. Mitra¹[†], and J. G. Catalano^{1,2} 4 5 ¹Department of Earth and Planetary Sciences, Washington University, Saint Louis, Missouri 63130, USA. 6 ²McDonnell Center for the Space Sciences, Washington University, Saint Louis, Missouri 7 8 63130, USA. 9 10 Corresponding author: Abigail L. Knight (alknight@wustl.edu) [†]Present Address: Department of Geosciences, Stony Brook University, Stony Brook, New York 11 12 11794, USA. 13 14 **Key Points:** 15 Jarosite transforms to gray hematite at 200 °C in both sulfate- and chloride-rich fluids. • • Other iron(III) minerals (goethite, akaganeite, ferrihydrite, schwertmannite, and red 16 17 hematite) do not convert to gray hematite. 18 Jarosite may be a viable precursor mineral to the gray hematite found at Vera Rubin • 19 ridge, Gale crater, Mars.

21 Abstract

22 Coarse-grained (> $3-5 \mu m$) gray hematite particles occur at Vera Rubin ridge (VRR) 23 within Gale crater, Mars. VRR has likely undergone multiple episodes of diagenesis, at least one 24 of which resulted in the formation of gray hematite. The precursor mineralogy and nature of the 25 diagenetic fluids that produced coarse-grained hematite remain unknown. Analog laboratory 26 experiments were performed on a variety of iron(III) minerals to assess the potential fluid 27 conditions and precursor mineralogy that form coarse-grained hematite. Gray hematite formed 28 from the transformation of jarosite after 20 days at 200 °C. Conversion was complete in chloride-29 rich fluids but substantial jarosite remained in sulfate-rich fluids; no transformations of jarosite 30 occurred when aged at 98 °C. All other precursor minerals (akageneite, ferrihydrite, goethite, and 31 schwertmannite) did not transform or produced only red, fine-grained hematite under all 32 conditions assessed. In addition, seeding precursor iron(III) phases with red hematite and 33 coarsening pre-existing red hematite both failed to produce gray hematite. These results suggest 34 that jarosite was the precursor of gray hematite at VRR and the diagenetic fluids were low in 35 sulfate and potentially chloride-rich. Jarosite produces gray hematite because the acidic 36 conditions it generates yield both a low degree of hematite supersaturation, producing few 37 nuclei, and high dissolved iron concentrations, enabling rapid hematite growth. Gray hematite 38 readily forms under oxic conditions and its occurrence at VRR is not a marker for a redox 39 interface. The associated diagenetic event was thus unlikely to have generated substantial new 40 chemical energy for life.

42 Plain Language Summary

43 Hematite is often formed from other pre-existing iron-bearing minerals in water-rich 44 environments. Depending on its grain size, hematite can be either red (fine-grained) or gray 45 (coarse-grained) and these grain sizes likely indicate distinct past conditions. Gray hematite has 46 been observed at Vera Rubin ridge (VRR) in Gale crater, Mars but how it formed is currently 47 unknown. Laboratory experiments in this study demonstrate that jarosite, an iron- and sulfur-48 bearing mineral, converts to gray hematite in chloride-rich and sulfate-poor fluid conditions at 49 elevated temperatures. Other iron(III)-bearing minerals (akageneite, ferrihydrite, goethite, 50 schwertmannite, and fine-grained hematite) did not transform to gray hematite under any 51 experimental conditions studied. The gray hematite at VRR likely formed by conversion from 52 jarosite during alteration after the sediments in Gale crater had already formed. This event did 53 not require reducing conditions and thus did not provide any new chemical energy for life. 54

55 Key words

56 Hematite, Jarosite, Vera Rubin ridge, Diagenesis, Gale crater, Mars

58 **1 Introduction**

59 Vera Rubin ridge (VRR) is a topographically-distinct sedimentary unit exposed on the 60 northwestern slope of Aeolis Mons, the 5-km-tall central peak within Gale crater, Mars (Edgar et 61 al., 2020). Also known as "hematite ridge," VRR has been identified as a hematite (a-Fe₂O₃)-62 bearing unit based on the strong ferric absorptions (attributed to the presence of crystalline 63 hematite) throughout the ridge by both the Compact Reconnaissance Imaging Spectrometer for 64 Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) and the Mars Science 65 Laboratory (MSL) Curiosity rover (Fraeman et al., 2013; Fraeman et al., 2016; Fraeman, Johnson, 66 et al., 2020; Johnson et al., 2016). Notably, within VRR are two separate particle sizes of hematite, 67 each with distinct spectral characteristics (Fraeman, Johnson, et al., 2020; Horgan et al., 2020). 68 Fine-grained hematite, also called "pigmentary hematite," is distinctly red in color but transitions 69 to grav-colored, coarse-grained hematite at a particle size around 3-5 µm (Catling & Moore, 2003; Kerker et al., 1979; Lane et al., 2002; Morris et al., 2020). In addition to the widespread 70 71 occurrences within VRR (Horgan et al., 2020), gray hematite has also been observed on Earth, 72 such as in basaltic sediments at Maunakea volcano in Hawaii (Morris et al., 2020), Proterozoic 73 banded iron formations (BIFs) (Fallacaro & Calvin, 2006), and sandstone injectites (Jensen et al., 74 2018), as well as on Mars at Meridiani Planum, Aram Chaos, and Valles Marineris (Christensen 75 et al., 2001).

The formation of well-crystalline gray hematite rather than the more common fine-grained, red hematite in localized regions of VRR and other locations on Earth and Mars may be the result of distinct formation conditions that, in the case of VRR, are likely diagenetic (Bennett et al., 2021). VRR is composed of two hematite-bearing members of the Murray formation: the Pettegrove Point member and the Jura member (Edgar et al., 2020). Red hematite is found throughout both members, but gray hematite is primarily observed within the Jura member,

82 crosscutting the surrounding strata, which further supports its diagenetic origin (Horgan et al., 83 2020). VRR is primarily composed of thinly-laminated mudstones with distinctive diagenetic 84 sedimentary features, including nodules, Ca sulfate veins, crystal molds, and cross-cutting color 85 variations (Edgar et al., 2020) that are often associated with coarser-grained rock targets (Bennett et al., 2021). The mineralogy and geochemistry of VRR also provide further evidence for multiple 86 87 stages of diagenetic fluid events in the past (McAdam et al., 2020; Thomas et al., 2020). The 88 hydrogen content in samples from VRR is variable, which indicates rocks at Gale crater were 89 possibly exposed to other aqueous activity besides that associated with a paleolake (Thomas et al., 90 2020). Additionally, the highest hydrogen content was frequently associated with larger grain sizes 91 within VRR sediments which supports the argument for the formation of gray, coarse-grained 92 hematite from fluid interactions (Thomas et al., 2020).

93 Compared to the recessive strata below it, VRR is also particularly resistant to weathering 94 and maintains a distinct topographic profile, which may be the result of diagenesis (Edgar et al., 95 2020). Whether this increased resiliency of VRR mudstone units is due to cementation, 96 mineralogy, or coarser grain sizes is yet to be determined. Despite substantial evidence for several 97 past episodes of aqueous diagenesis in Gale crater (Edgar et al., 2020; Fraeman, Edgar, et al., 2020; 98 Frydenvang et al., 2017; Horgan et al., 2020; Stack et al., 2014; Thomson et al., 2011), the origin 99 and nature of the permeating fluids, as well as the precursor mineralogy, remain unclear. 100 Diagenetic fluid temperatures, acidities, salinities, and compositions are not well-constrained for 101 VRR. Identifying candidate minerals and the range of possible fluid conditions that generate gray 102 hematite provides insight into past diagenetic events and the potential for ancient habitable 103 conditions at Gale crater.

104 The purpose of this study is to investigate the transformation products of iron(III) minerals 105 subjected to simulated diagenetic fluid conditions and identify potential pathways to gray hematite. 106 Iron(III) minerals were aged in a variety of Mars-relevant fluids to assess the impact of variable 107 initial pH values, background salts, and temperatures on the reaction products formed. Mineralogy 108 and crystallinity of the solid transformation products were determined, including identification via 109 grain size-dependent spectral features in the visible wavelengths. This study provides a broad 110 assessment of potential precursors to well-crystalline hematite that are either directly observed on 111 Mars or expected to occur given its geologic history.

112 **2 Methods**

113 **2.1 Precursor mineral synthesis**

114 Akaganeite $(\beta$ -FeO_{1-x}(OH)_{1+x}Cl_x), ferrihydrite (~Fe₁₀O₁₄(OH)₂·nH₂O), goethite (α -115 FeOOH), ~60 nm red hematite, ~10 nm red hematite, schwertmannite (Fe₈O₈(OH)₈₋ 116 $_{x}(SO_{4})_{x} \cdot nH_{2}O$), and potassium jarosite (KFe₃(SO₄)₂(OH)₆) were synthesized according to standard 117 laboratory techniques (see supporting information for full details). It was necessary to produce 118 multiple batches for some experiments due to constraints on the mass of mineral produced in each 119 synthesis. Each synthesized mineral was washed, dried in a convection oven at ~40 °C (ferrihydrite 120 was dried in a desiccator instead of by heating because of its instability at elevated temperatures), 121 and ground to a powder in a mortar and pestle. The mineralogical purity of each synthesis product 122 was evaluated via powder X-ray diffraction (XRD).

123

124 **2.2 Simulated diagenesis experiments**

125 Laboratory experiments were performed to approximate potential conditions under which 126 precursor iron(III) minerals (akageneite, ferrihydrite, goethite, red hematite, jarosite, and

127 schwertmannite) may transform (or coarsen) diagenetically to gray, coarse-grained hematite in an 128 aqueous setting. For each initial mineral, ~1.6 to 2 g were suspended in ultrapure water and added 129 to a salt solution containing either magnesium chloride or magnesium sulfate to create a 20 mL 130 mineral suspension; chloride and sulfate salts have been observed throughout VRR via Sample 131 Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) analyses (Clark et al., 2020; 132 McAdam et al., 2020; Rampe et al., 2020). Total salt concentrations in final solutions were set to 133 1 mol L⁻¹. Additional experiments on goethite and ferrihydrite were conducted with small amounts 134 of ~60 nm hematite added to seed the transformations. A 1:9 molar ratio of hematite to goethite or 135 ferrihydrite was added, assuming chemical formulas of α -FeOOH and Fe₁₀O₁₄(OH)₂ for goethite 136 and ferrihydrite, respectively. Each 20 mL mineral suspension was adjusted to a pH value of either 137 3 or 7 via dropwise additions of 1 mol L⁻¹ hydrochloric acid and 1 mol L⁻¹ sodium hydroxide. Since 138 jarosite has the ability to generate substantial acidity through the release of H⁺ as it dissolves and 139 reacts quickly with added base, the solution pH was set before adding this mineral and the pH then 140 freely evolved during reaction. Additional jarosite experiments used 0.1 mol L⁻¹ salt concentrations 141 to investigate the impact of different anion concentrations. The resulting mineral suspensions were 142 heated in a digital convection oven for 20 days at 98 °C in polypropylene tubes sealed with PTFE 143 thread seal tape or 200 °C in PTFE-lined bombs (Parr Instrument Co.) to minimize fluid 144 vaporization; the 98°C experiments resulted in ~20-30% evaporative loss of the solution.

145

146 **2.3 Mineral and fluid characterization**

After aging for 20 days at elevated temperatures, the experiments were ended and the
sample products were cooled to room temperature. The resulting suspensions were passed through
0.22 μm mixed cellulose ester (MCE) filters via syringe filtration to isolate the fluids from the

solid product. The final pH values of the fluids were measured, and final dissolved iron (as well as potassium and sulfur for experiments involving jarosite) concentrations were determined via inductively-coupled plasma optical emission spectrometry (ICP-OES) using a Thermo iCap 7400 Duo instrument. Each fluid sample was measured 3 times, and the raw counts were averaged. The uncertainties in the slope and intercept of the calibration curves, obtained by linear regression, were propagated with the standard deviations of the measurements reported by the instrument to obtain concentration errors.

157 The solid products were washed with ultrapure water either via syringe filtration, vacuum 158 filtration, or centrifugation to remove residual salts, dried in a convection oven, and ground with 159 a mortar and pestle. The powdered mineral products were then analyzed via powder XRD and 160 visible to near infrared (VNIR) reflectance spectroscopy. VNIR spectroscopy was performed on 161 the solid transformation products using an Analytical Spectral Devices (ASDs) portable VNIR 162 spectroradiometer to identify key absorption features. The resulting spectra were splice-corrected 163 to reduce the offsets at ~1000 and ~1825 nm between each of the three built-in detectors. Powder 164 XRD was performed using a Bruker d8 Advance powder X-ray diffractometer, Cu X-ray source 165 (40 kV and 40 mA), step size of 0.02° per step, and counting time of 0.5 seconds per step for each 166 measurement. A LynxEye XE energy-dispersive strip detector was used for data collection. Each 167 of the 192 detector strips separately measures a given 2θ value for the stated counting time, giving 168 a total integration time per point of 96 s. Final mineral abundances and coherent scattering domain 169 sizes were determined using Profex to perform Rietveld refinement on the XRD patterns (Doebelin 170 & Kleeberg, 2015).

For samples with a coherent scattering domain (CSD) size greater than ~100 to 200 nm,
the peak width is determined by instrumental broadening rather than the actual domain size.

173 Therefore, select samples with large CSD sizes were imaged with a Thermofisher Quattro S 174 Scanning Electron Microscope (SEM) to examine both the morphology and particle size of the 175 solid products. CSD size indicates the size within an individual crystallite where atomic structure 176 is uniform and X-rays are scattered coherently, whereas particle size refers to the visual size of 177 discreet grains, which may be agglomerates of smaller crystals. When particles are single crystals 178 and not aggregates, the CSD size is equal to the particle size. The SEM images were analyzed 179 using ImageJ (Schneider et al., 2012) to measure individual particle sizes. The measured particle 180 sizes taken from the SEM images may be biased toward grains that are larger, intact, and 181 unobscured by other surrounding particles because they are more visible in an image.

182

183 **3 Results**

184 **3.1 Characterization of precursor minerals**

185 All synthesized precursor minerals were free of other phases and generally showed 186 consistent particle sizes among different batches (Table S1). The two batches of goethite used in 187 the single-mineral experiments resulted in multi-domainic acicular needles generally about 2 to 4 188 µm long and 0.1 to 0.4 µm wide (Table S1; Figures S1 and S2). The third batch of goethite, 189 synthesized for the two-mineral experiments, had a slightly smaller coherent domain size based on 190 refinement of its diffraction pattern (Table S1; Figure S3). Synthesized akaganeite (Figure S4) 191 resulted in a CSD size of 15 ± 1 nm based on refinement of its XRD pattern (Table S1; Figure S5). 192 Two batches of ferrihydrite were synthesized for the single-mineral and two-mineral experiments. 193 Both batches had two broad diffraction peaks (Figures S6 and S7), indicative of two-line 194 ferrihydrite, which typically consists of crystallites 2 to 3 nm in size (Janney et al., 2000; Michel 195 et al., 2007). Note that crystallite size cannot be determined using XRD patterns for particles 196 smaller ~10 nm because of the lack of long-range periodicity (Egami & Billinge, 2012). The initial 197 schwertmannite produced a diffraction pattern with broad peaks (Figure S8), consistent with a 198 particle size of < 10 nm. Two batches of red hematite with ~60 nm CSD sizes were synthesized, 199 one for the single-mineral experiments and one for the two-mineral experiments where goethite 200 and ferrihydrite were seeded with hematite (Table S1; Figure S9). A final batch of red hematite 201 with ~10 nm CSD size was synthesized for the single-mineral experiments to explore the impact 202 of the initial hematite particle size on the transformation products (Table S1; Figure S10). The 203 jarosite synthesized had an initial crystallite size of 89 ± 4 nm (Table S1).

204

205 **3.2 Transformation of individual precursor minerals**

206 3.2.1 Product mineralogy

207 The transformation products of experiments performed on individual precursor minerals 208 were identified via XRD. Hematite was the most common reaction product from the iron(III) 209 minerals assessed (Table 1). Diffraction patterns indicate that hematite (both ~ 10 nm and ~ 60 nm), 210 akaganeite, ferrihydrite, and schwertmannite fully converted to (or remained) crystalline hematite 211 in experiments performed at 200 °C (Figure 1; Table 1; Figures S5, S6, and S8-S10). However, 212 goethite and jarosite resulted in more variable reaction products (Tables 1 and 2; Figures 1 and 2; 213 see Figure S2 for all goethite patterns). Goethite transformed to red hematite at a higher 214 temperature under acidic conditions but resulted in a mixture of red hematite and goethite at pH 7 215 and 200 °C (Table 1; Figure 2; Figure S2). Experiments on jarosite at high temperatures (200 °C) yielded mixtures of hematite and jarosite in sulfate fluids and 0.1 mol L⁻¹ chloride fluids, while 216 complete transformation to crystalline hematite occurred in 1 mol L^{-1} chloride fluids (Table 2; 217 218 Figures 1 and 2). Diffraction patterns indicate that hematite (both ~10 nm and ~60 nm), akaganeite, 219 and ferrihydrite typically transformed completely to or remained crystalline hematite in 220 experiments performed at 98 °C (Table 1; see Figures S5, S6, S9, and S10 for all patterns). Goethite

- and jarosite did not show evidence of transformation at 98 °C (Tables 1 and 2; Figures 1 and 2),
- but schwertmannite completely converted to goethite at this temperature (Figure S8).

- Table 1. Final mineral abundances, crystallite sizes, and particle sizes of the solid products of experiments on the transformation of
- 225 akageneite, ferrihydrite (seeded and unseeded), goethite (seeded and unseeded), hematite (~10 nm and ~60 nm), and schwertmannite
- 226 in simulated diagenetic fluids.
- 227

Initial Mineral	Temperature (°C)	Salt	Initial pH	Final Mineral A	bundances (wt. %)	Crystallit	e Size (nm)	Particle Size (nm)
				Hematite	Akaganeite	Hematite	Akaganeite	Hematite
akaganeite	98	1 mol L ⁻¹ MgCl ₂	3	100	-	35 ± 1	-	-
			7	100	-	45 ± 2	-	-
		1 mol L ⁻¹ MgSO ₄	3	100	-	16.7 ± 0.5	-	-
			7	70 ± 2	30 ± 2	24 ± 1	3.6 ± 0.4	-
	200	1 mol L ⁻¹ MgCl ₂	3	100	-	66 ± 2	-	600 ± 200
			7	100	-	63 ± 2	-	-
		1 mol L ⁻¹ MgSO ₄	3	100	-	60 ± 2	-	-
			7	100	-	64 ± 2	-	-
				He	matite	Her	natite	
ferrihydrite	98	1 mol L ⁻¹ MgCl ₂	3		100	87	$t \pm 2$	-
			7		100	73	5 ± 2	-
		1 mol L ⁻¹ MgSO ₄	3		100	62	2 ± 2	-
			7		100	77	$t \pm 2$	-
	200	1 mol L ⁻¹ MgCl ₂	3		100	79	0 ± 3	90 ± 20
			7		100	72	2 ± 2	-
		1 mol L ⁻¹ MgSO4	3		100	65	5 ± 2	-
			7		100	57	' ± 1	-
				Hematite	Goethite	Hematite	Goethite	
goethite	98	1 mol L ⁻¹ MgCl ₂	3	-	100	-	47 ± 1	-
			7	-	100	-	46 ± 1	-
		1 mol L ⁻¹ MgSO4	3	-	100	-	47 ± 1	-
			7	-	100	-	48 ± 1	-
	200	1 mol L ⁻¹ MgCl ₂	3	100	-	240 ± 7	-	1000 ± 500
			7	1.9 ± 0.5	98.1 ± 0.5	68 ± 40	52 ± 1	-
		1 mol L ⁻¹ MgSO4	3	97.2 ± 0.5	2.8 ± 0.5	220 ± 7	60 ± 10	-
			7	43.7 ± 0.6	56.3 ± 0.6	206 ± 9	62 ± 2	-
				He	matite	Her	natite	
hematite (~10 nm)	98	1 mol L ⁻¹ MgCl ₂	3		100	22.5	5 ± 0.6	-
			7		100	22.7	2 ± 0.7	-
		1 mol L ⁻¹ MgSO4	3		100	20.1	± 0.5	-
			7		100	19.6	6 ± 0.5	-
	200	1 mol L-1 MgCl2	3		100	37	$t \pm 1$	50 ± 20

			7	10	00	32.8	± 0.9	-
		1 mol L ⁻¹ MgSO ₄	3	10	00	35	± 1	-
			7	10	00	34.6	± 1.0	-
				Hem	atite	Hen	natite	
hematite (~60 nm)	98	1 mol L ⁻¹ MgCl ₂	3	10	00	58	± 1	-
		Ū	7	10	00	57	± 1	-
		1 mol L ⁻¹ MgSO ₄	3	10	00	56	± 1	-
			7	10	00	55	± 1	-
	200	1 mol L ⁻¹ MgCl ₂	3	10	00	64	± 2	90 ± 20
			7	10	00	60	± 2	-
		1 mol L ⁻¹ MgSO ₄	3	10	00	64	± 2	-
			7	10	00	63	± 1	-
				Hematite	Goethite	Hematite	Goethite	
schwertmannite	98	1 mol L ⁻¹ MgCl ₂	3	-	100	-	13.1 ± 0.4	-
			7	-	100	-	13.5 ± 0.5	-
		1 mol L ⁻¹ MgSO ₄	3	-	100	-	14 ± 1	-
			7	-	100	-	14.7 ± 0.4	-
	200	1 mol L ⁻¹ MgCl ₂	3	100	-	133 ± 4	-	600 ± 200
			7	100	-	109 ± 4	-	-
		1 mol L ⁻¹ MgSO ₄	3	100	-	97 ± 4	-	-
			7	100	-	81 ± 5	-	-
				Hem	natite	Hen	natite	
	98	1 mol L ⁻¹ MgCl ₂	3	10	00	93	± 2	-
			7	10	00	68	± 2	-
		1 mol L ⁻¹ MgSO ₄	3	10	00	45	± 2	-
ferrihydrite			7	10	00	70	± 2	-
seeded with hematite	200	1 mol L ⁻¹ MgCl ₂	3	10	00	99	± 2	120 ± 30
			7	10	00	65	± 2	-
		1 mol L ⁻¹ MgSO ₄	3	10	00	83	± 2	-
			7	10	00	61	±1	-
				Hematite	Goethite	Hematite	Goethite	
	98	1 mol L ⁻¹ MgCl ₂	3	18.0 ± 0.9	82.0 ± 0.9	64 ± 6	37 ± 1	-
			7	15.5 ± 0.8	84.5 ± 0.8	64 ± 7	27.5 ± 0.7	-
		1 mol L ⁻¹ MgSO ₄	3	12 ± 1	88 ± 1	50 ± 10	26.4 ± 0.9	-
goethite			7	17.9 ± 0.7	82.1 ± 0.7	57 ± 5	32.2 ± 0.8	-
seeded with hematite	200	1 mol L ⁻¹ MgCl ₂	3	100	-	158 ± 4	-	240 ± 90
			7	15 ± 1	85 ± 1	58 ± 9	32 ± 1	-
		1 mol L ⁻¹ MgSO ₄	3	100	-	143 ± 4	-	-
			7	32.3 ± 0.8	67.7 ± 0.8	80 ± 4	35.7 ± 1.0	-

- Table 2. Final mineral abundances, crystallite sizes, and particle sizes of the solid products of experiments on the transformation of jarosite in simulated diagenetic fluids.
- 230

Initial Mineral	Temperature (°C)	Salt	Initial pH	pH Final Mineral Abundances (wt. %)		Crystallite Size (nm)		Particle Size (nm)
				Hematite	Jarosite	Hematite	Jarosite	Hematite
		0.1 mol L ⁻¹ MgCl ₂	3	-	100	-	163 ± 5	-
	08		7	-	100	-	148 ± 5	-
	20	0.1 mol L ⁻¹ MgSO ₄	3	-	100	-	128 ± 4	-
			7	-	100	-	119 ± 3	-
		0.1 mol L ⁻¹ MgCl ₂	3	67.1 ± 0.7	32.9 ± 0.7	128 ± 5	55 ± 3	6000 ± 1000
	200		7	64.4 ± 0.7	35.6 ± 0.7	150 ± 5	58 ± 3	-
	200	0.1 mol L ⁻¹ MgSO ₄	3	72.9 ± 0.7	27.1 ± 0.7	181 ± 7	67 ± 4	6000 ± 1000
jarosite			7	70.9 ± 0.6	29.1 ± 0.6	223 ± 9	92 ± 5	-
	98	1 mol L ⁻¹ MgCl ₂	3	-	100	-	220 ± 8	-
			7	-	100	-	210 ± 7	-
		1 mol L ⁻¹ MgSO ₄	3	-	100	-	106 ± 3	-
			7	-	100	-	104 ± 3	-
		1 mol L ⁻¹ MgCl ₂	3	100.00	-	290 ± 20	-	14000 ± 4000
	200		7	100.00	-	300 ± 10	-	-
	200		3	12.3 ± 0.5	87.8 ± 0.5	340 ± 50	210 ± 10	2000 ± 1000
		1 moi L ⁻¹ MgSO ₄	7	19 ± 1	81 ± 1	270 ± 60	120 ± 10	-

Figure 1. XRD patterns of (a) the red hematite transformation products of synthesized minerals subjected to pH 3, 1 mol L^{-1} MgCl₂ 200 °C fluid conditions for 20 days, (b) synthesized jarosite and its transformation products in various 1 mol L^{-1} fluid conditions, and (c) synthesized jarosite and its transformation products in various 0.1 mol L^{-1} fluid conditions. Cl and S indicate MgCl₂ and MgSO₄ background salts, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are indicated for each sample. Characteristic jarosite ("J") and hematite ("H") peaks are labeled. Patterns offset in intervals of 10000 and patterns from experiments on jarosite in 200 °C fluids with 0.1 mol L⁻¹ salt vertically exaggerated by a factor of 2 for clarity.

Figure 2. Final mineralogy (wt.%) of reaction products of jarosite and goethite experiments. Cl

and S indicate background salts of $MgCl_2$ and $MgSO_4$, respectively, in the transformation fluids.

245 Initial fluid pH value (pH 3 or pH 7) and experimental temperature (200 °C) are provided for

each sample.

247 **3.2.2 Fluid composition**

248 In general, experiments on akageneite, ferrihydrite, schwertmannite, ~10 nm red hematite, 249 and jarosite produced substantial (> 1 pH unit) decreases in pH value (Table 3; Table S2). The 250 final pH values of ~60 nm hematite and goethite fluids remained relatively unchanged from the 251 initial value in comparison. Across all experiments, final pH values tended to be higher for sulfate-252 rich samples and lower for chloride-rich samples (Table 3; Table S2). We attribute the decrease in 253 pH to fluid evaporation and grain coarsening. The latter process decreases total surface area in the 254 system, releasing H⁺ as anions desorb and surface sites are overgrown. Schwertmannite, 255 akaganeite, and jarosite also generate H⁺ as they transform to hematite.

256 Jarosite experiments displayed final dissolved concentrations of iron, potassium, and sulfur 257 that were non-stoichiometric with respect to the chemical formula of potassium jarosite (Table 3). 258 Jarosite partially dissolved when aged at 98 °C (Table 3) but no new phases were precipitated 259 (Table 2; Figures 1 and 2). The final fluid compositions in these samples are therefore only 260 controlled by the dissolution of jarosite. In the samples where jarosite was the sole mineral phase 261 present at the end of the experiment, iron was substantially depleted in the final fluid composition 262 relative to both sulfur and potassium, while potassium was enriched slightly relative to sulfur. In 263 addition, elevated chloride concentrations increased the ratio of iron to sulfur and decreased the 264 ratio of iron to potassium in the final fluid (Table 3).

Temperature (°C)	Salt	Initial nH	Final nH	Fe (mmol/kg)	K (mmol/kg)	S (mmol/kg)	K·S	K·Fe
Temperature (C)	Balt	3	1.46	0.338 ± 0.004	52.6 ± 0.6	66 ± 3	0.70 ± 0.04	156 + 3
98	0.1 mol L ⁻¹ MgCl ₂	5	1.40	0.338 ± 0.004	52.0 ± 0.0	00 ± 3	0.79 ± 0.04	150 ± 5
	0 -	/	1.48	0.36 ± 0.004	60.1 ± 0.4	12 ± 3	0.84 ± 0.04	$16/\pm 2$
	0.1 mol L ⁻¹ MgSO ₄	3	1.75	0.109 ± 0.002	35.7 ± 0.6	-	-	326 ± 9
		7	1.47	0.095 ± 0.002	39.4 ± 0.4	-	-	415 ± 10
200		3	1.12	2.2 ± 0.04	147.9 ± 0.8	260 ± 4	0.568 ± 0.008	67 ± 1
	$0.1 \text{ mol } L^{-1} \text{ MgCl}_2$	7	1.11	2.2 ± 0.04	176.3 ± 0.9	275 ± 5	0.64 ± 0.01	80 ± 1
200	0.1 mol L ⁻¹ MgSO ₄	3	0.78	0.71 ± 0.03	136 ± 1	-	-	193 ± 10
		7	0.72	0.96 ± 0.03	185.5 ± 0.9	-	-	194 ± 7
98	1 mol L ⁻¹ MgCl ₂	3	0.84	11.97 ± 0.09	66.3 ± 0.4	93 ± 3	0.71 ± 0.02	5.54 ± 0.06
		7	0.90	12.4 ± 0.1	58.3 ± 0.4	91 ± 3	0.64 ± 0.02	4.70 ± 0.05
	1 mol L ⁻¹ MgSO ₄	3	1.87	0.232 ± 0.003	38.3 ± 0.4	-	-	165 ± 3
		7	1.55	0.109 ± 0.002	39 ± 0.4	-	-	359 ± 8
		3	0.52	60.9 ± 0.6	213 ± 2	353 ± 4	0.603 ± 0.008	3.50 ± 0.04
200	I mol L^{-1} MgCl ₂	7	0.43	75 ± 2	180 ± 1	393 ± 4	0.459 ± 0.006	2.40 ± 0.08
200	1 mol L ⁻¹ MgSO ₄	3	1.01	0.203 ± 0.003	83.2 ± 0.8	-	-	410 ± 7
		7	0.89	0.314 ± 0.004	133 ± 1	-	-	423 ± 6

270 **3.2.3 Particle and crystallite sizes**

271 Generally, high temperature (200 °C), chloride-rich, acidic conditions produced the largest 272 final CSD sizes of hematite for most minerals. Refinement of diffraction patterns for the hematite 273 reaction products of ~10 nm red hematite, ~60 nm red hematite, akaganeite, ferrihydrite, and 274 schwertmannite resulted in CSD sizes generally less than 150 nm (Table 1), indicative of red 275 hematite. Initial hematite with a smaller, ~10 nm initial CSD size experienced a greater relative 276 increase in size compared to larger, ~60 nm initial hematite but its final particle size was still 277 smaller than that of the ~60 nm hematite. The XRD-derived CSD sizes of the hematite produced 278 from precursor akageneite were < 70 nm; however, SEM images show 0.6 \pm 0.2 μ m particles, 279 suggesting that these particles were aggregates of multiple individual crystals (Figures 3 and 4).

280 In contrast, goethite and jarosite generally resulted in more crystalline hematite reaction 281 products with crystallite sizes that exceeded the upper limit of quantification from XRD patterns 282 (Tables 1 and 2). SEM images revealed that goethite in acidic, high temperature (200 °C) fluids 283 converted to hematite with a particle size of $\sim 1 \,\mu m$ (Figures 3 and 4). SEM images of the hematite 284 produced from jarosite show that in chloride-rich, 200 °C fluids, hematite ranged in length from 285 ~5-20 μ m (Figures 4 and 5). In fluids with lower (0.1 mol L⁻¹) chloride concentrations and fluids 286 with sulfate, the hematite product of jarosite was smaller ($< 10 \,\mu m$) but still notably coarse (Figures 287 4 and 5). The morphology of the hematite product varied with grain size (Figures 3 and 5; Figure 288 S11). Small (~1 µm) particles were rhombohedral, while larger (~14 µm long) particles were 289 elongated and somewhat "spindle-shaped," with distinct crystal faces.

Figure 3. SEM images of the red hematite transformation products of synthesized minerals subjected to 1 mol L⁻¹ MgCl₂, pH 3, 200 °C fluids for 20 days. Initial mineralogy: (a) akageneite, (b) schwertmannite, (c) hematite batch 3 (~10 nm), (d) hematite batch 1 (~60 nm), (e) ferrihydrite batch 1, (f) ferrihydrite batch 2 seeded with hematite batch 2, (g) goethite batch 2, (h) goethite batch 3 seeded with hematite batch 2.

- of (a) akageneite, (b) schwertmannite, (c) hematite batch 3 (~10 nm), (d) hematite batch 1 (~60
- nm), (e) ferrihydrite batch 1, (f) ferrihydrite batch 2 seeded with hematite batch 2, (g) goethite
- batch 2, and (h) goethite batch 3 seeded with hematite batch 2 subjected to pH 3, 1 mol L^{-1}
- 301 MgCl₂, 200 °C fluids for 20 days. Measured final particle sizes of the hematite transformation
- 302 products of jarosite subjected to (i) 0.1 mol L⁻¹ MgCl₂ and (j) 1 mol L⁻¹ MgCl₂ fluids set to pH 3
- 303 and heated to 200 °C for 20 days.

Figure 5. SEM images of the transformation products of jarosite subjected to various 200 °C

307 fluids for 20 days. Fluid characteristics: (a) pH 3, 0.1 mol L^{-1} MgCl₂ (b) pH 7, 0.1 mol L^{-1} MgCl₂,

- $308 \qquad (c) \ pH \ 3, \ 0.1 \ mol \ L^{-1} \ MgSO_4, \ (d) \ pH \ 7, \ 0.1 \ mol \ L^{-1} \ MgSO_4, \ (e) \ pH \ 3, \ 1 \ mol \ L^{-1} \ MgCl_2, \ (f) \ pH \ 7, \ (f) \ ($
- $309 \quad 1 \text{ mol } L^{-1} \text{ MgCl}_2, \text{ (g) pH 3, 1 mol } L^{-1} \text{ MgSO}_4, \text{ (h) pH 7, 1 mol } L^{-1} \text{ MgSO}_4.$

310 **3.2.4 Reflectance spectroscopy**

311 Hematite and other iron (oxyhydr)oxides are identifiable via visible to near-infrared 312 (VNIR) reflectance spectroscopy due to four electronic absorption features occurring between 400 313 and 1000 nm (Sherman, 1985). These electronic absorptions are visible when the iron 314 (oxyhydr)oxide is both crystalline and maintains a small enough particle size that it retains a strong 315 positive reflectance slope in the red portion of the visible spectrum (Lane et al., 2002). 316 Distinguishing between different iron (oxyhydr)oxides can be challenging because the key 317 absorption features often overlap (Catling & Moore, 2003; Morris et al., 2000). However, red, 318 fine-grained hematite and gray, coarse-grained hematite can be distinguished easily from each 319 other and from other iron (oxyhydr)oxides. Fine-grained hematite has a strong 860 nm absorption 320 feature similar to other ferric minerals but exhibits a sharper inflection at 535 nm (Fraeman, 321 Johnson, et al., 2020; Lane et al., 2002; Morris et al., 2000; Sherman & Waite, 1985). Coarse-322 grained hematite has strong absorption at all visible wavelengths, eliminating the 535 nm inflection 323 and 860 nm ferric absorption edge from its visible spectrum and producing a "flat" or neutral 324 reflectance spectrum at all visible wavelengths (Lane et al., 2002; Morris et al., 2020).

325 Transformation products of most minerals exhibited the 860 nm electronic absorption feature as well as the spectral inflection at 535 nm characteristic of red crystalline hematite with 326 327 VNIR spectroscopy (Figure 6; Figures S12-S18). The large grain size of the hematite particles 328 produced from interaction of jarosite with chloride-rich, 200 °C fluids is supported by the VNIR 329 spectra (Figure 6; Figures S19 and S20). These spectra exhibit decreased reflectance in the red 330 portion of the visible spectrum, causing them to be more spectrally neutral, a characteristic of gray 331 hematite. Reaction products that contain mixtures of hematite and jarosite (e.g., sulfate-rich 332 samples) exhibit jarosite absorption features at ~435 nm and have "flatter" slopes and less

- 333 reflectance in the visible portion of the spectrum compared to that of pure jarosite (Figure 6;
- 334 Figures S19 and S20).

Figure 6. VNIR reflectance spectra of (a) red hematite transformation products of synthesized minerals subjected to pH 3, 1 mol L⁻¹
MgCl₂, 200 °C fluid conditions for 20 days, (b) synthesized jarosite and its transformation products in various 1 mol L⁻¹ fluid
conditions and (c) synthesized jarosite and its transformation products in various 0.1 mol L⁻¹ fluid conditions. Cl and S indicate
background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and
experimental temperature (98 °C or 200 °C) are provided for each sample. Spectra offset for clarity as indicated.

3.3 Effect of hematite seeds on precursor mineral transformations

344	Additional experiments involving goethite or ferrihydrite seeded with hematite produced
345	similar results as the experiments which investigated goethite or ferrihydrite alone. Complete
346	conversion of the goethite mineral mixture to hematite resulted from high temperature, acidic
347	conditions (Figure 1; Figure S3), whereas ferrihydrite seeded with hematite completely converted
348	to hematite in all conditions (Figure 1; Figure S7). Final hematite particle sizes for all experiments
349	seeded with hematite were substantially smaller than the 3 to 5 μ m minimum size of gray hematite
350	(Table 1; Figures 3 and 4; Figures S3 and S7) and produced spectra consistent with red hematite
351	(Figures S21 and S22).
352	
353	4 Discussion
354	4.1 Impacts of precursor mineralogy on hematite transformation products
355	4.1.1 Jarosite
356	Jarosite was the only initial mineral to yield gray, crystalline hematite in the transformation
357	products of any experimental conditions. Prior studies (e.g., Golden et al. (2008)) have produced
358	μ m-scale rounded hematite particles from hydronium jarosite, which further emphasizes that
359	crystalline hematite can be formed from jarosite. Similar to all other initial minerals, experiments
360	
	on jarosite in chloride-rich, high temperature (200 °C), acidic fluid conditions generally resulted
361	on jarosite in chloride-rich, high temperature (200 °C), acidic fluid conditions generally resulted in the largest average hematite grain size post-transformation. The detection of tridymite at Gale
361 362	on jarosite in chloride-rich, high temperature (200 °C), acidic fluid conditions generally resulted in the largest average hematite grain size post-transformation. The detection of tridymite at Gale crater implies the past existence of hydrothermal fluids in the crater (Yen et al., 2021), which
361362363	on jarosite in chloride-rich, high temperature (200 °C), acidic fluid conditions generally resulted in the largest average hematite grain size post-transformation. The detection of tridymite at Gale crater implies the past existence of hydrothermal fluids in the crater (Yen et al., 2021), which would have promoted the formation of larger hematite. Jarosite proved to be more stable in sulfate-

365 stability of jarosite in sulfate solutions resulted in only partial transformation to hematite in most higher temperature (200 °C) experiments for both 1 mol L^{-1} and 0.1 mol L^{-1} sulfate concentrations. 366 367 Diffraction patterns of the final solid products of experiments on jarosite at 98 °C indicated 368 that no secondary iron-bearing phases precipitated, yet final dissolved Fe, K, and S concentrations 369 measured in the fluids were non-stoichiometric. The Fe:K and Fe:S molar ratios were several 370 orders of magnitude lower than stoichiometric ratios based on the chemical formula of jarosite, 371 similar to observations made by Welch et al. (2008). This suggests that jarosite dissolution 372 involved preferential removal of potassium and sulfate over iron, similar to observations of non-373 stoichiometric jarosite dissolution via laboratory experiments and computational modeling 374 (Becker & Gasharova, 2001; Smith et al., 2006). Smith et al. (2006) observed a goethite residue 375 on the surface of jarosite grains after removal of surface K^+ and SO_4^{2-} , but no crystalline secondary 376 iron phases were observed via XRD or VNIR analyses and nanocrystalline or amorphous iron 377 minerals, like ferrihydrite, are unstable at the temperatures of our experiments (Cornell & 378 Schwertmann, 2003). However, the positions of many of the jarosite XRD peaks in the 98 °C and 379 200 °C (Figure 1; Figures S23 and S24) were shifted to different angles compared to the peak 380 positions produced by the initial synthesized jarosite. These shifts better align with the expected 381 diffraction pattern for potassium jarosite and is inconsistent with partial incorporation of H_3O^+ 382 (Basciano & Peterson, 2007; Basciano & Peterson, 2008). Jarosites often contain iron vacancies, 383 leading to an excess of potassium and sulfate in the structure (Scarlett et al., 2010). Heating may have promoted recrystallization that annealed these vacancies, releasing excess K⁺ and SO₄²⁻ to 384

385 solution.

387 4.1.2 Coarsening of fine-grained, red hematite

388 The coarsening of finer-grained hematite was minor and did not result in gray hematite. 389 The ~ 10 nm hematite resulted in a greater relative increase in particle size compared to ~ 60 nm 390 hematite, which remained largely unchanged in size after 20 days. The increased solubility of 391 smaller particles due to their greater surface area may favor more rapid dissolution and subsequent 392 crystal growth compared to an initially well-crystalline mineral. However, little to no grain size 393 increase was observed for red hematite, regardless of initial crystallite size, suggesting that the 394 coarsening of fine-grained iron oxides alone may not be a viable pathway to gray hematite 395 formation. Minor observed increases in particle size were likely achieved through Ostwald 396 ripening, in which smaller particles are dissolved and reprecipitated as growth onto larger particles 397 (Ostwald, 1897; Steefel & Van Cappellen, 1990). Given unrestricted time in an aqueous 398 environment, finer-grained hematite may eventually coarsen substantially. However, on Mars the 399 duration of aqueous alteration is restricted temporally due to the persistence of diagenetically-400 juvenile deposits, such as opaline silica and smectites, on the surface (Tosca & Knoll, 2009).

401

402 **4.1.3 Ferrihydrite and goethite**

Ferrihydrite subjected to the same fluid conditions as ~10 nm hematite produced larger grain sizes across all comparable samples despite having a smaller starting crystallite size. The transformation from ferrihydrite to hematite proceeds through the aggregation of smaller particles of ferrihydrite that crystallize to hematite, potentially via a mechanism such as oriented attachment (Freitas et al., 2015; Schwertmann et al., 1999; Soltis et al., 2016; Wang et al., 2022; Zhu & De Yoreo, 2022). Such aggregation-based growth provides a mechanism through which conversion from ferrihydrite generates larger final particles than coarsening of existing ~10 nm hematite. This 410 further highlights the ineffectiveness of Ostwald ripening for generating gray hematite from pre-411 existing fine-grained hematite.

412 In contrast to the complete conversion of ferrihydrite to hematite, goethite-to-hematite 413 transformation rates were exceedingly slow at 98 °C, with no hematite formed after 20 days of 414 aging at this temperature. For experiments conducted at 200 °C, the initial pH of the system 415 dictated the degree of transformation. Acidic systems yield total or near-total transformation of 416 goethite to hematite while 56 to 98% of the goethite remained after aging at pH 7. The relationship between stability at elevated temperature and pH aligns with previous observations (Das et al., 417 418 2011; Schwertmann & Carlson, 2005; Smith & Kidd, 1949). Goethite generally produced 419 relatively large (0.2 to 1 μ m) particles (Figure 3; Figure S1), but still red hematite except at 420 circumneutral sulfate-rich fluids where little transformation occurred. Consistent with previous 421 observations (Davidson et al., 2008; De Grave et al., 1999; González et al., 2000; Lin et al., 2014), 422 hematite did not retain the acicular form of the precursor goethite. Notably, the bipyramidal 423 morphology of the hematite products (Figure 3; Figure S1) matches that of the hematite formed 424 via epitaxial growth on goethite in hydrothermal systems (Lin et al., 2014), suggesting a 425 dissolution and reprecipitation transformation mechanism.

Additional experiments investigating the effects of seeding goethite and ferrihydrite with red, fine-grained hematite to remove possible nucleation barriers resulted in no substantial changes to the transformation products. Seeding also did not affect the final particle sizes of the transformation products. The nucleation rate of hematite therefore does seem to impose a limit on these transformation processes. Particularly with respect to goethite, the inhibition of transformation to hematite under neutral pH conditions at high temperature and all low temperature conditions is not due to a nucleation barrier.

434 **4.1.4 Akaganeite and schwertmannite**

435 Unlike jarosite, akaganeite and schwertmannite showed no impact from the common ion 436 effect on their transformations despite containing background salt anions. Akaganeite has been 437 observed to transform to hematite via dissolution and reprecipitation (Bailey et al., 1993; Cornell 438 & Giovanoli, 1990; Goñi-Elizalde et al., 1987; Peterson et al., 2018). The hematite products in this 439 study do not reflect the rod-like morphology of the precursor akageneite and instead appear similar 440 to akageneite transformation products analyzed by Bailey et al. (1993) that formed via dissolution 441 and reprecipitation. This suggests that akageneite in this study transformed to red hematite through 442 a similar mechanism.

443 Schwertmannite displayed a temperature-dependence in is transformation products, 444 forming goethite at 98 °C but red hematite at 200 °C. This is consistent with observations made in 445 prior studies (Barham, 1997; Davidson et al., 2008). These transformations may occur via a 446 ferrihydrite precursor (Davidson et al., 2008), although this cannot be evaluated by our data since 447 no ferrihydrite was detected in the final aging products. Hematite particle sizes (Table 1; Figure 3) 448 were generally larger when produced by a schwertmannite precursor (80 to 130 nm) than for a 449 ferrihydrite precursor (60 to 90 nm). This may reflect the impact of sulfate released during 450 transformation of schwertmannite, differences in pH at the onset of hematite nucleation from a 451 ferrihydrite intermediate, or larger aggregates of ferrihydrite forming in the schwertmannite 452 experiments before crystallization to hematite.

453

454 **4.2** Impacts of initial fluid composition on iron (oxyhydr)oxide transformation products

455 While each mineral system had variable reaction products and final particle sizes, some 456 general trends were evident across most samples that indicate a specific role of fluid composition. 457 Experiments in sulfate-rich systems generally resulted in higher final pH values, smaller final 458 particle sizes, and occasionally less complete transformation to hematite. Sulfate commonly adsorbs onto iron oxides as binuclear surface complexes (Hug, 1997; Paul et al., 2005; Wang et 459 460 al., 2018), which may inhibit the transformation of precursor iron(III) oxides as well as the growth 461 of hematite crystals. Sulfate tends to form binuclear complexes at the surfaces of iron oxides, 462 whereas chloride may bond more weakly (Boily & Shchukarev, 2010; Shchukarev & Boily, 2008; 463 Shchukarev et al., 2007; Shchukarev & Sjöberg, 2005). In contrast, samples in chloride-rich fluids 464 often resulted in complete transformation to hematite, larger final particle sizes, lower final pH 465 values, and higher dissolved iron concentrations. Chloride shows weaker adsorption to iron oxide 466 surfaces than sulfate (Boily & Shchukarev, 2010; Shchukarev & Boily, 2008; Shchukarev et al., 467 2007; Shchukarev & Sjöberg, 2005) but may promote more rapid dissolution of the precursor 468 phases (Pritchett et al., 2012; Virtanen et al., 1997), potentially increasing the rate of mass transfer 469 to growing hematite crystals. In addition, chloride complexes iron in solution, especially at 470 elevated temperature (Gammons & Allin, 2022; Liu et al., 2006; Stefánsson et al., 2019), 471 increasing the solubility of iron and its availability for hematite growth. The initial pH value also 472 impacts the final fluid composition and reaction products. Experiments initially set to acidic 473 conditions (pH 3) generally resulted in larger final particle sizes, lower final pH values, and more 474 complete transformation to hematite as well, suggesting that acidic conditions may be more 475 favorable to the formation of coarser-grained hematite.

476

477 **4.3 Jarosite as a potential precursor mineral to gray hematite**

Of all the precursor minerals investigated, only jarosite forms hematite of sufficient grain
size to be spectrally gray. We hypothesize that this system was uniquely able to maintain both a
slow nucleation rate and rapid growth of hematite. Nucleation rate is controlled by the degree of

481 supersaturation of hematite (De Yoreo & Vekilov, 2003), which depends on the dissolved iron 482 concentration and pH. While jarosite dissolution creates elevated dissolved iron concentrations, it 483 also generates substantial acidity. This apparently prevents the system from reaching high degrees 484 of supersaturation with respect to hematite, creating few nuclei. However, the elevated dissolved 485 iron concentrations enable rapid growth of the small number of nuclei that form, creating large 486 hematite crystallites. The transformation of jarosite to hematite further acidifies the system, 487 creating a positive feedback that drives further jarosite dissolution and hematite growth. Validation 488 of our hypothesized mechanism requires a reactor design that would enable sampling the fluid 489 phase at 200 °C to track the time evolution of dissolved iron and pH.

490 Incomplete transformation of jarosite to hematite in sulfate-rich fluids may reflect 491 conditions where the phases are in equilibrium. Complete jarosite transformation was only 492 observed in the presence of high dissolve chloride concentration (1 mol L⁻¹), which resulted in 493 over an order of magnitude greater dissolved iron concentration at 200 °C compared to other 494 conditions (Table 3). Complexation of iron(III) sites on the surface of jarosite by chloride may 495 maintain charge balance of the system as sulfate is released and accelerate its dissolution (Pritchett 496 et al., 2012). High concentrations of chloride also form aqueous iron complexes (e.g., $FeCl_4$) at 497 elevated temperature (Gammons & Allin, 2022; Liu et al., 2006; Stefánsson et al., 2019), 498 increasing the total concentration of iron in solution. The presence of elevated dissolved chloride 499 in jarosite-bearing systems thus enhances the formation of gray hematite.

500 In contrast, akaganeite, ferrihydrite, goethite, and schwertmannite may transform through 501 solid-state processes and aggregation of small particles, providing a distinct nucleation route, or 502 generate high degrees of supersaturation while maintaining low dissolved iron concentrations 503 because of the high pH conditions. Further, the iron octahedra in jarosite are corning-sharing (Kato 504 & Miúra, 1977), but the iron octahedra in hematite are edge and face sharing (Blake et al., 1966; Pauling & Hendricks, 1925). This may slow the initial nucleation of hematite in systems initially containing jarosite. Other iron(III) minerals investigated in this study have edge-sharing octahedra, which may instead facilitate the nucleation of hematite and result in many smaller final hematite particles. Goethite came the closest to generating gray hematite, forming particle at or near 1 μ m at 200 °C. These larger hematite particles may form from goethite via solid-state transformation if its long acicular needles aggregate.

511 Although this study explores mineral transformations in 98 °C and 200 °C fluids, these 512 temperatures were primarily chosen to accelerate the rate of reaction to enable investigation within 513 laboratory time scales. Tosca & Knoll (2009) examined the integration of the temperature and time 514 required to diagenetically transform a given sediment via kinetic formulations. Their models 515 exemplify how mineral transformations have a time-temperature integral threshold that can be met 516 in multiple ways; transformations occurring at lower temperatures over longer periods of time may 517 also occur at higher temperatures much more rapidly. Time-temperature integral thresholds exist 518 for each of the transformations observed in this study; therefore, the results obtained at high (98 519 °C and 200 °C) temperatures over 20 days in this study might also be observed in lower, ambient-520 temperature aqueous systems over substantially longer time scales. Additionally, while 521 temperature alters chemical equilibria, hematite remains the thermodynamically-stable iron(III) 522 phase at ambient temperatures and above as well as at low water activities (Navrotsky et al., 2008), 523 so this relative stability was not altered by the higher temperatures used.

524

525 **4.4 Implications for diagenetic hematite at Vera Rubin ridge**

526 Comparison of the results of this investigation with observations by MSL Curiosity 527 provides new insight into the formation conditions of gray, coarse-grained hematite at VRR.

528 Deposition of VRR and other Murray formation sediments occurred in lacustrine environments 529 (Edgar et al., 2020; Fraeman, Edgar, et al., 2020; Thompson et al., 2020). Much of VRR is red in 530 color, with the isolated gray portions cross-cut strata and laminations indicating a diagenetic origin 531 (Fraeman, Edgar, et al., 2020). Evidence for isochemical alteration at VRR (Bedford et al., 2019) 532 implies that iron in gray, crystalline hematite in the Jura member is derived from pre-existing iron 533 sources in the rocks, such as jarosite. The drill sample Highfield in the gray portion of the Jura 534 member at VRR contained no akaganeite or jarosite while the neighboring drill sites in the red 535 portions of the ridge (Stoer and Rock Hall) contained 1.0 to 2.3 wt.% jarosite and 1.2 to 6.0 wt.% 536 akaganeite (Rampe et al., 2020). The conspicuous absence of jarosite in Highfield is consistent 537 with it having converted to gray hematite via diagenetic alteration. Chloride salts have been 538 confirmed at VRR by evolved gas analyses (EGA) performed by SAM (McAdam et al., 2020), 539 supporting the possibility that chloride-rich fluids were present during diagenesis. While sulfate 540 salts also occur, the presence of calcium sulfate minerals indicate that sulfate solubility would be relatively limited compared to the concentrations used in the present study (0.1 and 1 mol L⁻¹). 541 542 Calcium sulfate precipitation provides a mechanism to maintain the lower sulfate concentrations 543 that promote jarosite transformation to gray hematite, while similar mechanisms to remove 544 chloride from solution are lacking.

The relative lack of iron in the X-ray amorphous component of VRR sediments compared to the iron content of Duluth (the drill sample in the Blunts Point member just below VRR) may be the result of such phases crystallizing to form iron(III) (oxyhydr)oxides and sulfates such as jarosite, akaganeite, and hematite (McAdam et al., 2020; Rampe et al., 2020). However, it remains unclear whether the amorphous component of VRR sediments could have directly converted to gray, crystalline hematite without first forming an intermediate phase. Jarosite elsewhere in the

551 Murray formation may be as young as the Amazonian (Martin et al., 2017). If this precursor of 552 gray hematite formed from amorphous material via a prior diagenetic event, then this would 553 indicate multiple periods of aqueous activity that substantially post-dates primary sediment 554 deposition at Gale crater.

The observations of this study further support the formation of gray hematite at VRR as occurring under non-reducing conditions. The isochemical nature of alteration of VRR noted above precludes the formation of gray hematite from Fe(II)-bearing groundwaters because these would have increased the total iron content. Our results provide a formation mechanism for gray hematite that occurs under oxidizing conditions: diagenetic transformation of jarosite. The diagenetic event that produced gray hematite is thus unlikely to have produced a redox gradient that would generate chemical energy to support life at VRR.

562

563 **5 Conclusions**

564 Jarosite is the first iron(III) mineral known to occur on Mars demonstrated to serve as a 565 diagenetic precursor for gray hematite. Transformation to coarse-grained hematite is aided by 566 acidic conditions generated by jarosite dissolution. This creates low degrees of hematite 567 supersaturation, and thus few initial nuclei, while also maintaining elevated dissolved iron 568 concentrations, leading to fairly rapid particle growth. Chloride-rich fluids, particularly when 569 combined with acidic conditions, appear to play an active role in the dissolution of iron(III) 570 minerals, including jarosite, by increasing precursor mineral dissolution rates and solubilizing iron 571 via aqueous complexation, thereby promoting larger final hematite particle sizes. The gray 572 hematite found throughout VRR may have formed from chloride-rich fluids dissolving jarosite 573 and reprecipitating the iron as hematite. Other minerals investigated (akaganeite, ferrihydrite, 574 goethite, schwertmannite, and fine-grained hematite) are not promising precursor minerals to the
575 gray hematite at VRR. The distinct behavior of jarosite may be due to differences in transformation 576 mechanisms (dissolution and reprecipitation versus solid-state transformation) or slow rates of 577 initial hematite nucleation due to the absence of edge-sharing iron octahedra.

578

579 Acknowledgements

580 This research was funded by Washington University. A.L.K. was supported by the NASA 581 Mars Data Analysis Program through Award No. 80NSSC20K0939. K.M. was supported by the 582 NASA Science Mission Directorate Future Investigators in NASA Earth and Space Science and 583 Technology (FINESST) program through Award No. 80NSSC19K1521. J.G.C. was supported by 584 the NASA Exobiology program through Award No. 80NSSC18K1292. Raymond Arvidson, Paul 585 Carpenter, and Elaine Flynn are thanked for their assistance with sample characterization. The 586 authors acknowledge support from the Institute of Materials Science and Engineering for the use 587 of laboratory instruments and staff assistance.

588

589 **Open Research**

All data used in the manuscript are available in the supporting information or in Washington University in St. Louis Research Data via https://doi.org/10.7936/6rxs-103632 with Creative Commons Attribution (CC BY) 4.0 International (Knight et al., 2023). Profex version 5 used for refinement of X-ray diffraction patterns is preserved at https://www.profex-xrd.org/ (Doebelin & Kleeberg, 2015). ImageJ version 1.53k used for grain size analyses is preserved at https://imagej.nih.gov/ij/download.html (Schneider et al., 2012).

- 596
- 597
- 598

599 **References**

- 600 Bailey, J. K., Brinker, C. J., & Mecartney, M. L. (1993). Growth mechanisms of iron oxide
- 601 particles of differing morphologies from the forced hydrolysis of ferric chloride solutions.
- 602 *Journal of Colloid and Interface Science*, 157(1), 1-13.
- 603 https://doi.org/10.1006/jcis.1993.1150
- Barham, R. J. (1997). Schwertmannite: A unique mineral, contains a replaceable ligand,
- 605 transforms to jarosites, hematites, and/or basic iron sulfate. *Journal of Materials*

606 *Research*, *12*(10), 2751-2758. <u>https://doi.org/10.1557/JMR.1997.0366</u>

- 607 Basciano, L. C., & Peterson, R. C. (2007). Jarosite-hydronium jarosite solid-solution series with
- full iron site occupancy: Mineralogy and crystal chemistry. American Mineralogist, 92(8-

609 9), 1464-1473. <u>https://doi.org/10.2138/am.2007.2432</u>

- 610 Basciano, L. C., & Peterson, R. C. (2008). Crystal chemistry of the natrojarosite-jarosite and
- 611 natrojarosite-hydronium jarosite solid-solution series: A synthetic study with full Fe site
- 612 occupancy. *American Mineralogist*, *93*(5-6), 853-862.
- 613 https://doi.org/10.2138/am.2008.2731
- 614 Becker, U., & Gasharova, B. (2001). AFM observations and simulations of jarosite growth at the
- 615 molecular scale: Probing the basis for the incorporation of foreign ions into jarosite as a
- 616 storage mineral. *Physics and Chemistry of Minerals*, 28(8), 545-556.
- 617 <u>https://doi.org/10.1007/s002690100188</u>
- 618 Bedford, C. C., Bridges, J. C., Schwenzer, S. P., Wiens, R. C., Rampe, E. B., Frydenvang, J., &
- 619 Gasda, P. J. (2019). Alteration trends and geochemical source region characteristics
- 620 preserved in the fluviolacustrine sedimentary record of Gale crater, Mars. *Geochimica et*
- 621 *Cosmochimica Acta*, 246, 234-266. <u>https://doi.org/10.1016/j.gca.2018.11.031</u>

- 622 Bennett, K. A., Rivera-Hernández, F., Tinker, C., Horgan, B., Fey, D. M., Edwards, C., Edgar, L.
- 623 A., Kronyak, R., Edgett, K. S., Fraeman, A., Kah, L. C., Henderson, M., Stein, N.,
- 624 Dehouck, E., & Williams, A. J. (2021). Diagenesis Revealed by Fine-Scale Features at
- 625 Vera Rubin Ridge, Gale Crater, Mars. *Journal of Geophysical Research: Planets*, 126(5),
- 626 e2019JE006311. https://doi.org/10.1029/2019JE006311
- Blake, R. L., Hessevick, R. E., Zoltai, T., & Finger, L. W. (1966). Refinement of the hematite
 structure. *American Mineralogist*, *51*(1-2), 123-129.
- 629 Boily, J.-F., & Shchukarev, A. (2010). X-ray Photoelectron Spectroscopy of Fast-Frozen
- 630 Hematite Colloids in Aqueous Solutions. 2. Tracing the Relationship between Surface
- 631 Charge and Electrolyte Adsorption. *The Journal of Physical Chemistry C*, *114*(6), 2613632 2616. https://doi.org/10.1021/jp908197f
- 633 Catling, D. C., & Moore, J. M. (2003). The nature of coarse-grained crystalline hematite and its
- 634 implications for the early environment of Mars. *Icarus*, *165*(2), 277-300.
- 635 https://doi.org/10.1016/S0019-1035(03)00173-8
- 636 Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., & Malin, M. C. (2001). Global
- 637 mapping of Martian hematite mineral deposits: Remnants of water-driven processes on
- 638 early Mars. Journal of Geophysical Research: Planets, 106(E10), 23873-23885.
- 639 <u>https://doi.org/10.1029/2000je001415</u>
- 640 Clark, J. V., Sutter, B., McAdam, A. C., Rampe, E. B., Archer, P. D., Ming, D. W., Navarro-
- 641 Gonzalez, R., Mahaffy, P., & Lapen, T. J. (2020). High-temperature HCl evolutions from
- 642 mixtures of perchlorates and chlorides with water-bearing phases: Implications for the
- 643 SAM instrument in Gale crater, Mars. *Journal of Geophysical Research: Planets*, 125(2),
- 644 e2019JE006173. https://doi.org/10.1029/2019JE006173

- 645 Cornell, R. M., & Giovanoli, R. (1990). Transformation of akaganéite into goethite and hematite
- 646 in alkaline media. *Clays and Clay Minerals*, *38*(5), 469-476.
- 647 https://doi.org/10.1346/CCMN.1990.0380502
- 648 Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions,
- 649 *occurences and uses.* Weinheim: John Wiley & Sons.
- 650 Das, S., Hendry, M., & Essilfie-Dughan, J. (2011). Transformation of two-line ferrihydrite to
- goethite and hematite as a function of pH and temperature. *Environmental Science & Technology*, 45, 268-75. https://doi.org/10.1021/es101903y
- Davidson, L. E., Shaw, S., & Benning, L. G. (2008). The kinetics and mechanisms of
- schwertmannite transformation to goethite and hematite under alkaline conditions.
- 655 *American Mineralogist*, 93(8-9), 1326-1337. <u>https://doi.org/10.2138/am.2008.2761</u>
- 656 De Grave, E., Vochten, R., Quenard, O., Van San, E., Desseyn, H., & Rousset, A. (1999).
- 657 Mössbauer characterisation of the products resulting from hydrothermal treatments of
- 658 nanosized goethite. *Nanostructured Materials*, *11*(4), 493-504.
- 659 https://doi.org/10.1016/s0965-9773(99)00334-7
- 660 De Yoreo, J. J., & Vekilov, P. G. (2003). Principles of Crystal Nucleation and Growth. *Reviews*
- 661 *in Mineralogy and Geochemistry*, 54(1), 57-93. <u>https://doi.org/10.2113/0540057</u>
- Doebelin, N., & Kleeberg, R. (2015). Profex: A graphical user interface for the Rietveld
- refinement program BGMN. *Journal of Applied Crystallography*, 48(5), 1573-1580.
 https://doi.org/10.1107/s1600576715014685
- Edgar, L. A., Fedo, C. M., Gupta, S., Banham, S. G., Fraeman, A. A., Grotzinger, J. P., Stack, K.
- 666 M., Stein, N. T., Bennett, K. A., Rivera-Hernández, F., Sun, V. Z., Edgett, K. S., Rubin,
- D. M., House, C., & Van Beek, J. (2020). A lacustrine paleoenvironment recorded at

668	Vera Rubin ridge, Gale crater: Overview of the sedimentology and stratigraphy observed
669	by the Mars Science Laboratory Curiosity rover. Journal of Geophysical Research:
670	Planets, 125(3), e2019JE006307. https://doi.org/10.1029/2019JE006307
671	Egami, T., & Billinge, S. (2012). Underneath the Bragg peaks: Structural analysis of complex
672	materials, 16. Amsterdam, The Netherlands: Permagon.
673	Fallacaro, A., & Calvin, W. M. (2006). Spectral Properties of Lake Superior Banded Iron
674	Formation: Application to Martian Hematite Deposits. Astrobiology, 6(4), 563-580.
675	https://doi.org/10.1089/ast.2006.6.563
676	Fraeman, A. A., Arvidson, R. E., Catalano, J. G., Grotzinger, J. P., Morris, R. V., Murchie, S. L.,
677	Stack, K. M., Humm, D. C., McGovern, J. A., Seelos, F. P., Seelos, K. D., & Viviano, C.
678	E. (2013). A hematite-bearing layer in Gale Crater, Mars: Mapping and implications for
679	past aqueous conditions. Geology, 41(10), 1103-1106. https://doi.org/10.1130/g34613.1
680	Fraeman, A. A., Edgar, L. A., Rampe, E. B., Thompson, L. M., Frydenvang, J., Fedo, C. M.,
681	Catalano, J. G., Dietrich, W. E., Gabriel, T. S. J., Grotzinger, J. P., L'Haridon, J.,
682	Mangold, N., Sun, V. Z., House, C. H., Bryk, A., Hardgrove, C., Czarnecki, S., Stack, K.
683	M., Morris, R. V., Arvidson, R. E., Banham, S. G., Bennett, K. A., Bridges, J. C.,
684	Edwards, C. S., Fischer, W. W., Fox, V. K., Gupta, S., Horgan, B. H. N., Jacob, S. R.,
685	Johnson, J. R., Johnson, S. S., Rubin, D. R., Salvatore, M. R., Schwenzer, S. P., Siebach,
686	K. L., Stein, N. T., Turner, S., Wellington, D. F., Wiens, R. C., Williams, A. J.,
687	Davidson, G. A., & Wong, G. M. (2020). Evidence for a diagenetic origin of Vera Rubin
688	Ridge, Gale Crater, Mars: Summary and synthesis of Curiosity's exploration campaign.
689	Journal of Geophysical Research: Planets, 125(12), e2020JE006527.
690	https://doi.org/10.1029/2020JE006527

- 691 Fraeman, A. A., Ehlmann, B. L., Arvidson, R. E., Edwards, C. S., Grotzinger, J. P., Milliken, R.
- E., Quinn, D. P., & Rice, M. S. (2016). The stratigraphy and evolution of lower Mount
- 693 Sharp from spectral, morphological, and thermophysical orbital data sets. *Journal of*
- 694 *Geophysical Research: Planets*, *121*(9), 1713-1736.
- 695 https://doi.org/10.1002/2016JE005095
- 696 Fraeman, A. A., Johnson, J. R., Arvidson, R. E., Rice, M. S., Wellington, D. F., Morris, R. V.,
- 697 Fox, V. K., Horgan, B. H. N., Jacob, S. R., Salvatore, M. R., Sun, V. Z., Pinet, P., Bell, J.
- 698 F., Wiens, R. C., & Vasavada, A. R. (2020). Synergistic ground and orbital observations
- 699 of iron oxides on Mt. Sharp and Vera Rubin ridge. *Journal of Geophysical Research:*
- 700 *Planets*, *125*(9), e2019JE006294. <u>https://doi.org/10.1029/2019je006294</u>
- Freitas, E. T. F., Montoro, L. A., Gasparon, M., & Ciminelli, V. S. T. (2015). Natural attenuation
 of arsenic in the environment by immobilization in nanostructured hematite.
- 703 *Chemosphere*, *138*, 340-347. <u>https://doi.org/10.1016/j.chemosphere.2015.05.101</u>
- 704 Frydenvang, J., Gasda, P. J., Hurowitz, J. A., Grotzinger, J. P., Wiens, R. C., Newsom, H. E.,
- Edgett, K. S., Watkins, J., Bridges, J. C., Maurice, S., Fisk, M. R., Johnson, J. R., Rapin,
- 706 W., Stein, N. T., Clegg, S. M., Schwenzer, S. P., Bedford, C. C., Edwards, P., Mangold,
- 707 N., Cousin, A., Anderson, R. B., Payré, V., Vaniman, D., Blake, D. F., Lanza, N. L.,
- 708 Gupta, S., Van Beek, J., Sautter, V., Meslin, P. Y., Rice, M., Milliken, R., Gellert, R.,
- Thompson, L., Clark, B. C., Sumner, D. Y., Fraeman, A. A., Kinch, K. M., Madsen, M.
- 710 B., Mitrofanov, I. G., Jun, I., Calef, F., & Vasavada, A. R. (2017). Diagenetic silica
- 711 enrichment and late-stage groundwater activity in Gale crater, Mars. *Geophysical*
- 712 *Research Letters*, 44(10), 4716-4724. <u>https://doi.org/10.1002/2017GL073323</u>

713	Gammons, C. H., & Allin, N. C. (2022). Stability of aqueous Fe(III) chloride complexes and the
714	solubility of hematite between 150 and 300 °C. Geochimica et Cosmochimica Acta, 330,
715	148-164. https://doi.org/10.1016/j.gca.2021.01.043
716	Golden, D. C., Ming, D. W., Morris, R. V., & Graff, T. G. (2008). Hydrothermal synthesis of
717	hematite spherules and jarosite: Implications for diagenesis and hematite spherule
718	formation in sulfate outcrops at Meridiani Planum, Mars. American Mineralogist, 93(8-
719	9), 1201-1214. https://doi.org/10.2138/am.2008.2737

- 720 Goñi-Elizalde, S., Garcia-Clavel, M. E., & Tejedor-Tejedor, M. I. (1987). Mechanism of
- akaganeite-hematite transformation via solution. *Reactivity of Solids*, *3*(1), 139-154.
- 722 <u>https://doi.org/10.1016/0168-7336(87)80024-4</u>
- 723 González, G., Sagarzazu, A., & Villalba, R. (2000). Study of the mechano-chemical
- transformation of goethite to hematite by TEM and XRD. *Materials Research Bulletin*,

725 *35*(14), 2295-2308. <u>https://doi.org/10.1016/S0025-5408(00)00434-7</u>

- 726 Horgan, B. H. N., Johnson, J. R., Fraeman, A. A., Rice, M. S., Seeger, C., Bell III, J. F., Bennett,
- 727 K. A., Cloutis, E. A., Edgar, L. A., Frydenvang, J., Grotzinger, J. P., L'Haridon, J., Jacob,
- 728 S. R., Mangold, N., Rampe, E. B., Rivera-Hernandez, F., Sun, V. Z., Thompson, L. M., &
- 729 Wellington, D. (2020). Diagenesis of Vera Rubin ridge, Gale crater, Mars, from Mastcam
- 730 multispectral images. Journal of Geophysical Research: Planets, 125(11),
- 731 e2019JE006322. <u>https://doi.org/10.1029/2019JE006322</u>
- Hug, S. J. (1997). In situ Fourier transform infrared measurements of sulfate adsorption on
- hematite in aqueous solutions. *Journal of Colloid and Interface Science*, 188(2), 415-422.
- 734 <u>https://doi.org/10.1006/jcis.1996.4755</u>

735	Janney, D. E., Cowley, J. M., & Buseck, P. R. (2000). Transmission electron microscopy of
736	synthetic 2- and 6-line ferrihydrite. Clays and Clay Minerals, 48(1), 111-119.
737	https://doi.org/10.1346/ccmn.2000.0480114
738	Jensen, J. L., Siddoway, C. S., Reiners, P. W., Ault, A. K., Thomson, S. N., & Steele-MacInnis,
739	M. (2018). Single-crystal hematite (U–Th)/He dates and fluid inclusions document
740	widespread Cryogenian sand injection in crystalline basement. Earth and Planetary
741	Science Letters, 500, 145-155. https://doi.org/10.1016/j.epsl.2018.08.021
742	Johnson, J. R., Bell, J. F., III, Bender, S., Blaney, D., Cloutis, E., Ehlmann, B., Fraeman, A.,
743	Gasnault, O., Kinch, K., Le Mouélic, S., Maurice, S., Rampe, E., Vaniman, D., & Wiens,
744	R. C. (2016). Constraints on iron sulfate and iron oxide mineralogy from ChemCam
745	visible/near-infrared reflectance spectroscopy of Mt. Sharp basal units, Gale Crater,
746	Mars. American Mineralogist, 101(7), 1501-1514. https://doi.org/10.2138/am-2016-5553
747	Kato, T., & Miúra, Y. (1977). The crystal structures of jarosite and svanbergite. Mineralogical
748	Journal, 8(8), 419-430.
749	Kerker, M., Scheiner, P., Cooke, D. D., & Kratohvil, J. P. (1979). Absorption index and color of
750	colloidal hematite. Journal of Colloid and Interface Science, 71(1), 176-187.
751	https://doi.org/10.1016/0021-9797(79)90231-5
752	Knight, A. L., Mitra, K., & Catalano, J. G. (2023). Mineral products and fluid compositions from
753	the transformations of iron(III) minerals in Mars-relevant fluids (Version 1) [Dataset].
754	Washington University in St. Louis Research Data. https://doi.org/10.7936/6rxs-103632
755	Lane, M. D., Morris, R. V., Mertzman, S. A., & Christensen, P. R. (2002). Evidence for platy

- 756 hematite grains in Sinus Meridiani, Mars. Journal of Geophysical Research: Planets,
- 757 *107*(E12), 5126. <u>https://doi.org/10.1029/2001je001832</u>

758	Lin, M., Tng, L., Lim, T., Choo, M., Zhang, J., Tan, H. R., & Bai, S. (2014). Hydrothermal
759	synthesis of octade cahedral hematite (α -Fe ₂ O ₃) nanoparticles: An epitaxial growth from
760	goethite (α-FeOOH). The Journal of Physical Chemistry C, 118(20), 10903-10910.
761	https://doi.org/10.1021/jp502087h
762	Liu, W., Etschmann, B., Brugger, J., Spiccia, L., Foran, G., & McInnes, B. (2006). UV-Vis
763	spectrophotometric and XAFS studies of ferric chloride complexes in hyper-saline LiCl
764	solutions at 25–90 °C. Chemical Geology, 231(4), 326-349.
765	https://doi.org/10.1016/j.chemgeo.2006.02.005
766	Martin, P. E., Farley, K. A., Baker, M. B., Malespin, C. A., Schwenzer, S. P., Cohen, B. A.,
767	Mahaffy, P. R., McAdam, A. C., Ming, D. W., Vasconcelos, P. M., & Navarro-González,
768	R. (2017). A two-step K-Ar experiment on Mars: Dating the diagenetic formation of
769	jarosite from Amazonian groundwaters. Journal of Geophysical Research: Planets,
770	122(12), 2803-2818. https://doi.org/10.1002/2017JE005445
771	McAdam, A. C., Sutter, B., Archer, P. D., Franz, H. B., Wong, G. M., Lewis, J. M. T.,
772	Eigenbrode, J. L., Stern, J. C., Knudson, C. A., Clark, J. V., Andrejkovičová, S., Ming, D.
773	W., Morris, R. V., Achilles, C. N., Rampe, E. B., Bristow, T. F., Navarro-González, R.,
774	Mahaffy, P. R., Thompson, L. M., Gellert, R., Williams, A. J., House, C. H., & Johnson,
775	S. S. (2020). Constraints on the mineralogy and geochemistry of Vera Rubin ridge, Gale
776	crater, Mars, from Mars Science Laboratory Sample Analysis at Mars Evolved Gas
777	Analyses. Journal of Geophysical Research: Planets, 125(11), e2019JE006309.
778	https://doi.org/10.1029/2019JE006309
779	Michel, F. M., Ehm, L., Liu, G., Han, W. Q., Antao, S. M., Chupas, P. J., Lee, P. L., Knorr, K.,
780	Eulert, H., Kim, J., Grey, C. P., Celestian, A. J., Gillow, J., Schoonen, M. A. A.,

781	Strongin, D. R., & Parise, J. B. (2007). Similarities in 2- and 6-line ferrihydrite based on
782	pair distribution function analysis of X-ray total scattering. Chemistry of Materials, 19(6),
783	1489-1496. https://doi.org/10.1021/cm062585n
784	Morris, R. V., Golden, D. C., Bell, J. F., Shelfer, T. D., Scheinost, A. C., Hinman, N. W.,
785	Furniss, G., Mertzman, S. A., Bishop, J. L., Ming, D. W., Allen, C. C., & Britt, D. T.
786	(2000). Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils:
787	Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC
788	meteorite, and Pathfinder samples. Journal of Geophysical Research: Planets, 105(E1),
789	1757-1817. https://doi.org/10.1029/1999je001059
790	Morris, R. V., Rampe, E. B., Vaniman, D. T., Christoffersen, R., Yen, A. S., Morrison, S. M.,
791	Ming, D. W., Achilles, C. N., Fraeman, A. A., Le, L., Tu, V. M., Ott, J. P., Treiman, A.
792	H., Hogancamp, J. V., Graff, T. G., Adams, M., Hamilton, J. C., Mertzman, S. A.,
793	Bristow, T. F., Blake, D. F., Castle, N., Chipera, S. J., Craig, P. I., Des Marais, D. J.,
794	Downs, G., Downs, R. T., Hazen, R. M., Morookian, JM., & Thorpe, M. (2020).
795	Hydrothermal precipitation of sanidine (adularia) having full Al, Si structural disorder and
796	specular hematite at Maunakea Volcano (Hawai'i) and at Gale crater (Mars). Journal of
797	Geophysical Research: Planets, 125(9), e2019JE006324.
798	https://doi.org/10.1029/2019JE006324
799	Navrotsky, A., Mazeina, L., & Majzlan, J. (2008). Size-driven structural and thermodynamic

- 800 complexity in iron oxides. *Science*, *319*(5870), 1635-1638.
- 801 https://doi.org/10.1126/science.1148614

- 803 Übersättigung und Überkaltung. Zeitschrift für Physikalische Chemie, 22U(1), 289-330.
 804 https://doi.org/10.1515/zpch-1897-2233
- 805 Paul, K. W., Borda, M. J., Kubicki, J. D., & Sparks, D. L. (2005). Effect of Dehydration on
- 806 Sulfate Coordination and Speciation at the Fe-(Hydr)oxide-Water Interface: A
- 807 Molecular Orbital/Density Functional Theory and Fourier Transform Infrared
- 808 Spectroscopic Investigation. *Langmuir*, 21(24), 11071-11078.
- 809 <u>https://doi.org/10.1021/la050648v</u>
- 810 Pauling, L., & Hendricks, S. B. (1925). The crystal structures of hematite and corundum. *Journal*
- 811 of the American Chemical Society, 47(3), 781-790. <u>https://doi.org/10.1021/ja01680a027</u>
- 812 Peterson, K. M., Heaney, P. J., & Post, J. E. (2018). Evolution in the structure of akaganeite and
- 813 hematite during hydrothermal growth: An in situ synchrotron X-ray diffraction analysis.
- 814 *Powder Diffraction*, 33(4), 287-297. <u>https://doi.org/10.1017/S0885715618000623</u>
- 815 Pritchett, B. N., Elwood Madden, M. E., & Madden, A. S. (2012). Jarosite dissolution rates and
- 816 maximum lifetimes in high salinity brines: Implications for Earth and Mars. *Earth and*
- 817 Planetary Science Letters, 357-358, 327-336. <u>https://doi.org/10.1016/j.epsl.2012.09.011</u>
- 818 Rampe, E. B., Bristow, T. F., Morris, R. V., Morrison, S. M., Achilles, C. N., Ming, D. W.,
- 819 Vaniman, D. T., Blake, D. F., Tu, V. M., Chipera, S. J., Yen, A. S., Peretyazhko, T. S.,
- B20 Downs, R. T., Hazen, R. M., Treiman, A. H., Grotzinger, J. P., Castle, N., Craig, P. I.,
- 821 Des Marais, D. J., Thorpe, M. T., Walroth, R. C., Downs, G. W., Fraeman, A. A.,
- 822 Siebach, K. L., Gellert, R., Lafuente, B., McAdam, A. C., Meslin, P. Y., Sutter, B., &
- 823 Salvatore, M. R. (2020). Mineralogy of Vera Rubin ridge from the Mars Science

- Laboratory CheMin instrument. *Journal of Geophysical Research: Planets*, 125(9).
 https://doi.org/10.1029/2019je006306
- 826 Scarlett, N. V. Y., Grey, I. E., & Brand, H. E. A. (2010). Ordering of iron vacancies in
- 827 monoclinic jarosites. *American Mineralogist*, 95(10), 1590-1593.
- 828 https://doi.org/10.2138/am.2010.3591
- Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of
 image analysis. *Nature Methods*, 9(7), 671-675. https://doi.org/10.1038/nmeth.2089
- 831 Schwertmann, U., & Carlson, L. (2005). The pH-dependent transformation of schwertmannite to
- 832 goethite at 25°C. *Clay Minerals*, 40(1), 63-66.
- 833 https://doi.org/10.1180/0009855054010155
- Schwertmann, U., Friedl, J., & Stanjek, H. (1999). From Fe(III) ions to ferrihydrite and then to
 hematite. *Journal of Colloid and Interface Science*, 209(1), 215-223.
- 836 https://doi.org/10.1006/jcis.1998.5899
- 837 Shchukarev, A., & Boily, J.-F. (2008). XPS study of the hematite–aqueous solution interface.
- 838 *Surface and Interface Analysis*, 40(3-4), 349-353. https://doi.org/10.1002/sia.2657
- 839 Shchukarev, A., Boily, J.-F., & Felmy, A. R. (2007). XPS of Fast-Frozen Hematite Colloids in
- 840 NaCl Aqueous Solutions: I. Evidence for the Formation of Multiple Layers of Hydrated
- 841 Sodium and Chloride Ions Induced by the {001} Basal Plane. *The Journal of Physical*
- 842 *Chemistry C*, *111*(49), 18307-18316. <u>https://doi.org/10.1021/jp075321c</u>
- 843 Shchukarev, A., & Sjöberg, S. (2005). XPS with fast-frozen samples: A renewed approach to
- study the real mineral/solution interface. *Surface Science*, 584(1), 106-112.
- 845 https://doi.org/10.1016/j.susc.2005.01.060

- 846 Sherman, D. M. (1985). The electronic structures of Fe^{3+} coordination sites in iron oxides:
- 847 Applications to spectra, bonding, and magnetism. *Physics and Chemistry of Minerals*,
- 848 *12*(3), 161-175. <u>https://doi.org/10.1007/bf00308210</u>
- 849 Sherman, D. M., & Waite, T. D. (1985). Electronic spectra of Fe³⁺ oxides and oxide hydroxides
- in the near IR to near UV. American Mineralogist, 70, 1262-1269.
- 851 Smith, A. M. L., Hudson-Edwards, K. A., Dubbin, W. E., & Wright, K. (2006). Dissolution of
- jarosite [KFe₃(SO₄)₂(OH)₆] at pH 2 and 8: Insights from batch experiments and
- 853 computational modelling. *Geochimica et Cosmochimica Acta*, 70(3), 608-621.
- 854 <u>https://doi.org/10.1016/j.gca.2005.09.024</u>
- Smith, F. G., & Kidd, D. J. (1949). Hematite-goethite relations in neutral and alkaline solutions
 under pressure. *American Mineralogist*, *34*(5-6), 403-412.
- 857 Soltis, J. A., Feinberg, J. M., Gilbert, B., & Penn, R. L. (2016). Phase Transformation and
- 858 Particle-Mediated Growth in the Formation of Hematite from 2-Line Ferrihydrite. *Crystal*859 *Growth & Design*, 16(2), 922-932. https://doi.org/10.1021/acs.cgd.5b01471
- 860 Stack, K. M., Grotzinger, J. P., Kah, L. C., Schmidt, M. E., Mangold, N., Edgett, K. S., Sumner,
- 861 D. Y., Siebach, K. L., Nachon, M., Lee, R., Blaney, D. L., Deflores, L. P., Edgar, L. A.,
- Fairén, A. G., Leshin, L. A., Maurice, S., Oehler, D. Z., Rice, M. S., & Wiens, R. C.
- 863 (2014). Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay
- formation, Gale crater, Mars. Journal of Geophysical Research: Planets, 119(7), 1637-
- 865 1664. <u>https://doi.org/10.1002/2014je004617</u>
- 866 Steefel, C. I., & Van Cappellen, P. (1990). A new kinetic approach to modeling water-rock
- 867 interaction: The role of nucleation, precursors, and Ostwald ripening. *Geochimica et*
- 868 *Cosmochimica Acta*, 54(10), 2657-2677. https://doi.org/10.1016/0016-7037(90)90003-4

869	Stefánsson, A., Lemke, K. H., & Seward, T. M. (2019). Iron(III) chloride complexation in
870	hydrothermal solutions: A combined spectrophotometric and density functional theory
871	study. Chemical Geology, 524, 77-87. https://doi.org/10.1016/j.chemgeo.2019.05.039
872	Thomas, N. H., Ehlmann, B. L., Rapin, W., Rivera-Hernández, F., Stein, N. T., Frydenvang, J.,
873	Gabriel, T., Meslin, PY., Maurice, S., & Wiens, R. C. (2020). Hydrogen variability in
874	the Murray formation, Gale crater, Mars. Journal of Geophysical Research: Planets,
875	125(9), e2019JE006289. https://doi.org/10.1029/2019JE006289
876	Thompson, L. M., Berger, J. A., Spray, J. G., Fraeman, A. A., McCraig, M. A., O'Connell-
877	Cooper, C. D., Schmidt, M. E., Vanbommel, S., Gellert, R., Yen, A., & Boyd, N. I.
878	(2020). APXS-derived compositional characteristics of Vera Rubin ridge and Murray
879	formation, Gale crater, Mars: Geochemical implications for the origin of the ridge.
880	Journal of Geophysical Research: Planets, 125(10).

881 <u>https://dx.doi.org/10.1029/2019je006319</u>

- 882 Thomson, B. J., Bridges, N. T., Milliken, R., Baldridge, A., Hook, S. J., Crowley, J. K., Marion,
- G. M., de Souza Filho, C. R., Brown, A. J., & Weitz, C. M. (2011). Constraints on the
- origin and evolution of the layered mound in Gale Crater, Mars using Mars
- 885 Reconnaissance Orbiter data. *Icarus*, *214*(2), 413-432.
- 886 <u>https://doi.org/10.1016/j.icarus.2011.05.002</u>
- 887 Tosca, N. J., & Knoll, A. H. (2009). Juvenile chemical sediments and the long term persistence
- of water at the surface of Mars. *Earth and Planetary Science Letters*, 286(3-4), 379-386.
 <u>https://doi.org/10.1016/j.epsl.2009.07.004</u>
- 890 Virtanen, S., Schmuki, P., Davenport, A. J., & Vitus, C. M. (1997). Dissolution of thin iron oxide
- films used as models for iron passive films studied by in situ X-ray absorption near-edge

- spectroscopy. *Journal of the Electrochemical Society*, *144*(1), 198.
- 893 <u>https://doi.org/10.1149/1.1837385</u>
- Wang, X., Wang, Z., Peak, D., Tang, Y., Feng, X., & Zhu, M. (2018). Quantification of
- 895 coexisting inner- and outer-sphere complexation of sulfate on hematite surfaces. ACS
- *Earth and Space Chemistry*, *2*(4), 387-398.
- 897 https://doi.org/10.1021/acsearthspacechem.7b00154
- Wang, Y., Xue, S., Lin, Q., Song, D., He, Y., Liu, L., Zhou, J., Zong, M., De Yoreo, J. J., Zhu,
- J., Rosso, K. M., Sushko, M. L., & Zhang, X. (2022). Particle-based hematite
- 900 crystallization is invariant to initial particle morphology. *Proceedings of the National*
- 901 *Academy of Sciences*, *119*(11). <u>https://dx.doi.org/10.1073/pnas.2112679119</u>
- 902 Welch, S. A., Kirste, D., Christy, A. G., Beavis, F. R., & Beavis, S. G. (2008). Jarosite
- 903 dissolution II—Reaction kinetics, stoichiometry and acid flux. *Chemical Geology*,

904 254(1), 73-86. <u>https://doi.org/10.1016/j.chemgeo.2008.06.010</u>

- 905 Yen, A., Morris, R. V., Ming, D. W., Schwenzer, S. P., Sutter, B., Vaniman, D., Treiman, A. H.,
- 906 Gellert, R., Achilles, C., & Berger, J. (2021). Formation of tridymite and evidence for a
- 907 hydrothermal history at gale crater, Mars. *Journal of Geophysical Research: Planets*,
- 908 *126*(3), e2020JE006569.
- 209 Zhu, G., & De Yoreo, J. J. (2022). Hematite Crystallization from a Two-Line Ferrihydrite
- 910 Suspension. *Journal of The Electrochemical Society*, *169*(10), 102510.
- 911 https://dx.doi.org/10.1149/1945-7111/ac99a0
- 912
- 913 **References From the Supporting Information**

914	Baron, D., & Palmer, C. D. (1996). Solubility of jarosite at 4–35 °C. <i>Geochimica et</i>	
915	Cosmochimica Acta, 60(2), 185-195. https://doi.org/10.1016/0016-7037(95)00392-4	
916	Madden, A. S., & Hochella, M. F. (2005). A test of geochemical reactivity as a function of	
917	mineral size: Manganese oxidation promoted by hematite nanoparticles. Geochimica et	
918	Cosmochimica Acta, 69(2), 389-398. https://doi.org/10.1016/j.gca.2004.06.035	
919	Mulvaney, P., Cooper, R., Grieser, F., & Meisel, D. (1988). Charge trapping in the reductive	
920	dissolution of colloidal suspensions of iron(III) oxides. Langmuir, 4(5), 1206-1211.	
921	https://doi.org/10.1021/la00083a028	
922	Schwertmann, U., & Cornell, R. M. (2000). Iron oxides in the laboratory: Preparation and	
923	characterization. Weinheim: John Wiley & Sons.	

Transformation of Precursor Iron(III) Minerals in Diagenetic Fluids: 1 Potential Origin of Gray Hematite at Vera Rubin Ridge 2 3 A. L. Knight¹, K. Mitra¹[†], and J. G. Catalano^{1,2} 4 5 ¹Department of Earth and Planetary Sciences, Washington University, Saint Louis, Missouri 63130, USA. 6 ²McDonnell Center for the Space Sciences, Washington University, Saint Louis, Missouri 7 8 63130, USA. 9 10 Corresponding author: Abigail L. Knight (alknight@wustl.edu) [†]Present Address: Department of Geosciences, Stony Brook University, Stony Brook, New York 11 12 11794, USA. 13 14 **Key Points:** 15 Jarosite transforms to gray hematite at 200 °C in both sulfate- and chloride-rich fluids. • • Other iron(III) minerals (goethite, akaganeite, ferrihydrite, schwertmannite, and red 16 17 hematite) do not convert to gray hematite. 18 Jarosite may be a viable precursor mineral to the gray hematite found at Vera Rubin • 19 ridge, Gale crater, Mars.

21 Abstract

22 Coarse-grained (> $3-5 \mu m$) gray hematite particles occur at Vera Rubin ridge (VRR) 23 within Gale crater, Mars. VRR has likely undergone multiple episodes of diagenesis, at least one 24 of which resulted in the formation of gray hematite. The precursor mineralogy and nature of the 25 diagenetic fluids that produced coarse-grained hematite remain unknown. Analog laboratory 26 experiments were performed on a variety of iron(III) minerals to assess the potential fluid 27 conditions and precursor mineralogy that form coarse-grained hematite. Gray hematite formed 28 from the transformation of jarosite after 20 days at 200 °C. Conversion was complete in chloride-29 rich fluids but substantial jarosite remained in sulfate-rich fluids; no transformations of jarosite 30 occurred when aged at 98 °C. All other precursor minerals (akageneite, ferrihydrite, goethite, and 31 schwertmannite) did not transform or produced only red, fine-grained hematite under all 32 conditions assessed. In addition, seeding precursor iron(III) phases with red hematite and 33 coarsening pre-existing red hematite both failed to produce gray hematite. These results suggest 34 that jarosite was the precursor of gray hematite at VRR and the diagenetic fluids were low in 35 sulfate and potentially chloride-rich. Jarosite produces gray hematite because the acidic 36 conditions it generates yield both a low degree of hematite supersaturation, producing few 37 nuclei, and high dissolved iron concentrations, enabling rapid hematite growth. Gray hematite 38 readily forms under oxic conditions and its occurrence at VRR is not a marker for a redox 39 interface. The associated diagenetic event was thus unlikely to have generated substantial new 40 chemical energy for life.

42 Plain Language Summary

43 Hematite is often formed from other pre-existing iron-bearing minerals in water-rich 44 environments. Depending on its grain size, hematite can be either red (fine-grained) or gray 45 (coarse-grained) and these grain sizes likely indicate distinct past conditions. Gray hematite has 46 been observed at Vera Rubin ridge (VRR) in Gale crater, Mars but how it formed is currently 47 unknown. Laboratory experiments in this study demonstrate that jarosite, an iron- and sulfur-48 bearing mineral, converts to gray hematite in chloride-rich and sulfate-poor fluid conditions at 49 elevated temperatures. Other iron(III)-bearing minerals (akageneite, ferrihydrite, goethite, 50 schwertmannite, and fine-grained hematite) did not transform to gray hematite under any 51 experimental conditions studied. The gray hematite at VRR likely formed by conversion from 52 jarosite during alteration after the sediments in Gale crater had already formed. This event did 53 not require reducing conditions and thus did not provide any new chemical energy for life. 54

55 Key words

56 Hematite, Jarosite, Vera Rubin ridge, Diagenesis, Gale crater, Mars

58 **1 Introduction**

59 Vera Rubin ridge (VRR) is a topographically-distinct sedimentary unit exposed on the 60 northwestern slope of Aeolis Mons, the 5-km-tall central peak within Gale crater, Mars (Edgar et 61 al., 2020). Also known as "hematite ridge," VRR has been identified as a hematite (a-Fe₂O₃)-62 bearing unit based on the strong ferric absorptions (attributed to the presence of crystalline 63 hematite) throughout the ridge by both the Compact Reconnaissance Imaging Spectrometer for 64 Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) and the Mars Science 65 Laboratory (MSL) Curiosity rover (Fraeman et al., 2013; Fraeman et al., 2016; Fraeman, Johnson, 66 et al., 2020; Johnson et al., 2016). Notably, within VRR are two separate particle sizes of hematite, 67 each with distinct spectral characteristics (Fraeman, Johnson, et al., 2020; Horgan et al., 2020). 68 Fine-grained hematite, also called "pigmentary hematite," is distinctly red in color but transitions 69 to grav-colored, coarse-grained hematite at a particle size around 3-5 µm (Catling & Moore, 2003; Kerker et al., 1979; Lane et al., 2002; Morris et al., 2020). In addition to the widespread 70 71 occurrences within VRR (Horgan et al., 2020), gray hematite has also been observed on Earth, 72 such as in basaltic sediments at Maunakea volcano in Hawaii (Morris et al., 2020), Proterozoic 73 banded iron formations (BIFs) (Fallacaro & Calvin, 2006), and sandstone injectites (Jensen et al., 74 2018), as well as on Mars at Meridiani Planum, Aram Chaos, and Valles Marineris (Christensen 75 et al., 2001).

The formation of well-crystalline gray hematite rather than the more common fine-grained, red hematite in localized regions of VRR and other locations on Earth and Mars may be the result of distinct formation conditions that, in the case of VRR, are likely diagenetic (Bennett et al., 2021). VRR is composed of two hematite-bearing members of the Murray formation: the Pettegrove Point member and the Jura member (Edgar et al., 2020). Red hematite is found throughout both members, but gray hematite is primarily observed within the Jura member,

82 crosscutting the surrounding strata, which further supports its diagenetic origin (Horgan et al., 83 2020). VRR is primarily composed of thinly-laminated mudstones with distinctive diagenetic 84 sedimentary features, including nodules, Ca sulfate veins, crystal molds, and cross-cutting color 85 variations (Edgar et al., 2020) that are often associated with coarser-grained rock targets (Bennett et al., 2021). The mineralogy and geochemistry of VRR also provide further evidence for multiple 86 87 stages of diagenetic fluid events in the past (McAdam et al., 2020; Thomas et al., 2020). The 88 hydrogen content in samples from VRR is variable, which indicates rocks at Gale crater were 89 possibly exposed to other aqueous activity besides that associated with a paleolake (Thomas et al., 90 2020). Additionally, the highest hydrogen content was frequently associated with larger grain sizes 91 within VRR sediments which supports the argument for the formation of gray, coarse-grained 92 hematite from fluid interactions (Thomas et al., 2020).

93 Compared to the recessive strata below it, VRR is also particularly resistant to weathering 94 and maintains a distinct topographic profile, which may be the result of diagenesis (Edgar et al., 95 2020). Whether this increased resiliency of VRR mudstone units is due to cementation, 96 mineralogy, or coarser grain sizes is yet to be determined. Despite substantial evidence for several 97 past episodes of aqueous diagenesis in Gale crater (Edgar et al., 2020; Fraeman, Edgar, et al., 2020; 98 Frydenvang et al., 2017; Horgan et al., 2020; Stack et al., 2014; Thomson et al., 2011), the origin 99 and nature of the permeating fluids, as well as the precursor mineralogy, remain unclear. 100 Diagenetic fluid temperatures, acidities, salinities, and compositions are not well-constrained for 101 VRR. Identifying candidate minerals and the range of possible fluid conditions that generate gray 102 hematite provides insight into past diagenetic events and the potential for ancient habitable 103 conditions at Gale crater.

104 The purpose of this study is to investigate the transformation products of iron(III) minerals 105 subjected to simulated diagenetic fluid conditions and identify potential pathways to gray hematite. 106 Iron(III) minerals were aged in a variety of Mars-relevant fluids to assess the impact of variable 107 initial pH values, background salts, and temperatures on the reaction products formed. Mineralogy 108 and crystallinity of the solid transformation products were determined, including identification via 109 grain size-dependent spectral features in the visible wavelengths. This study provides a broad 110 assessment of potential precursors to well-crystalline hematite that are either directly observed on 111 Mars or expected to occur given its geologic history.

112 **2 Methods**

113 **2.1 Precursor mineral synthesis**

114 Akaganeite $(\beta$ -FeO_{1-x}(OH)_{1+x}Cl_x), ferrihydrite (~Fe₁₀O₁₄(OH)₂·nH₂O), goethite (α -115 FeOOH), ~60 nm red hematite, ~10 nm red hematite, schwertmannite (Fe₈O₈(OH)₈₋ 116 $_{x}(SO_{4})_{x} \cdot nH_{2}O)$, and potassium jarosite (KFe₃(SO₄)₂(OH)₆) were synthesized according to standard 117 laboratory techniques (see supporting information for full details). It was necessary to produce 118 multiple batches for some experiments due to constraints on the mass of mineral produced in each 119 synthesis. Each synthesized mineral was washed, dried in a convection oven at ~40 °C (ferrihydrite 120 was dried in a desiccator instead of by heating because of its instability at elevated temperatures), 121 and ground to a powder in a mortar and pestle. The mineralogical purity of each synthesis product 122 was evaluated via powder X-ray diffraction (XRD).

123

124 **2.2 Simulated diagenesis experiments**

125 Laboratory experiments were performed to approximate potential conditions under which 126 precursor iron(III) minerals (akageneite, ferrihydrite, goethite, red hematite, jarosite, and

127 schwertmannite) may transform (or coarsen) diagenetically to gray, coarse-grained hematite in an 128 aqueous setting. For each initial mineral, ~1.6 to 2 g were suspended in ultrapure water and added 129 to a salt solution containing either magnesium chloride or magnesium sulfate to create a 20 mL 130 mineral suspension; chloride and sulfate salts have been observed throughout VRR via Sample 131 Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) analyses (Clark et al., 2020; 132 McAdam et al., 2020; Rampe et al., 2020). Total salt concentrations in final solutions were set to 133 1 mol L⁻¹. Additional experiments on goethite and ferrihydrite were conducted with small amounts 134 of ~60 nm hematite added to seed the transformations. A 1:9 molar ratio of hematite to goethite or 135 ferrihydrite was added, assuming chemical formulas of α -FeOOH and Fe₁₀O₁₄(OH)₂ for goethite 136 and ferrihydrite, respectively. Each 20 mL mineral suspension was adjusted to a pH value of either 137 3 or 7 via dropwise additions of 1 mol L⁻¹ hydrochloric acid and 1 mol L⁻¹ sodium hydroxide. Since 138 jarosite has the ability to generate substantial acidity through the release of H⁺ as it dissolves and 139 reacts quickly with added base, the solution pH was set before adding this mineral and the pH then 140 freely evolved during reaction. Additional jarosite experiments used 0.1 mol L⁻¹ salt concentrations 141 to investigate the impact of different anion concentrations. The resulting mineral suspensions were 142 heated in a digital convection oven for 20 days at 98 °C in polypropylene tubes sealed with PTFE 143 thread seal tape or 200 °C in PTFE-lined bombs (Parr Instrument Co.) to minimize fluid 144 vaporization; the 98°C experiments resulted in ~20-30% evaporative loss of the solution.

145

146 **2.3 Mineral and fluid characterization**

After aging for 20 days at elevated temperatures, the experiments were ended and the
sample products were cooled to room temperature. The resulting suspensions were passed through
0.22 μm mixed cellulose ester (MCE) filters via syringe filtration to isolate the fluids from the

solid product. The final pH values of the fluids were measured, and final dissolved iron (as well as potassium and sulfur for experiments involving jarosite) concentrations were determined via inductively-coupled plasma optical emission spectrometry (ICP-OES) using a Thermo iCap 7400 Duo instrument. Each fluid sample was measured 3 times, and the raw counts were averaged. The uncertainties in the slope and intercept of the calibration curves, obtained by linear regression, were propagated with the standard deviations of the measurements reported by the instrument to obtain concentration errors.

157 The solid products were washed with ultrapure water either via syringe filtration, vacuum 158 filtration, or centrifugation to remove residual salts, dried in a convection oven, and ground with 159 a mortar and pestle. The powdered mineral products were then analyzed via powder XRD and 160 visible to near infrared (VNIR) reflectance spectroscopy. VNIR spectroscopy was performed on 161 the solid transformation products using an Analytical Spectral Devices (ASDs) portable VNIR 162 spectroradiometer to identify key absorption features. The resulting spectra were splice-corrected 163 to reduce the offsets at ~1000 and ~1825 nm between each of the three built-in detectors. Powder 164 XRD was performed using a Bruker d8 Advance powder X-ray diffractometer, Cu X-ray source 165 (40 kV and 40 mA), step size of 0.02° per step, and counting time of 0.5 seconds per step for each 166 measurement. A LynxEye XE energy-dispersive strip detector was used for data collection. Each 167 of the 192 detector strips separately measures a given 2θ value for the stated counting time, giving 168 a total integration time per point of 96 s. Final mineral abundances and coherent scattering domain 169 sizes were determined using Profex to perform Rietveld refinement on the XRD patterns (Doebelin 170 & Kleeberg, 2015).

For samples with a coherent scattering domain (CSD) size greater than ~100 to 200 nm,
the peak width is determined by instrumental broadening rather than the actual domain size.

173 Therefore, select samples with large CSD sizes were imaged with a Thermofisher Quattro S 174 Scanning Electron Microscope (SEM) to examine both the morphology and particle size of the 175 solid products. CSD size indicates the size within an individual crystallite where atomic structure 176 is uniform and X-rays are scattered coherently, whereas particle size refers to the visual size of 177 discreet grains, which may be agglomerates of smaller crystals. When particles are single crystals 178 and not aggregates, the CSD size is equal to the particle size. The SEM images were analyzed 179 using ImageJ (Schneider et al., 2012) to measure individual particle sizes. The measured particle 180 sizes taken from the SEM images may be biased toward grains that are larger, intact, and 181 unobscured by other surrounding particles because they are more visible in an image.

182

183 **3 Results**

184 **3.1 Characterization of precursor minerals**

185 All synthesized precursor minerals were free of other phases and generally showed 186 consistent particle sizes among different batches (Table S1). The two batches of goethite used in 187 the single-mineral experiments resulted in multi-domainic acicular needles generally about 2 to 4 188 µm long and 0.1 to 0.4 µm wide (Table S1; Figures S1 and S2). The third batch of goethite, 189 synthesized for the two-mineral experiments, had a slightly smaller coherent domain size based on 190 refinement of its diffraction pattern (Table S1; Figure S3). Synthesized akaganeite (Figure S4) 191 resulted in a CSD size of 15 ± 1 nm based on refinement of its XRD pattern (Table S1; Figure S5). 192 Two batches of ferrihydrite were synthesized for the single-mineral and two-mineral experiments. 193 Both batches had two broad diffraction peaks (Figures S6 and S7), indicative of two-line 194 ferrihydrite, which typically consists of crystallites 2 to 3 nm in size (Janney et al., 2000; Michel 195 et al., 2007). Note that crystallite size cannot be determined using XRD patterns for particles 196 smaller ~10 nm because of the lack of long-range periodicity (Egami & Billinge, 2012). The initial 197 schwertmannite produced a diffraction pattern with broad peaks (Figure S8), consistent with a 198 particle size of < 10 nm. Two batches of red hematite with ~60 nm CSD sizes were synthesized, 199 one for the single-mineral experiments and one for the two-mineral experiments where goethite 200 and ferrihydrite were seeded with hematite (Table S1; Figure S9). A final batch of red hematite 201 with ~10 nm CSD size was synthesized for the single-mineral experiments to explore the impact 202 of the initial hematite particle size on the transformation products (Table S1; Figure S10). The 203 jarosite synthesized had an initial crystallite size of 89 ± 4 nm (Table S1).

204

205 **3.2 Transformation of individual precursor minerals**

206 3.2.1 Product mineralogy

207 The transformation products of experiments performed on individual precursor minerals 208 were identified via XRD. Hematite was the most common reaction product from the iron(III) 209 minerals assessed (Table 1). Diffraction patterns indicate that hematite (both ~ 10 nm and ~ 60 nm), 210 akaganeite, ferrihydrite, and schwertmannite fully converted to (or remained) crystalline hematite 211 in experiments performed at 200 °C (Figure 1; Table 1; Figures S5, S6, and S8-S10). However, 212 goethite and jarosite resulted in more variable reaction products (Tables 1 and 2; Figures 1 and 2; 213 see Figure S2 for all goethite patterns). Goethite transformed to red hematite at a higher 214 temperature under acidic conditions but resulted in a mixture of red hematite and goethite at pH 7 215 and 200 °C (Table 1; Figure 2; Figure S2). Experiments on jarosite at high temperatures (200 °C) yielded mixtures of hematite and jarosite in sulfate fluids and 0.1 mol L⁻¹ chloride fluids, while 216 complete transformation to crystalline hematite occurred in 1 mol L^{-1} chloride fluids (Table 2; 217 218 Figures 1 and 2). Diffraction patterns indicate that hematite (both ~10 nm and ~60 nm), akaganeite, 219 and ferrihydrite typically transformed completely to or remained crystalline hematite in 220 experiments performed at 98 °C (Table 1; see Figures S5, S6, S9, and S10 for all patterns). Goethite

- and jarosite did not show evidence of transformation at 98 °C (Tables 1 and 2; Figures 1 and 2),
- but schwertmannite completely converted to goethite at this temperature (Figure S8).

- Table 1. Final mineral abundances, crystallite sizes, and particle sizes of the solid products of experiments on the transformation of
- 225 akageneite, ferrihydrite (seeded and unseeded), goethite (seeded and unseeded), hematite (~10 nm and ~60 nm), and schwertmannite
- 226 in simulated diagenetic fluids.
- 227

Initial Mineral	Temperature (°C)	Salt	Initial pH	Final Mineral A	bundances (wt. %)	Crystallit	e Size (nm)	Particle Size (nm)
				Hematite	Akaganeite	Hematite	Akaganeite	Hematite
akaganeite	98	1 mol L ⁻¹ MgCl ₂	3	100	-	35 ± 1	-	-
			7	100	-	45 ± 2	-	-
		1 mol L ⁻¹ MgSO ₄	3	100	-	16.7 ± 0.5	-	-
			7	70 ± 2	30 ± 2	24 ± 1	3.6 ± 0.4	-
	200	1 mol L ⁻¹ MgCl ₂	3	100	-	66 ± 2	-	600 ± 200
			7	100	-	63 ± 2	-	-
		1 mol L ⁻¹ MgSO ₄	3	100	-	60 ± 2	-	-
			7	100	-	64 ± 2	-	-
				He	matite	Her	natite	
ferrihydrite	98	1 mol L ⁻¹ MgCl ₂	3		100	87	$t \pm 2$	-
			7		100	73	5 ± 2	-
		1 mol L ⁻¹ MgSO ₄	3		100	62	2 ± 2	-
			7		100	77	$t \pm 2$	-
	200	1 mol L ⁻¹ MgCl ₂	3	100		79 ± 3		90 ± 20
			7		100	72	2 ± 2	-
		1 mol L ⁻¹ MgSO4	3		100	65	5 ± 2	-
			7		100	57	' ± 1	-
				Hematite	Goethite	Hematite	Goethite	
goethite	98	1 mol L ⁻¹ MgCl ₂	3	-	100	-	47 ± 1	-
			7	-	100	-	46 ± 1	-
		1 mol L ⁻¹ MgSO4	3	-	100	-	47 ± 1	-
			7	-	100	-	48 ± 1	-
	200	1 mol L ⁻¹ MgCl ₂	3	100	-	240 ± 7	-	1000 ± 500
			7	1.9 ± 0.5	98.1 ± 0.5	68 ± 40	52 ± 1	-
		1 mol L ⁻¹ MgSO4	3	97.2 ± 0.5	2.8 ± 0.5	220 ± 7	60 ± 10	-
			7	43.7 ± 0.6	56.3 ± 0.6	206 ± 9	62 ± 2	-
				He	matite	Her	natite	
hematite (~10 nm)	98	1 mol L ⁻¹ MgCl ₂	3		100	22.5	5 ± 0.6	-
			7		100	22.7	2 ± 0.7	-
		1 mol L ⁻¹ MgSO4	3		100	20.1	± 0.5	-
			7		100	19.6	6 ± 0.5	-
	200	1 mol L-1 MgCl2	3		100	37	$t \pm 1$	50 ± 20

			7	10	00	32.8	± 0.9	-
		1 mol L ⁻¹ MgSO ₄	3	10	00	35	± 1	-
			7	10	00	34.6	± 1.0	-
				Hem	atite	Hen	natite	
hematite (~60 nm)	98	1 mol L ⁻¹ MgCl ₂	3	10	00	58	± 1	-
		_	7	10	00	57	± 1	-
		1 mol L ⁻¹ MgSO ₄	3	10	00	56	± 1	-
			7	10	00	55	± 1	-
	200	1 mol L ⁻¹ MgCl ₂	3	10	00	64	± 2	90 ± 20
			7	10	00	60	± 2	-
		1 mol L ⁻¹ MgSO ₄	3	10	00	64	± 2	-
			7	10	00	63	± 1	-
				Hematite	Goethite	Hematite	Goethite	
schwertmannite	98	1 mol L ⁻¹ MgCl ₂	3	-	100	-	13.1 ± 0.4	-
			7	-	100	-	13.5 ± 0.5	-
		1 mol L ⁻¹ MgSO ₄	3	-	100	-	14 ± 1	-
			7	-	100	-	14.7 ± 0.4	-
	200	1 mol L ⁻¹ MgCl ₂	3	100	-	133 ± 4	-	600 ± 200
			7	100	-	109 ± 4	-	-
		1 mol L ⁻¹ MgSO ₄	3	100	-	97 ± 4	-	-
			7	100	-	81 ± 5	-	-
				Hem	natite	Hen	natite	
	98	1 mol L ⁻¹ MgCl ₂	3	10	00	93	± 2	-
			7	10	00	68	± 2	-
		1 mol L ⁻¹ MgSO ₄	3	10	00	45	± 2	-
ferrihydrite			7	10	00	70	± 2	-
seeded with hematite	200	1 mol L ⁻¹ MgCl ₂	3	10	00	99	± 2	120 ± 30
			7	10	00	65	± 2	-
		1 mol L ⁻¹ MgSO ₄	3	10	00	83	± 2	-
			7	10	00	61	±1	-
				Hematite	Goethite	Hematite	Goethite	
	98	1 mol L ⁻¹ MgCl ₂	3	18.0 ± 0.9	82.0 ± 0.9	64 ± 6	37 ± 1	-
			7	15.5 ± 0.8	84.5 ± 0.8	64 ± 7	27.5 ± 0.7	-
		1 mol L ⁻¹ MgSO ₄	3	12 ± 1	88 ± 1	50 ± 10	26.4 ± 0.9	-
goethite			7	17.9 ± 0.7	82.1 ± 0.7	57 ± 5	32.2 ± 0.8	-
seeded with hematite	200	1 mol L ⁻¹ MgCl ₂	3	100	-	158 ± 4	-	240 ± 90
			7	15 ± 1	85 ± 1	58 ± 9	32 ± 1	-
		1 mol L ⁻¹ MgSO ₄	3	100	-	143 ± 4	-	-
			7	32.3 ± 0.8	67.7 ± 0.8	80 ± 4	35.7 ± 1.0	-

- Table 2. Final mineral abundances, crystallite sizes, and particle sizes of the solid products of experiments on the transformation of jarosite in simulated diagenetic fluids.
- 230

Initial Mineral	Temperature (°C)	Salt	Initial pH	Final Mineral Ab	Sinal Mineral Abundances (wt. %)Crystallite Size (nm)		te Size (nm)	Particle Size (nm)
				Hematite	Jarosite	Hematite	Jarosite	Hematite
		0.1 mal I - MaCl	3	-	100	-	163 ± 5	-
	08	0.1 mor L MgC12	7	-	100	-	148 ± 5	-
	70	$0.1 \text{ mol } \mathrm{I}^{-1} \mathrm{MaSO}_{4}$	3	-	100	-	128 ± 4	-
		0.1 mor L Mg504	7	-	100	-	119 ± 3	-
	200 98	0.1 mol L ⁻¹ MgCl ₂	3	67.1 ± 0.7	32.9 ± 0.7	128 ± 5	55 ± 3	6000 ± 1000
			7	64.4 ± 0.7	35.6 ± 0.7	150 ± 5	58 ± 3	-
		0.1 mol L ⁻¹ MgSO ₄	3	72.9 ± 0.7	27.1 ± 0.7	181 ± 7	67 ± 4	6000 ± 1000
jarosite			7	70.9 ± 0.6	29.1 ± 0.6	223 ± 9	92 ± 5	-
		1 mol L ⁻¹ MgCl ₂	3	-	100	-	220 ± 8	-
			7	-	100	-	210 ± 7	-
		1 mol L ⁻¹ MgSO ₄	3	-	100	-	106 ± 3	-
			7	-	100	-	104 ± 3	-
	200		3	100.00	-	290 ± 20	-	14000 ± 4000
		1 IIIOI L. MIGCI2	7	100.00	-	300 ± 10	-	-
	200	1 1 I -1 M-SO	3	12.3 ± 0.5	87.8 ± 0.5	340 ± 50	210 ± 10	2000 ± 1000
		$1 \text{ mol } L^{-1} \text{ MgSO}_4$	7	19 ± 1	81 ± 1	270 ± 60	120 ± 10	-

Figure 1. XRD patterns of (a) the red hematite transformation products of synthesized minerals subjected to pH 3, 1 mol L^{-1} MgCl₂ 200 °C fluid conditions for 20 days, (b) synthesized jarosite and its transformation products in various 1 mol L^{-1} fluid conditions, and (c) synthesized jarosite and its transformation products in various 0.1 mol L^{-1} fluid conditions. Cl and S indicate MgCl₂ and MgSO₄ background salts, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are indicated for each sample. Characteristic jarosite ("J") and hematite ("H") peaks are labeled. Patterns offset in intervals of 10000 and patterns from experiments on jarosite in 200 °C fluids with 0.1 mol L⁻¹ salt vertically exaggerated by a factor of 2 for clarity.

Figure 2. Final mineralogy (wt.%) of reaction products of jarosite and goethite experiments. Cl

and S indicate background salts of $MgCl_2$ and $MgSO_4$, respectively, in the transformation fluids.

245 Initial fluid pH value (pH 3 or pH 7) and experimental temperature (200 °C) are provided for

each sample.

247 **3.2.2 Fluid composition**

248 In general, experiments on akageneite, ferrihydrite, schwertmannite, ~10 nm red hematite, 249 and jarosite produced substantial (> 1 pH unit) decreases in pH value (Table 3; Table S2). The 250 final pH values of ~60 nm hematite and goethite fluids remained relatively unchanged from the 251 initial value in comparison. Across all experiments, final pH values tended to be higher for sulfate-252 rich samples and lower for chloride-rich samples (Table 3; Table S2). We attribute the decrease in 253 pH to fluid evaporation and grain coarsening. The latter process decreases total surface area in the 254 system, releasing H⁺ as anions desorb and surface sites are overgrown. Schwertmannite, 255 akaganeite, and jarosite also generate H⁺ as they transform to hematite.

256 Jarosite experiments displayed final dissolved concentrations of iron, potassium, and sulfur 257 that were non-stoichiometric with respect to the chemical formula of potassium jarosite (Table 3). 258 Jarosite partially dissolved when aged at 98 °C (Table 3) but no new phases were precipitated 259 (Table 2; Figures 1 and 2). The final fluid compositions in these samples are therefore only 260 controlled by the dissolution of jarosite. In the samples where jarosite was the sole mineral phase 261 present at the end of the experiment, iron was substantially depleted in the final fluid composition 262 relative to both sulfur and potassium, while potassium was enriched slightly relative to sulfur. In 263 addition, elevated chloride concentrations increased the ratio of iron to sulfur and decreased the 264 ratio of iron to potassium in the final fluid (Table 3).

Temperature (°C)	Salt	Initial nH	Final nH	Fe (mmol/kg)	K (mmol/kg)	S (mmol/kg)	K·S	K·Fe
Temperature (C)	Balt	3	1.46	0.338 ± 0.004	52.6 ± 0.6	66 ± 3	0.70 ± 0.04	156 + 3
	0.1 mol L ⁻¹ MgCl ₂	5	1.40	0.338 ± 0.004	52.0 ± 0.0	00 ± 3	0.79 ± 0.04	150 ± 5
98	U	/	1.48	0.36 ± 0.004	60.1 ± 0.4	12 ± 3	0.84 ± 0.04	$16/\pm 2$
,,,	$0.1 \text{ mol } \mathrm{I}^{-1} \mathrm{MgSO}_4$	3	1.75	0.109 ± 0.002	35.7 ± 0.6	-	-	326 ± 9
	0.1 mor L wig504	7	1.47	0.095 ± 0.002	39.4 ± 0.4	-	-	415 ± 10
		3	1.12	2.2 ± 0.04	147.9 ± 0.8	260 ± 4	0.568 ± 0.008	67 ± 1
200	$0.1 \text{ mol } L^{-1} \text{ MgCl}_2$	7	1.11	2.2 ± 0.04	176.3 ± 0.9	275 ± 5	0.64 ± 0.01	80 ± 1
200	0.1 mol L ⁻¹ MgSO ₄	3	0.78	0.71 ± 0.03	136 ± 1	-	-	193 ± 10
		7	0.72	0.96 ± 0.03	185.5 ± 0.9	-	-	194 ± 7
	1 mol L ⁻¹ MgCl ₂	3	0.84	11.97 ± 0.09	66.3 ± 0.4	93 ± 3	0.71 ± 0.02	5.54 ± 0.06
00		7	0.90	12.4 ± 0.1	58.3 ± 0.4	91 ± 3	0.64 ± 0.02	4.70 ± 0.05
98	1 mol L ⁻¹ MgSO ₄	3	1.87	0.232 ± 0.003	38.3 ± 0.4	-	-	165 ± 3
		7	1.55	0.109 ± 0.002	39 ± 0.4	-	-	359 ± 8
		3	0.52	60.9 ± 0.6	213 ± 2	353 ± 4	0.603 ± 0.008	3.50 ± 0.04
200	I mol L^{-1} MgCl ₂	7	0.43	75 ± 2	180 ± 1	393 ± 4	0.459 ± 0.006	2.40 ± 0.08
200	1 11-11/00	3	1.01	0.203 ± 0.003	83.2 ± 0.8	-	-	410 ± 7
	I mol L ⁴¹ MgSO ₄	7	0.89	0.314 ± 0.004	133 ± 1	-	-	423 ± 6

270 **3.2.3 Particle and crystallite sizes**

271 Generally, high temperature (200 °C), chloride-rich, acidic conditions produced the largest 272 final CSD sizes of hematite for most minerals. Refinement of diffraction patterns for the hematite 273 reaction products of ~10 nm red hematite, ~60 nm red hematite, akaganeite, ferrihydrite, and 274 schwertmannite resulted in CSD sizes generally less than 150 nm (Table 1), indicative of red 275 hematite. Initial hematite with a smaller, ~10 nm initial CSD size experienced a greater relative 276 increase in size compared to larger, ~60 nm initial hematite but its final particle size was still 277 smaller than that of the ~60 nm hematite. The XRD-derived CSD sizes of the hematite produced 278 from precursor akageneite were < 70 nm; however, SEM images show 0.6 \pm 0.2 μ m particles, 279 suggesting that these particles were aggregates of multiple individual crystals (Figures 3 and 4).

280 In contrast, goethite and jarosite generally resulted in more crystalline hematite reaction 281 products with crystallite sizes that exceeded the upper limit of quantification from XRD patterns 282 (Tables 1 and 2). SEM images revealed that goethite in acidic, high temperature (200 °C) fluids 283 converted to hematite with a particle size of $\sim 1 \,\mu m$ (Figures 3 and 4). SEM images of the hematite 284 produced from jarosite show that in chloride-rich, 200 °C fluids, hematite ranged in length from 285 ~5-20 μ m (Figures 4 and 5). In fluids with lower (0.1 mol L⁻¹) chloride concentrations and fluids 286 with sulfate, the hematite product of jarosite was smaller ($< 10 \,\mu m$) but still notably coarse (Figures 287 4 and 5). The morphology of the hematite product varied with grain size (Figures 3 and 5; Figure 288 S11). Small (~1 µm) particles were rhombohedral, while larger (~14 µm long) particles were 289 elongated and somewhat "spindle-shaped," with distinct crystal faces.

Figure 3. SEM images of the red hematite transformation products of synthesized minerals subjected to 1 mol L⁻¹ MgCl₂, pH 3, 200 °C fluids for 20 days. Initial mineralogy: (a) akageneite, (b) schwertmannite, (c) hematite batch 3 (~10 nm), (d) hematite batch 1 (~60 nm), (e) ferrihydrite batch 1, (f) ferrihydrite batch 2 seeded with hematite batch 2, (g) goethite batch 2, (h) goethite batch 3 seeded with hematite batch 2.

- of (a) akageneite, (b) schwertmannite, (c) hematite batch 3 (~10 nm), (d) hematite batch 1 (~60
- nm), (e) ferrihydrite batch 1, (f) ferrihydrite batch 2 seeded with hematite batch 2, (g) goethite
- batch 2, and (h) goethite batch 3 seeded with hematite batch 2 subjected to pH 3, 1 mol L^{-1}
- 301 MgCl₂, 200 °C fluids for 20 days. Measured final particle sizes of the hematite transformation
- 302 products of jarosite subjected to (i) 0.1 mol L⁻¹ MgCl₂ and (j) 1 mol L⁻¹ MgCl₂ fluids set to pH 3
- 303 and heated to 200 °C for 20 days.

Figure 5. SEM images of the transformation products of jarosite subjected to various 200 °C

307 fluids for 20 days. Fluid characteristics: (a) pH 3, 0.1 mol L^{-1} MgCl₂ (b) pH 7, 0.1 mol L^{-1} MgCl₂,

- $308 \qquad (c) \ pH \ 3, \ 0.1 \ mol \ L^{-1} \ MgSO_4, \ (d) \ pH \ 7, \ 0.1 \ mol \ L^{-1} \ MgSO_4, \ (e) \ pH \ 3, \ 1 \ mol \ L^{-1} \ MgCl_2, \ (f) \ pH \ 7, \ (f) \ ($
- $309 \quad 1 \text{ mol } L^{-1} \text{ MgCl}_2, \text{ (g) pH 3, 1 mol } L^{-1} \text{ MgSO}_4, \text{ (h) pH 7, 1 mol } L^{-1} \text{ MgSO}_4.$

310 **3.2.4 Reflectance spectroscopy**

311 Hematite and other iron (oxyhydr)oxides are identifiable via visible to near-infrared 312 (VNIR) reflectance spectroscopy due to four electronic absorption features occurring between 400 313 and 1000 nm (Sherman, 1985). These electronic absorptions are visible when the iron 314 (oxyhydr)oxide is both crystalline and maintains a small enough particle size that it retains a strong 315 positive reflectance slope in the red portion of the visible spectrum (Lane et al., 2002). 316 Distinguishing between different iron (oxyhydr)oxides can be challenging because the key 317 absorption features often overlap (Catling & Moore, 2003; Morris et al., 2000). However, red, 318 fine-grained hematite and gray, coarse-grained hematite can be distinguished easily from each 319 other and from other iron (oxyhydr)oxides. Fine-grained hematite has a strong 860 nm absorption 320 feature similar to other ferric minerals but exhibits a sharper inflection at 535 nm (Fraeman, 321 Johnson, et al., 2020; Lane et al., 2002; Morris et al., 2000; Sherman & Waite, 1985). Coarse-322 grained hematite has strong absorption at all visible wavelengths, eliminating the 535 nm inflection 323 and 860 nm ferric absorption edge from its visible spectrum and producing a "flat" or neutral 324 reflectance spectrum at all visible wavelengths (Lane et al., 2002; Morris et al., 2020).

325 Transformation products of most minerals exhibited the 860 nm electronic absorption feature as well as the spectral inflection at 535 nm characteristic of red crystalline hematite with 326 327 VNIR spectroscopy (Figure 6; Figures S12-S18). The large grain size of the hematite particles 328 produced from interaction of jarosite with chloride-rich, 200 °C fluids is supported by the VNIR 329 spectra (Figure 6; Figures S19 and S20). These spectra exhibit decreased reflectance in the red 330 portion of the visible spectrum, causing them to be more spectrally neutral, a characteristic of gray 331 hematite. Reaction products that contain mixtures of hematite and jarosite (e.g., sulfate-rich 332 samples) exhibit jarosite absorption features at ~435 nm and have "flatter" slopes and less

- 333 reflectance in the visible portion of the spectrum compared to that of pure jarosite (Figure 6;
- 334 Figures S19 and S20).

Figure 6. VNIR reflectance spectra of (a) red hematite transformation products of synthesized minerals subjected to pH 3, 1 mol L⁻¹
MgCl₂, 200 °C fluid conditions for 20 days, (b) synthesized jarosite and its transformation products in various 1 mol L⁻¹ fluid
conditions and (c) synthesized jarosite and its transformation products in various 0.1 mol L⁻¹ fluid conditions. Cl and S indicate
background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and
experimental temperature (98 °C or 200 °C) are provided for each sample. Spectra offset for clarity as indicated.

3.3 Effect of hematite seeds on precursor mineral transformations

344	Additional experiments involving goethite or ferrihydrite seeded with hematite produced					
345	similar results as the experiments which investigated goethite or ferrihydrite alone. Complete					
346	conversion of the goethite mineral mixture to hematite resulted from high temperature, acidic					
347	conditions (Figure 1; Figure S3), whereas ferrihydrite seeded with hematite completely converted					
348	to hematite in all conditions (Figure 1; Figure S7). Final hematite particle sizes for all experiments					
349	seeded with hematite were substantially smaller than the 3 to 5 μ m minimum size of gray hematite					
350	(Table 1; Figures 3 and 4; Figures S3 and S7) and produced spectra consistent with red hematite					
351	(Figures S21 and S22).					
352						
353	4 Discussion					
354	4.1 Impacts of precursor mineralogy on hematite transformation products					
355	4.1.1 Jarosite					
356	Jarosite was the only initial mineral to yield gray, crystalline hematite in the transformation					
357	products of any experimental conditions. Prior studies (e.g., Golden et al. (2008)) have produced					
358	μ m-scale rounded hematite particles from hydronium jarosite, which further emphasizes that					
359	crystalline hematite can be formed from jarosite. Similar to all other initial minerals, experiments					
360	on jarosite in chloride-rich, high temperature (200 °C), acidic fluid conditions generally resulted					
361	in the largest average hematite grain size post-transformation. The detection of tridymite at Gale					
362	crater implies the past existence of hydrothermal fluids in the crater (Yen et al., 2021), which					
363						
	would have promoted the formation of larger hematite. Jarosite proved to be more stable in sulfate-					

365 stability of jarosite in sulfate solutions resulted in only partial transformation to hematite in most higher temperature (200 °C) experiments for both 1 mol L^{-1} and 0.1 mol L^{-1} sulfate concentrations. 366 367 Diffraction patterns of the final solid products of experiments on jarosite at 98 °C indicated 368 that no secondary iron-bearing phases precipitated, yet final dissolved Fe, K, and S concentrations 369 measured in the fluids were non-stoichiometric. The Fe:K and Fe:S molar ratios were several 370 orders of magnitude lower than stoichiometric ratios based on the chemical formula of jarosite, 371 similar to observations made by Welch et al. (2008). This suggests that jarosite dissolution 372 involved preferential removal of potassium and sulfate over iron, similar to observations of non-373 stoichiometric jarosite dissolution via laboratory experiments and computational modeling 374 (Becker & Gasharova, 2001; Smith et al., 2006). Smith et al. (2006) observed a goethite residue 375 on the surface of jarosite grains after removal of surface K^+ and SO_4^{2-} , but no crystalline secondary 376 iron phases were observed via XRD or VNIR analyses and nanocrystalline or amorphous iron 377 minerals, like ferrihydrite, are unstable at the temperatures of our experiments (Cornell & 378 Schwertmann, 2003). However, the positions of many of the jarosite XRD peaks in the 98 °C and 379 200 °C (Figure 1; Figures S23 and S24) were shifted to different angles compared to the peak 380 positions produced by the initial synthesized jarosite. These shifts better align with the expected 381 diffraction pattern for potassium jarosite and is inconsistent with partial incorporation of H_3O^+ 382 (Basciano & Peterson, 2007; Basciano & Peterson, 2008). Jarosites often contain iron vacancies, 383 leading to an excess of potassium and sulfate in the structure (Scarlett et al., 2010). Heating may have promoted recrystallization that annealed these vacancies, releasing excess K⁺ and SO₄²⁻ to 384

385 solution.

386

387 4.1.2 Coarsening of fine-grained, red hematite

388 The coarsening of finer-grained hematite was minor and did not result in gray hematite. 389 The ~ 10 nm hematite resulted in a greater relative increase in particle size compared to ~ 60 nm 390 hematite, which remained largely unchanged in size after 20 days. The increased solubility of 391 smaller particles due to their greater surface area may favor more rapid dissolution and subsequent 392 crystal growth compared to an initially well-crystalline mineral. However, little to no grain size 393 increase was observed for red hematite, regardless of initial crystallite size, suggesting that the 394 coarsening of fine-grained iron oxides alone may not be a viable pathway to gray hematite 395 formation. Minor observed increases in particle size were likely achieved through Ostwald 396 ripening, in which smaller particles are dissolved and reprecipitated as growth onto larger particles 397 (Ostwald, 1897; Steefel & Van Cappellen, 1990). Given unrestricted time in an aqueous 398 environment, finer-grained hematite may eventually coarsen substantially. However, on Mars the 399 duration of aqueous alteration is restricted temporally due to the persistence of diagenetically-400 juvenile deposits, such as opaline silica and smectites, on the surface (Tosca & Knoll, 2009).

401

402 **4.1.3 Ferrihydrite and goethite**

Ferrihydrite subjected to the same fluid conditions as ~10 nm hematite produced larger grain sizes across all comparable samples despite having a smaller starting crystallite size. The transformation from ferrihydrite to hematite proceeds through the aggregation of smaller particles of ferrihydrite that crystallize to hematite, potentially via a mechanism such as oriented attachment (Freitas et al., 2015; Schwertmann et al., 1999; Soltis et al., 2016; Wang et al., 2022; Zhu & De Yoreo, 2022). Such aggregation-based growth provides a mechanism through which conversion from ferrihydrite generates larger final particles than coarsening of existing ~10 nm hematite. This 410 further highlights the ineffectiveness of Ostwald ripening for generating gray hematite from pre-411 existing fine-grained hematite.

412 In contrast to the complete conversion of ferrihydrite to hematite, goethite-to-hematite 413 transformation rates were exceedingly slow at 98 °C, with no hematite formed after 20 days of 414 aging at this temperature. For experiments conducted at 200 °C, the initial pH of the system 415 dictated the degree of transformation. Acidic systems yield total or near-total transformation of 416 goethite to hematite while 56 to 98% of the goethite remained after aging at pH 7. The relationship between stability at elevated temperature and pH aligns with previous observations (Das et al., 417 418 2011; Schwertmann & Carlson, 2005; Smith & Kidd, 1949). Goethite generally produced 419 relatively large (0.2 to 1 μ m) particles (Figure 3; Figure S1), but still red hematite except at 420 circumneutral sulfate-rich fluids where little transformation occurred. Consistent with previous 421 observations (Davidson et al., 2008; De Grave et al., 1999; González et al., 2000; Lin et al., 2014), 422 hematite did not retain the acicular form of the precursor goethite. Notably, the bipyramidal 423 morphology of the hematite products (Figure 3; Figure S1) matches that of the hematite formed 424 via epitaxial growth on goethite in hydrothermal systems (Lin et al., 2014), suggesting a 425 dissolution and reprecipitation transformation mechanism.

Additional experiments investigating the effects of seeding goethite and ferrihydrite with red, fine-grained hematite to remove possible nucleation barriers resulted in no substantial changes to the transformation products. Seeding also did not affect the final particle sizes of the transformation products. The nucleation rate of hematite therefore does seem to impose a limit on these transformation processes. Particularly with respect to goethite, the inhibition of transformation to hematite under neutral pH conditions at high temperature and all low temperature conditions is not due to a nucleation barrier.

434 **4.1.4 Akaganeite and schwertmannite**

435 Unlike jarosite, akaganeite and schwertmannite showed no impact from the common ion 436 effect on their transformations despite containing background salt anions. Akaganeite has been 437 observed to transform to hematite via dissolution and reprecipitation (Bailey et al., 1993; Cornell 438 & Giovanoli, 1990; Goñi-Elizalde et al., 1987; Peterson et al., 2018). The hematite products in this 439 study do not reflect the rod-like morphology of the precursor akageneite and instead appear similar 440 to akageneite transformation products analyzed by Bailey et al. (1993) that formed via dissolution 441 and reprecipitation. This suggests that akageneite in this study transformed to red hematite through 442 a similar mechanism.

443 Schwertmannite displayed a temperature-dependence in is transformation products, 444 forming goethite at 98 °C but red hematite at 200 °C. This is consistent with observations made in 445 prior studies (Barham, 1997; Davidson et al., 2008). These transformations may occur via a 446 ferrihydrite precursor (Davidson et al., 2008), although this cannot be evaluated by our data since 447 no ferrihydrite was detected in the final aging products. Hematite particle sizes (Table 1; Figure 3) 448 were generally larger when produced by a schwertmannite precursor (80 to 130 nm) than for a 449 ferrihydrite precursor (60 to 90 nm). This may reflect the impact of sulfate released during 450 transformation of schwertmannite, differences in pH at the onset of hematite nucleation from a 451 ferrihydrite intermediate, or larger aggregates of ferrihydrite forming in the schwertmannite 452 experiments before crystallization to hematite.

453

454 **4.2** Impacts of initial fluid composition on iron (oxyhydr)oxide transformation products

455 While each mineral system had variable reaction products and final particle sizes, some 456 general trends were evident across most samples that indicate a specific role of fluid composition. 457 Experiments in sulfate-rich systems generally resulted in higher final pH values, smaller final 458 particle sizes, and occasionally less complete transformation to hematite. Sulfate commonly adsorbs onto iron oxides as binuclear surface complexes (Hug, 1997; Paul et al., 2005; Wang et 459 460 al., 2018), which may inhibit the transformation of precursor iron(III) oxides as well as the growth 461 of hematite crystals. Sulfate tends to form binuclear complexes at the surfaces of iron oxides, 462 whereas chloride may bond more weakly (Boily & Shchukarev, 2010; Shchukarev & Boily, 2008; 463 Shchukarev et al., 2007; Shchukarev & Sjöberg, 2005). In contrast, samples in chloride-rich fluids 464 often resulted in complete transformation to hematite, larger final particle sizes, lower final pH 465 values, and higher dissolved iron concentrations. Chloride shows weaker adsorption to iron oxide 466 surfaces than sulfate (Boily & Shchukarev, 2010; Shchukarev & Boily, 2008; Shchukarev et al., 467 2007; Shchukarev & Sjöberg, 2005) but may promote more rapid dissolution of the precursor 468 phases (Pritchett et al., 2012; Virtanen et al., 1997), potentially increasing the rate of mass transfer 469 to growing hematite crystals. In addition, chloride complexes iron in solution, especially at 470 elevated temperature (Gammons & Allin, 2022; Liu et al., 2006; Stefánsson et al., 2019), 471 increasing the solubility of iron and its availability for hematite growth. The initial pH value also 472 impacts the final fluid composition and reaction products. Experiments initially set to acidic 473 conditions (pH 3) generally resulted in larger final particle sizes, lower final pH values, and more 474 complete transformation to hematite as well, suggesting that acidic conditions may be more 475 favorable to the formation of coarser-grained hematite.

476

477 **4.3 Jarosite as a potential precursor mineral to gray hematite**

Of all the precursor minerals investigated, only jarosite forms hematite of sufficient grain
size to be spectrally gray. We hypothesize that this system was uniquely able to maintain both a
slow nucleation rate and rapid growth of hematite. Nucleation rate is controlled by the degree of

481 supersaturation of hematite (De Yoreo & Vekilov, 2003), which depends on the dissolved iron 482 concentration and pH. While jarosite dissolution creates elevated dissolved iron concentrations, it 483 also generates substantial acidity. This apparently prevents the system from reaching high degrees 484 of supersaturation with respect to hematite, creating few nuclei. However, the elevated dissolved 485 iron concentrations enable rapid growth of the small number of nuclei that form, creating large 486 hematite crystallites. The transformation of jarosite to hematite further acidifies the system, 487 creating a positive feedback that drives further jarosite dissolution and hematite growth. Validation 488 of our hypothesized mechanism requires a reactor design that would enable sampling the fluid 489 phase at 200 °C to track the time evolution of dissolved iron and pH.

490 Incomplete transformation of jarosite to hematite in sulfate-rich fluids may reflect 491 conditions where the phases are in equilibrium. Complete jarosite transformation was only 492 observed in the presence of high dissolve chloride concentration (1 mol L⁻¹), which resulted in 493 over an order of magnitude greater dissolved iron concentration at 200 °C compared to other 494 conditions (Table 3). Complexation of iron(III) sites on the surface of jarosite by chloride may 495 maintain charge balance of the system as sulfate is released and accelerate its dissolution (Pritchett 496 et al., 2012). High concentrations of chloride also form aqueous iron complexes (e.g., $FeCl_4$) at 497 elevated temperature (Gammons & Allin, 2022; Liu et al., 2006; Stefánsson et al., 2019), 498 increasing the total concentration of iron in solution. The presence of elevated dissolved chloride 499 in jarosite-bearing systems thus enhances the formation of gray hematite.

500 In contrast, akaganeite, ferrihydrite, goethite, and schwertmannite may transform through 501 solid-state processes and aggregation of small particles, providing a distinct nucleation route, or 502 generate high degrees of supersaturation while maintaining low dissolved iron concentrations 503 because of the high pH conditions. Further, the iron octahedra in jarosite are corning-sharing (Kato 504 & Miúra, 1977), but the iron octahedra in hematite are edge and face sharing (Blake et al., 1966; Pauling & Hendricks, 1925). This may slow the initial nucleation of hematite in systems initially containing jarosite. Other iron(III) minerals investigated in this study have edge-sharing octahedra, which may instead facilitate the nucleation of hematite and result in many smaller final hematite particles. Goethite came the closest to generating gray hematite, forming particle at or near 1 μ m at 200 °C. These larger hematite particles may form from goethite via solid-state transformation if its long acicular needles aggregate.

511 Although this study explores mineral transformations in 98 °C and 200 °C fluids, these 512 temperatures were primarily chosen to accelerate the rate of reaction to enable investigation within 513 laboratory time scales. Tosca & Knoll (2009) examined the integration of the temperature and time 514 required to diagenetically transform a given sediment via kinetic formulations. Their models 515 exemplify how mineral transformations have a time-temperature integral threshold that can be met 516 in multiple ways; transformations occurring at lower temperatures over longer periods of time may 517 also occur at higher temperatures much more rapidly. Time-temperature integral thresholds exist 518 for each of the transformations observed in this study; therefore, the results obtained at high (98 519 °C and 200 °C) temperatures over 20 days in this study might also be observed in lower, ambient-520 temperature aqueous systems over substantially longer time scales. Additionally, while 521 temperature alters chemical equilibria, hematite remains the thermodynamically-stable iron(III) 522 phase at ambient temperatures and above as well as at low water activities (Navrotsky et al., 2008), 523 so this relative stability was not altered by the higher temperatures used.

524

525 **4.4 Implications for diagenetic hematite at Vera Rubin ridge**

526 Comparison of the results of this investigation with observations by MSL Curiosity 527 provides new insight into the formation conditions of gray, coarse-grained hematite at VRR.

528 Deposition of VRR and other Murray formation sediments occurred in lacustrine environments 529 (Edgar et al., 2020; Fraeman, Edgar, et al., 2020; Thompson et al., 2020). Much of VRR is red in 530 color, with the isolated gray portions cross-cut strata and laminations indicating a diagenetic origin 531 (Fraeman, Edgar, et al., 2020). Evidence for isochemical alteration at VRR (Bedford et al., 2019) 532 implies that iron in gray, crystalline hematite in the Jura member is derived from pre-existing iron 533 sources in the rocks, such as jarosite. The drill sample Highfield in the gray portion of the Jura 534 member at VRR contained no akaganeite or jarosite while the neighboring drill sites in the red 535 portions of the ridge (Stoer and Rock Hall) contained 1.0 to 2.3 wt.% jarosite and 1.2 to 6.0 wt.% 536 akaganeite (Rampe et al., 2020). The conspicuous absence of jarosite in Highfield is consistent 537 with it having converted to gray hematite via diagenetic alteration. Chloride salts have been 538 confirmed at VRR by evolved gas analyses (EGA) performed by SAM (McAdam et al., 2020), 539 supporting the possibility that chloride-rich fluids were present during diagenesis. While sulfate 540 salts also occur, the presence of calcium sulfate minerals indicate that sulfate solubility would be relatively limited compared to the concentrations used in the present study (0.1 and 1 mol L⁻¹). 541 542 Calcium sulfate precipitation provides a mechanism to maintain the lower sulfate concentrations 543 that promote jarosite transformation to gray hematite, while similar mechanisms to remove 544 chloride from solution are lacking.

The relative lack of iron in the X-ray amorphous component of VRR sediments compared to the iron content of Duluth (the drill sample in the Blunts Point member just below VRR) may be the result of such phases crystallizing to form iron(III) (oxyhydr)oxides and sulfates such as jarosite, akaganeite, and hematite (McAdam et al., 2020; Rampe et al., 2020). However, it remains unclear whether the amorphous component of VRR sediments could have directly converted to gray, crystalline hematite without first forming an intermediate phase. Jarosite elsewhere in the

551 Murray formation may be as young as the Amazonian (Martin et al., 2017). If this precursor of 552 gray hematite formed from amorphous material via a prior diagenetic event, then this would 553 indicate multiple periods of aqueous activity that substantially post-dates primary sediment 554 deposition at Gale crater.

The observations of this study further support the formation of gray hematite at VRR as occurring under non-reducing conditions. The isochemical nature of alteration of VRR noted above precludes the formation of gray hematite from Fe(II)-bearing groundwaters because these would have increased the total iron content. Our results provide a formation mechanism for gray hematite that occurs under oxidizing conditions: diagenetic transformation of jarosite. The diagenetic event that produced gray hematite is thus unlikely to have produced a redox gradient that would generate chemical energy to support life at VRR.

562

563 **5 Conclusions**

564 Jarosite is the first iron(III) mineral known to occur on Mars demonstrated to serve as a 565 diagenetic precursor for gray hematite. Transformation to coarse-grained hematite is aided by 566 acidic conditions generated by jarosite dissolution. This creates low degrees of hematite 567 supersaturation, and thus few initial nuclei, while also maintaining elevated dissolved iron 568 concentrations, leading to fairly rapid particle growth. Chloride-rich fluids, particularly when 569 combined with acidic conditions, appear to play an active role in the dissolution of iron(III) 570 minerals, including jarosite, by increasing precursor mineral dissolution rates and solubilizing iron 571 via aqueous complexation, thereby promoting larger final hematite particle sizes. The gray 572 hematite found throughout VRR may have formed from chloride-rich fluids dissolving jarosite 573 and reprecipitating the iron as hematite. Other minerals investigated (akaganeite, ferrihydrite, 574 goethite, schwertmannite, and fine-grained hematite) are not promising precursor minerals to the 575 gray hematite at VRR. The distinct behavior of jarosite may be due to differences in transformation 576 mechanisms (dissolution and reprecipitation versus solid-state transformation) or slow rates of 577 initial hematite nucleation due to the absence of edge-sharing iron octahedra.

578

579 Acknowledgements

580 This research was funded by Washington University. A.L.K. was supported by the NASA 581 Mars Data Analysis Program through Award No. 80NSSC20K0939. K.M. was supported by the 582 NASA Science Mission Directorate Future Investigators in NASA Earth and Space Science and 583 Technology (FINESST) program through Award No. 80NSSC19K1521. J.G.C. was supported by 584 the NASA Exobiology program through Award No. 80NSSC18K1292. Raymond Arvidson, Paul 585 Carpenter, and Elaine Flynn are thanked for their assistance with sample characterization. The 586 authors acknowledge support from the Institute of Materials Science and Engineering for the use 587 of laboratory instruments and staff assistance.

588

589 **Open Research**

All data used in the manuscript are available in the supporting information or in Washington University in St. Louis Research Data via https://doi.org/10.7936/6rxs-103632 with Creative Commons Attribution (CC BY) 4.0 International (Knight et al., 2023). Profex version 5 used for refinement of X-ray diffraction patterns is preserved at https://www.profex-xrd.org/ (Doebelin & Kleeberg, 2015). ImageJ version 1.53k used for grain size analyses is preserved at https://imagej.nih.gov/ij/download.html (Schneider et al., 2012).

- 596
- 597
- 598

599 **References**

- 600 Bailey, J. K., Brinker, C. J., & Mecartney, M. L. (1993). Growth mechanisms of iron oxide
- 601 particles of differing morphologies from the forced hydrolysis of ferric chloride solutions.
- 602 *Journal of Colloid and Interface Science*, 157(1), 1-13.
- 603 https://doi.org/10.1006/jcis.1993.1150
- Barham, R. J. (1997). Schwertmannite: A unique mineral, contains a replaceable ligand,
- 605 transforms to jarosites, hematites, and/or basic iron sulfate. *Journal of Materials*

606 *Research*, *12*(10), 2751-2758. <u>https://doi.org/10.1557/JMR.1997.0366</u>

- 607 Basciano, L. C., & Peterson, R. C. (2007). Jarosite-hydronium jarosite solid-solution series with
- full iron site occupancy: Mineralogy and crystal chemistry. American Mineralogist, 92(8-

609 9), 1464-1473. <u>https://doi.org/10.2138/am.2007.2432</u>

- 610 Basciano, L. C., & Peterson, R. C. (2008). Crystal chemistry of the natrojarosite-jarosite and
- 611 natrojarosite-hydronium jarosite solid-solution series: A synthetic study with full Fe site
- 612 occupancy. *American Mineralogist*, *93*(5-6), 853-862.
- 613 https://doi.org/10.2138/am.2008.2731
- 614 Becker, U., & Gasharova, B. (2001). AFM observations and simulations of jarosite growth at the
- 615 molecular scale: Probing the basis for the incorporation of foreign ions into jarosite as a
- 616 storage mineral. *Physics and Chemistry of Minerals*, 28(8), 545-556.
- 617 <u>https://doi.org/10.1007/s002690100188</u>
- 618 Bedford, C. C., Bridges, J. C., Schwenzer, S. P., Wiens, R. C., Rampe, E. B., Frydenvang, J., &
- 619 Gasda, P. J. (2019). Alteration trends and geochemical source region characteristics
- 620 preserved in the fluviolacustrine sedimentary record of Gale crater, Mars. *Geochimica et*
- 621 *Cosmochimica Acta*, 246, 234-266. <u>https://doi.org/10.1016/j.gca.2018.11.031</u>

- 622 Bennett, K. A., Rivera-Hernández, F., Tinker, C., Horgan, B., Fey, D. M., Edwards, C., Edgar, L.
- 623 A., Kronyak, R., Edgett, K. S., Fraeman, A., Kah, L. C., Henderson, M., Stein, N.,
- 624 Dehouck, E., & Williams, A. J. (2021). Diagenesis Revealed by Fine-Scale Features at
- 625 Vera Rubin Ridge, Gale Crater, Mars. *Journal of Geophysical Research: Planets*, 126(5),
- 626 e2019JE006311. https://doi.org/10.1029/2019JE006311
- Blake, R. L., Hessevick, R. E., Zoltai, T., & Finger, L. W. (1966). Refinement of the hematite
 structure. *American Mineralogist*, *51*(1-2), 123-129.
- 629 Boily, J.-F., & Shchukarev, A. (2010). X-ray Photoelectron Spectroscopy of Fast-Frozen
- 630 Hematite Colloids in Aqueous Solutions. 2. Tracing the Relationship between Surface
- 631 Charge and Electrolyte Adsorption. *The Journal of Physical Chemistry C*, *114*(6), 2613632 2616. https://doi.org/10.1021/jp908197f
- 633 Catling, D. C., & Moore, J. M. (2003). The nature of coarse-grained crystalline hematite and its
- 634 implications for the early environment of Mars. *Icarus*, *165*(2), 277-300.
- 635 https://doi.org/10.1016/S0019-1035(03)00173-8
- 636 Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., & Malin, M. C. (2001). Global
- 637 mapping of Martian hematite mineral deposits: Remnants of water-driven processes on
- 638 early Mars. Journal of Geophysical Research: Planets, 106(E10), 23873-23885.
- 639 <u>https://doi.org/10.1029/2000je001415</u>
- 640 Clark, J. V., Sutter, B., McAdam, A. C., Rampe, E. B., Archer, P. D., Ming, D. W., Navarro-
- 641 Gonzalez, R., Mahaffy, P., & Lapen, T. J. (2020). High-temperature HCl evolutions from
- 642 mixtures of perchlorates and chlorides with water-bearing phases: Implications for the
- 643 SAM instrument in Gale crater, Mars. *Journal of Geophysical Research: Planets*, 125(2),
- 644 e2019JE006173. https://doi.org/10.1029/2019JE006173

- 645 Cornell, R. M., & Giovanoli, R. (1990). Transformation of akaganéite into goethite and hematite
- 646 in alkaline media. *Clays and Clay Minerals*, *38*(5), 469-476.
- 647 https://doi.org/10.1346/CCMN.1990.0380502
- 648 Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions,
- 649 *occurences and uses.* Weinheim: John Wiley & Sons.
- 650 Das, S., Hendry, M., & Essilfie-Dughan, J. (2011). Transformation of two-line ferrihydrite to
- goethite and hematite as a function of pH and temperature. *Environmental Science & Technology*, 45, 268-75. https://doi.org/10.1021/es101903y
- 653 Davidson, L. E., Shaw, S., & Benning, L. G. (2008). The kinetics and mechanisms of
- schwertmannite transformation to goethite and hematite under alkaline conditions.
- 655 *American Mineralogist*, 93(8-9), 1326-1337. <u>https://doi.org/10.2138/am.2008.2761</u>
- 656 De Grave, E., Vochten, R., Quenard, O., Van San, E., Desseyn, H., & Rousset, A. (1999).
- 657 Mössbauer characterisation of the products resulting from hydrothermal treatments of
- 658 nanosized goethite. *Nanostructured Materials*, *11*(4), 493-504.
- 659 https://doi.org/10.1016/s0965-9773(99)00334-7
- 660 De Yoreo, J. J., & Vekilov, P. G. (2003). Principles of Crystal Nucleation and Growth. *Reviews*
- 661 *in Mineralogy and Geochemistry*, 54(1), 57-93. <u>https://doi.org/10.2113/0540057</u>
- Doebelin, N., & Kleeberg, R. (2015). Profex: A graphical user interface for the Rietveld
- refinement program BGMN. *Journal of Applied Crystallography*, 48(5), 1573-1580.
 https://doi.org/10.1107/s1600576715014685
- Edgar, L. A., Fedo, C. M., Gupta, S., Banham, S. G., Fraeman, A. A., Grotzinger, J. P., Stack, K.
- 666 M., Stein, N. T., Bennett, K. A., Rivera-Hernández, F., Sun, V. Z., Edgett, K. S., Rubin,
- D. M., House, C., & Van Beek, J. (2020). A lacustrine paleoenvironment recorded at

668	Vera Rubin ridge, Gale crater: Overview of the sedimentology and stratigraphy observed
669	by the Mars Science Laboratory Curiosity rover. Journal of Geophysical Research:
670	Planets, 125(3), e2019JE006307. https://doi.org/10.1029/2019JE006307
671	Egami, T., & Billinge, S. (2012). Underneath the Bragg peaks: Structural analysis of complex
672	materials, 16. Amsterdam, The Netherlands: Permagon.
673	Fallacaro, A., & Calvin, W. M. (2006). Spectral Properties of Lake Superior Banded Iron
674	Formation: Application to Martian Hematite Deposits. Astrobiology, 6(4), 563-580.
675	https://doi.org/10.1089/ast.2006.6.563
676	Fraeman, A. A., Arvidson, R. E., Catalano, J. G., Grotzinger, J. P., Morris, R. V., Murchie, S. L.,
677	Stack, K. M., Humm, D. C., McGovern, J. A., Seelos, F. P., Seelos, K. D., & Viviano, C.
678	E. (2013). A hematite-bearing layer in Gale Crater, Mars: Mapping and implications for
679	past aqueous conditions. Geology, 41(10), 1103-1106. https://doi.org/10.1130/g34613.1
680	Fraeman, A. A., Edgar, L. A., Rampe, E. B., Thompson, L. M., Frydenvang, J., Fedo, C. M.,
681	Catalano, J. G., Dietrich, W. E., Gabriel, T. S. J., Grotzinger, J. P., L'Haridon, J.,
682	Mangold, N., Sun, V. Z., House, C. H., Bryk, A., Hardgrove, C., Czarnecki, S., Stack, K.
683	M., Morris, R. V., Arvidson, R. E., Banham, S. G., Bennett, K. A., Bridges, J. C.,
684	Edwards, C. S., Fischer, W. W., Fox, V. K., Gupta, S., Horgan, B. H. N., Jacob, S. R.,
685	Johnson, J. R., Johnson, S. S., Rubin, D. R., Salvatore, M. R., Schwenzer, S. P., Siebach,
686	K. L., Stein, N. T., Turner, S., Wellington, D. F., Wiens, R. C., Williams, A. J.,
687	Davidson, G. A., & Wong, G. M. (2020). Evidence for a diagenetic origin of Vera Rubin
688	Ridge, Gale Crater, Mars: Summary and synthesis of Curiosity's exploration campaign.
689	Journal of Geophysical Research: Planets, 125(12), e2020JE006527.
690	https://doi.org/10.1029/2020JE006527

- 691 Fraeman, A. A., Ehlmann, B. L., Arvidson, R. E., Edwards, C. S., Grotzinger, J. P., Milliken, R.
- E., Quinn, D. P., & Rice, M. S. (2016). The stratigraphy and evolution of lower Mount
- 693 Sharp from spectral, morphological, and thermophysical orbital data sets. *Journal of*
- 694 *Geophysical Research: Planets*, *121*(9), 1713-1736.
- 695 https://doi.org/10.1002/2016JE005095
- 696 Fraeman, A. A., Johnson, J. R., Arvidson, R. E., Rice, M. S., Wellington, D. F., Morris, R. V.,
- 697 Fox, V. K., Horgan, B. H. N., Jacob, S. R., Salvatore, M. R., Sun, V. Z., Pinet, P., Bell, J.
- 698 F., Wiens, R. C., & Vasavada, A. R. (2020). Synergistic ground and orbital observations
- 699 of iron oxides on Mt. Sharp and Vera Rubin ridge. *Journal of Geophysical Research:*
- 700 *Planets*, *125*(9), e2019JE006294. <u>https://doi.org/10.1029/2019je006294</u>
- Freitas, E. T. F., Montoro, L. A., Gasparon, M., & Ciminelli, V. S. T. (2015). Natural attenuation
 of arsenic in the environment by immobilization in nanostructured hematite.
- 703 *Chemosphere*, *138*, 340-347. <u>https://doi.org/10.1016/j.chemosphere.2015.05.101</u>
- 704 Frydenvang, J., Gasda, P. J., Hurowitz, J. A., Grotzinger, J. P., Wiens, R. C., Newsom, H. E.,
- Edgett, K. S., Watkins, J., Bridges, J. C., Maurice, S., Fisk, M. R., Johnson, J. R., Rapin,
- 706 W., Stein, N. T., Clegg, S. M., Schwenzer, S. P., Bedford, C. C., Edwards, P., Mangold,
- 707 N., Cousin, A., Anderson, R. B., Payré, V., Vaniman, D., Blake, D. F., Lanza, N. L.,
- 708 Gupta, S., Van Beek, J., Sautter, V., Meslin, P. Y., Rice, M., Milliken, R., Gellert, R.,
- Thompson, L., Clark, B. C., Sumner, D. Y., Fraeman, A. A., Kinch, K. M., Madsen, M.
- 710 B., Mitrofanov, I. G., Jun, I., Calef, F., & Vasavada, A. R. (2017). Diagenetic silica
- 711 enrichment and late-stage groundwater activity in Gale crater, Mars. *Geophysical*
- 712 *Research Letters*, 44(10), 4716-4724. <u>https://doi.org/10.1002/2017GL073323</u>

713	Gammons, C. H., & Allin, N. C. (2022). Stability of aqueous Fe(III) chloride complexes and the
714	solubility of hematite between 150 and 300 °C. Geochimica et Cosmochimica Acta, 330,
715	148-164. https://doi.org/10.1016/j.gca.2021.01.043
716	Golden, D. C., Ming, D. W., Morris, R. V., & Graff, T. G. (2008). Hydrothermal synthesis of
717	hematite spherules and jarosite: Implications for diagenesis and hematite spherule
718	formation in sulfate outcrops at Meridiani Planum, Mars. American Mineralogist, 93(8-
719	9), 1201-1214. https://doi.org/10.2138/am.2008.2737

- 720 Goñi-Elizalde, S., Garcia-Clavel, M. E., & Tejedor-Tejedor, M. I. (1987). Mechanism of
- akaganeite-hematite transformation via solution. *Reactivity of Solids*, *3*(1), 139-154.
- 722 <u>https://doi.org/10.1016/0168-7336(87)80024-4</u>
- 723 González, G., Sagarzazu, A., & Villalba, R. (2000). Study of the mechano-chemical
- transformation of goethite to hematite by TEM and XRD. *Materials Research Bulletin*,

725 *35*(14), 2295-2308. <u>https://doi.org/10.1016/S0025-5408(00)00434-7</u>

- 726 Horgan, B. H. N., Johnson, J. R., Fraeman, A. A., Rice, M. S., Seeger, C., Bell III, J. F., Bennett,
- 727 K. A., Cloutis, E. A., Edgar, L. A., Frydenvang, J., Grotzinger, J. P., L'Haridon, J., Jacob,
- 728 S. R., Mangold, N., Rampe, E. B., Rivera-Hernandez, F., Sun, V. Z., Thompson, L. M., &
- 729 Wellington, D. (2020). Diagenesis of Vera Rubin ridge, Gale crater, Mars, from Mastcam
- 730 multispectral images. Journal of Geophysical Research: Planets, 125(11),
- 731 e2019JE006322. <u>https://doi.org/10.1029/2019JE006322</u>
- Hug, S. J. (1997). In situ Fourier transform infrared measurements of sulfate adsorption on
- hematite in aqueous solutions. *Journal of Colloid and Interface Science*, 188(2), 415-422.
- 734 <u>https://doi.org/10.1006/jcis.1996.4755</u>

735	Janney, D. E., Cowley, J. M., & Buseck, P. R. (2000). Transmission electron microscopy of
736	synthetic 2- and 6-line ferrihydrite. Clays and Clay Minerals, 48(1), 111-119.
737	https://doi.org/10.1346/ccmn.2000.0480114
738	Jensen, J. L., Siddoway, C. S., Reiners, P. W., Ault, A. K., Thomson, S. N., & Steele-MacInnis,
739	M. (2018). Single-crystal hematite (U–Th)/He dates and fluid inclusions document
740	widespread Cryogenian sand injection in crystalline basement. Earth and Planetary
741	Science Letters, 500, 145-155. https://doi.org/10.1016/j.epsl.2018.08.021
742	Johnson, J. R., Bell, J. F., III, Bender, S., Blaney, D., Cloutis, E., Ehlmann, B., Fraeman, A.,
743	Gasnault, O., Kinch, K., Le Mouélic, S., Maurice, S., Rampe, E., Vaniman, D., & Wiens,
744	R. C. (2016). Constraints on iron sulfate and iron oxide mineralogy from ChemCam
745	visible/near-infrared reflectance spectroscopy of Mt. Sharp basal units, Gale Crater,
746	Mars. American Mineralogist, 101(7), 1501-1514. https://doi.org/10.2138/am-2016-5553
747	Kato, T., & Miúra, Y. (1977). The crystal structures of jarosite and svanbergite. Mineralogical
748	Journal, 8(8), 419-430.
749	Kerker, M., Scheiner, P., Cooke, D. D., & Kratohvil, J. P. (1979). Absorption index and color of
750	colloidal hematite. Journal of Colloid and Interface Science, 71(1), 176-187.
751	https://doi.org/10.1016/0021-9797(79)90231-5
752	Knight, A. L., Mitra, K., & Catalano, J. G. (2023). Mineral products and fluid compositions from
753	the transformations of iron(III) minerals in Mars-relevant fluids (Version 1) [Dataset].
754	Washington University in St. Louis Research Data. https://doi.org/10.7936/6rxs-103632
755	Lane, M. D., Morris, R. V., Mertzman, S. A., & Christensen, P. R. (2002). Evidence for platy

- 756 hematite grains in Sinus Meridiani, Mars. Journal of Geophysical Research: Planets,
- 757 *107*(E12), 5126. <u>https://doi.org/10.1029/2001je001832</u>

758	Lin, M., Tng, L., Lim, T., Choo, M., Zhang, J., Tan, H. R., & Bai, S. (2014). Hydrothermal
759	synthesis of octade cahedral hematite (α -Fe ₂ O ₃) nanoparticles: An epitaxial growth from
760	goethite (α-FeOOH). The Journal of Physical Chemistry C, 118(20), 10903-10910.
761	https://doi.org/10.1021/jp502087h
762	Liu, W., Etschmann, B., Brugger, J., Spiccia, L., Foran, G., & McInnes, B. (2006). UV-Vis
763	spectrophotometric and XAFS studies of ferric chloride complexes in hyper-saline LiCl
764	solutions at 25–90 °C. Chemical Geology, 231(4), 326-349.
765	https://doi.org/10.1016/j.chemgeo.2006.02.005
766	Martin, P. E., Farley, K. A., Baker, M. B., Malespin, C. A., Schwenzer, S. P., Cohen, B. A.,
767	Mahaffy, P. R., McAdam, A. C., Ming, D. W., Vasconcelos, P. M., & Navarro-González,
768	R. (2017). A two-step K-Ar experiment on Mars: Dating the diagenetic formation of
769	jarosite from Amazonian groundwaters. Journal of Geophysical Research: Planets,
770	122(12), 2803-2818. https://doi.org/10.1002/2017JE005445
771	McAdam, A. C., Sutter, B., Archer, P. D., Franz, H. B., Wong, G. M., Lewis, J. M. T.,
772	Eigenbrode, J. L., Stern, J. C., Knudson, C. A., Clark, J. V., Andrejkovičová, S., Ming, D.
773	W., Morris, R. V., Achilles, C. N., Rampe, E. B., Bristow, T. F., Navarro-González, R.,
774	Mahaffy, P. R., Thompson, L. M., Gellert, R., Williams, A. J., House, C. H., & Johnson,
775	S. S. (2020). Constraints on the mineralogy and geochemistry of Vera Rubin ridge, Gale
776	crater, Mars, from Mars Science Laboratory Sample Analysis at Mars Evolved Gas
777	Analyses. Journal of Geophysical Research: Planets, 125(11), e2019JE006309.
778	https://doi.org/10.1029/2019JE006309
779	Michel, F. M., Ehm, L., Liu, G., Han, W. Q., Antao, S. M., Chupas, P. J., Lee, P. L., Knorr, K.,
780	Eulert, H., Kim, J., Grey, C. P., Celestian, A. J., Gillow, J., Schoonen, M. A. A.,

781	Strongin, D. R., & Parise, J. B. (2007). Similarities in 2- and 6-line ferrihydrite based on
782	pair distribution function analysis of X-ray total scattering. Chemistry of Materials, 19(6),
783	1489-1496. https://doi.org/10.1021/cm062585n
784	Morris, R. V., Golden, D. C., Bell, J. F., Shelfer, T. D., Scheinost, A. C., Hinman, N. W.,
785	Furniss, G., Mertzman, S. A., Bishop, J. L., Ming, D. W., Allen, C. C., & Britt, D. T.
786	(2000). Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils:
787	Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC
788	meteorite, and Pathfinder samples. Journal of Geophysical Research: Planets, 105(E1),
789	1757-1817. https://doi.org/10.1029/1999je001059
790	Morris, R. V., Rampe, E. B., Vaniman, D. T., Christoffersen, R., Yen, A. S., Morrison, S. M.,
791	Ming, D. W., Achilles, C. N., Fraeman, A. A., Le, L., Tu, V. M., Ott, J. P., Treiman, A.
792	H., Hogancamp, J. V., Graff, T. G., Adams, M., Hamilton, J. C., Mertzman, S. A.,
793	Bristow, T. F., Blake, D. F., Castle, N., Chipera, S. J., Craig, P. I., Des Marais, D. J.,
794	Downs, G., Downs, R. T., Hazen, R. M., Morookian, JM., & Thorpe, M. (2020).
795	Hydrothermal precipitation of sanidine (adularia) having full Al, Si structural disorder and
796	specular hematite at Maunakea Volcano (Hawai'i) and at Gale crater (Mars). Journal of
797	Geophysical Research: Planets, 125(9), e2019JE006324.
798	https://doi.org/10.1029/2019JE006324
799	Navrotsky, A., Mazeina, L., & Majzlan, J. (2008). Size-driven structural and thermodynamic

- 800 complexity in iron oxides. *Science*, *319*(5870), 1635-1638.
- 801 https://doi.org/10.1126/science.1148614

- 803 Übersättigung und Überkaltung. Zeitschrift für Physikalische Chemie, 22U(1), 289-330.
 804 https://doi.org/10.1515/zpch-1897-2233
- 805 Paul, K. W., Borda, M. J., Kubicki, J. D., & Sparks, D. L. (2005). Effect of Dehydration on
- 806 Sulfate Coordination and Speciation at the Fe-(Hydr)oxide-Water Interface: A
- 807 Molecular Orbital/Density Functional Theory and Fourier Transform Infrared
- 808 Spectroscopic Investigation. *Langmuir*, 21(24), 11071-11078.
- 809 <u>https://doi.org/10.1021/la050648v</u>
- 810 Pauling, L., & Hendricks, S. B. (1925). The crystal structures of hematite and corundum. *Journal*
- 811 of the American Chemical Society, 47(3), 781-790. <u>https://doi.org/10.1021/ja01680a027</u>
- 812 Peterson, K. M., Heaney, P. J., & Post, J. E. (2018). Evolution in the structure of akaganeite and
- 813 hematite during hydrothermal growth: An in situ synchrotron X-ray diffraction analysis.
- 814 *Powder Diffraction*, 33(4), 287-297. <u>https://doi.org/10.1017/S0885715618000623</u>
- 815 Pritchett, B. N., Elwood Madden, M. E., & Madden, A. S. (2012). Jarosite dissolution rates and
- 816 maximum lifetimes in high salinity brines: Implications for Earth and Mars. *Earth and*
- 817 Planetary Science Letters, 357-358, 327-336. <u>https://doi.org/10.1016/j.epsl.2012.09.011</u>
- 818 Rampe, E. B., Bristow, T. F., Morris, R. V., Morrison, S. M., Achilles, C. N., Ming, D. W.,
- 819 Vaniman, D. T., Blake, D. F., Tu, V. M., Chipera, S. J., Yen, A. S., Peretyazhko, T. S.,
- B20 Downs, R. T., Hazen, R. M., Treiman, A. H., Grotzinger, J. P., Castle, N., Craig, P. I.,
- 821 Des Marais, D. J., Thorpe, M. T., Walroth, R. C., Downs, G. W., Fraeman, A. A.,
- 822 Siebach, K. L., Gellert, R., Lafuente, B., McAdam, A. C., Meslin, P. Y., Sutter, B., &
- 823 Salvatore, M. R. (2020). Mineralogy of Vera Rubin ridge from the Mars Science

- Laboratory CheMin instrument. *Journal of Geophysical Research: Planets*, 125(9).
 https://doi.org/10.1029/2019je006306
- 826 Scarlett, N. V. Y., Grey, I. E., & Brand, H. E. A. (2010). Ordering of iron vacancies in
- 827 monoclinic jarosites. *American Mineralogist*, 95(10), 1590-1593.
- 828 https://doi.org/10.2138/am.2010.3591
- Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of
 image analysis. *Nature Methods*, 9(7), 671-675. https://doi.org/10.1038/nmeth.2089
- 831 Schwertmann, U., & Carlson, L. (2005). The pH-dependent transformation of schwertmannite to
- 832 goethite at 25°C. *Clay Minerals*, 40(1), 63-66.
- 833 https://doi.org/10.1180/0009855054010155
- Schwertmann, U., Friedl, J., & Stanjek, H. (1999). From Fe(III) ions to ferrihydrite and then to
 hematite. *Journal of Colloid and Interface Science*, 209(1), 215-223.
- 836 https://doi.org/10.1006/jcis.1998.5899
- 837 Shchukarev, A., & Boily, J.-F. (2008). XPS study of the hematite–aqueous solution interface.
- 838 *Surface and Interface Analysis*, 40(3-4), 349-353. https://doi.org/10.1002/sia.2657
- 839 Shchukarev, A., Boily, J.-F., & Felmy, A. R. (2007). XPS of Fast-Frozen Hematite Colloids in
- 840 NaCl Aqueous Solutions: I. Evidence for the Formation of Multiple Layers of Hydrated
- 841 Sodium and Chloride Ions Induced by the {001} Basal Plane. *The Journal of Physical*
- 842 *Chemistry C*, *111*(49), 18307-18316. <u>https://doi.org/10.1021/jp075321c</u>
- 843 Shchukarev, A., & Sjöberg, S. (2005). XPS with fast-frozen samples: A renewed approach to
- study the real mineral/solution interface. *Surface Science*, 584(1), 106-112.
- 845 https://doi.org/10.1016/j.susc.2005.01.060

- 846 Sherman, D. M. (1985). The electronic structures of Fe^{3+} coordination sites in iron oxides:
- 847 Applications to spectra, bonding, and magnetism. *Physics and Chemistry of Minerals*,
- 848 *12*(3), 161-175. <u>https://doi.org/10.1007/bf00308210</u>
- 849 Sherman, D. M., & Waite, T. D. (1985). Electronic spectra of Fe³⁺ oxides and oxide hydroxides
- in the near IR to near UV. American Mineralogist, 70, 1262-1269.
- 851 Smith, A. M. L., Hudson-Edwards, K. A., Dubbin, W. E., & Wright, K. (2006). Dissolution of
- jarosite [KFe₃(SO₄)₂(OH)₆] at pH 2 and 8: Insights from batch experiments and
- computational modelling. *Geochimica et Cosmochimica Acta*, 70(3), 608-621.
- 854 <u>https://doi.org/10.1016/j.gca.2005.09.024</u>
- Smith, F. G., & Kidd, D. J. (1949). Hematite-goethite relations in neutral and alkaline solutions
 under pressure. *American Mineralogist*, *34*(5-6), 403-412.
- 857 Soltis, J. A., Feinberg, J. M., Gilbert, B., & Penn, R. L. (2016). Phase Transformation and
- 858 Particle-Mediated Growth in the Formation of Hematite from 2-Line Ferrihydrite. *Crystal*859 *Growth & Design*, 16(2), 922-932. https://doi.org/10.1021/acs.cgd.5b01471
- 860 Stack, K. M., Grotzinger, J. P., Kah, L. C., Schmidt, M. E., Mangold, N., Edgett, K. S., Sumner,
- 861 D. Y., Siebach, K. L., Nachon, M., Lee, R., Blaney, D. L., Deflores, L. P., Edgar, L. A.,
- Fairén, A. G., Leshin, L. A., Maurice, S., Oehler, D. Z., Rice, M. S., & Wiens, R. C.
- 863 (2014). Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay
- formation, Gale crater, Mars. Journal of Geophysical Research: Planets, 119(7), 1637-
- 865 1664. <u>https://doi.org/10.1002/2014je004617</u>
- 866 Steefel, C. I., & Van Cappellen, P. (1990). A new kinetic approach to modeling water-rock
- 867 interaction: The role of nucleation, precursors, and Ostwald ripening. *Geochimica et*
- 868 *Cosmochimica Acta*, 54(10), 2657-2677. https://doi.org/10.1016/0016-7037(90)90003-4

869	Stefánsson, A., Lemke, K. H., & Seward, T. M. (2019). Iron(III) chloride complexation in
870	hydrothermal solutions: A combined spectrophotometric and density functional theory
871	study. Chemical Geology, 524, 77-87. https://doi.org/10.1016/j.chemgeo.2019.05.039
872	Thomas, N. H., Ehlmann, B. L., Rapin, W., Rivera-Hernández, F., Stein, N. T., Frydenvang, J.,
873	Gabriel, T., Meslin, PY., Maurice, S., & Wiens, R. C. (2020). Hydrogen variability in
874	the Murray formation, Gale crater, Mars. Journal of Geophysical Research: Planets,
875	125(9), e2019JE006289. https://doi.org/10.1029/2019JE006289
876	Thompson, L. M., Berger, J. A., Spray, J. G., Fraeman, A. A., McCraig, M. A., O'Connell-
877	Cooper, C. D., Schmidt, M. E., Vanbommel, S., Gellert, R., Yen, A., & Boyd, N. I.
878	(2020). APXS-derived compositional characteristics of Vera Rubin ridge and Murray
879	formation, Gale crater, Mars: Geochemical implications for the origin of the ridge.
880	Journal of Geophysical Research: Planets, 125(10).

881 <u>https://dx.doi.org/10.1029/2019je006319</u>

- 882 Thomson, B. J., Bridges, N. T., Milliken, R., Baldridge, A., Hook, S. J., Crowley, J. K., Marion,
- G. M., de Souza Filho, C. R., Brown, A. J., & Weitz, C. M. (2011). Constraints on the
- origin and evolution of the layered mound in Gale Crater, Mars using Mars
- 885 Reconnaissance Orbiter data. *Icarus*, *214*(2), 413-432.
- 886 <u>https://doi.org/10.1016/j.icarus.2011.05.002</u>
- 887 Tosca, N. J., & Knoll, A. H. (2009). Juvenile chemical sediments and the long term persistence
- of water at the surface of Mars. *Earth and Planetary Science Letters*, 286(3-4), 379-386.
 <u>https://doi.org/10.1016/j.epsl.2009.07.004</u>
- 890 Virtanen, S., Schmuki, P., Davenport, A. J., & Vitus, C. M. (1997). Dissolution of thin iron oxide
- films used as models for iron passive films studied by in situ X-ray absorption near-edge

- spectroscopy. *Journal of the Electrochemical Society*, *144*(1), 198.
- 893 <u>https://doi.org/10.1149/1.1837385</u>
- Wang, X., Wang, Z., Peak, D., Tang, Y., Feng, X., & Zhu, M. (2018). Quantification of
- 895 coexisting inner- and outer-sphere complexation of sulfate on hematite surfaces. ACS
- *Earth and Space Chemistry*, 2(4), 387-398.
- 897 https://doi.org/10.1021/acsearthspacechem.7b00154
- Wang, Y., Xue, S., Lin, Q., Song, D., He, Y., Liu, L., Zhou, J., Zong, M., De Yoreo, J. J., Zhu,
- J., Rosso, K. M., Sushko, M. L., & Zhang, X. (2022). Particle-based hematite
- 900 crystallization is invariant to initial particle morphology. *Proceedings of the National*
- 901 *Academy of Sciences*, *119*(11). <u>https://dx.doi.org/10.1073/pnas.2112679119</u>
- 902 Welch, S. A., Kirste, D., Christy, A. G., Beavis, F. R., & Beavis, S. G. (2008). Jarosite
- 903 dissolution II—Reaction kinetics, stoichiometry and acid flux. *Chemical Geology*,

904 254(1), 73-86. <u>https://doi.org/10.1016/j.chemgeo.2008.06.010</u>

- 905 Yen, A., Morris, R. V., Ming, D. W., Schwenzer, S. P., Sutter, B., Vaniman, D., Treiman, A. H.,
- 906 Gellert, R., Achilles, C., & Berger, J. (2021). Formation of tridymite and evidence for a
- 907 hydrothermal history at gale crater, Mars. *Journal of Geophysical Research: Planets*,
- 908 *126*(3), e2020JE006569.
- 209 Zhu, G., & De Yoreo, J. J. (2022). Hematite Crystallization from a Two-Line Ferrihydrite
- 910 Suspension. *Journal of The Electrochemical Society*, *169*(10), 102510.
- 911 https://dx.doi.org/10.1149/1945-7111/ac99a0
- 912
- 913 **References From the Supporting Information**

914	Baron, D., & Palmer, C. D. (1996). Solubility of jarosite at 4–35 °C. <i>Geochimica et</i>	
915	Cosmochimica Acta, 60(2), 185-195. https://doi.org/10.1016/0016-7037(95)00392-4	
916	Madden, A. S., & Hochella, M. F. (2005). A test of geochemical reactivity as a function of	
917	mineral size: Manganese oxidation promoted by hematite nanoparticles. Geochimica et	
918	Cosmochimica Acta, 69(2), 389-398. https://doi.org/10.1016/j.gca.2004.06.035	
919	Mulvaney, P., Cooper, R., Grieser, F., & Meisel, D. (1988). Charge trapping in the reductive	
920	dissolution of colloidal suspensions of iron(III) oxides. Langmuir, 4(5), 1206-1211.	
921	https://doi.org/10.1021/la00083a028	
922	Schwertmann, U., & Cornell, R. M. (2000). Iron oxides in the laboratory: Preparation and	
923	characterization. Weinheim: John Wiley & Sons.	

925

Journal of Geophysical Research - Planets

Supporting Information for

Transformation of Precursor Iron(III) Minerals in Diagenetic Fluids: Investigating the Origin of Gray Hematite at Vera Rubin Ridge

A. L. Knight¹, K. Mitra¹[†], and J. G. Catalano^{1,2}

¹Department of Earth and Planetary Sciences, Washington University, Saint Louis, Missouri 63130, USA. ²McDonnell Center for the Space Sciences, Washington University, Saint Louis, Missouri 63130, USA. Corresponding author: Abigail L. Knight (alknight@wustl.edu).

[†]Present Address: Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, USA.

Contents of this file:

Text S1 Tables S1 to S2 Figures S1 to S24

Text S1.

Precursor iron(III) mineral syntheses

Nanoparticles of akaganeite were synthesized by partially neutralizing 100 mL of a 1 mol L^{-1} solution of FeCl₃· 6H₂O with 75 mL of 1 mol L^{-1} NaOH and letting it stand for 50 hours at room temperature (Schwertmann and Cornell, 2000). An additional 20 mL of 10 mol L^{-1} NaOH were then added, and the solution was heated at 70 °C for eight days. The resulting supernatant was then centrifuged and the solid product washed via dialysis (Schwertmann and Cornell, 2000). Multiple batches of 2-line ferrihydrite were produced by dissolving 40 g of Fe(NO₃)₃· 9H₂O in 0.5 L of distilled water, adding 1 mol L⁻¹ NaOH until the pH reached 7 to 8, and stirring the solution rapidly (Schwertmann and Cornell, 2000). The solution was then centrifuged, the supernatant decanted, the solid resuspended in ultrapure water several times to remove remaining dissolved species before drying it in a desiccator. Acicular needles of goethite were synthesized by adding 50 mL 1 mol L⁻¹ Fe(NO₃)₃· 9H₂O to 90 mL of 5 mol L⁻¹ NaOH continuously for 2 minutes while rapidly stirring. The resulting solution was then diluted to 1 L with ultrapure water, bringing the pH to 12 to 13, and heated at 70 °C for 60 hours. After heating, the suspension was removed, the excess supernatant decanted, and the suspension filtered multiple times via vacuum filtration (Schwertmann and Cornell, 2000).

Multiple batches of ~60 nm red hematite particles were prepared by adding 300 mL of 1 mol L⁻¹ NaOH continuously to 500 mL of 0.2 mol L⁻¹ Fe(NO₃)₃·9H₂O for 5 minutes and then adding 50 mL of 1 mol L⁻¹ NaHCO₃ to the solution continuously for 1.5 minutes, bringing the pH to about 8 (Schwertmann and Cornell, 2000). The solution was then heated at 98 °C for 5 days, removed from heat and cooled to room temperature, and washed multiple times via vacuum filtration. In addition to the crystalline red hematite particles, a smaller (~10 nm) variety of red hematite was synthesized as well by adding 60 mL of 1 mol L⁻¹ Fe(NO₃)₃·9H₂O dropwise into 750 mL of boiling ultrapure water, removing from heat, and centrifuging the product (Madden and Hochella, 2005; Mulvaney et al., 1988). Schwertmannite was prepared by adding 10.8 g FeCl₃·6H₂O and 3 g of Na₂SO₄ to 2 L of ultrapure water that had been heated to 60 °C (Schwertmann and Cornell, 2000). Immediately after combining the reactants, the solution was heated at 60 °C again for 12 minutes, cooled, and dialyzed for 30 days. Potassium jarosite was prepared by combining 10.8 g FeCl₃·6H₂O and 13.9 g K₂SO₄ in 100 mL of ultrapure water. While stirring this solution, 100 mL of 0.4 mol L⁻¹ KOH was added over 1 minute, and then the

solution was heated at 95 °C in a covered beaker on a hot plate for 3 hours. After heating, the solution was cooled and washed via vacuum filtration (Baron and Palmer, 1996).

Mineral	Batch	Experiments	Crystallite Size (nm)	
akageneite	1	akageneite (all)	15 ± 1	
ferrihydrite	1	ferrihydrite (single-mineral)	_a	
ferrihydrite	2	ferrihydrite (seeded with hematite)	-	
goethite	1	goethite (98 °C)	46 ± 1	
goethite	2	goethite (200 °C)	49 ± 1	
goethite	3	goethite (seeded with hematite)	31.1 ± 0.6	
hematite	1	hematite (~60 nm)	56 ± 1	
hematite	2	ferrihydrite (seeded with hematite) goethite (seeded with hematite)	58 ± 1	
hematite	3	hematite (~10 nm)	12.3 ± 0.4	
schwertmannite	1	schwertmannite (all)	-	
jarosite	1	jarosite (all)	89 ± 4	

Table S1. Initial mineral batches, relevant experiments, and crystallite sizes.

^aParticle size was too small to accurately determine via XRD.

Table S2. Final fluid compositions (pH values and dissolved iron concentrations) of experiments on the transformation of akageneite, ferrihydrite (seeded and unseeded), goethite (seeded and unseeded), hematite (~10 nm and ~60 nm), and schwertmannite in simulated diagenetic fluids.

Mineral	Temperature (°C)	Salt	Initial pH	Final pH	Fe (mmol/kg)
	98	1 mol L ⁻¹ MgCl ₂	3	1.21	36 ± 2
			7	1.24	21 ± 2
		1 mol L ⁻¹ MgSO ₄	3	1.85	1.41 ± 0.05
-1			7	2.19	9.2 ± 0.1
akaganente	200	1 mol L ⁻¹ MgCl ₂	3	0.67	49 ± 2
			7	0.72	40 ± 2
		1 mol L ⁻¹ MgSO ₄	3	1.41	0.39 ± 0.02
			7	1.44	0.26 ± 0.02
	08	1 mol I ⁻¹ MgCla	3	1.07	1.37 ± 0.05
	20	I HOIL MgCl2	5 7	1.07	1.57 ± 0.001
		1 mol L ⁻¹ MaSO	3	1.70	0.003 ± 0.001
		I IIIOI L WIGSO4	3 7	2.60	0.01 ± 0.03
ferrihydrite	200	1 mol L ⁻¹ MgCh	3	1.55	0.050 ± 0.001
	200	I HOIL MgCl2	5 7	1.55	0.33 ± 0.00
		1 mol I ⁻¹ MgSO4	3	2 20	0.23 ± 0.04
			7	2.20	0.015 ± 0.002
			,	2.15	0.013 ± 0.002
	98	1 mol L-1 MgCl2	3	3.54	-
			7	5.16	-
		1 mol L ⁻¹ MgSO ₄	3	3.35	-
			7	5.70	-
goethite	200	1 mol L ⁻¹ MgCl ₂	3	2.48	-
			7	8.23	-
		1 mol L ⁻¹ MgSO ₄	3	2.78	-
			7	9.13	-
	08	1 mol I ⁻¹ MgCla	3	1 78	0.44 ± 0.02
	20	I HOIL MgCI2	5 7	2.00	0.44 ± 0.02
		1 mol L ⁻¹ MaSO	3	2.33	0.0191 ± 0.0009
		THOLE WIGSO4	5 7	4.71	0.0175 ± 0.001
hematite (~10 nm)	200	1 mol I ⁻¹ MaCla	3	1. 7 2	- 0.061 + 0.001
	200	I mor L migel2	5 7	2.83	-
		1 mol L ⁻¹ MgSO4	3	2.05	0 0179 + 0 0009
		1 1101 2 11120-04	7	3.11	-
hematite (~60 nm)	98	1 mol L ⁻¹ MgCl ₂	3	4.71	-
--------------------------------------	-----	---	---	------	---------------------
			7	6.09	-
		1 mol L ⁻¹ MgSO ₄	3	3.67	-
			7	6.42	-
	200	1 mol L ⁻¹ MgCl ₂	3	4.02	-
			7	5.40	-
		1 mol L ⁻¹ MgSO ₄	3	3.07	-
			7	2.83	-
schwertmannite	98	1 mol L ⁻¹ MgCl ₂	3	0.87	65.7 ± 0.6
			7	0.88	24.9 ± 0.08
		1 mol L ⁻¹ MgSO ₄	3	1.26	9.94 ± 0.03
		8	7	1.42	6.07 ± 0.03
	200	1 mol L ⁻¹ MgCl ₂	3	0.59	12.1 ± 0.1
		C	7	0.64	11.36 ± 0.06
		1 mol L ⁻¹ MgSO ₄	3	1.22	4.95 ± 0.02
			7	1.45	2.57 ± 0.04
ferrihydrite seeded with hematite	98	1 mol L ⁻¹ MgCl ₂	3	1.17	12.2 ± 0.2
		U	7	2.25	0.046 ± 0.001
		1 mol L ⁻¹ MgSO ₄	3	1.96	1.49 ± 0.05
		C C	7	2.86	0.0133 ± 0.0010
	200	1 mol L ⁻¹ MgCl ₂	3	1.18	7.9 ± 0.1
			7	2.13	-
		1 mol L ⁻¹ MgSO ₄	3	1.77	0.90 ± 0.03
			7	2.56	0.102 ± 0.002
goethite seeded with hematite	98	1 mol L ⁻¹ MgCl ₂	3	3.57	-
		0 -	7	9.01	-
		1 mol L ⁻¹ MgSO ₄	3	3.43	-
		C	7	9.12	-
	200	1 mol L ⁻¹ MgCl ₂	3	2.22	-
		<u> </u>	7	7.34	-
		1 mol L ⁻¹ MgSO ₄	3	3.04	-

Figure S1. SEM images of (a) goethite batch 1 and the transformation products of goethite batch 2 subjected to (b) pH 7, 1 mol L^{-1} MgCl₂, 200 °C fluids, (c) pH 3, 1 mol L^{-1} MgSO₄, 200 °C fluids, and (d) pH 7, 1 mol L^{-1} MgSO₄, 200 °C fluids.

Figure S2. XRD patterns of synthesized goethite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L⁻¹ background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Characteristic goethite ("G") and hematite ("H") peaks are labeled. Patterns offset in intervals of 7500 and horizontally stretched by a factor of 2 for clarity.

Figure S3. XRD patterns of synthesized goethite seeded with hematite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Characteristic goethite ("G") and hematite ("H") peaks are labeled. Spectra offset in intervals of 7500 for clarity.

Figure S4. SEM image of synthesized akaganeite.

Figure S5. XRD patterns of synthesized akaganeite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L⁻¹ background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Characteristic akaganeite ("A") and hematite ("H") peaks are labeled. Patterns offset in intervals of 5000 and akaganeite pattern vertically stretched by a factor of 5 for clarity.

Figure S7. XRD patterns of synthesized ferrihydrite seeded with hematite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L⁻¹ background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Characteristic ferrihydrite ("Fh") and hematite ("H") peaks are labeled. Patterns offset in intervals of 5000 and ferrihydrite pattern vertically stretched by a factor of 5 for clarity.

Figure S8. XRD patterns of synthesized schwertmannite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Characteristic hematite ("H") peaks are labeled. Patterns offset in intervals of 2500 and vertically stretched as indicated for clarity.

Figure S9. XRD patterns of synthesized ~60 nm red hematite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Characteristic hematite ("H") peaks are labeled. Patterns offset in intervals of 5000 for clarity.

Figure S10. XRD patterns of synthesized ~10 nm red hematite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Characteristic hematite ("H") peaks are labeled. Patterns offset in intervals of 2500 for clarity.

Figure S11. SEM images of the transformation products of jarosite subjected to (a) pH 3, 0.1 mol L^{-1} MgCl₂, 200 °C fluids, (b) pH 3, 1 mol L^{-1} MgCl₂, 200 °C fluids, and (c) pH 7, 1 mol L^{-1} MgCl₂, 200 °C fluids.

Figure S12. VNIR reflectance spectra of synthesized akaganeite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Spectra offset in intervals of 0.5 for clarity. Detector boundaries marked with dashed lines.

Figure S13. VNIR reflectance spectra of synthesized ferrihydrite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Spectra offset in intervals of 0.5 for clarity. Detector boundaries marked with dashed lines.

Figure S14. VNIR reflectance spectra of synthesized goethite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Spectra offset in intervals of 0.5 for clarity. Detector boundaries marked with dashed lines.

Figure S15. VNIR reflectance spectra of synthesized ~60 nm red hematite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Spectra offset in intervals of 0.5 for clarity. Detector boundaries marked with dashed lines.

Figure S16. VNIR reflectance spectra of synthesized ~10 nm red hematite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Spectra offset in intervals of 0.5 for clarity. Detector boundaries marked with dashed lines.

Figure S17. VNIR reflectance spectra of synthesized schwertmannite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Spectra offset in intervals of 0.5 for clarity. Detector boundaries marked with dashed lines.

Figure S18. VNIR reflectance spectra of the red hematite transformation products of synthesized minerals subjected to pH 3, 1 mol L^{-1} MgCl₂ 200 °C fluid conditions for 20 days. Spectra offset in intervals of 0.5 for clarity. Detector boundaries marked with dashed lines.

Figure S19. VNIR reflectance spectra of synthesized jarosite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Spectra offset in intervals of 0.5 for clarity. Detector boundaries marked with dashed lines.

Figure S20. VNIR reflectance spectra of synthesized jarosite and its transformation products in various fluid conditions. Cl and S indicate 0.1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Spectra offset in intervals of 0.5 for clarity. Detector boundaries marked with dashed lines.

Figure S21. VNIR reflectance spectra of synthesized goethite seeded with red hematite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L^{-1} background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Spectra offset in intervals of 0.5 for clarity. Detector boundaries marked with dashed lines.

Figure S22. VNIR reflectance spectra of synthesized ferrihydrite seeded with red hematite and its transformation products in various fluid conditions. Cl and S indicate 1 mol L⁻¹ background salts of MgCl₂ and MgSO₄, respectively, in the transformation fluids. Initial fluid pH value (pH 3 or pH 7) and experimental temperature (98 °C or 200 °C) are provided for each sample. Spectra offset in intervals of 0.5 for clarity. Detector boundaries marked with dashed lines.

Figure S23. Diagnostic XRD lines of (i) synthesized jarosite and its transformation products in various fluid conditions: (ii) MgCl₂, pH 3, 98 °C; (iii) MgCl₂, pH 7, 98 °C; (iv) MgSO₄, pH 3, 98 °C; (v) MgSO₄, pH 7, 98 °C; (vi) MgCl₂, pH 3, 200 °C; (vii) MgCl₂, pH 7, 200 °C; (viii) MgSO₄, pH 3, 200 °C; (ix) MgSO₄, pH 7, 200 °C. All background salts are 0.1 mol L⁻¹. Patterns offset in intervals of (from left to right) 1000, 7000, 1000, and 2500 and patterns from experiments on jarosite in 200 °C fluids with 0.1 mol L⁻¹ salt vertically exaggerated by a factor of 2 for clarity.

Figure S24. Diagnostic XRD lines of (i) synthesized jarosite and its transformation products in various fluid conditions: (ii) MgCl₂, pH 3, 98 °C; (iii) MgCl₂, pH 7, 98 °C; (iv) MgSO₄, pH 3, 98 °C; (v) MgSO₄, pH 7, 98 °C; (vi) MgSO₄, pH 3, 200 °C; (vii) MgSO₄, pH 7, 200 °C. All background salts are 1 mol L⁻¹. Patterns offset in intervals of (from left to right) 1000, 7000, 1000, and 2500 for clarity.