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Abstract

A high-resolution simulation of CO2 at 1×1 km horizontal resolution using the Weather Research and Forecasting Greenhouse

gas (WRF-GHG) model was conducted, focusing on the Kanto region in Japan. The WRF-GHG simulations were performed

using different anthropogenic emission inventories: EAGrid (Japan, 1 km), EDGAR (0.1o), and EDGAR-downscaled (0.01o).

Our analysis showed that the simulations using EAGrid better captured the diurnal variability in observed CO2 compared to

EDGAR and EDGAR-downscaled emissions at two continuous monitoring sites. The 1×1 km simulation performed better in

simulating CO2 variability observed in surface sites (hourly) and aircraft observations, compared to the 27×27 km simulations.

We compared the vertical profile distribution of CO2 and found that all the simulations performed similarly. During February

(May), the anthropogenic (land biosphere) fluxes were the primary contributor to the vertical distribution of CO2 up to an

altitude of 3200 m (4500 m), beyond which long-range transport influenced by lateral boundary conditions from Eurasia played

a greater role. The sensitivity analysis of boundary conditions showed a systematic bias (˜ 4 ppm) persisting above 3200 m

altitude when fixed (a constant value) boundary conditions are applied, as compared to the simulation with boundary conditions

from a global model. We also compared the WRF-GHG simulated column-averaged XCO2 from Orbiting Carbon Observatory-2

(OCO-2) satellite and found a statistically significant spatial correlation (r=0.47) in February. However, we found a weaker

spatial correlation (0.17) in May, which could be caused due to under-representation of intense land biosphere activity in

WRF-GHG.
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Abstract 9 

A high-resolution simulation of CO2 at 1×1 km horizontal resolution using the Weather Research and 10 

Forecasting Greenhouse gas (WRF-GHG) model was conducted, focusing on the Kanto region in 11 
Japan. The WRF-GHG simulations were performed using different anthropogenic emission 12 
inventories: EAGrid (Japan, 1 km), EDGAR (0.1o), and EDGAR-downscaled (0.01o). Our analysis 13 

showed that the simulations using EAGrid better captured the diurnal variability in observed CO2 14 
compared to EDGAR and EDGAR-downscaled emissions at two continuous monitoring sites. The 15 

1×1 km simulation performed better in simulating CO2 variability observed in surface sites (hourly) 16 
and aircraft observations, compared to the 27×27 km simulations. We compared the vertical profile 17 
distribution of CO2 and found that all the simulations performed similarly. During February (May), 18 

the anthropogenic (land biosphere) fluxes were the primary contributor to the vertical distribution of 19 

CO2 up to an altitude of 3200 m (4500 m), beyond which long-range transport influenced by lateral 20 
boundary conditions from Eurasia played a greater role. The sensitivity analysis of boundary 21 

conditions showed a systematic bias (~ 4 ppm) persisting above 3200 m altitude when fixed (a 22 

constant value) boundary conditions are applied, as compared to the simulation with boundary 23 
conditions from a global model. We also compared the WRF-GHG simulated column-averaged XCO2 24 

from Orbiting Carbon Observatory-2 (OCO-2) satellite and found a statistically significant spatial 25 

correlation (r=0.47) in February. However, we found a weaker spatial correlation (0.17) in May, 26 
which could be caused due to under-representation of intense land biosphere activity in WRF-GHG.  27 

 28 

 29 

 30 
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Plain Language Summary 31 

We performed high-resolution (1×1 km grid in horizontal) simulation of CO2 over the Kanto region, 32 

Japan using a regional model (WRF-GHG) in order to better account for the small-scale processes. 33 

We used three different anthropogenic emission inventories for model simulations and evaluated their 34 
effectiveness by comparing the simulation results with surface-based, aircraft and satellite remote 35 

sensing observations. The high-resolution simulation better captures the CO2 variability observed in 36 

surface and aircraft observations compared to coarser (27×27 km) spatial resolution. The vertical 37 
profile distribution of CO2 aircraft observations is explained by different CO2 tracers, for e.g., 38 

anthropogenic, land biosphere, biomass burning and ocean fluxes, and a background tracer from 39 
global transport model. Primary contributor to the vertical distribution of CO2 is anthropogenic during 40 

February (up to 3200 m altitude) and land biosphere during May (up to 4500 m altitude), beyond 41 

which CO2 is influenced by the background tracer from Eurasia. Without the lateral boundary 42 
conditions from global model a systematic bias could persist in CO2 vertical profile from mid-43 

troposphere. We compared WRF-GHG simulated column-averaged CO2 concentration (XCO2) with 44 
satellite observations, and found a much better spatial correlation for February compared to that for 45 

May. 46 

Key Points 47 

(1) The WRF-GHG model simulations are performed over Kanto region, Japan using three different 48 
anthropogenic emission inventories. 49 

(2) WRF-GHG simulations are shown to be sensitive to lateral boundaries above middle troposphere 50 
based on comparison with aircraft observations. 51 

(3) WRF-GHG at finer spatial resolution (1 km) performs better than the coarser (27 km) simulation 52 

when compared using in-situ observations. 53 

1. Introduction 54 

CO2 is a well-mixed and long-lived greenhouse gas (GHG) in the atmosphere which has both 55 
anthropogenic and natural sources. CO2 is chemically inert in the troposphere and stratosphere. CO2 56 

concentration is increasing steadily in the atmosphere because emissions by anthropogenic activity 57 
(10.9 ± 0.8 GtCyr-1 for the year 2021) which far exceeds the uptakes from terrestrial ecosystem (3.5 ± 58 
0.9 GtC yr-1) and ocean (2.9 ± 0.4 GtC yr-1), respectively (Friedlingstein et al., 2022). The attribution 59 

of CO2 to its anthropogenic and natural flux components is a necessary step to understand the role of 60 

human-induced climate change.  61 

To estimate gridded CO2 emissions from various sources, such as industrial, residential, commercial, 62 
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and transportation processes, anthropogenic CO2 emission inventories have been developed and are 63 

regularly updated and improved for better accuracy (Gurney et al., 2020; Janssens-Maenhout et al., 64 
2019; Fukui et al., 2014). Model simulations using different emission inventories can help assess the 65 

performance of these inventories with respect to observed in-situ CO2 concentration observations at 66 

local scale (Liu et al., 2015). Several studies have demonstrated that the current concentration of CO2 67 
in the atmosphere is largely due to human activities, particularly the burning of fossil fuels 68 

(Friedlingstein et al., 2022). It has been reported that more than 60% of global fossil-fuel CO2 69 
emissions are produced in cities (Duren and Miller, 2012; Huo et al., 2022), making them important 70 

targets for mitigation efforts. 71 

In addition to anthropogenic CO2 emissions, atmosphere-biosphere carbon exchange significantly 72 

affects the atmospheric CO2 concentration and is equally important to understand the atmospheric 73 

carbon cycle. Numerous studies use top-down approach to understand the effect of all emissions of 74 
CO2. In such approach various types of atmospheric inversion methods are used that uses CO2 75 

concentrations measurements and atmospheric transport models to estimate CO2 flux. Inversions can 76 
produce estimates on a daily or sub-daily timescale, but regional assessments of fluxes using global 77 

models at small time and space scales are challenging due to transport model’s inability to represent 78 
CO2 measurements adjacent to large point sources (Pisso et al., 2019). However, efforts have been 79 

made to better parameterize the biosphere processes (Dayalu et al., 2018) and regional scale 80 
atmospheric inversion methods have been developed  to estimate CO2 fluxes (Steinkamp et al., 2017; 81 

Lauvaux et al., 2016). 82 

Regional models are used for addressing the knowledge gap related to the mesoscale scale transport 83 

of carbon dioxide (CO2) and its flux exchange between the biosphere and the atmosphere (Ballav et 84 

al., 2012; Ballav et al., 2016). Ahmadov et al. (2007, 2009) coupled Vegetation Photosynthesis and 85 
Respiration Model (VPRM) (Mahadevan et al., 2008) module with the WRF model, and conducted 86 

CO2 modeling over Europe. This framework has also been utilized in other studies (Park et al., 2018; 87 

Dong et al., 2021; Pillai et al., 2016), which have demonstrated the effectiveness of the atmosphere-88 
biosphere coupled model in capturing mesoscale CO2 transport at regional and local scales with 89 
significant improvements. VPRM CO2 fluxes are required to be fine-tuned using observed vegetation 90 

fluxes for the land use types in the region (Mahadevan et al., 2008).  91 

This study is performed to evaluate the performance of WRF-GHG over Japan, specifically the Kanto 92 

region, centered around Tokyo, using three different anthropogenic emission inventories (EAGrid, 93 
EDGAR, and EDGAR-downscaled). Our WRF-GHG simulations efforts anticipates the launch of 94 
GOSAT-GW/TANSO-3 (Global Observing SATellite for Greenhouse gases and Water cycle/ Total 95 

Anthropogenic and Natural emissions mapping SpectrOmeter-3; scheduled to be launched in the 96 

fiscal year 2024-25) for XCO2 observations. XCO2 gives the information of whole atmospheric 97 
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column; therefore, the accuracy of the model will be assessed by comparing its results to surface and 98 

aircraft measurements of CO2 concentrations, as well as XCO2 observations from satellite. We chose 99 
two different months for the WRF-GHG simulation experiments: February and May, for mimicking 100 

two contrasting periods of dormant and intense land biosphere activity (e.g., Tohjima et al., 2020).  101 

2. Materials and Methods 102 

2.1 WRF-GHG Model configurations 103 

We use WRF with coupled chemistry (WRF-Chem version 4.2.1) model, which uses the GHG 104 

module to simulate the transport of CO2, methane (CH4), and carbon monoxide (CO) (hereafter 105 
referred as WRF-GHG). The module includes VPRM to simulate the CO2 biogenic emissions 106 

(described by Ahmadov et al., 2007 and Mahadevan et al., 2008). We run WRF-GHG for the 107 

following CO2 tracers: background, biomass burning, ocean, biogenic, and anthropogenic. And the 108 
CO2 concentration is estimated as the net total of them. The WRF-GHG simulations performed using 109 

two-moment microphysics (Morrison et al., 2009), Unified Noah Land Surface Model (Tewari et al., 110 

2004), Grell 3D Ensemble (GD) (Grell and Dévényi, 2002) cumulus parameterization for outermost 111 
domain (d01; Fig.1), and the Rapid Radiative Transfer Model for GCMs (RRTMG) short and 112 

longwave radiation schemes. For Planetary Boundary Layer (PBL) parameterization, the MYNN 113 
(Mellor-Yamada-Nakanishi-Niino) 2.5 level Turbulent Kinetic Energy (TKE) based PBL scheme 114 
(Nakanishi and Niino, 2004) is used.  115 

We set up and run WRF-GHG by two-way nesting at 27, 9, 3, and 1 km resolution on four nested 116 
domains (Fig. 1a) and 41 vertical layers extending up to 155 hPa. Initial and lateral boundary 117 

conditions for meteorological fields for the WRF-GHG modeling were taken from the European 118 
Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA-5) dataset which is 119 

available at 0.25o spatial resolution. The CO2 initial and lateral boundary conditions are provided from 120 

Model for Interdisciplinary Research on Climate, version 4.0 (MIROC4) based ACTM (hereafter 121 
referred to as MIROC4-ACTM) model output (spatial resolution is 2.8o; Patra et al., 2018; Bisht et al., 122 
2021). The model was spun up for 15 days prior to comparing it with the observations. The VPRM 123 

module in WRF-GHG model calculates the NEE based on NPP (Net Primary Productivity) and RESP 124 
(respiration rate) as follows: 125 

NEE = -NPP (Net Primary Productivity) + RESP (respiration rate)   (1) 

NPP = l ´ 𝑇"#$%& ´ 𝑊"#$%& ´ 𝑃"#$%& ´ )
()	,-./∕-./1)

	´ PAR ´ EVI   (2) 

RESP = a ´ T  + b    (3) 
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The Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) calculated from the 126 

MODIS surface reflectance data are used to generate the scaling factors for temperature (Tscale), 127 
phenology (Pscale), and canopy water content (Wscale). These scaling factors and the VPRM parameters, 128 

including the maximum quantum yield (λ) and the half-saturation value of photosynthetically active 129 

radiation (PAR0), are used to calculate the NPP. a and β are parameters used to model ecosystem 130 

respiration.  131 

2.2 Emission Inventories 132 

The WRF-GHG simulations have been performed over Japan using three different anthropogenic 133 

emission inventories: East Asian Air Pollutant Emission Grid Database (EAGrid) (Japan, 1 km), 134 

Emissions Database for Global Atmospheric Research version 5 (EDGARv5) (0.1o), EDGAR-135 
downscaled (0.01o). For China and North and South Korea the surface emissions are taken from 136 

REAS (Regional Emission Inventory in Asia) with 0.25o × 0.25o resolution (Kurokawa and Ohara, 137 
2020). The surface emission over Russia are taken from EDGARv5. 138 

The EAGrid is the anthropogenic emission inventory for Japan (Kannari et al., 2007; Fukui et al., 139 
2014) with a 1 km × 1 km resolution and monthly, hourly, and weekday/holiday variations for the 140 

base year 2010. The EDGARv5 inventory provides emissions for individual sectors at the spatial 141 
resolution of 0.1° × 0.1° on an annual basis for 1970 - 2015 and on a monthly basis for 2010 only. We 142 
use EDGARv5 and EDGAR-downscaled emission for the year 2015 in this work. The EDGAR-143 

downscaled inventory (1 km grid or equivalent 0.01 degree) is created by redistributing the different 144 
sectors in the EDGAR emission inventory such as: (1) redistributing the energy and industry sectors 145 
by additional information of power plants (the location of power plants (coal, gas, oil) are taken from 146 

“A Global Database of Power Plants” (https://datasets.wri.org/dataset/) and Wikipedia “Lists of 147 
power stations”) and of locations of facilities (https://mrdata.usgs.gov/mineral-operations/), (2) 148 

redistributing the transport sector by weighting the length of the road network and the information of 149 

each road (ranks of highways, national roads, urban roads, etc.) (the road networks are taken from 150 
“OpenStreetMap (OSM)”), (3) redistributing the RCO (residential and commercial buildings) using 151 

population distribution, and (4) redistributing the agricultural sector by the area of farmland. The 152 

distributions of the crops, grassland, and paddy are taken from “Land Cover (GLCNMO) – Global 153 

version, Version3”. The location of the monthly burned areas is taken from “MODIS 154 

MCD64A1v006”. The downscaled emission fraction exceeded 80% of the original total amount. 155 

We applied the diurnal variation in CO2 for EDGARv5 and EDGAR-downscaled emissions 156 
inventories based on the weights used for the treatment of hourly CO emissions to EAGrid2000 157 

(Kannari et al., 2007). We have displayed the diurnal cycle for different anthropogenic emission 158 
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inventories used in WRF-GHG simulation for May 2018 in the supporting information Figure S1 for 159 

three CO2 concentration observation sites (mentioned in Section 2.3). 160 

The Fire INventory from NCAR (FINN; Wiedinmyer et al., 2011) biomass burning emissions (0.1o × 161 

0.1o) are used as input to WRF-GHG. CO2 emission data for ocean is taken from Surface Ocean CO2 162 

Atlas (SOCAT) (Fay et al., 2021; spatial resolution: 1o × 1o). We have shown the CO2 ocean flux 163 

projected over different domains in supporting information Figure S2.               164 

2.3 CO2 concentration observation data 165 

Atmospheric CO2 hourly concentration in-situ data is analyzed at Mt. Dodaira (36.00oN, 139.19oE, 166 

altitude; 852 m), Kisai (36.10oN, 139.57oE, altitude; 34 m), and Yoyogi (35.66oN, 139.68oE, altitude; 167 

39 m). The in-situ CO2 concentration data recorded with VIA-510R (HORIBA Ltd.) with 168 
measurement uncertainty of ~0.3 ppm at Mt. Dodaira and Kisai observations sites is obtained from 169 

the World Data Centre for Greenhouse Gases (WDCGG) operated by the Japan Meteorological 170 

Agency (JMA). On the  other hand, the CO2 concentration data at Yoyogi observation site is obtained 171 
from National Institute for Environmental Studies (NIES), Japan (Sugawara et al., 2021), using LI-172 
820 (LI-COR) with reproducibility of 0.06 ppm for two-min averaged values. We also use 173 

CONTRAIL Continuous CO2 Measuring Equipment (CME) CO2 concentration data aboard Japan 174 
Airlines’ commercial airliner flights (Machida et al., 2008). We also used Orbiting Carbon 175 

Oservatory-2 (OCO-2) satellite XCO2 concentration (Eldering et al., 2017) observations (version 10) 176 
to evaluate WRF-GHG performance. OCO-2 was launched in launched in July 2014, OCO-2 is an 177 
Earth observing satellite mission owned and operated by NASA (National Aeronautics and Space 178 

Administration). OCO-2 spatial resolution is 1.29 km cross-track and 2.25 km along-track. 179 

3. Results and Discussion 180 

We performed high-resolution modeling to improve the representation of topographic complexity, 181 

synoptic weather conditions, and mesoscale transport of CO2 and the CO2 exchange flux between the 182 
biosphere and atmosphere. Figure 1a depicts WRF-GHG domain configurations and terrain height, 183 
while in Figure 1b, we zoomed into the inner-most domain and illustrated various land-use categories 184 

and in-situ measurement sites. To evaluate the model CO2 concentration, we used surface observation 185 
sites Kisai (KIS), Mt. Dodaira (DDR), and Yoyogi (YYG) as shown in Figure 1b. We also evaluated 186 
the NEE calculated from the model using CO2 flux observation sites Fuji Hokuroku (FHK: 35.44oN, 187 

138.76oE, altitude; 1100 m) and Mase paddy (MSE: 36.03oN, 140.01oE, altitude; 11 m). Additionally, 188 

Figure 1b displays the CONTRAIL CO2 concentration observations tracks for flights arriving and 189 
departing from the Haneda (HND) airport in Japan, with the blue color indicating flight altitude. 190 
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 191 

Figure 1: (a) The diagram illustrates the domain configurations for the model simulations (four 192 

domains: 27, 9, 3, and 1 km) and displays the terrain height for each domain. (b) The innermost 193 
domain in the diagram displays the dominant vegetation type used for VPRM calculation (derived 194 
from MODIS data) and observation sites for surface CO2 concentration: Kisai (KIS), Mt. Dodaira 195 

(DDR), and Yoyogi (YYG). Additionally, the diagram shows CO2 surface flux sites such as Fuji 196 
Hokuroku (FHK) and Mase paddy (MSE). The diagram also includes CONTRAIL CO2 concentration 197 

observations for flights arriving and departing from Haneda (HND) airport in Japan. The blue color 198 
on the diagram represents the flight altitude. 199 

The model NEE calculation has been evaluated against the available CO2 flux tower data within the 200 
innermost domain (Fig. 1b). We have included a comparison of the NEE calculated from WRF-GHG 201 
with the CO2 flux observations from Fuji Hokuroku Deciduous needleleaf forest and Mase paddy 202 
('FHK' and 'MSE'; see Fig. 1b) in the supporting information (Fig. S3). VPRM parameter ‘PAR0’ (Eq. 203 

2) for the “deciduous forest” is taken from Li et al., 2020, and VPRM parameters ‘l’ and ‘a’  for 204 

‘cropland type’ (rice paddy) are taken ‘-0.1209’ and ‘0.2100’ respectively, based on iterative 205 

calculation to better fit WRF-GHG NEE to observed ‘mase paddy’ flux data (supporting information; 206 
Fig. S3). Other VPRM parameters are kept as ‘default’. Note that in case of rice paddy, VPRM 207 
parameters for ‘cropland type’ may need to further tuned based on the rice growing season that takes 208 

place from May through September for most prefectures in Japan. 209 

Figure 2 presents spatial maps of diurnal variations of CO2 concentration and fluxes on May 9, 2018 210 

(date chosen randomly), within the innermost domain. During May the land biosphere is more active 211 
compare to February (Supporting Information Fig. S4a and b). The leftmost four panels (Fig. 2a) 212 

display the diurnal variation in CO2 concentrations at the surface layer, as modeled by WRF-GHG. 213 

The diurnal variation in surface CO2 concentrations is influenced by PBL height and CO2 emission 214 
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from ecosystem respiration process (Fig. 2c), resulting in higher atmospheric CO2 concentrations at 215 

00 and 06 JST (Japan Standard Time).  216 

Figure 2b presents the diurnal variation in anthropogenic emissions (EAGrid) at the surface level, 217 

which peak at 12 and 18 JST. Figure 2c presents the diurnal variation of natural CO2 fluxes over land 218 

and ocean. We did not detect a discernible CO2 flux over the ocean within the innermost domain, as 219 

shown in supporting information Figure S2. At 12 and 18 JST, we noticed a predominance of CO2 220 
uptake attributable to photosynthesis activity, while CO2 emission due to the ecosystem respiration 221 

process dominated at 00 and 06 JST, as shown in Figure 2c. Lastly, Figure 2d demonstrates the total 222 
CO2 fluxes, which comprise mainly anthropogenic and natural land fluxes (ocean fluxes are masked 223 

out for domain 04 due to coarser resolution (1o × 1o); supporting information Fig. S2). 224 

 225 

Figure 2: Six hourly spatial distribution maps on May 9, 2018 for inner most domain (1 km), 226 
depicting (a) atmospheric CO2 concentration, (b) anthropogenic CO2 emissions (EAGrid), (c) CO2 227 

emissions from land and ocean sources, and (d) total CO2 emissions. 228 
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3.1 Model results evaluation with surface-based CO2 concentration observations 229 

We compared the WRF-GHG simulation results for inner most domain (1 km; Fig. 1b) with hourly 230 
in-situ observations at Kisai and Mt. Dodaira, and Yoyogi during February and May 2018 (Fig. 3 and 231 

4). The Yoyogi station data is available during growing season (April-May) only. The total 232 

anthropogenic CO2 emission for the inner-most domain (d04: Fig. 1b) is estimated to be 274.10, 233 

332.20, 340.00 Tg (Tera-gram carbon unit) for EAGrid, EDGAR, and EDGAR-downscaled 234 
anthropogenic emission inventory, respectively. 235 

The WRF-GHG model’s results have been evaluated using basic statistical measures, such as root 236 

mean square error (RMSE; 3∑ (56786)9

:
:
;<) =

)
>?
), and the mean bias (∑ (56786)@

6AB
:

), where, M; and O; 237 

indicate hourly modeling results and observations, respectively. We have also evaluated the model 238 

performance using correlation coefficient (r; ∑ (5675E@
6AB )(8678E)

F∑ (5675E)9@
6AB F∑ (8678E)9@

6AB

) between model and 239 

observations. Where  ME  and OE are the average of model simulations and observations, respectively.  240 

In February 2018 (Fig. 3), there were no significant differences among model simulations from 241 

various anthropogenic emission inventories. However, in terms of correlation coefficient between 242 
model simulations and observations EAGrid and EDGAR performs better than EDGAR-downscaled 243 
anthropogenic emission inventory for Kisai and Mt. Dodaira. The model simulations (with all the 244 

anthropogenic emission inventories) showed underestimation for Kisai (Fig. 3a) and a minor 245 
overestimation for Mt. Dodaira (Fig. 3b). 246 

During May 2018 (Fig. 4), the model simulations with EAGrid and EDGAR anthropogenic emission 247 
inventories exhibited a minor underestimation at Kisai (Fig. 4a). The RMSE in model simulations 248 
with all anthropogenic emission inventories at all in-situ observation sites is larger than that in 249 

February 2018 due to the presence of more active land-biosphere fluxes. Additionally, in Dodaira and 250 

Yoyogi observation sites (Figs. 4b and 4c), the model showed overestimation with all anthropogenic 251 
emission inventories, and the correlation between model simulations and observations is weak. 252 

However, the correlation between model simulations and observations is comparable between EAGrid 253 
and EDGAR (model simulations with EDGAR-downscaled exhibits weaker correlation) at Kisai (Fig. 254 
4a). At Yoyogi correlation is better with the EAGrid (Fig. 4c) compared to EDGAR and EDGAR-255 

downscaled anthropogenic emission inventories.  256 
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 257 

Figure 3: Hourly CO2 concentrations at Kisai and Mt. Dodaira observation sites during February 258 

2018.  The observations (black) shown along with model simulation with EAGrid (orange), EDGAR 259 
(green), EDGAR-Downscaled (EDGAR-D; blue) anthropogenic emission inventories. Statistics of 260 
model observation comparison is given within each panel for different anthropogenic emission 261 
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inventories. 262 

 263 

Figure 4: Same as Figure 3 but for May 2018 and Yoyogi observation site added. 264 

Figure 5 presents the diurnal cycle of CO2 during February and May 2018 over the mentioned in-situ 265 

observation sites. In February 2018 at Mt. Dodaira observation site, WRF-GHG (with all 266 

anthropogenic emission inventories) reasonably reproduced the observed diurnal variability (r ³ 0.58). 267 

However, at the Kisai observation site, WRF-GHG underestimated the CO2 concentration during the 268 

night and overestimated it during the day. In Figure S4a of the supporting information, we 269 

demonstrated that anthropogenic emissions were the primary contributors to CO2 emissions during 270 
February 2018. One potential explanation for the observed discrepancy between observed and 271 
modeled CO2 concentrations at Kisai observation site is transport errors. For example, as shown in 272 

Figure 3 on February 2-3 and February 14-15, 2018, the model did not capture the strong CO2 273 

concentration peaks, which are possibly caused by transport errors. Another possibility is that 274 
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anthropogenic emission inventories do not adequately account for local or nearby CO2 emissions, 275 

leading to underestimation of CO2 concentrations.  276 

During May 2018, at the Kisai site, the WRF-GHG model reproduced the diurnal variation (r ³ 0.63) 277 

but noticeably underestimated the peak-to-trough CO2 amplitude during the night and day, likely due 278 

to a less intense NEE by VPRM from the model. Smaller PBL height change during day and night 279 
could also cause the underestimation in diurnal cycle for a given VPRM flux. The WRF-GHG 280 

simulations with EAGrid anthropogenic emission inventory better capture the diurnal variation at 281 

Kisai (r = 0.95) compared to EDGAR (r = 0.85) and EDGAR-downscaled (r = 0.63) anthropogenic 282 
emission inventories. 283 

Over Mt. Dodaira, all model simulations overestimated CO2 concentrations at all hours. However, 284 

simulations that used EDGAR (r = 0.65) and EDGAR-downscaled (r = 0.66) emission inventories 285 
performed better than those using EAGrid (r = 0.11). Similarly, over Yoyogi, the model simulations 286 

using EAGrid and EDGAR-downscaled emission inventories overestimated CO2 concentrations. 287 

However, the CO2 diurnal variation phase better matched with the model simulation using EAGrid 288 
anthropogenic emission inventory, resulting in a higher correlation (r = 0.80) with the observations. 289 
Model simulation with EDGAR anthropogenic emission inventory is closer to the observation during 290 

00 to 08 JST but overestimated the CO2 concentration during the rest of the hours.  291 

We have shown the contribution of different tracers to total CO2 concentration variability during May 292 
2018 for Kisai, Mt. Dodaira, and Yoyogi in supporting information (Table S1). We found that major 293 

contribution to all the sites is from anthropogenic CO2 tracer. Over Mt. Dodaira there is slightly 294 
negative contribution from land biosphere but it is very small in comparison to anthropogenic tracer. 295 
Therefore, the transport of anthropogenic emissions by local circulation (for e.g., land-sea-breeze) is a 296 

key factor in deciding the diurnal cycle in CO2 concentration over these sites.  297 

Overall, our analysis of CO2 diurnal cycle exhibits prominent diurnal changes, with larger variations 298 

in May compared to February. During the daytime, specifically in May, lower CO2 concentrations in 299 
the observations can be attributed to photosynthetic uptake and the PBL height, which allows for 300 

rapid vertical mixing between the near-surface and upper air. At night, larger CO2 concentrations 301 

result from ecosystem respiration and a shallow PBL. The impact of PBL height on the diurnal 302 
variation of atmospheric CO2 has been analyzed in multiple prior studies (for e.g., Dong et al., 2021; 303 
Hu et al., 2020; Ballav et al., 2016). We also discussed this phenomenon while explaining the spatial 304 

distribution of CO2 concentration diurnal variation in Figure 2 in Section 3. Ballav et al. (2016) 305 
emphasized that number of layers in the WRF model needs to be increased, particularly below 200 m, 306 

to better resolve the PBL. 307 
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 308 

 309 
Figure 5: The comparison in the diurnal variation of CO2 levels as observed and simulated using 310 

different anthropogenic emission inventories for February and May 2018. The error bars represent the 311 
standard deviation, and each panel includes the r (correlation coefficient) for the model simulations 312 

with different anthropogenic emission inventories. 313 

3.2 Comparison between coarser and high-resolution CO2 simulations with surface observations 314 

We compared the WRF-GHG simulation for two spatial resolutions; coarser resolution (27 km) and 315 

finer resolution (1 km). In the case of coarser resolution, the model simulations are performed for the 316 
outermost domain independently (Fig. 1a; 27 km) during February 2018 without taking other domains 317 

into account. The finer domain simulation (1 km) results used here are the same as shown in Figure 3. 318 

It could be noted from Figures 6a and 6b that, in the case of 1 km high-resolution model simulations, 319 

the model simulated CO2 spread is larger compared to the 27 km model simulations which results in a 320 
better correlation coefficient in the case of 27 km model simulation specifically over Kisai (Fig. 6a). 321 
However, the slope is significantly underestimated in the case of 27 km model simulation compared 322 

to 1 km model simulations suggesting the significant underestimation of the observed variabilities 323 

(also shown in supporting information Fig. S5a). The slopes are calculated using the Orthogonal 324 
Distance Regression method (ODR) (Zhang et al., 2019) to better account for the variabilities present 325 

both in observations and model simulations. We may notice the instances (supporting information 326 
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Fig. S5a; February 15-17, 2018) where 1 km model simulations significantly overestimated the 327 

observed CO2 concentration.  328 

In the case of Mt Dodaira (Fig. 6b), the correlation between observed and simulated CO2 329 

concentration is comparable for 27 km and 1 km model simulations. However, in the case of 1 km 330 

model simulations, the slope is significantly improved compared to 27 km model simulations. We 331 

could also notice from supporting information Figure S5b, the large CO2 peak between February 09, 332 
2018, to February 11, 2018, is highly underestimated in the case of the 27 km model simulation, but 333 

better captured by the 1 km model simulation. For some days (for e.g., supporting information Figure 334 
S5b; Feb 15-17, 2018, Feb 22-23, 2018), CO2 concentration was significantly overestimated in the 335 

case of high-resolution (1 km) simulation.  336 

The analysis suggests that high-resolution model simulations (1 km) at Kisai observation site are more 337 

scattered compared to Mt. Dodaira. One of the reasons is Kisai site is more influenced by the 338 
transport from high emission sources from the Tokyo area by the local atmospheric circulations 339 
compared to Mt. Dodaira which is located in a remote location with an altitude of 852 m. The analysis 340 
needs expansion for more spatial observation coverage to illustrate the full potential of high-341 

resolution model simulations. It is also needed to examine in the following study whether the high-342 

resolution simulation amplifies the systematic bias present in the forcing parameters used for nudging 343 

the model. 344 
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 345 

Figure 6: Scatter diagram between observed and simulated CO2 during February 2018 for: (a) finer (1 346 

km) and coarser (27 km) model domains over Kisai, (b) finer and coarser model domains over Mt. 347 
Dodaira. The dashed line is 1:1 line 348 

3.3 Model results evaluation with aircraft observations of CO2 concentrations 349 

Figure 7a show the WRF-GHG simulations comparison with CONTRAIL aircraft observations during 350 
February 2018 (Number of data points (N) = 2368). We first spatio-temporally collocate the model 351 

and CONTRAIL CO2 concentration observation and then binned CO2 observations at each 100 m 352 

altitude starting from 700 m altitude (total 65 layers). It is worth noting that all emission inventories 353 
produce comparable results during February 2018 (Fig. 7a). To investigate the performance of the 354 

model's CO2 concentration regarding the contribution of different tracers, we displayed the 355 

background and land biosphere (background + land biosphere) contribution separately for February 356 
2018 (Fig. 7b). Figure 7b indicates that the primary contribution to CO2 concentration variation 357 

during February 2018 could be attributed to anthropogenic tracer from the altitude range near the 358 

surface to 3200 m. The background and land biosphere CO2 tracers merged throughout the vertical 359 
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profile during February 2018, which suggests no noticeable contribution from the land biosphere 360 

tracer. Furthermore, it is noteworthy that after a certain altitude (>3200 m), the CO2 concentration 361 
from the background and land biosphere merged with the total CO2 concentration. This signifies the 362 

impact of lateral boundaries, and WRF-GHG is able to reproduce the CO2 variation well, including 363 

the plume-like signature near the top of the CO2 profile (6600-7200 m altitude range; Figs. 7a and 364 
7b).  365 

 366 

Figure 7: Comparison of CO2 Vertical Distribution in February 2018: (a) CONTRAIL observations 367 

and sensitivity of simulations to anthropogenic emission inventories, (b) same as ‘(a)’ but includes the 368 
contribution from background and land biosphere (background + land biosphere) tracers in vertical 369 
distribution of CO2. The error bar represents the standard deviation. 370 

We have also shown comparison of the vertical profile during May 2018 from both WRF-GHG and 371 

CONTRAIL observations in Figure 8a (N = 1778). Similar to February 2018, WRF-GHG reasonably 372 

reproduces the vertical distribution of CO2, and no noticeable difference was found in model 373 
simulations with different anthropogenic emission inventories. Furthermore, our Figure 8b illustrates 374 

the model's CO2 concentration regarding the contribution of different tracers during May 2018. Unlike 375 

February 2018, we may notice the dominant contribution of land biosphere tracer to the total CO2 376 
concentration during May 2018. Therefore, the total CO2 concentration during May 2018 is a result of 377 

both anthropogenic and land biosphere flux, in addition to the background. The land biosphere tracer 378 
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to the total CO2 concentration is up to an altitude of 4500 m and beyond that altitude, the main 379 

contributor was the background tracer. 380 

 381 

Figure 8: Same as Figure 7 but for May 2018. 382 

We compared the WRF-GHG simulations with CONTRAIL aircraft observations for two spatial 383 

resolutions; coarser resolution (27 km) and finer resolution (1 km) (Fig. 9a). It may be noted that 384 
coarser resolution simulations largely underestimated the observed CO2 concentration up to an 385 
altitude range of approximately 2400 m (Fig. 9a). Above that, the 1 km and 27 km model simulations 386 

are similar. The under-estimation of CO2 concentration in coarser resolution WRF-GHG simulations 387 
could be attributed to the under-representation of fine scale vertical transport processes (Yamashita et 388 
al., 2021) such as: vertical diffusion and convection. On the other hand, 1 km simulations reasonably 389 

reproduced the observed variability in the vertical distribution of CO2 concentration. 390 

Our study also included a sensitivity analysis of boundary conditions, where we conducted CO2 391 

concentration simulations using fixed boundaries instead of MIROC4-ACTM (Fig. 9b). The analysis 392 
showed that, beyond an altitude of 3200 m, a systematic bias of approximately 4 ppm exists in the 393 

CO2 profile when fixed (a constant value) boundary conditions are applied, as compared to the results 394 

obtained when using boundary conditions from MIROC4-ACTM. Furthermore, when using fixed 395 
lateral boundary conditions, plume-like signatures as observed in the CO2 profile around 7000 m (Fig.  396 
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9b) are not reproduced. We conclude that the selection of a model field with a wider domain 397 

(MIROC4-ACTM for this study) for lateral boundary conditions to WRF-GHG is critically important. 398 
In a recent study conducted by Munassar et al., 2023, the influence of lateral boundary conditions on 399 

regional inversions was also highlighted, underscoring the importance of isolating the far-field 400 

contributions.  401 

 402 

Figure 9: Comparison of CO2 vertical distribution between CONTRAIL and WRF-GHG simulations 403 

during February 2018 for: (a) finer (1 km) and coarser (27 km) model domains, (b) fixed (a constant 404 

value) initial and lateral boundary conditions and with MIROC4-ACTM initial and lateral boundary 405 
conditions to WRF-GHG. The error bar represents the standard deviation. 406 

3.4 Model results evaluation with satellite observations  407 

The WRF-GHG model simulated column-averaged CO2 concentrations (XCO2) dataset that is 408 
spatiotemporally sampled with Orbiting Carbon Observatory-2 (OCO-2) observations as follows: 409 

XCO> = XCO>(J	KL;ML;) +OhQ
Q

𝑎Q(CO>(STU5)	 − CO>(J	KL;ML;))Q 410 

Where, XCO2 is the column-averaged model simulated CO2 concentration. XCO2 (a priori) is a priori 411 
column-averaged concentration provided in the OCO-2 dataset. CO2 (ACTM) and CO2 (a priori) are 412 
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the CO2 profile from ACTM and a priori (OCO-2 dataset), respectively. hj is the pressure weighting 413 

function (j is the vertical layer index), and aj represents averaging kernel matrix for the column 414 
retrieval which is the sensitivity of the retrieved total column at the various (‘j’) atmospheric levels 415 

(Bisht et al., 2023). 416 

To compare with OCO-2 data, we used the CO2 concentration simulations performed with EAGrid 417 

anthropogenic emission inventory within the second domain (9 km; Fig. 1a) due to limited spatial 418 
coverage of OCO-2. To calculate XCO2 from WRF-GHG model output, we used CO2 concentration 419 

data above 155 hPa (which is the top of the atmosphere in WRF-GHG) obtained from MIROC4-420 
ACTM. Firstly, we performed spatio-temporal collocation of the model simulations and observations, 421 

and created a 0.25o mesh for re-gridding the OCO-2 and model data (0.25 degrees re-gridding 422 

performed here since most of the data points fall under rural-remote regions; Figs. 10a and b). Next, 423 
we calculated the average data for the months of February and May 2018, as depicted in Figure 10. 424 

The white space in the figure represents no data.  425 

During February 2018 (Fig. 10a), we found a correlation coefficient of 0.47 (N = 107) between the 426 
OCO-2 and model data, suggesting the reasonable performance by the model. However, in May 2018 427 

(Fig. 10b), we found a weak correlation coefficient of 0.17 (N = 196) between OCO-2 and the model. 428 

One possibility of weak correlation during May is the more CO2 sink produced by the VPRM than 429 

suggested by the observations over WRF-GHG simulation domains. We noticed a strong land 430 
biosphere sink in model simulations for the inner-most domain during May (Fig. 8b) while comparing 431 

the model simulation results with aircraft observations. The model underestimation of CO2 432 
concentration between 700 – 1500 m altitude range during May (Fig. 8b) could be attributed to more 433 
CO2 sink produced by the model than suggested by the observations since during Feb (Fig. 7b) model 434 

simulations match well with the observations when land biosphere is less active. Also, the strong sink 435 

in the outermost domain (d01; Fig. 1a) could provide depleted CO2 feedback to domain 2 in terms of 436 
boundary conditions that could further underestimate the CO2 concentration.  437 
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 438 

Figure 10: Comparison of the XCO2 observed by the OCO-2 satellite and simulated by the WRF-439 

GHG model: (a) Feb 2018 and (b) May 2018. 440 

4. Summary 441 

This study uses the WRF-GHG model to simulate atmospheric CO2 using various anthropogenic 442 

emission inventories. The results obtained from the finest domain (1 km) were compared with in-situ 443 
surface and aircraft observations. The findings suggest that the WRF-GHG model, using different 444 
anthropogenic emission inventories, can reasonably replicate the observed variations in in-situ surface 445 

observation. Based on our sensitivity experiments and analysis for different in-situ surface sites for 446 
CO2 concentration, we found EAGrid is a more appropriate anthropogenic emission inventory for 447 
Japan compared to the other two anthropogenic emission inventories used here. 448 

We analyzed the difference in coarser (27 km) and finer (1 km) resolution model simulations based on 449 

surface observations and found a significant underestimation of CO2 concentration in the case of 27 450 

km model simulations compared to 1 km model simulations. Also, the observed variability in CO2 451 
concentration is better captured by high-resolution (1 km) model simulations. However, in some days 452 

during the simulation period, we noticed a significant CO2 concentration overestimation in the case of 453 
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high-resolution (1 km) simulation. The full potential of high-resolution modeling needed to be 454 

evaluated with more spatial observation coverage in the following study.  455 

The study evaluates the performance of the WRF-GHG model by comparing its output with 456 

CONTRAIL aircraft observations for February and May 2018. We compare the model simulations 457 

with different emission inventories to assess their consistency with the observations. The results show 458 

that all emission inventories produce comparable results during February and May 2018. Furthermore, 459 
the model reasonably reproduces the CO2 variation, and the primary contribution (till 3200 m) to CO2 460 

concentration variation during February 2018 arises from the anthropogenic tracer. In May 2018, both 461 
anthropogenic and land biosphere tracers contributed to the total CO2 concentration. The study also 462 

highlights the importance of lateral boundary conditions in modeling atmospheric CO2 concentrations 463 

and shows that a systematic bias (~ 4 ppm) persists beyond an altitude of 3200 meters (February 464 
2018) when fixed boundary conditions are applied.  465 

We also analyzed the WRF-GHG simulations with CONTRAIL aircraft observations for coarser (27 466 
km) and finer resolution (1 km) and demonstrates the advantage of 1 km simulation over 27 km 467 
simulations in reproducing the observed variability in the vertical distribution of CO2 concentration. 468 

We found a large underestimation in CO2 concentration in the coarser resolution (27 km) simulations 469 

below 2500 m altitude. We concluded that the under-representation of fine-scale transport processes 470 

(e.g., vertical diffusion, convection) of atmospheric CO2 in the coarser resolution model simulation 471 
could underestimate the CO2 concentration. 472 

The study also compares XCO2 from the OCO-2 satellite and the XCO2 calculated from the WRF-473 

GHG model output. The study found a reasonable performance of the model in February 2018 with a 474 

correlation coefficient of 0.47, but a weak correlation in May 2018 with a correlation coefficient of 475 
0.17. Our results based on aircraft observations suggest dominant land biosphere activity during May 476 
which are not modeled well by WRF-GHG/VPRM. On the other hand, in the presence of less land 477 

biosphere activity during February model simulations match well with the observations. 478 

 479 

Code and data availability. The WRF-Chem source code is archived at https://ruc.noaa.gov/wrf/wrf-480 
chem/. Atmospheric CO2 hourly concentration data for Mt. Dodaira and Kisai is archived at 481 
https://gaw.kishou.go.jp/ as Yosuke MUTO (SAIPF), Atmospheric CO2 at Kisai by Center for 482 

Environmental Science in Saitama, dataset published as CO2_KIS_surface-insitu_SAIPF_data1 at 483 

WDCGG, ver. 2022-06-27-0532  (Reference date*: 2023/05/19) and Yosuke MUTO (SAIPF), 484 
Atmospheric CO2 at Mt. Dodaira by Center for Environmental Science in Saitama, dataset published 485 

as CO2_DDR_ surface-insitu_SAIPF_data1 at WDCGG, ver. 2022-06-27-0532 (Reference date*: 486 
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2023/05/19). Yoyogi station data is achieved at https://www.nies.go.jp/doi/10.17595/20210510.001-487 

e.html. CONTRAIL Continuous CO2 Measuring Equipment (CME) data aboard Japan Airlines’ 488 
commercial airliner flights is archived at https://www.nies.go.jp/doi/10.17595/20180208.001-e.html. 489 

OCO2 satellite observation data is archived at https://ocov2.jpl.nasa.gov/. The eddy covariance 490 

datasets of MSE and FHK facilitated this study. The MSE data is obtained from AsiaFlux Database 491 
(http://asiaflux.net). The CO2 flux data at FHK site is archived at: Takahashi (2021), 492 

Micrometeorological CO2 Flux Data at Fuji Hokuroku Flux Observation Site (FHK), Ver.2.1, 493 
National Institute for Environmental Studies, DOI:10.17595/20210730.001, (Reference date*: 494 

2023/05/19) 495 
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Abstract 9 

A high-resolution simulation of CO2 at 1×1 km horizontal resolution using the Weather Research and 10 

Forecasting Greenhouse gas (WRF-GHG) model was conducted, focusing on the Kanto region in 11 
Japan. The WRF-GHG simulations were performed using different anthropogenic emission 12 
inventories: EAGrid (Japan, 1 km), EDGAR (0.1o), and EDGAR-downscaled (0.01o). Our analysis 13 

showed that the simulations using EAGrid better captured the diurnal variability in observed CO2 14 
compared to EDGAR and EDGAR-downscaled emissions at two continuous monitoring sites. The 15 

1×1 km simulation performed better in simulating CO2 variability observed in surface sites (hourly) 16 
and aircraft observations, compared to the 27×27 km simulations. We compared the vertical profile 17 
distribution of CO2 and found that all the simulations performed similarly. During February (May), 18 

the anthropogenic (land biosphere) fluxes were the primary contributor to the vertical distribution of 19 

CO2 up to an altitude of 3200 m (4500 m), beyond which long-range transport influenced by lateral 20 
boundary conditions from Eurasia played a greater role. The sensitivity analysis of boundary 21 

conditions showed a systematic bias (~ 4 ppm) persisting above 3200 m altitude when fixed (a 22 

constant value) boundary conditions are applied, as compared to the simulation with boundary 23 
conditions from a global model. We also compared the WRF-GHG simulated column-averaged XCO2 24 

from Orbiting Carbon Observatory-2 (OCO-2) satellite and found a statistically significant spatial 25 

correlation (r=0.47) in February. However, we found a weaker spatial correlation (0.17) in May, 26 
which could be caused due to under-representation of intense land biosphere activity in WRF-GHG.  27 

 28 

 29 

 30 
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Plain Language Summary 31 

We performed high-resolution (1×1 km grid in horizontal) simulation of CO2 over the Kanto region, 32 

Japan using a regional model (WRF-GHG) in order to better account for the small-scale processes. 33 

We used three different anthropogenic emission inventories for model simulations and evaluated their 34 
effectiveness by comparing the simulation results with surface-based, aircraft and satellite remote 35 

sensing observations. The high-resolution simulation better captures the CO2 variability observed in 36 

surface and aircraft observations compared to coarser (27×27 km) spatial resolution. The vertical 37 
profile distribution of CO2 aircraft observations is explained by different CO2 tracers, for e.g., 38 

anthropogenic, land biosphere, biomass burning and ocean fluxes, and a background tracer from 39 
global transport model. Primary contributor to the vertical distribution of CO2 is anthropogenic during 40 

February (up to 3200 m altitude) and land biosphere during May (up to 4500 m altitude), beyond 41 

which CO2 is influenced by the background tracer from Eurasia. Without the lateral boundary 42 
conditions from global model a systematic bias could persist in CO2 vertical profile from mid-43 

troposphere. We compared WRF-GHG simulated column-averaged CO2 concentration (XCO2) with 44 
satellite observations, and found a much better spatial correlation for February compared to that for 45 

May. 46 

Key Points 47 

(1) The WRF-GHG model simulations are performed over Kanto region, Japan using three different 48 
anthropogenic emission inventories. 49 

(2) WRF-GHG simulations are shown to be sensitive to lateral boundaries above middle troposphere 50 
based on comparison with aircraft observations. 51 

(3) WRF-GHG at finer spatial resolution (1 km) performs better than the coarser (27 km) simulation 52 

when compared using in-situ observations. 53 

1. Introduction 54 

CO2 is a well-mixed and long-lived greenhouse gas (GHG) in the atmosphere which has both 55 
anthropogenic and natural sources. CO2 is chemically inert in the troposphere and stratosphere. CO2 56 

concentration is increasing steadily in the atmosphere because emissions by anthropogenic activity 57 
(10.9 ± 0.8 GtCyr-1 for the year 2021) which far exceeds the uptakes from terrestrial ecosystem (3.5 ± 58 
0.9 GtC yr-1) and ocean (2.9 ± 0.4 GtC yr-1), respectively (Friedlingstein et al., 2022). The attribution 59 

of CO2 to its anthropogenic and natural flux components is a necessary step to understand the role of 60 

human-induced climate change.  61 

To estimate gridded CO2 emissions from various sources, such as industrial, residential, commercial, 62 
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and transportation processes, anthropogenic CO2 emission inventories have been developed and are 63 

regularly updated and improved for better accuracy (Gurney et al., 2020; Janssens-Maenhout et al., 64 
2019; Fukui et al., 2014). Model simulations using different emission inventories can help assess the 65 

performance of these inventories with respect to observed in-situ CO2 concentration observations at 66 

local scale (Liu et al., 2015). Several studies have demonstrated that the current concentration of CO2 67 
in the atmosphere is largely due to human activities, particularly the burning of fossil fuels 68 

(Friedlingstein et al., 2022). It has been reported that more than 60% of global fossil-fuel CO2 69 
emissions are produced in cities (Duren and Miller, 2012; Huo et al., 2022), making them important 70 

targets for mitigation efforts. 71 

In addition to anthropogenic CO2 emissions, atmosphere-biosphere carbon exchange significantly 72 

affects the atmospheric CO2 concentration and is equally important to understand the atmospheric 73 

carbon cycle. Numerous studies use top-down approach to understand the effect of all emissions of 74 
CO2. In such approach various types of atmospheric inversion methods are used that uses CO2 75 

concentrations measurements and atmospheric transport models to estimate CO2 flux. Inversions can 76 
produce estimates on a daily or sub-daily timescale, but regional assessments of fluxes using global 77 

models at small time and space scales are challenging due to transport model’s inability to represent 78 
CO2 measurements adjacent to large point sources (Pisso et al., 2019). However, efforts have been 79 

made to better parameterize the biosphere processes (Dayalu et al., 2018) and regional scale 80 
atmospheric inversion methods have been developed  to estimate CO2 fluxes (Steinkamp et al., 2017; 81 

Lauvaux et al., 2016). 82 

Regional models are used for addressing the knowledge gap related to the mesoscale scale transport 83 

of carbon dioxide (CO2) and its flux exchange between the biosphere and the atmosphere (Ballav et 84 

al., 2012; Ballav et al., 2016). Ahmadov et al. (2007, 2009) coupled Vegetation Photosynthesis and 85 
Respiration Model (VPRM) (Mahadevan et al., 2008) module with the WRF model, and conducted 86 

CO2 modeling over Europe. This framework has also been utilized in other studies (Park et al., 2018; 87 

Dong et al., 2021; Pillai et al., 2016), which have demonstrated the effectiveness of the atmosphere-88 
biosphere coupled model in capturing mesoscale CO2 transport at regional and local scales with 89 
significant improvements. VPRM CO2 fluxes are required to be fine-tuned using observed vegetation 90 

fluxes for the land use types in the region (Mahadevan et al., 2008).  91 

This study is performed to evaluate the performance of WRF-GHG over Japan, specifically the Kanto 92 

region, centered around Tokyo, using three different anthropogenic emission inventories (EAGrid, 93 
EDGAR, and EDGAR-downscaled). Our WRF-GHG simulations efforts anticipates the launch of 94 
GOSAT-GW/TANSO-3 (Global Observing SATellite for Greenhouse gases and Water cycle/ Total 95 

Anthropogenic and Natural emissions mapping SpectrOmeter-3; scheduled to be launched in the 96 

fiscal year 2024-25) for XCO2 observations. XCO2 gives the information of whole atmospheric 97 
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column; therefore, the accuracy of the model will be assessed by comparing its results to surface and 98 

aircraft measurements of CO2 concentrations, as well as XCO2 observations from satellite. We chose 99 
two different months for the WRF-GHG simulation experiments: February and May, for mimicking 100 

two contrasting periods of dormant and intense land biosphere activity (e.g., Tohjima et al., 2020).  101 

2. Materials and Methods 102 

2.1 WRF-GHG Model configurations 103 

We use WRF with coupled chemistry (WRF-Chem version 4.2.1) model, which uses the GHG 104 

module to simulate the transport of CO2, methane (CH4), and carbon monoxide (CO) (hereafter 105 
referred as WRF-GHG). The module includes VPRM to simulate the CO2 biogenic emissions 106 

(described by Ahmadov et al., 2007 and Mahadevan et al., 2008). We run WRF-GHG for the 107 

following CO2 tracers: background, biomass burning, ocean, biogenic, and anthropogenic. And the 108 
CO2 concentration is estimated as the net total of them. The WRF-GHG simulations performed using 109 

two-moment microphysics (Morrison et al., 2009), Unified Noah Land Surface Model (Tewari et al., 110 

2004), Grell 3D Ensemble (GD) (Grell and Dévényi, 2002) cumulus parameterization for outermost 111 
domain (d01; Fig.1), and the Rapid Radiative Transfer Model for GCMs (RRTMG) short and 112 

longwave radiation schemes. For Planetary Boundary Layer (PBL) parameterization, the MYNN 113 
(Mellor-Yamada-Nakanishi-Niino) 2.5 level Turbulent Kinetic Energy (TKE) based PBL scheme 114 
(Nakanishi and Niino, 2004) is used.  115 

We set up and run WRF-GHG by two-way nesting at 27, 9, 3, and 1 km resolution on four nested 116 
domains (Fig. 1a) and 41 vertical layers extending up to 155 hPa. Initial and lateral boundary 117 

conditions for meteorological fields for the WRF-GHG modeling were taken from the European 118 
Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA-5) dataset which is 119 

available at 0.25o spatial resolution. The CO2 initial and lateral boundary conditions are provided from 120 

Model for Interdisciplinary Research on Climate, version 4.0 (MIROC4) based ACTM (hereafter 121 
referred to as MIROC4-ACTM) model output (spatial resolution is 2.8o; Patra et al., 2018; Bisht et al., 122 
2021). The model was spun up for 15 days prior to comparing it with the observations. The VPRM 123 

module in WRF-GHG model calculates the NEE based on NPP (Net Primary Productivity) and RESP 124 
(respiration rate) as follows: 125 

NEE = -NPP (Net Primary Productivity) + RESP (respiration rate)   (1) 

NPP = l ´ 𝑇"#$%& ´ 𝑊"#$%& ´ 𝑃"#$%& ´ )
()	,-./∕-./1)

	´ PAR ´ EVI   (2) 

RESP = a ´ T  + b    (3) 
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The Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) calculated from the 126 

MODIS surface reflectance data are used to generate the scaling factors for temperature (Tscale), 127 
phenology (Pscale), and canopy water content (Wscale). These scaling factors and the VPRM parameters, 128 

including the maximum quantum yield (λ) and the half-saturation value of photosynthetically active 129 

radiation (PAR0), are used to calculate the NPP. a and β are parameters used to model ecosystem 130 

respiration.  131 

2.2 Emission Inventories 132 

The WRF-GHG simulations have been performed over Japan using three different anthropogenic 133 

emission inventories: East Asian Air Pollutant Emission Grid Database (EAGrid) (Japan, 1 km), 134 

Emissions Database for Global Atmospheric Research version 5 (EDGARv5) (0.1o), EDGAR-135 
downscaled (0.01o). For China and North and South Korea the surface emissions are taken from 136 

REAS (Regional Emission Inventory in Asia) with 0.25o × 0.25o resolution (Kurokawa and Ohara, 137 
2020). The surface emission over Russia are taken from EDGARv5. 138 

The EAGrid is the anthropogenic emission inventory for Japan (Kannari et al., 2007; Fukui et al., 139 
2014) with a 1 km × 1 km resolution and monthly, hourly, and weekday/holiday variations for the 140 

base year 2010. The EDGARv5 inventory provides emissions for individual sectors at the spatial 141 
resolution of 0.1° × 0.1° on an annual basis for 1970 - 2015 and on a monthly basis for 2010 only. We 142 
use EDGARv5 and EDGAR-downscaled emission for the year 2015 in this work. The EDGAR-143 

downscaled inventory (1 km grid or equivalent 0.01 degree) is created by redistributing the different 144 
sectors in the EDGAR emission inventory such as: (1) redistributing the energy and industry sectors 145 
by additional information of power plants (the location of power plants (coal, gas, oil) are taken from 146 

“A Global Database of Power Plants” (https://datasets.wri.org/dataset/) and Wikipedia “Lists of 147 
power stations”) and of locations of facilities (https://mrdata.usgs.gov/mineral-operations/), (2) 148 

redistributing the transport sector by weighting the length of the road network and the information of 149 

each road (ranks of highways, national roads, urban roads, etc.) (the road networks are taken from 150 
“OpenStreetMap (OSM)”), (3) redistributing the RCO (residential and commercial buildings) using 151 

population distribution, and (4) redistributing the agricultural sector by the area of farmland. The 152 

distributions of the crops, grassland, and paddy are taken from “Land Cover (GLCNMO) – Global 153 

version, Version3”. The location of the monthly burned areas is taken from “MODIS 154 

MCD64A1v006”. The downscaled emission fraction exceeded 80% of the original total amount. 155 

We applied the diurnal variation in CO2 for EDGARv5 and EDGAR-downscaled emissions 156 
inventories based on the weights used for the treatment of hourly CO emissions to EAGrid2000 157 

(Kannari et al., 2007). We have displayed the diurnal cycle for different anthropogenic emission 158 
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inventories used in WRF-GHG simulation for May 2018 in the supporting information Figure S1 for 159 

three CO2 concentration observation sites (mentioned in Section 2.3). 160 

The Fire INventory from NCAR (FINN; Wiedinmyer et al., 2011) biomass burning emissions (0.1o × 161 

0.1o) are used as input to WRF-GHG. CO2 emission data for ocean is taken from Surface Ocean CO2 162 

Atlas (SOCAT) (Fay et al., 2021; spatial resolution: 1o × 1o). We have shown the CO2 ocean flux 163 

projected over different domains in supporting information Figure S2.               164 

2.3 CO2 concentration observation data 165 

Atmospheric CO2 hourly concentration in-situ data is analyzed at Mt. Dodaira (36.00oN, 139.19oE, 166 

altitude; 852 m), Kisai (36.10oN, 139.57oE, altitude; 34 m), and Yoyogi (35.66oN, 139.68oE, altitude; 167 

39 m). The in-situ CO2 concentration data recorded with VIA-510R (HORIBA Ltd.) with 168 
measurement uncertainty of ~0.3 ppm at Mt. Dodaira and Kisai observations sites is obtained from 169 

the World Data Centre for Greenhouse Gases (WDCGG) operated by the Japan Meteorological 170 

Agency (JMA). On the  other hand, the CO2 concentration data at Yoyogi observation site is obtained 171 
from National Institute for Environmental Studies (NIES), Japan (Sugawara et al., 2021), using LI-172 
820 (LI-COR) with reproducibility of 0.06 ppm for two-min averaged values. We also use 173 

CONTRAIL Continuous CO2 Measuring Equipment (CME) CO2 concentration data aboard Japan 174 
Airlines’ commercial airliner flights (Machida et al., 2008). We also used Orbiting Carbon 175 

Oservatory-2 (OCO-2) satellite XCO2 concentration (Eldering et al., 2017) observations (version 10) 176 
to evaluate WRF-GHG performance. OCO-2 was launched in launched in July 2014, OCO-2 is an 177 
Earth observing satellite mission owned and operated by NASA (National Aeronautics and Space 178 

Administration). OCO-2 spatial resolution is 1.29 km cross-track and 2.25 km along-track. 179 

3. Results and Discussion 180 

We performed high-resolution modeling to improve the representation of topographic complexity, 181 

synoptic weather conditions, and mesoscale transport of CO2 and the CO2 exchange flux between the 182 
biosphere and atmosphere. Figure 1a depicts WRF-GHG domain configurations and terrain height, 183 
while in Figure 1b, we zoomed into the inner-most domain and illustrated various land-use categories 184 

and in-situ measurement sites. To evaluate the model CO2 concentration, we used surface observation 185 
sites Kisai (KIS), Mt. Dodaira (DDR), and Yoyogi (YYG) as shown in Figure 1b. We also evaluated 186 
the NEE calculated from the model using CO2 flux observation sites Fuji Hokuroku (FHK: 35.44oN, 187 

138.76oE, altitude; 1100 m) and Mase paddy (MSE: 36.03oN, 140.01oE, altitude; 11 m). Additionally, 188 

Figure 1b displays the CONTRAIL CO2 concentration observations tracks for flights arriving and 189 
departing from the Haneda (HND) airport in Japan, with the blue color indicating flight altitude. 190 
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 191 

Figure 1: (a) The diagram illustrates the domain configurations for the model simulations (four 192 

domains: 27, 9, 3, and 1 km) and displays the terrain height for each domain. (b) The innermost 193 
domain in the diagram displays the dominant vegetation type used for VPRM calculation (derived 194 
from MODIS data) and observation sites for surface CO2 concentration: Kisai (KIS), Mt. Dodaira 195 

(DDR), and Yoyogi (YYG). Additionally, the diagram shows CO2 surface flux sites such as Fuji 196 
Hokuroku (FHK) and Mase paddy (MSE). The diagram also includes CONTRAIL CO2 concentration 197 

observations for flights arriving and departing from Haneda (HND) airport in Japan. The blue color 198 
on the diagram represents the flight altitude. 199 

The model NEE calculation has been evaluated against the available CO2 flux tower data within the 200 
innermost domain (Fig. 1b). We have included a comparison of the NEE calculated from WRF-GHG 201 
with the CO2 flux observations from Fuji Hokuroku Deciduous needleleaf forest and Mase paddy 202 
('FHK' and 'MSE'; see Fig. 1b) in the supporting information (Fig. S3). VPRM parameter ‘PAR0’ (Eq. 203 

2) for the “deciduous forest” is taken from Li et al., 2020, and VPRM parameters ‘l’ and ‘a’  for 204 

‘cropland type’ (rice paddy) are taken ‘-0.1209’ and ‘0.2100’ respectively, based on iterative 205 

calculation to better fit WRF-GHG NEE to observed ‘mase paddy’ flux data (supporting information; 206 
Fig. S3). Other VPRM parameters are kept as ‘default’. Note that in case of rice paddy, VPRM 207 
parameters for ‘cropland type’ may need to further tuned based on the rice growing season that takes 208 

place from May through September for most prefectures in Japan. 209 

Figure 2 presents spatial maps of diurnal variations of CO2 concentration and fluxes on May 9, 2018 210 

(date chosen randomly), within the innermost domain. During May the land biosphere is more active 211 
compare to February (Supporting Information Fig. S4a and b). The leftmost four panels (Fig. 2a) 212 

display the diurnal variation in CO2 concentrations at the surface layer, as modeled by WRF-GHG. 213 

The diurnal variation in surface CO2 concentrations is influenced by PBL height and CO2 emission 214 
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from ecosystem respiration process (Fig. 2c), resulting in higher atmospheric CO2 concentrations at 215 

00 and 06 JST (Japan Standard Time).  216 

Figure 2b presents the diurnal variation in anthropogenic emissions (EAGrid) at the surface level, 217 

which peak at 12 and 18 JST. Figure 2c presents the diurnal variation of natural CO2 fluxes over land 218 

and ocean. We did not detect a discernible CO2 flux over the ocean within the innermost domain, as 219 

shown in supporting information Figure S2. At 12 and 18 JST, we noticed a predominance of CO2 220 
uptake attributable to photosynthesis activity, while CO2 emission due to the ecosystem respiration 221 

process dominated at 00 and 06 JST, as shown in Figure 2c. Lastly, Figure 2d demonstrates the total 222 
CO2 fluxes, which comprise mainly anthropogenic and natural land fluxes (ocean fluxes are masked 223 

out for domain 04 due to coarser resolution (1o × 1o); supporting information Fig. S2). 224 

 225 

Figure 2: Six hourly spatial distribution maps on May 9, 2018 for inner most domain (1 km), 226 
depicting (a) atmospheric CO2 concentration, (b) anthropogenic CO2 emissions (EAGrid), (c) CO2 227 

emissions from land and ocean sources, and (d) total CO2 emissions. 228 
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3.1 Model results evaluation with surface-based CO2 concentration observations 229 

We compared the WRF-GHG simulation results for inner most domain (1 km; Fig. 1b) with hourly 230 
in-situ observations at Kisai and Mt. Dodaira, and Yoyogi during February and May 2018 (Fig. 3 and 231 

4). The Yoyogi station data is available during growing season (April-May) only. The total 232 

anthropogenic CO2 emission for the inner-most domain (d04: Fig. 1b) is estimated to be 274.10, 233 

332.20, 340.00 Tg (Tera-gram carbon unit) for EAGrid, EDGAR, and EDGAR-downscaled 234 
anthropogenic emission inventory, respectively. 235 

The WRF-GHG model’s results have been evaluated using basic statistical measures, such as root 236 

mean square error (RMSE; 3∑ (56786)9

:
:
;<) =

)
>?
), and the mean bias (∑ (56786)@

6AB
:

), where, M; and O; 237 

indicate hourly modeling results and observations, respectively. We have also evaluated the model 238 

performance using correlation coefficient (r; ∑ (5675E@
6AB )(8678E)

F∑ (5675E)9@
6AB F∑ (8678E)9@

6AB

) between model and 239 

observations. Where  ME  and OE are the average of model simulations and observations, respectively.  240 

In February 2018 (Fig. 3), there were no significant differences among model simulations from 241 

various anthropogenic emission inventories. However, in terms of correlation coefficient between 242 
model simulations and observations EAGrid and EDGAR performs better than EDGAR-downscaled 243 
anthropogenic emission inventory for Kisai and Mt. Dodaira. The model simulations (with all the 244 

anthropogenic emission inventories) showed underestimation for Kisai (Fig. 3a) and a minor 245 
overestimation for Mt. Dodaira (Fig. 3b). 246 

During May 2018 (Fig. 4), the model simulations with EAGrid and EDGAR anthropogenic emission 247 
inventories exhibited a minor underestimation at Kisai (Fig. 4a). The RMSE in model simulations 248 
with all anthropogenic emission inventories at all in-situ observation sites is larger than that in 249 

February 2018 due to the presence of more active land-biosphere fluxes. Additionally, in Dodaira and 250 

Yoyogi observation sites (Figs. 4b and 4c), the model showed overestimation with all anthropogenic 251 
emission inventories, and the correlation between model simulations and observations is weak. 252 

However, the correlation between model simulations and observations is comparable between EAGrid 253 
and EDGAR (model simulations with EDGAR-downscaled exhibits weaker correlation) at Kisai (Fig. 254 
4a). At Yoyogi correlation is better with the EAGrid (Fig. 4c) compared to EDGAR and EDGAR-255 

downscaled anthropogenic emission inventories.  256 
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 257 

Figure 3: Hourly CO2 concentrations at Kisai and Mt. Dodaira observation sites during February 258 

2018.  The observations (black) shown along with model simulation with EAGrid (orange), EDGAR 259 
(green), EDGAR-Downscaled (EDGAR-D; blue) anthropogenic emission inventories. Statistics of 260 
model observation comparison is given within each panel for different anthropogenic emission 261 
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inventories. 262 

 263 

Figure 4: Same as Figure 3 but for May 2018 and Yoyogi observation site added. 264 

Figure 5 presents the diurnal cycle of CO2 during February and May 2018 over the mentioned in-situ 265 

observation sites. In February 2018 at Mt. Dodaira observation site, WRF-GHG (with all 266 

anthropogenic emission inventories) reasonably reproduced the observed diurnal variability (r ³ 0.58). 267 

However, at the Kisai observation site, WRF-GHG underestimated the CO2 concentration during the 268 

night and overestimated it during the day. In Figure S4a of the supporting information, we 269 

demonstrated that anthropogenic emissions were the primary contributors to CO2 emissions during 270 
February 2018. One potential explanation for the observed discrepancy between observed and 271 
modeled CO2 concentrations at Kisai observation site is transport errors. For example, as shown in 272 

Figure 3 on February 2-3 and February 14-15, 2018, the model did not capture the strong CO2 273 

concentration peaks, which are possibly caused by transport errors. Another possibility is that 274 
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anthropogenic emission inventories do not adequately account for local or nearby CO2 emissions, 275 

leading to underestimation of CO2 concentrations.  276 

During May 2018, at the Kisai site, the WRF-GHG model reproduced the diurnal variation (r ³ 0.63) 277 

but noticeably underestimated the peak-to-trough CO2 amplitude during the night and day, likely due 278 

to a less intense NEE by VPRM from the model. Smaller PBL height change during day and night 279 
could also cause the underestimation in diurnal cycle for a given VPRM flux. The WRF-GHG 280 

simulations with EAGrid anthropogenic emission inventory better capture the diurnal variation at 281 

Kisai (r = 0.95) compared to EDGAR (r = 0.85) and EDGAR-downscaled (r = 0.63) anthropogenic 282 
emission inventories. 283 

Over Mt. Dodaira, all model simulations overestimated CO2 concentrations at all hours. However, 284 

simulations that used EDGAR (r = 0.65) and EDGAR-downscaled (r = 0.66) emission inventories 285 
performed better than those using EAGrid (r = 0.11). Similarly, over Yoyogi, the model simulations 286 

using EAGrid and EDGAR-downscaled emission inventories overestimated CO2 concentrations. 287 

However, the CO2 diurnal variation phase better matched with the model simulation using EAGrid 288 
anthropogenic emission inventory, resulting in a higher correlation (r = 0.80) with the observations. 289 
Model simulation with EDGAR anthropogenic emission inventory is closer to the observation during 290 

00 to 08 JST but overestimated the CO2 concentration during the rest of the hours.  291 

We have shown the contribution of different tracers to total CO2 concentration variability during May 292 
2018 for Kisai, Mt. Dodaira, and Yoyogi in supporting information (Table S1). We found that major 293 

contribution to all the sites is from anthropogenic CO2 tracer. Over Mt. Dodaira there is slightly 294 
negative contribution from land biosphere but it is very small in comparison to anthropogenic tracer. 295 
Therefore, the transport of anthropogenic emissions by local circulation (for e.g., land-sea-breeze) is a 296 

key factor in deciding the diurnal cycle in CO2 concentration over these sites.  297 

Overall, our analysis of CO2 diurnal cycle exhibits prominent diurnal changes, with larger variations 298 

in May compared to February. During the daytime, specifically in May, lower CO2 concentrations in 299 
the observations can be attributed to photosynthetic uptake and the PBL height, which allows for 300 

rapid vertical mixing between the near-surface and upper air. At night, larger CO2 concentrations 301 

result from ecosystem respiration and a shallow PBL. The impact of PBL height on the diurnal 302 
variation of atmospheric CO2 has been analyzed in multiple prior studies (for e.g., Dong et al., 2021; 303 
Hu et al., 2020; Ballav et al., 2016). We also discussed this phenomenon while explaining the spatial 304 

distribution of CO2 concentration diurnal variation in Figure 2 in Section 3. Ballav et al. (2016) 305 
emphasized that number of layers in the WRF model needs to be increased, particularly below 200 m, 306 

to better resolve the PBL. 307 
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 308 

 309 
Figure 5: The comparison in the diurnal variation of CO2 levels as observed and simulated using 310 

different anthropogenic emission inventories for February and May 2018. The error bars represent the 311 
standard deviation, and each panel includes the r (correlation coefficient) for the model simulations 312 

with different anthropogenic emission inventories. 313 

3.2 Comparison between coarser and high-resolution CO2 simulations with surface observations 314 

We compared the WRF-GHG simulation for two spatial resolutions; coarser resolution (27 km) and 315 

finer resolution (1 km). In the case of coarser resolution, the model simulations are performed for the 316 
outermost domain independently (Fig. 1a; 27 km) during February 2018 without taking other domains 317 

into account. The finer domain simulation (1 km) results used here are the same as shown in Figure 3. 318 

It could be noted from Figures 6a and 6b that, in the case of 1 km high-resolution model simulations, 319 

the model simulated CO2 spread is larger compared to the 27 km model simulations which results in a 320 
better correlation coefficient in the case of 27 km model simulation specifically over Kisai (Fig. 6a). 321 
However, the slope is significantly underestimated in the case of 27 km model simulation compared 322 

to 1 km model simulations suggesting the significant underestimation of the observed variabilities 323 

(also shown in supporting information Fig. S5a). The slopes are calculated using the Orthogonal 324 
Distance Regression method (ODR) (Zhang et al., 2019) to better account for the variabilities present 325 

both in observations and model simulations. We may notice the instances (supporting information 326 
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Fig. S5a; February 15-17, 2018) where 1 km model simulations significantly overestimated the 327 

observed CO2 concentration.  328 

In the case of Mt Dodaira (Fig. 6b), the correlation between observed and simulated CO2 329 

concentration is comparable for 27 km and 1 km model simulations. However, in the case of 1 km 330 

model simulations, the slope is significantly improved compared to 27 km model simulations. We 331 

could also notice from supporting information Figure S5b, the large CO2 peak between February 09, 332 
2018, to February 11, 2018, is highly underestimated in the case of the 27 km model simulation, but 333 

better captured by the 1 km model simulation. For some days (for e.g., supporting information Figure 334 
S5b; Feb 15-17, 2018, Feb 22-23, 2018), CO2 concentration was significantly overestimated in the 335 

case of high-resolution (1 km) simulation.  336 

The analysis suggests that high-resolution model simulations (1 km) at Kisai observation site are more 337 

scattered compared to Mt. Dodaira. One of the reasons is Kisai site is more influenced by the 338 
transport from high emission sources from the Tokyo area by the local atmospheric circulations 339 
compared to Mt. Dodaira which is located in a remote location with an altitude of 852 m. The analysis 340 
needs expansion for more spatial observation coverage to illustrate the full potential of high-341 

resolution model simulations. It is also needed to examine in the following study whether the high-342 

resolution simulation amplifies the systematic bias present in the forcing parameters used for nudging 343 

the model. 344 
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 345 

Figure 6: Scatter diagram between observed and simulated CO2 during February 2018 for: (a) finer (1 346 

km) and coarser (27 km) model domains over Kisai, (b) finer and coarser model domains over Mt. 347 
Dodaira. The dashed line is 1:1 line 348 

3.3 Model results evaluation with aircraft observations of CO2 concentrations 349 

Figure 7a show the WRF-GHG simulations comparison with CONTRAIL aircraft observations during 350 
February 2018 (Number of data points (N) = 2368). We first spatio-temporally collocate the model 351 

and CONTRAIL CO2 concentration observation and then binned CO2 observations at each 100 m 352 

altitude starting from 700 m altitude (total 65 layers). It is worth noting that all emission inventories 353 
produce comparable results during February 2018 (Fig. 7a). To investigate the performance of the 354 

model's CO2 concentration regarding the contribution of different tracers, we displayed the 355 

background and land biosphere (background + land biosphere) contribution separately for February 356 
2018 (Fig. 7b). Figure 7b indicates that the primary contribution to CO2 concentration variation 357 

during February 2018 could be attributed to anthropogenic tracer from the altitude range near the 358 

surface to 3200 m. The background and land biosphere CO2 tracers merged throughout the vertical 359 
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profile during February 2018, which suggests no noticeable contribution from the land biosphere 360 

tracer. Furthermore, it is noteworthy that after a certain altitude (>3200 m), the CO2 concentration 361 
from the background and land biosphere merged with the total CO2 concentration. This signifies the 362 

impact of lateral boundaries, and WRF-GHG is able to reproduce the CO2 variation well, including 363 

the plume-like signature near the top of the CO2 profile (6600-7200 m altitude range; Figs. 7a and 364 
7b).  365 

 366 

Figure 7: Comparison of CO2 Vertical Distribution in February 2018: (a) CONTRAIL observations 367 

and sensitivity of simulations to anthropogenic emission inventories, (b) same as ‘(a)’ but includes the 368 
contribution from background and land biosphere (background + land biosphere) tracers in vertical 369 
distribution of CO2. The error bar represents the standard deviation. 370 

We have also shown comparison of the vertical profile during May 2018 from both WRF-GHG and 371 

CONTRAIL observations in Figure 8a (N = 1778). Similar to February 2018, WRF-GHG reasonably 372 

reproduces the vertical distribution of CO2, and no noticeable difference was found in model 373 
simulations with different anthropogenic emission inventories. Furthermore, our Figure 8b illustrates 374 

the model's CO2 concentration regarding the contribution of different tracers during May 2018. Unlike 375 

February 2018, we may notice the dominant contribution of land biosphere tracer to the total CO2 376 
concentration during May 2018. Therefore, the total CO2 concentration during May 2018 is a result of 377 

both anthropogenic and land biosphere flux, in addition to the background. The land biosphere tracer 378 
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to the total CO2 concentration is up to an altitude of 4500 m and beyond that altitude, the main 379 

contributor was the background tracer. 380 

 381 

Figure 8: Same as Figure 7 but for May 2018. 382 

We compared the WRF-GHG simulations with CONTRAIL aircraft observations for two spatial 383 

resolutions; coarser resolution (27 km) and finer resolution (1 km) (Fig. 9a). It may be noted that 384 
coarser resolution simulations largely underestimated the observed CO2 concentration up to an 385 
altitude range of approximately 2400 m (Fig. 9a). Above that, the 1 km and 27 km model simulations 386 

are similar. The under-estimation of CO2 concentration in coarser resolution WRF-GHG simulations 387 
could be attributed to the under-representation of fine scale vertical transport processes (Yamashita et 388 
al., 2021) such as: vertical diffusion and convection. On the other hand, 1 km simulations reasonably 389 

reproduced the observed variability in the vertical distribution of CO2 concentration. 390 

Our study also included a sensitivity analysis of boundary conditions, where we conducted CO2 391 

concentration simulations using fixed boundaries instead of MIROC4-ACTM (Fig. 9b). The analysis 392 
showed that, beyond an altitude of 3200 m, a systematic bias of approximately 4 ppm exists in the 393 

CO2 profile when fixed (a constant value) boundary conditions are applied, as compared to the results 394 

obtained when using boundary conditions from MIROC4-ACTM. Furthermore, when using fixed 395 
lateral boundary conditions, plume-like signatures as observed in the CO2 profile around 7000 m (Fig.  396 



 18 

9b) are not reproduced. We conclude that the selection of a model field with a wider domain 397 

(MIROC4-ACTM for this study) for lateral boundary conditions to WRF-GHG is critically important. 398 
In a recent study conducted by Munassar et al., 2023, the influence of lateral boundary conditions on 399 

regional inversions was also highlighted, underscoring the importance of isolating the far-field 400 

contributions.  401 

 402 

Figure 9: Comparison of CO2 vertical distribution between CONTRAIL and WRF-GHG simulations 403 

during February 2018 for: (a) finer (1 km) and coarser (27 km) model domains, (b) fixed (a constant 404 

value) initial and lateral boundary conditions and with MIROC4-ACTM initial and lateral boundary 405 
conditions to WRF-GHG. The error bar represents the standard deviation. 406 

3.4 Model results evaluation with satellite observations  407 

The WRF-GHG model simulated column-averaged CO2 concentrations (XCO2) dataset that is 408 
spatiotemporally sampled with Orbiting Carbon Observatory-2 (OCO-2) observations as follows: 409 

XCO> = XCO>(J	KL;ML;) +OhQ
Q

𝑎Q(CO>(STU5)	 − CO>(J	KL;ML;))Q 410 

Where, XCO2 is the column-averaged model simulated CO2 concentration. XCO2 (a priori) is a priori 411 
column-averaged concentration provided in the OCO-2 dataset. CO2 (ACTM) and CO2 (a priori) are 412 
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the CO2 profile from ACTM and a priori (OCO-2 dataset), respectively. hj is the pressure weighting 413 

function (j is the vertical layer index), and aj represents averaging kernel matrix for the column 414 
retrieval which is the sensitivity of the retrieved total column at the various (‘j’) atmospheric levels 415 

(Bisht et al., 2023). 416 

To compare with OCO-2 data, we used the CO2 concentration simulations performed with EAGrid 417 

anthropogenic emission inventory within the second domain (9 km; Fig. 1a) due to limited spatial 418 
coverage of OCO-2. To calculate XCO2 from WRF-GHG model output, we used CO2 concentration 419 

data above 155 hPa (which is the top of the atmosphere in WRF-GHG) obtained from MIROC4-420 
ACTM. Firstly, we performed spatio-temporal collocation of the model simulations and observations, 421 

and created a 0.25o mesh for re-gridding the OCO-2 and model data (0.25 degrees re-gridding 422 

performed here since most of the data points fall under rural-remote regions; Figs. 10a and b). Next, 423 
we calculated the average data for the months of February and May 2018, as depicted in Figure 10. 424 

The white space in the figure represents no data.  425 

During February 2018 (Fig. 10a), we found a correlation coefficient of 0.47 (N = 107) between the 426 
OCO-2 and model data, suggesting the reasonable performance by the model. However, in May 2018 427 

(Fig. 10b), we found a weak correlation coefficient of 0.17 (N = 196) between OCO-2 and the model. 428 

One possibility of weak correlation during May is the more CO2 sink produced by the VPRM than 429 

suggested by the observations over WRF-GHG simulation domains. We noticed a strong land 430 
biosphere sink in model simulations for the inner-most domain during May (Fig. 8b) while comparing 431 

the model simulation results with aircraft observations. The model underestimation of CO2 432 
concentration between 700 – 1500 m altitude range during May (Fig. 8b) could be attributed to more 433 
CO2 sink produced by the model than suggested by the observations since during Feb (Fig. 7b) model 434 

simulations match well with the observations when land biosphere is less active. Also, the strong sink 435 

in the outermost domain (d01; Fig. 1a) could provide depleted CO2 feedback to domain 2 in terms of 436 
boundary conditions that could further underestimate the CO2 concentration.  437 
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 438 

Figure 10: Comparison of the XCO2 observed by the OCO-2 satellite and simulated by the WRF-439 

GHG model: (a) Feb 2018 and (b) May 2018. 440 

4. Summary 441 

This study uses the WRF-GHG model to simulate atmospheric CO2 using various anthropogenic 442 

emission inventories. The results obtained from the finest domain (1 km) were compared with in-situ 443 
surface and aircraft observations. The findings suggest that the WRF-GHG model, using different 444 
anthropogenic emission inventories, can reasonably replicate the observed variations in in-situ surface 445 

observation. Based on our sensitivity experiments and analysis for different in-situ surface sites for 446 
CO2 concentration, we found EAGrid is a more appropriate anthropogenic emission inventory for 447 
Japan compared to the other two anthropogenic emission inventories used here. 448 

We analyzed the difference in coarser (27 km) and finer (1 km) resolution model simulations based on 449 

surface observations and found a significant underestimation of CO2 concentration in the case of 27 450 

km model simulations compared to 1 km model simulations. Also, the observed variability in CO2 451 
concentration is better captured by high-resolution (1 km) model simulations. However, in some days 452 

during the simulation period, we noticed a significant CO2 concentration overestimation in the case of 453 



 21 

high-resolution (1 km) simulation. The full potential of high-resolution modeling needed to be 454 

evaluated with more spatial observation coverage in the following study.  455 

The study evaluates the performance of the WRF-GHG model by comparing its output with 456 

CONTRAIL aircraft observations for February and May 2018. We compare the model simulations 457 

with different emission inventories to assess their consistency with the observations. The results show 458 

that all emission inventories produce comparable results during February and May 2018. Furthermore, 459 
the model reasonably reproduces the CO2 variation, and the primary contribution (till 3200 m) to CO2 460 

concentration variation during February 2018 arises from the anthropogenic tracer. In May 2018, both 461 
anthropogenic and land biosphere tracers contributed to the total CO2 concentration. The study also 462 

highlights the importance of lateral boundary conditions in modeling atmospheric CO2 concentrations 463 

and shows that a systematic bias (~ 4 ppm) persists beyond an altitude of 3200 meters (February 464 
2018) when fixed boundary conditions are applied.  465 

We also analyzed the WRF-GHG simulations with CONTRAIL aircraft observations for coarser (27 466 
km) and finer resolution (1 km) and demonstrates the advantage of 1 km simulation over 27 km 467 
simulations in reproducing the observed variability in the vertical distribution of CO2 concentration. 468 

We found a large underestimation in CO2 concentration in the coarser resolution (27 km) simulations 469 

below 2500 m altitude. We concluded that the under-representation of fine-scale transport processes 470 

(e.g., vertical diffusion, convection) of atmospheric CO2 in the coarser resolution model simulation 471 
could underestimate the CO2 concentration. 472 

The study also compares XCO2 from the OCO-2 satellite and the XCO2 calculated from the WRF-473 

GHG model output. The study found a reasonable performance of the model in February 2018 with a 474 

correlation coefficient of 0.47, but a weak correlation in May 2018 with a correlation coefficient of 475 
0.17. Our results based on aircraft observations suggest dominant land biosphere activity during May 476 
which are not modeled well by WRF-GHG/VPRM. On the other hand, in the presence of less land 477 

biosphere activity during February model simulations match well with the observations. 478 

 479 

Code and data availability. The WRF-Chem source code is archived at https://ruc.noaa.gov/wrf/wrf-480 
chem/. Atmospheric CO2 hourly concentration data for Mt. Dodaira and Kisai is archived at 481 
https://gaw.kishou.go.jp/ as Yosuke MUTO (SAIPF), Atmospheric CO2 at Kisai by Center for 482 

Environmental Science in Saitama, dataset published as CO2_KIS_surface-insitu_SAIPF_data1 at 483 

WDCGG, ver. 2022-06-27-0532  (Reference date*: 2023/05/19) and Yosuke MUTO (SAIPF), 484 
Atmospheric CO2 at Mt. Dodaira by Center for Environmental Science in Saitama, dataset published 485 

as CO2_DDR_ surface-insitu_SAIPF_data1 at WDCGG, ver. 2022-06-27-0532 (Reference date*: 486 
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2023/05/19). Yoyogi station data is achieved at https://www.nies.go.jp/doi/10.17595/20210510.001-487 

e.html. CONTRAIL Continuous CO2 Measuring Equipment (CME) data aboard Japan Airlines’ 488 
commercial airliner flights is archived at https://www.nies.go.jp/doi/10.17595/20180208.001-e.html. 489 

OCO2 satellite observation data is archived at https://ocov2.jpl.nasa.gov/. The eddy covariance 490 

datasets of MSE and FHK facilitated this study. The MSE data is obtained from AsiaFlux Database 491 
(http://asiaflux.net). The CO2 flux data at FHK site is archived at: Takahashi (2021), 492 

Micrometeorological CO2 Flux Data at Fuji Hokuroku Flux Observation Site (FHK), Ver.2.1, 493 
National Institute for Environmental Studies, DOI:10.17595/20210730.001, (Reference date*: 494 

2023/05/19) 495 
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 8 

Figure S1: The diurnal variation is shown for different anthropogenic emission inventories for three 9 

observation sites in Kanto region, Japan (valid for May 2018 WRF-GHG simulations). 10 



 

 11 

Figure S2: The ocean fluxes (mol km-2 hr-1) used in WRF-GHG to simulate CO2 is shown over four 12 
simulation domains (valid for 01 January 2018). 13 

 14 

Figure S3: Observed and model calculated NEE (default: blue; optimized: orange) for FHK and MSE 15 

sites during May 2019. 16 



 

 17 

Figure S4: Total CO2 emissions (anthropogenic; EAgrid) are shown for (a) Feb 2018 and (b) May 18 

2018.  19 

 20 

Figure S5: CO2 concentrations at Kisai and Mt. Dodaira regions during February 2018.  The 21 

observations (black) shown along with model simulation with EAGrid for domain 01 (27 km) and 22 
domain 01 (1 km). Statistics of model observation comparison is given within each panel for both the 23 

domains. 24 
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Table S1: Contribution to total CO2 concentration (ppm) from different tracers during May 2018. 28 

Observation sites Background 

(ppm) 

Anthropogenic 

(ppm) 

Land 

(ppm) 

Ocean 

(ppm) 

Kisai 417.57 14.13 1.75 -0.27 

Dodair 417.17 8.69 -1.42 -0.21 

Yoyogi 417.57 27.80 -0.15 -0.30 
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