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Key Points:7

• Laplacian eigenmaps of recurrence matrices (LERM) is a novel tool for paleocli-8

mate time series analysis.9

• LERM can robustly detect the gradual Mid-Pleistocene Transition in relatively10

low signal-to-noise ratio scenarios.11

• LERM can also be applied to detect abrupt climate transitions like the 8.2ka event,12

though less robustly.13
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Abstract14

Paleoclimate records can be considered low-dimensional projections of the climate sys-15

tem that generated them. Understanding what these projections tell us about past cli-16

mates, and changes in their dynamics, is a main goal of time series analysis on such records.17

Laplacian Eigenmaps of Recurrence Matrices (LERM) is a novel technique using uni-18

variate paleoclimate time series data to indicate when notable shifts in dynamics have19

occurred. LERM leverages time delay embedding to construct a manifold that is map-20

pable to the attractor of the climate system; this manifold can then be analyzed for sig-21

nificant dynamical transitions. Through numerical experiments with observed and syn-22

thetic data, LERM is applied to detect both gradual and abrupt regime transitions. Our23

paragon for gradual transitions is the Mid-Pleistocene Transition (MPT). We show that24

LERM can robustly detect gradual MPT-like transitions for sufficiently high signal-to-25

noise ratios, though with a time lag related to the embedding process. Our paragon of26

abrupt transitions is the “8.2ka” event; we find that LERM is generally robust at detect-27

ing 8.2ka-like transitions for sufficiently high signal-to-noise ratios, though edge effects28

become more influential. We conclude that LERM can usefully detect dynamical tran-29

sitions in paleogeoscientific time series, with the caveat that false positive rates are high30

when dynamical transitions are not present, suggesting the importance of using multi-31

ple records to confirm the robustness of transitions. We share an open source Python32

package to facilate the use of LERM in paleoclimatology and paleoceanography.33

1 Introduction34

Much of the current discussion on our changing climate centers around the con-35

cept of tipping points (Alley et al., 2003; Lenton et al., 2008; Steffen et al., 2018). Cli-36

mate tipping points occur when a change in the climate system becomes self-perpetuating37

(McKay et al., 2022). They describe moments in the evolution of a climate system dur-38

ing which the behavior of the climate changes in a fundamental way. In other words, they39

bridge the gap between separate dynamical regimes. In reference to global warming, cli-40

mate tipping points are typically used to describe moments in which positive feedback41

loops are created, resulting in runaway warming. More generally, within the context of42

nonlinear dynamical systems theory, tipping points are the critical thresholds; when crossed,43

they lead to abrupt and irreversible changes to the dynamics of the underlying system,44

i.e., these are points in the parameter space of the system, where, due to influences such45

as noise, perturbations or parameter drift, the shape of the system’s typical trajectory,46

or attractor, changes significantly (Kaszás et al., 2019).47

Within the context of paleoclimate, tipping points are interesting because they can48

inform us about conditions under which the climate has undergone fundamental changes49

in the past in response to forcings and might do so again. Given the increasingly unsta-50

ble nature of our current climate system, understanding when and where tipping points51

have occurred in the past is deeply valuable for policy makers, scientists, and citizens52

alike. Additionally, assuming we are able to observe synchronous tipping points at dif-53

ferent locations or between different archive types and proxy records, it can inform our54

understanding of the history of climate teleconnections as well as how changes in climate55

regimes are reflected in various paleoclimate records.56

Developing analytical tools to detect significant changes in system dynamics is an57

ongoing field of study (Kantz & Schreiber, 2003; Marwan, Carmen Romano, et al., 2007).58

In this paper we will explore the application of a novel four-step method we colloquially59

refer to as Laplacian Eigenmaps of Recurrence Matrices (LERM), originally developed60

and published by Malik (2020). In their paper, Malik (2020) provided evidence that LERM61

was able to robustly detect changes in the dynamics of an idealized experiment in the62

presence of noise and missing values before applying it to a Holocene speleothem record63

to probe questions regarding the climate’s influence on the collapse of the Harappan civ-64
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ilization. We seek to expand upon their findings, providing further validation that this65

technique is effective in identifying significant climate regime changes when applied to66

paleoclimate records, as well as exploring some potential shortcomings. We also present67

an open source Python package meant to simplify carrying out this workflow, alongside68

Jupyter notebooks to support the reproducibility of our results(James, 2023b).69

2 LERM: a basic algorithm70

In this section, we briefly describe the method and its core principles. A much more71

thorough discussion can be found in the original publication (Malik, 2020). LERM is a72

recurrence plot-based time series analysis technique. Recurrence plots/matrices are a pop-73

ular non-linear time series analysis method that transforms a time series into a binary74

matrix, in which elements with value one correspond to time points close in phase space75

(Eckmann et al., 1987; Marwan, Carmen Romano, et al., 2007; Zou et al., 2019). Anal-76

ysis of spatial patterns in a recurrence plot using dynamical systems theory can provide77

deep insights into the nonlinear and stochastic dynamics of the system underlying the78

data (Eckmann et al., 1987; Marwan, Carmen Romano, et al., 2007; Zou et al., 2019; Bradley79

& Kantz, 2015). The LERM method consists of four main steps.80

2.1 Step 1: Phase Space Reconstruction81

Nonlinear time series analysis relies on phase space reconstruction, which projects82

the time series on a time-delay coordinate system. This time-delay embedding of a time83

series is a consequence of the classical theorem by Floris Takens, colloquially known as84

Takens’ theorem, which states conditions under which a topologically equivalent attrac-85

tor can be constructed from single scalar observations (Takens, 1981; Packard et al., 1980).86

Time-delay embedding constructs phase space vectors from time-shifted snippets of a87

time series x(t) of length N . For example, for time delay τ and embedding dimension88

m, a vector in time-delay embedding would be x(t) = [x(t), x(t− τ), x(t− 2τ), ..., x(t−mτ)].89

The parameter m determines the length of the phase space vectors. The standard tech-90

nique for choosing m is the method of false nearest neighbor (Abarnabel, 1997; Kantz91

& Schreiber, 2003). However, heuristics show that in the presence of noise, the princi-92

ple of over-embedding (Hegger et al., 2000; Malik et al., 2014) is more appropriate. This93

principle suggests taking m > 2(D + P ) where D is the dimensionality of the system94

and P is the number of time-dependent parameters. Our numerical experimentation in-95

dicates that m between 10 and 15 leads to robust results for our application. The pa-96

rameter τ (time-delay) can be chosen as the time point corresponding to the first min-97

imum of lagged mutual information or the first zero of the autocorrelation function; for98

details, see Abarnabel (1997). Further discussion of these choices can be found in Abarnabel99

(1997); Kantz and Schreiber (2003); Malik (2020); Malik et al. (2014).100

Although the method of time delay embedding has been known to introduce spu-101

rious correlations into phase space trajectories and spurious structures into the recur-102

rence plot (Thiel et al., 2006; Wendi et al., 2017), certain metrics are less dependent on103

embedding parameter choices. For example, Thiel et al. (2006) observed that second-104

order Renyi entropy and correlation dimension can be calculated using arbitrary embed-105

ding parameter choices. Similarly, as we will show, LERM appears to be robust with re-106

spect to embedding parameter choices. Additionally, Wendi et al. (2017) demonstrated107

that over-embedding leads to more reliable measurement of the determinism metric.108

For any given time series, phase space vectors are created for all points along the109

time axis for which it is possible. Note that, due to indexing constraints, phase space110

vectors cannot be constructed for the last m·τ points. The above method of time-delay111

embedding satisfies the condition of Takens’ theorem: the phase space reconstructed us-112

ing suitable time-delay embedding of time series data is topologically equivalent to the113

original phase space of the system (Takens, 1981). In practice, uneven spacing of data,114

–3–



manuscript submitted to Paleoceanography and Paleoclimatology

noisy sensors, and imperfect selection criteria for the embedding dimension and delay115

parameters prevent perfect topological equivalency. However, if proper care is taken in116

the data selection and embedding steps, the reconstructed phase space can still provide117

deep insights into the system’s dynamics.118

2.2 Step 2: Recurrence Plot119

The next step is to analyze recurrence relationships within the reconstructed phase120

space. Both recurrence quantification analysis (RQA) and recurrence network analysis121

(RNA) focus on characterizing recurrence plots. Recurrence plots (RP) are graphical rep-122

resentations of the recurrence matrix of a time series, which is a binary square matrix123

of size N defined as Rij = Θ(ϵ− ∥xi − xj∥). xi and xj are time embedded vectors at124

time points i and j. Θ is the Heaviside step function, i.e., Θ(y) = 1 if y > 1 and oth-125

erwise Θ(y) = 0 and ∥xi − xj∥ is the distance between embedded vectors xi and xj126

(in this work we use the Euclidean norm). The threshold ϵ is interpretable as a radius127

defining the largest distance that can separate two points in phase space if they are con-128

sidered in the same neighborhood. If the distance between two points is greater than ϵ,129

the value inside the Heaviside function will be negative and the recurrence matrix will130

record a zero at that intersection. If the distance between two points in phase space is131

less than ϵ, then the recurrence matrix entry is unity at that intersection, indicating that132

the system is visiting a similar state at those indices. ϵ is typically chosen so that the133

recurrence density (number of ones in the recurrence matrix divided by the total num-134

ber of entries) is around 5%, a heuristic which is supported by other studies on the topic135

(Kraemer et al., 2018; Malik et al., 2014; Malik, 2020).136

2.3 Step 3: Laplacian eigenmaps137

Laplacian eigenmaps is a manifold learning (nonlinear dimensionality reduction)138

technique, where the eigenvectors of the Laplacian corresponding to a proximity graph139

constructed from a point cloud of the data are used to project the data onto lower di-140

mensional space (Belkin & Niyogi, 2003). Laplacian eigenmaps are closely related to spec-141

tral clustering techniques and, similarly, preserve the local distance between points. Lapla-142

cian eigenmaps are used here to extract low-dimensional structures from an RP, as these143

low-dimensional structures are the basis of RP-based metrics and analysis. For exam-144

ple, diagonal lines in an RP are related to the determinism of the underlying system (Marwan,145

Romano, et al., 2007). We expect that, as the system moves between different dynam-146

ical regimes, the manifolds extracted through our technique should also evolve and change,147

and hence these low-dimensional manifolds will track transitions in dynamical regimes.148

To calculate the Laplacian, we first define the elements of the weighted adjacency149

matrix W of the graph as Wij = Rij+1 and then the corresponding graph Laplacian150

is L = D − W, where D is a diagonal matrix with Djj =
∑

j Wij . To construct W,151

the 1 is added to the each element of the recurrence matrix to avoid numerical compli-152

cations when solving for the eigenvalue problem (see below). The graph Laplacian or the153

Laplacian matrix L can be considered the discrete analog to the continuous version of154

the Laplacian operator, and it is used to model diffusion on graphs (Merris, 1994). To155

obtain the manifolds, we solve the eigenvalue problem Lϕ = λDϕ. Let ϕ0 · · ·ϕN−1 be156

the solution of this eigenvalue problem with 0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1 being the157

corresponding eigenvalues. The first eigenvector ϕ0 is dropped as it corresponds to the158

eigenvalue 0, and all elements in it are ones. The manifolds are obtained by projecting159

each point in the reconstructed phase space xi to the m-dimensional Euclidean space:160

[ϕ1(i), · · · , ϕm(i)].161
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Step 1:

Time delay embedding

Step 2: Recurrence matrix

Step 3: Calculate eigenmaps
Step 4: Calculate Fisher information

Smooth and plot the results

Ice Volume

+

-

Figure 1: Description of the full workflow presented in this section. In this figure we use
the LR04 benthic stack from Lisiecki and Raymo (2005) as an example, and examine the
dynamical transition that occurred around 1000 kyr BP known as the Mid-Pleistocene
Transition. Step 1, time delay embedding, is described further in Section 2.1. Step 2,
generating the recurrence plot, is described in Section 2.2. Step 3, the calculation of the
graph laplacian and its eigenvectors (creating the eigenmaps) is described in Section 2.3.
The last step, step 4, describing the calculation of the Fisher information statistic is de-
scribed in Section 2.4. We also show the final result, plotting the evolution of the Fisher
information statistic over time. Here we smooth the statistic using a block size of 5 to
isolate the dominant statistic behavior, and calculate a confidence interval to detect signif-
icant transitions in the statistic. The calculation of this confidence interval is described in
Section 2.5. The dashed gray line in the final plot shows the detected transition.
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2.4 Step 4: Fisher Information162

Laplacian eigenmaps result in p-dimensional projections of the original data, and163

our numerical experimentation indicates that p = 4 produces the most robust results;164

higher values only add redundant information to the analysis, whereas lower values do165

not always lead to stable results. From this low-dimensional subspace we then seek to166

create a univariate statistic that reflects changes in the complexity and dynamics rep-167

resented by the multidimensional eigenmaps in order to ease interpretability. To do so,168

Malik (2020) proposed a modified version of the Fisher information statistic (FI). As de-169

fined in Ahmad et al. (2016), the FI is an invariant over the manifolds resulting from Lapla-170

cian eigenmaps, i.e., as the dynamics of underlying system change regimes, the extracted171

manifolds change. Consequently, FI captures this regime change as a single numerical172

value (Malik, 2020). In general, FI is a practical and robust way of discovering shifts in173

multivariate data’s behavior and information content (Ahmad et al., 2016). FI can also174

be thought of as a way to measure the complexity of the underlying dynamics, as it can175

capture the complexity of the geometric object that represents a dynamic process, for176

instance, an attractor. The segments of the time series where the values of FI are higher177

(lower) are also the sections of the time series where the underlying dynamics are of higher178

(lower) complexity. Our numerical experimentations indicate that FI behaves like an in-179

variant metric or a constant of motion; values remain the same over the same dynam-180

ical regime (when control parameters are kept fixed). This means that when the param-181

eter changes significantly, a change in dynamics has occurred. We discuss how we assess182

the significance of changes in the next section.183

The calculation of FI requires the specification of two key parameters: window size184

and window increment. These specify the size and step of the sliding window that will185

be used to calculate FI. The choice of these parameters is arbitrary, and depends on the186

record and phenomenon being studied. Larger window sizes and increments will result187

in a smoothing effect, improving the robustness of results while reducing time resolution188

and smoothing over smaller transitions. Smaller window sizes and increments will tend189

to introduce more spurious behavior, but will also improve time resolution of the FI and190

allow for the detection of subtler shifts in time series character. Given this, two compet-191

ing factors drive the choice of window size. The first is that one wants the window size192

to be long enough that FI values converge towards a stable value. That is, the window193

size should not be so small that FI is not convergent or robust. The second is that the194

time scale on which one would like to resolve the transitions must not be so large that195

multiple transition points get fused into one. This is especially important when dealing196

with abrupt events. Further explanation and justification of this choice for this specific197

problem, and the specific variant of FI we are using, can be found in Malik (2020).198

The endpoint of the FI window is used to determine the time index of the FI value199

for a given window. Typically we then take a block average over another window of sev-200

eral consecutive FI values. This average is then plotted for all the points within that win-201

dow. That is, all the points within this window are assigned the same average FI. This202

minimizes the possible artifacts of the start/center/endpoint choice for a block average203

over a window. In this paper we occasionally do not do this in order to show the actual204

variability of the FI, which in some cases can be erratic. When this is the case, the FI205

is plotted with a fill (e.g. Figure 4). When we have smoothed the FI we plot it as a scat-206

ter, with the width of scatter points indicating the width of the smoothing window (e.g.207

Figure 2) A pictorial overview of this workflow is shown in Figure 1.208

2.5 Significance of Transitions209

To determine whether changes in our FI statistic are significant we employ the same210

strategy as Malik (2020). Our null hypothesis for this test is that no transition has oc-211

curred. This would be indicated by the FI statistic not exhibiting a significant change212
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in values. Significance in this case is ascertained via the usage of a confidence interval.213

To do this, we sample with replacement from the FI series, creating an ensemble of M214

samples with w points each. Typically we set M to 10,000, and w = 50. This choice215

was largely arbitrary, as the analysis did not show strong sensitivity to these parame-216

ters. We then take the mean of each of these samples and calculate a confidence inter-217

val from the distribution of means. The bounds for this confidence interval are typically218

taken to be 5% and 95%. When the FI statistic crosses this confidence interval, mov-219

ing either from above the 95% boundary to below the 5% boundary or vice versa, we claim220

that this is a significant change, thereby marking a transition in the dynamical regime221

of the system. The midpoint of this transition is taken as the transition timing. This is222

only one approach to establishing significance, and others may be possible. We note that223

this significance test often produces many false positives when applied to time series with-224

out dynamical transitions, and as such all results should be verified across multiple records225

(see below).226

3 Detecting gradual transitions227

In this section we demonstrate how LERM performs when applied to records that228

are known to contain a gradual shift in dynamics. For our gradual transition we chose229

the Mid-Pleistocene Transition (MPT). The MPT was a transition from the “41kyr world”230

to the “100 kyr world” (Paillard, 2001). That is, the dominant periodicity of the glacial-231

interglacial cycles switched from 41 thousand years to 100 thousand years. The transi-232

tion occurred over several hundred thousand years, from around 1200ka to 800ka (Clark233

et al., 2006; Chalk et al., 2017). There are many theories as to why this transition oc-234

curred, which are not germane to our purpose as they all indicate the presence of a dy-235

namical change. We are primarily interested in the ability of the LERM technique to de-236

tect the MPT in real paleoclimate archives. In order to study the outcome of applying237

LERM to data influenced by the MPT we applied the method to five benthic oxygen iso-238

tope records drawn from Lisiecki and Raymo (2005) as well as data from a conceptual239

glacial/interglacial cycle model (Leloup & Paillard, 2022). Oxygen isotopes were cho-240

sen as during the Pleistocene they are typically interpreted as representing changes in241

ocean temperature and global ice volume (Waelbroeck et al., 2002), with ice volume be-242

ing the dominant signal. If there is a significant change in the dynamics that control global243

ice volume such as the MPT, we should be able to observe it by applying LERM to ben-244

thic foraminiferal oxygen isotope observations.245

3.1 Tests with observational data246

We apply the technique to oxygen isotope records from marine sediment cores taken247

at five Ocean Drilling Project (ODP) sites 925 (Bickert et al., 1997; Billups et al., 1998;248

Franz & Tiedemann, 2002), 927 (Bickert et al., 1997; Franz & Tiedemann, 2002), 929249

(Bickert et al., 1997; Billups et al., 1998; Franz & Tiedemann, 2002) and 846 (Mix et al.,250

1995; Shackleton et al., 1995), and 849 (Mix et al., 1995). Their oxygen isotope records251

were drawn from the compilation of Lisiecki and Raymo (2005), and the age models for252

each are those aligned to the age model of the LR04 stack. Core locations are shown in253

Figure 2 and their traces are shown in Figure 2. These records were chosen due to their254

length and general lack of hiatuses. Each record was linearly interpolated using their mean255

time increment (2.67, 3.92, 3.43, 2.46, 3.10 kilo-years respectively) in order to produce256

a uniform time axis for each record. The records can be roughly subdivided into two ge-257

ographical groups, those in the East Pacific and those in the West Atlantic. In this case,258

record locations starting with the number eight lie in the East Pacific and those start-259

ing with nine lie in the West Atlantic. The geographic division of these records means260

that if we observe any local effects, they will likely be apparent in the results. ϵ values261

were selected by finding the value that produced a density of 5% in the recurrence ma-262

trix, in accordance with the recommendation of Kraemer et al. (2018). m was chosen ac-263
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cording the principle of over-embedding as described by Malik (2020) and set to 13 in-264

dices. τ was set by calculating the first minimum of lagged mutual information in ac-265

cordance with the recommendation of Abarnabel (1997). In this example these values266

range between 4 and 8 indices. Window size and window increment were set to 50 (roughly267

100 - 150 kyr) and 5 indices respectively in pursuance with the recommendation of Sec-268

tion 2.4.269

The results of this analysis are shown in Figure 2. There is strong agreement be-270

tween these records as to the timing of a climate regime transition. The mean value and271

standard deviation of the transition is 908 ± 66 kyr BP (1 σ). This agrees with what272

we would expect to see, assuming the MPT was the dominant climate regime transition273

in this set of records. We then place all of the records onto a shared, evenly spaced time274

axis. The timestep for this shared axis is the mean of each of the records, and the bounds275

are the maximum of the minimum and the minimum of the maximum of the collection276

of record time axes. That is, the most conservative endpoints are chosen such that all277

records cover the full shared time axis. Each record is then linearly interpolated over this278

shared axis. No changes to the underlying age models are made during this process. By279

doing so, we find that our mean transition occurs at 911 ± 51 kyr BP (1 σ), reducing280

the uncertainty in this estimate. This reduction in uncertainty, while small in this case,281

illustrates the importance of time axis considerations when conducting this kind of anal-282

ysis. We will further explore such considerations in section 5. We also note that the stan-283

dard deviation of a transition timing across records is not necessarily the best measure284

of uncertainty. We recommend the employment of ensemble based approaches for more285

robust uncertainty quantification.286

3.2 Tests with synthetic data287

3.2.1 A conceptual model for glacial cycles288

We applied LERM to the conceptual model presented by Leloup and Paillard (2022).289

This model generates a unitless variable v which represents normalized ice volume. The290

equation that controls the evolution of this variable depends on whether the model is291

in the slow glaciation regime (g) or the fast deglaciation regime (d). The equations that292

define how each of these states govern the change in v over time are shown in Equation293

1.294

(g)
dv

dt
= − I

τi
+

1

τg
(1a)295

(d)
dv

dt
= − I

τi
− v

τg
(1b)296

Equation 2 describes when the model is to switch from (g) to (d) and vice versa.297

(d) to (g) : I < I0 (2a)298

(g) to (d) : I + v > V0 (2b)299

τi, τd, and τg are time constants, and I is normalized summer insolation forcing300

at 65◦N. By varying the deglaciation parameter V0, we can emulate a dynamical change301

in the evolution of ice volume similar to the one observed during the MPT. We gener-302

ated a time series of v with a length of 2500 time units and placed a transition from a303

V0 value of 3.4 to 5.2 at time step 1000. This was in accordance with Leloup and Pail-304

lard (2022), who evaluated which values of V0 most accurately reflected the pre- and post-305

MPT ice volume dynamics. We used summer solstice insolation at 65◦ N as our inso-306

lation scenario as this produced the most accurate results for the last 1500 Ma (Leloup307
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Figure 2: Overview of LERM analysis applied to five ODP records. (a) show a map of
the considered records, (b) shows the oxygen isotope time series trace in black, and the
Fisher information statistic in color.
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& Paillard, 2022). We then bin the series to the time axes of Cores 925, 927, 929, 846,308

and 849 from the Ocean Drilling Project (ODP). This is done by placing bin edges be-309

tween time points for each time axis and averaging the conceptual model data over each310

bin, assigning each time point its associated average. This was done in order to compare311

the effect of differing time axes on our analysis. The LERM workflow is then applied to312

each of these series. The same parameters are used here as those in the previous section,313

though τ now varies between 3 and 4 indices. The results of this analysis are shown in314

Figure 3.315

The method performs reliably when applied to this simple test, locating the point316

of the transition with relative accuracy, regardless of which time axis was used. The mean317

transition timing for each of the binned series is 849 ± 44 kyr BP (1σ). We conducted318

several other tests to see how the method responded to the addition of noise, missing val-319

ues, and how it behaved when no transition was present at all. These are presented in320

Figure 4. Each of these tests uses the version of the conceptual model time series binned321

onto Core 925.322

3.2.2 Sensitivity Analysis323

Here we present the results of the LERM method when applied to the conceptual324

model MPT time series depicted in the top panel of Figure 3 when varying levels of noise325

are present. We used an AR(1) model to create a noise time series and added it to our326

conceptual model MPT time series ”signal”. We define the signal to noise ratio (S/N)327

as being the standard deviation of the MPT signal divided by the standard deviation328

of the noise. We tested four S/N ratios. An example of one of the tests using a S/N ra-329

tio approximately equal to two is shown in Figure 4. The actual signal to noise ratio for330

a given test approximates the targeted S/N ratio as our noise generation process is im-331

precise and cannot create a series with exactly the standard deviation necessary to cre-332

ate the targeted S/N ratio.333

We repeated the process of creating and analyzing noisy time series 1000 times for334

each S/N ratio. We then produced a Kernel Density Estimate (KDE) of the distribu-335

tion of detected transitions and normalized each KDE to have a maximum amplitude336

of 1. These KDEs are interpreted as representing the ”probability” (the normalization337

process means the y-axis cannot be literally interpreted as such) of a transition occur-338

ring at different points in time given a specific S/N ratio. The results of this analysis are339

shown in the top panel of Figure 7.340

For higher S/N ratios, the method is quite consistent in its detection of the primary341

transition point. However, as the S/N ratio decreases, while the detection of the actual342

transition point remains consistent, the method begins to return a large number of false343

positives. This suggests that this tool is best used within a comparative context in or-344

der to bolster the confidence of the results. That is, if multiple records agree on the tim-345

ing of a transition, this is good evidence that the transition is real. If not, we may just346

be observing spurious system behavior resulting from our requirement that our recur-347

rence matrix be 5% populated. This effect is especially apparent in panels c) and d) of348

Figure 4. When no transitions are present in a series, we observe random fluctuations349

in the FI metric. This is likely due to the minimum recurrence density requirement used350

when choosing a recurrence threshold and from our confidence interval based approach351

to significance testing. Alternate approaches to selection of the recurrence threshold pa-352

rameter ϵ and the definition of significant transitions could improve these results. In the353

meantime, this is further evidence of the necessity of verifying potential dynamical tran-354

sitions across multiple records.355

Additionally, when the stable time series is artificially coarsened and then inter-356

polated, as shown in panels e) and f) of Figure 4, the LERM technique suggests that the357

coarsened section experienced a change in dynamics. This effect only became noticeable358
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Figure 3: Overview of the application of the LERM pipeline to conceptual model data.
The top panel shows data generated by the Leloup Paillard glacial/interglacial cycle con-
ceptual model using with transition of V0 threshold parameter from 3.4 to 5.2 at time
step 1000 (vertical dashed line). The lower panels show the Fisher information statistic of
conceptual model data from the top panel after being binned onto the time axis of each
ODP core (shown in black). The binning process is described in Section 3.2.1.
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Figure 4: LERM sensitivity analysis for gradual transitions. Conceptual model data is
binned onto ODP core 925 oxygen isotope time series time axis, to which we add AR(1)
noise. Signal to noise (S/N) ratio is defined as the standard deviation of the conceptual
model data divided by the standard deviation of the noise. Shown in the top panel is an
example of this test applied to a noisy series with an S/N ratio of 2. In the middle panel
we show the result of applying the technique to a series without a transition. In the bot-
tom panel, we apply the method to a stable series that has a coarsened section over which
we have interpolated to show the propensity of the technique to return false positives for
imputed sections of a record when no transitions are present.
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in our experiments when over 60% of the points in a section were removed, though this359

likely depends heavily on the series being considered and the length of the coarse sub-360

section. As such, caution is advised when applying this method to evenly spaced ver-361

sions of unevenly sampled time series, which are common within the field of paleoclima-362

tology. In such case it is important that transitions observed near changes in resolution363

be viewed with skepticism. On the other hand, in paleoclimate research a change in res-364

olution can suggest a change in system dynamics. For example, a decrease in the res-365

olution of speleothems can be interpreted as reflecting a period of aridification in the re-366

gion (Henselowsky et al., 2021). Teasing apart these effects is difficult and domain-specific.367

This further emphasizes the importance of comparing multiple records when using this368

technique. If detected dynamical transitions cannot be reproduced in nearby records, they369

are unlikely to reflect robust changes in climate dynamics.370

4 Detecting abrupt transitions371

In this section we demonstrate how LERM perform when applied to a record that372

contains an abrupt, short-lived, transition from one climate regime to another. To do373

this, we apply the technique to four Greenland ice core oxygen isotope records and an374

Antarctic ice core oxygen isotope record, which have been interpreted as being proxies375

for temperature (Jouzel et al., 1997; Johnsen et al., 2001). In doing so we explore the376

potential climate regime shifts that occurred around the 8.2ka event, a period of intense,377

abrupt cold (Alley & Ágústsdóttir, 2005) that has been observed primarily in Greenland378

ice cores (Thomas et al., 2007), though it has appeared in other archives from the North-379

ern Hemisphere (Cheng et al., 2009) as well as some from the Southern Hemisphere (Chase380

et al., 2015). We also apply the technique to synthetic data designed to mimic the Green-381

land ice core oxygen isotope records.382

4.1 Tests with observational data383

The four Greenland cores we analyzed are NGRIP (Andersen et al., 2004), Ren-384

land (Johnsen et al., 1997), GRIP (Johnsen et al., 1992), and GISP2 (Grootes & Stu-385

iver, 1997) ice core records. The time axes of the GRIP and NGRIP records have been386

aligned to Greenland Ice Core Chronology 2005 (GICC05) (Rasmussen et al., 2006; Vinther387

et al., 2006). We also analyze oxygen isotope data from a high resolution section of ice388

cores from EPICA Dome C (Stenni et al., 2010). and the locations and traces of all the389

ice core records are shown in Figure 5. Each of these records was interpolated to its mean390

time step (20, 10, 5, 20, 18 years respectively). Among them, we observe strong agree-391

ment regarding the effect of the 8.2ka event on climate dynamics in the region.392

The agreement between the Greenland records as to the timing of the onset of the393

change in dynamics is somewhat unsurprising given the evident anomalous nature of the394

8.2ka event in the time series. However, the results do illustrate the edge effects that are395

inherent with time delay embedding techniques, as can be seen in the appearance of a396

climate regime shift occurring prior to the 8.2ka event. This is caused by the way time397

delay embedded vectors are constructed. Each vector that is associated with a given time398

point contains time information that extends m∗τ beyond that time point. In our case399

we used m = 12 and τ = 4, continuing our practice of choosing m via over-embedding.400

Note that we choose tau by hand here, as the first minimum of mutual information heuris-401

tic fails when applied to some of these records, resulting in excessively large values for402

tau. This means that data from the following 48 time points are included in a given time403

point of our embedded data. Then, if the resolution of our time series is 20 years, the404

information from the subsequent 960 years is included in any given year. This can re-405

sult in a smearing effect, where changes in dynamics that happen at one point in the time406

axis can affect the result of our analysis at a different point in time. This smearing ef-407

fect is uni-directional, occurring only in the direction of the time delay embedding, which408
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Figure 5: Overview of LERM analysis applied to Greenland and Antarctica records. (a)
shows a map of the Greenland records, (b) shows a map of the Antarctica record, (c)
shows the oxygen isotope time series trace in black, and the Fisher information statistic in
color.
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is best taken with the flow of time in order to preserve the temporal structure of the record409

in the constructed phase space.410

We also observe that the choice of window size and window increment can exac-411

erbate this smearing effect. When a large window size is chosen, the detection timing412

of abrupt transitions tends to ”widen”, or move outward from the actual edges of the413

transition. In order to minimize this effect we used a smaller window size of 20 indices414

(around 100 to 400 years) and window increment of 4 indices for these tests. Window415

increment tends to have less of an effect (see the accompanying Holocene Ice Window416

Increment and Holocene Ice Window Size notebooks for examples of this effect (James,417

2023b)).418

What is somewhat surprising is the agreement between these records and the high419

resolution oxygen isotope record from EPICA Dome C, suggesting hemispheric synchrony420

between Greenland and Eastern Antarctica during the 8.2ka event. However, this result421

should be viewed with some caution, as other records we tested from different regions422

in Antarctica do not show a synchronous climate regime transition at this point (see the423

Holocene Ice Analysis notebook from James (2023b)).424

4.2 Tests with synthetic data425

To investigate LERM’s behavior in a controlled setting, we once again resort to syn-426

thetic data. Our signal is defined as a ramp with a peak amplitude of −1. The onset of427

the spike occurred at 8400 kyr BP, terminating at 7800 kyr BP in order to produce a428

signal that was not as easily nullified by noise and more consistently represented an 8.2k429

event-like signal, as shorter events tended to be entirely obscured when noise was added.430

This signal is shown in Figure 6. To test detection, we added perturbations to this sig-431

nal using a simple AR(1) process with an autocorrelation coefficient of 1. In this case432

the S/N ratio is the amplitude of the perturbation divided by the standard deviation of433

the AR(1) series. We repeated our sensitivity analysis as in Section 3.2.2, this time us-434

ing relative large S/N ratios of 1, 2, 3, and 4, as the method proved to be less robust for435

brief, abrupt transitions than gradual ones. We constructed our synthetic series using436

the same time axis as the NGRIP oxygen isotope record for these experiments. Param-437

eters used were m = 13, τ = 5, wsize = 20 (window size), wincre = 4 (window incre-438

ment). The KDEs from these experiments are shown in the bottom panel of 7. The asym-439

metrical offset of detection times from the edges of the transition are driven by the edge440

effects associated with using the FI statistic in the case of the termination side of the441

event, and a combination of the FI window effect with the uni-directional time-embedding442

effect in the case of the beginning side of the event (resulting in a greater offset than the443

termination side).444

The results are similar to those of the gradual transition synthetic tests, though445

the S/N ratios required to achieve reliable detection are much higher for the abrupt tran-446

sition. This result suggests that unless signal to noise ratios are high, this method will447

return a large number of false positives when regime transitions present in a record are448

shorter and less durable. However, it seems that the detection of the shift is consistent449

even at lower S/N ratios, again suggesting the benefit of applying this technique to an450

ensemble of records and looking for shared transitions as a way of filtering out false pos-451

itives.452

5 Time Axis Considerations453

Throughout this paper we have mentioned the importance of time axis properties454

at various points. In this section we demonstrate how the detection of dynamical regimes455

changes depending on the resolution of the time axis. For this we will use the marine456

sediment oxygen isotope data from ODP Site U1308 (Hodell et al., 2008). This is a high457
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Figure 6: Overview of LERM sensitivity analysis applied to synthetic data designed to
mimic the 8.2ka event. The top left panel shows the signal used in these tests. In the top
right panel we show the noisy series to be analyzed. In the bottom panel we see the result
of the analysis. The grey region indicates the spike interval.
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Figure 7: Kernel density estimates (KDE) of detected transitions for MPT-like scenarios
(top) and 8.2ka event-like scenarios (bottom). KDEs were normalized against their maxi-
mum value.
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Figure 8: Results of LERM analysis applied to oxygen isotopes from U1308 with different
time resolutions. Panel a) shows the original, unaltered oxygen isotope record from U1308
in blue, the version of the record with values averaged over bins of 500 years in grey, and
the transitions after the MPT detected in the Fisher information for the binned version of
the series highlighted in blue and orange. Panels b), c), and d) show the analysis in blue
applied with a time step of .5, 2.5, and 4.5 kiloyears respectively. Oxygen isotopes from
U1308 with values averaged over their associated time step are shown in grey.

resolution deep-sea core with a median time step in the published age model of approx-458

imately 270 years. By averaging oxygen isotope values across bins of varying sizes, we459

can coarsen the series to various time steps, and examine how this changes the results460

of our analysis. First we interpolate the time series using the mean time step, which is461

approximately 302 years. This is done in order to prevent gaps in the binned version of462

the time series, as there is one short section with low resolution. We prioritize creating463

a continuous binned version of the time series in order to emulate our workflow from the464

previous sections. We use bin sizes of .5, 2.5, and 4.5 kiloyears. We use an embedding465

dimension of 13 indices and τ values ranging from 5 indices for the maximum bin size466

and 12 indices for the minimum bin size. Window size and window increment are again467

set to 50 and 5 indices respectively. The results of this analysis are shown in Figure 8.468

In Figure 8, when the time step is relatively large as in panel d), we detect only469

the Mid-Pleistocene transition. However, as we move to finer time steps, we begin to ob-470

serve the detection of other regime shifts. These appear to be glacial-interglacial shifts,471

as dynamical transitions are observed every 100 kiloyears during shifts from glacial to472

interglacial periods and vice versa. This effect illustrates the importance of temporal res-473

olution when using this technique. Higher resolution allow for the detection of shorter474
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regime shifts. With coarser time series we primarily detect the gradual regime shifts that475

occur over longer time scales. If one is primarily interested in a relatively gradual tran-476

sition like the MPT, it can be useful to coarsen our record in order to minimize the de-477

tection of these shorter transitions, like glacial-interglacial cycles.478

Another detail worth noting is that we do not observe the detection of glacial-interglacial479

cycles during the ”41ky world” (the interval during which these cycles have a periodic-480

ity of 41ky). This is likely due to the minimum resolution we use. Were we to employ481

an even higher resolution of this time series, we might be able to get at these higher fre-482

quency phenomena. However, in this case, only the detection of the slower 100 kiloyear483

cycles is available to us with this choice of τ and m. The precise relationship between484

the time scale of the phenomena being detected and the resolution of the time series is485

not yet known, though it likely depends both on resolution and the parameters chosen.486

Constraining this relationship further is a subject for future work.487

Another effect worth noting is the later detection of the MPT observed in core U1308488

compared to the other sediment cores we’ve examined. The transition detected in this489

the coarse version of this record shown in Figure 8 panel d) occurs a little before 800 kilo-490

years ago, which is somewhat at odds with the timing observed in Figure 2. This is caused491

by the shorter length of the oxygen isotope time series from U1308. If we shorten the492

time series used in Figure 2, we observe a similarly delayed transition timing (not shown).493

This is likely due to the way in which we select our recurrence threshold parameter. Be-494

cause we require a recurrence matrix density of 5%, the recurrence threshold we pick will495

depend both on the dynamics which are present in a given time series, and the preva-496

lence of those dynamics in a particular record. The more stable the dynamics of a given497

time series are, the lower and more selective the recurrence threshold will be, and vice498

versa. Different recurrence thresholds mean that different sections of the time series will499

be considered recurrent and the detected transition timings will change. In the case of500

U1308, the record is shorter and less of the pre-MPT interval is present. This results in501

a lower recurrence threshold, which results in different recurrence patterns, in turn lead-502

ing to the detected transition timing being pushed towards the end of MPT window. This503

is the point in time which the 100 kyr cycles have begun in earnest and as such, where504

the change in dynamics is more evident. There are other approaches to the choice of re-505

currence threshold that may minimize this effect, though we do not explore them here.506

The effect described above is demonstrated further in the MPT Core Length Compar-507

ison notebook found in the supplement (James, 2023b).508

6 Discussion509

These examples show that the LERM technique shows promise in the detection of510

gradual and abrupt regime transitions in paleoclimate records. It robustly detected the511

Mid-Pleistocene Transition in a set of marine sediment oxygen isotope records, and was512

resistant against noise and missing values when applied to synthetic data. One caveat513

is that the method is prone to false positives when a time series does not contain a regime514

transition. It also shows strong sensitivity to the resolution of the time axis.515

As with any recurrence-based technique, there are a few key considerations that516

must be taken into account when determining what time axis to use for a given record517

when applying this technique. The time axis must be evenly spaced; this is a strict re-518

quirement of methods that rely on uniform time delay embedding. The time axis should519

also minimize the generation of new data (upsampling). Recurrence analysis based tech-520

niques are often very sensitive to changes in time series structure. Interpolating over coarse521

sections of a time series using too fine a time step can produce false positives. It is best522

when using these techniques to be as conservative with one’s time imputation scheme523

as possible. When comparing multiple records it can be valuable to align the time axes524

of each record via a technique such as linear interpolation of the time series onto a shared525
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time axis. This will minimize the possibility of time axis dependent effects influencing526

the results of one’s analysis. There is a trade-off between consistency of time axes and527

maintenance of the original time axis. In certain cases this trade-off can be mitigated528

by usage of skillfully aligned records, such as in the case of the GICC05 time scale used529

to align Greenland ice cores. However, this requires the independent construction of aligned530

time axes for a specific set of records, which can either be expensive or impossible de-531

pending on the records under consideration. The question of the appropriate time axis532

to use in these studies is best handled on a case by case basis. Ideally, the results pro-533

duced by this type of analysis should be reasonably robust across time axes, and vari-534

ation in the precise timing of transitions due to different time axes and parameter choices535

should be included in the uncertainty quantification. Another topic related to the choice536

of time-axis that is worthy of scrutiny is the usage of age model ensembles. None of the537

records we considered in our analysis had age model ensembles, so we leave the deter-538

mination of how to handle this kind of uncertainty for future work.539

When applied to a set of four oxygen isotopes records from Greenland ice cores and540

one from an Antarctica ice core, this technique suggested a shift in climate dynamics around541

the 8.2ka event. In Greenland this was unsurprising given the obvious shift in the char-542

acter of the time series during the event, but the Antarctica result is intriguing. The re-543

sult should be viewed with caution, as other records from different regions of Antarc-544

tica did not experience the same shift. However, this could be the product of an inter-545

decadal bipolar seesaw mediated by the Atlantic ocean (Chylek et al., 2010; Wang et al.,546

2015). In this case, due to the abrupt nature of the 8.2ka event, its effects as mediated547

by this teleconnection could have manifested more as a dynamical disturbance than an548

opposing temperature response.549

7 Conclusion550

With appropriate parameter selection and precautions regarding time sampling,551

the LERM technique shows promise in application to paleoclimate time series data. The552

technique can reveal, in a holistic way, when changes in the behavior of univariate time553

series occur. Such changes can be gradual or abrupt, subtle or obvious. However, when554

noise levels are high or data are unevenly spaced and require the usage of imputation555

methods, the method can produce a high rate of false positives. Additionally, because556

the creation of the recurrence matrix relies on a minimum density, it is inherently rel-557

ative. This means that if there are no dominant changes in time series character present558

in a series, this method will still report transitions between dynamical regimes. It fol-559

lows that this method is best applied to sets of records so that synchronicity between560

records can act to establish robustness to noise and sampling issues. It may also be use-561

ful in modern applications when used for tipping point analysis as a dynamically-motivated562

changepoint detection algorithm. We leave this application for future work.563

8 Open Research564

v0.0.8 of the Ammonyte Python package (James, 2023a) was used to generate all565

the examples in this study and the supporting Jupyter Notebooks. Ammonyte is avail-566

able via a GPL-3.0 license and developed openly at https://github.com/alexkjames/567

Ammonyte. v0.4.0 of the accompanying Jupyter Notebooks (James, 2023b) that provide568

examples of how each of the figures in this study were produced and additional tests re-569

ferred to in the text is available via a MIT license and developed openly at https://570

github.com/alexkjames/Detecting Paleoclimate Transitions with LERM571

References572

Abarnabel, H. D. I. (1997). Analysis of observed chaotic data. Springer.573

–20–



manuscript submitted to Paleoceanography and Paleoclimatology

Ahmad, N., Derrible, S., Eason, T., & Cabezas, H. (2016). Using Fisher information574

to track stability in multivariate systems. Royal Society Open Science, 3 (11),575

160582. doi: 10.1098/rsos.160582576
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