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Abstract

We present a machine learning based emulator of a microphysics scheme for condensation and precipitation processes (Zhao-

Carr) used operationally in a global atmospheric forecast model (FV3GFS). Our tailored emulator architecture achieves high

skill ([?]94%) in predicting condensate and precipitation amounts and maintains low global-average bias ([?]4%) for 1 year of

continuous simulation when replacing the Fortran scheme. The stability and success of this emulator stems from key design

decisions. By separating the emulation of condensation and precipitation processes, we can better enforce physical priors

such as mass conservation and locality of condensation, and the vertical dependence of precipitation falling downward, using

specific network architectures. An activity classifier for condensation imitates the discrete-continuous nature of the Fortran

microphysics outputs (i.e., tendencies are identically zero where the scheme is inactive, and condensate is zero where clouds are

fully evaporated). A temperature-scaled conditional loss function ensures accurate condensate adjustments for a high dynamic

range of cloud types (e.g., cold, low-condensate cirrus clouds or warm, condensate-rich clouds). Despite excellent overall

performance, the emulator exhibits some deficiencies in the uppermost model levels, leading to biases in the stratosphere. The

emulator also has short episodic skill dropouts in isolated grid columns and is computationally slower than the original Fortran

scheme. Nonetheless, our challenges and strategies should be applicable to the emulation of other microphysical schemes. More

broadly, our work demonstrates that with suitable physically motivated architectural choices, ML techniques can accurately

emulate complex human-designed parameterizations of fast physical processes central to weather and climate models.
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Key Points:7
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Abstract13

We present a machine learning based emulator of a microphysics scheme for condensa-14

tion and precipitation processes (Zhao-Carr) used operationally in a global atmospheric15

forecast model (FV3GFS). Our tailored emulator architecture achieves high skill (≥94%)16

in predicting condensate and precipitation amounts and maintains low global-average17

bias (≤4%) for 1 year of continuous simulation when replacing the Fortran scheme. The18

stability and success of this emulator stems from key design decisions. By separating the19

emulation of condensation and precipitation processes, we can better enforce physical20

priors such as mass conservation and locality of condensation, and the vertical depen-21

dence of precipitation falling downward, using specific network architectures. An activ-22

ity classifier for condensation imitates the discrete-continuous nature of the Fortran mi-23

crophysics outputs (i.e., tendencies are identically zero where the scheme is inactive, and24

condensate is zero where clouds are fully evaporated). A temperature-scaled conditional25

loss function ensures accurate condensate adjustments for a high dynamic range of cloud26

types (e.g., cold, low-condensate cirrus clouds or warm, condensate-rich clouds). Despite27

excellent overall performance, the emulator exhibits some deficiencies in the uppermost28

model levels, leading to biases in the stratosphere. The emulator also has short episodic29

skill dropouts in isolated grid columns and is computationally slower than the original30

Fortran scheme. Nonetheless, our challenges and strategies should be applicable to the31

emulation of other microphysical schemes. More broadly, our work demonstrates that32

with suitable physically motivated architectural choices, ML techniques can accurately33

emulate complex human-designed parameterizations of fast physical processes central34

to weather and climate models.35

Plain Language Summary36

In this study, we create computer code that uses machine learning to mimic a weather37

model’s algorithm for handling how clouds form and rain falls. When used in the weather38

model to replace this algorithm, our machine learning code is highly accurate in simu-39

lations for a whole year. We achieve this by making smart code design choices. We split40

the code into two parts: one for cloud formation and one for rain and snow. This allows41

us to better build important aspects of these processes into the machine learning approach.42

For instance, clouds form where it is moist and evaporate when it gets dry, and rain and43

snow fall downward. Our code learns cloud behavior based on temperature to ensure it44

works both for cold, thin clouds high up in the sky and warm, thick clouds closer to the45

ground. Our work shows a path for suitably-designed machine learning code to eventu-46

ally replace important parts of weather and climate models, but also that this path still47

requires careful human design respecting known physical principles.48

1 Introduction49

Atmospheric models combine fluid dynamics integrated on a discrete global grid50

with parameterizations of unresolved physical processes for weather and climate predic-51

tion. These parameterizations, encompassing phenomena such as cloud formation, pre-52

cipitation, and radiative transfer, are crafted by experts and typically blend theoretical53

foundations with empirical relationships to capture interactions between various atmo-54

spheric processes. The ongoing development and refinement of these components require55

a careful balance between accuracy and efficiency to achieve high-fidelity simulations us-56

ing limited computational resources.57

Over the past few decades, advances in machine learning have led to substantial58

investments in computing facilities that combine more traditional CPU-based comput-59

ing resources with accelerators such as GPUs. This shift in computational infrastruc-60

ture has motivated the atmospheric modeling community to explore ways to capitalize61

on these newer resources to speed up simulations. The fluid dynamics algorithms imple-62
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mented in atmospheric models can often be recoded for more efficient GPU computa-63

tion using compiler directives or domain-specific language extensions (Dahm et al., 2023).64

However, the column-based physics parameterizations often involve more complex logic65

and data dependences that do not naturally fit into this paradigm.66

An alternative approach to accelerating the physical components of atmospheric67

models is the creation of machine-learned emulators. Emulators are machine learning68

(ML) models trained directly on the inputs and outputs of a specific component, aim-69

ing to provide a seamless replacement of the original scheme. This strategy offers a nat-70

ural path to speed up model operation on accelerator-based compute resources, which71

are optimized to run ML workloads. Consequently, most emulation studies have focused72

on radiative transfer (Chevallier et al., 1998; Krasnopolsky et al., 2005, 2010; Veerman73

et al., 2021; Ukkonen et al., 2020), the most expensive subcomponent in the typical at-74

mospheric physics suite. However, recent studies have also emulated deep convection (O’Gorman75

& Dwyer, 2018), gravity wave drag (Chantry et al., 2021), atmospheric chemistry (Keller76

& Evans, 2019; Kelp et al., 2022; Schreck et al., 2022), and details of the warm rain pro-77

cess (Gettelman et al., 2021).78

Emulation also serves as an excellent test bed for ML approaches that aim to im-79

prove on existing physical parameterizations, such as those using fine-resolution data to80

train corrective ML models (e.g., Brenowitz & Bretherton, 2019; Rasp et al., 2018; Yu-81

val & O’Gorman, 2020; Bretherton et al., 2022). Typically, these learn improvements to82

the combined suite of physical parameterizations, e.g. radiation, microphysics, turbu-83

lence and surface exchange, cumulus convection and orographic drag. Emulation of in-84

dividual component physical processes is clearly posed as a supervised learning task, so85

it can be used to explore skill bounds, quirks, and optimal architectural choices for em-86

ulating an entire parameterization suite.87

The cloud microphysics scheme plays a central role in atmospheric modeling, man-88

aging rapid phase changes such as condensation, evaporation, and precipitation. It is tightly89

coupled to the model dynamics through latent heat release. We are not aware of past90

studies using ML to emulate an entire microphysics scheme, perhaps due to its lower com-91

putational cost compared to radiation. Nevertheless, it is a key part of emulating the92

combined physical parameterization suite and exposes a variety of ML challenges that93

are relevant to that broader problem. It is also a fast-acting process, producing local-94

ized atmosphere heating and drying tendencies that are much larger than for radiation.95

Thus, emulation of a representative microphysics scheme is a worthy complement to em-96

ulation of radiation parameterizations. It can provide valuable insights into the poten-97

tial and challenges of ML emulators of atmospheric physical processes.98

In this work, we train an ML model to emulate the Zhao and Carr (1997, ZC) mi-99

crophysics scheme. This scheme was used for many years in the Global Forecast System100

(GFS) model by the U. S. National Centers for Environmental Prediction (NCEP). Here,101

it is included in a recent version of GFS that uses the FV3 dynamical core (Harris & Lin,102

2013), which we call the FV3GFS global atmospheric model. The ZC scheme, with only103

one prognostic condensate variable, seemed to be a simple machine learning target. How-104

ever, for a variety of reasons, developing a successful emulator of this scheme proved more105

challenging than anticipated, and required several architectural choices relevant to em-106

ulating other more complex microphysical parameterizations with many more prognos-107

tic hydrometeor types.108

In Section 2, we describe the emulator architecture, training data, and integration109

into the FV3GFS model. In Section 3, we demonstrate that the emulator serves as a sta-110

ble, skillful replacement to the original Fortran Zhao-Carr microphysics scheme, with low111

global average bias for at least 1 year of simulation. Despite impressive overall perfor-112

mance, the emulator induces regional biases in the uppermost model levels— in our ex-113

perience, a relatively common online issue with ML integrated as one component in con-114
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ventional atmospheric models (e.g., Brenowitz & Bretherton, 2019; Clark et al., 2022).115

In Section 4, we discuss the major decisions that influenced the emulator’s performance116

and address some remaining challenges and limitations of our approach.117

In accordance with AGU’s AI tool policy, the authors acknowledge the use of Ope-118

nAI’s ChatGPT-4 tool to help edit the manuscript draft for clarity, conciseness, and gram-119

matical correctness. All suggestions provided by the AI tool were reviewed and edited120

by the authors for correctness and consistency. The plain language summary was gen-121

erated by prompting the tool for a generally accessible version of our written abstract122

and then edited by the authors.123

2 Methods124

In this work, we utilize the FV3GFS global atmospheric model (Harris & Lin, 2013),125

which is currently used by NOAA for operational weather forecasting. FV3GFS com-126

bines the FV3 nonhydrostatic finite-volume dynamical core with a suite of physical pa-127

rameterizations developed for the Global Forecast System (GFS). For the simulations128

presented here, the FV3GFS model is run on a C48 cubed-sphere grid (approximately129

200 km horizontal grid spacing) with 79 vertical levels.130

Within FV3GFS, we target the emulation of the Zhao-Carr (ZC) microphysics (Zhao131

& Carr, 1997), which was used in the operational version of GFS until 2018. The ZC mi-132

crophysics scheme predicts changes in cloud condensate, precipitation, and the associ-133

ated heating and moistening rates at each grid point in a vertical column, based on state134

inputs. The scheme divides the prediction into two subroutines: one calculating the lo-135

cal condensate change via grid-scale condensation (gscond) and the other calculating col-136

umn precipitation and associated condensate adjustments (precpd). Figure 1 shows a137

graphical depiction of the information flow through the ZC microphysics subroutines.138

The scheme diagnoses the phase partitioning of cloud condensate into liquid and ice at139

each step based on temperature and the presence of overlying ice cloud. Furthermore,140

it diagnoses the downward precipitation flux and its phase partitioning into rain and snow141

at each grid level during each time step. Appendix A gives further details.142

The ZC scheme initially seemed appealing for ML emulation due to its simplicity,143

featuring only a single prognostic hydrometeor type: the cloud water mixing ratio. De-144

spite the initial appearance of simplicity, the schematic (Fig. 1) illustrates that the ZC145

scheme is architecturally more complex than we anticipated due to the implicit depen-146

dence on the column thermodynamic state sampled within the previous time step. Fur-147

thermore, vertically and temporally nonlocal phase partitioning of condensate does not148

appear as an explicit output of the scheme, despite its use by other parameterizations.149

These subtleties add considerable time-consuming challenge to the accurate ML emu-150

lation of the ZC scheme.151

To emulate the ZC scheme, we employ hooks to interact with the Fortran model152

via the package call_py_fort (https://github.com/nbren12/call py fort). This pack-153

age enables users to call functions and interact with selected Fortran state fields within154

an initialized Python environment, giving access to the comprehensive suite of ML and155

data tools available in Python and accelerating ML prototyping and testing.156

2.1 Training Data157

We generate the training dataset by initializing 30-day simulations from GFS anal-158

ysis on the first day of each month in 2016, saving fields every 5 hours to sample the di-159

urnal cycle. A list of all stored fields is shown in Table S1. We reserve three months of160

data for validation during training (February, June, and September). The training dataset161
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pressure

T

q

c

T after last
call to gscond

q after last
call to gscond

pressure after last
call to gscond

Grid-scale
condensation
“gscond”

Precipitation
“precpd” Rest of model

Figure 1. Information flow of the Zhao-Carr microphysics within FV3GFS for a single time

step. Inputs of a given scheme are represented as inward arrows. The “after last call to gscond”

inputs are used to compute a relative humidity tendency that encompasses the rest of the model

and prepcd. This approach to computing the tendency effectively adds three new state variables

to the model.

includes 1080 global snapshots consisting of 482×6 = 13824 atmospheric columns, to-162

taling nearly 15 million samples.163

From the saved training data, we derive the target increments for the ZC micro-164

physics that we seek to emulate. The total change, denoted as ∆ = ∆g + ∆p, is the165

sum of the two subroutine updates from gscond (∆g) and precpd (∆p). Both gscond and166

precpd calculate updates for temperature (T ), specific humidity (q), and the cloud wa-167

ter mixing ratio (c); precpd also diagnoses the amount of surface precipitation (P ) dur-168

ing the time step. We note that the use of tendencies in this manuscript refers to the sub-169

routine increment divided by the model time step (15 minutes).170

Figure 2 displays an example transect of tendencies of the target data for clouds171

and humidity along the 100◦W meridian. The gscond cloud water tendency (Fig. 2a; ∆gc)172

can be positive (condensation) or negative (evaporation), depending on local thermo-173

dynamic state. Active regions in this snapshot include the boundary layer of the sub-174

tropical Pacific and free-tropospheric weather features (e.g., convection or frontal zones)175

over land. Because cloud water tendency involves a phase change between water vapor176

and condensate, the corresponding tendencies of temperature (∆gT ) and specific humid-177

ity (∆gq) exhibit similar patterns to the cloud water tendency. The gscond tendencies178

for these three fields are fully determined by grid-local thermodynamic state, with the179

exception of one vertically non-local flag, which influences the diagnostic decomposition180

between liquid and ice clouds and the resulting latent heating tendency. That flag in-181

dicates whether mixed-phase clouds with temperatures between 0◦ and -15◦C are over-182

laid by contiguous ice cloud colder than -15◦C.183

The corresponding precpd condensate tendency transect (Fig. 2b; ∆pc) shows losses184

due to autoconversion of thicker clouds to precipitation. Regions of positive precpd va-185
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Figure 2. Latitude–pressure transects along longitude 100◦W for a sample Zhao-Carr micro-

physics step on July 8th, 2016 at 06Z showing: (a) the condensation rate from gscond, (b) the

conversion rate of cloud to precipitation in precpd, and (c) the precipitation evaporation rate in

precpd. Transect data has been interpolated to pressure levels from model levels for presentation.

por tendency (Fig. 2c; ∆pq) are due to the evaporation of precipitation falling from over-186

lying grid layers.187

These transects highlight two general challenges for emulating microphysics. First,188

the microphysics scheme is not active at the majority of grid points. It produces a range189

of adjustments to the state fields where clouds or precipitation are present, but elsewhere,190

the tendencies should be exactly zero. Second, the condensation scheme can generate191

large condensate increments throughout the troposphere despite the humidity being or-192

ders of magnitude smaller in the upper troposphere than near the surface.193

Some other general considerations are also important for ML microphysics emu-194

lation. For instance, clouds are very sensitive to relative humidity. A small error in pre-195

dicted water vapor or temperature can significantly impact clouds and precipitation. Sec-196

ond, cirrus clouds with small condensate mixing ratios can be as radiatively important197

as liquid water clouds with hundred-fold higher condensate mixing ratios. Thus, an ML198

emulator must accurately predict a large range of condensate tendencies to skillfully re-199
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Figure 3. A schematic of the ZC microphysics emulation architecture.

produce the original model’s climate. Third, complete cloud evaporation/sublimation200

is common; to obtain this outcome in a model time step requires the condensate tendency201

to exactly remove all cloud condensate in a grid box. Lastly, microphysical tendencies202

are a combination of local (e.g., condensation) and non-local (e.g., precipitation) pro-203

cesses and constraints. An emulation scheme must replicate these dependencies to yield204

accurate and physically consistent results.205

These factors heavily influenced the final design of our emulation methodology, which206

we detail in the following section. We elaborate on the sensitivity of results to these choices207

and discuss remaining challenges in Section 4.208

2.2 Emulator Architecture209

The emulation model architecture is shown in Figure 3. Separate emulators for gscond
and precpd take a total of 13 input variables, including the same set of inputs as the For-
tran ZC scheme: T , q, c, and surface pressure as well as the “after last gscond” values
of T , q, and surface pressure. We provide additional inputs of air pressure and pressure
thickness of the atmospheric layer, as well as derived inputs of relative humidity (RH),
and log-scaled q, c, and q after last gscond. Each input is normalized:

x′
j = (xj − µj)/σ (1)

and combined to form input channels for the emulation models. The mean, µj , is a sam-210

ple mean at level j using 150,000 random columns from the training data. The scaling211

factor, σ, is calculated using the standard deviation over all per-level centered (xj−µj)212

values in the same sample. This scaling enhances training stability and conveniently down-213

weights inputs from the upper levels, where the microphysics scheme is less active. Sur-214

face variables are normalized as a single level and then broadcast to 79 levels when merged215

into model inputs to simplify general usage. The same input data are passed to all three216

of the emulator subcomponents.217
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2.2.1 Condensation emulator218

In the condensation subroutine (gscond), net condensation ∆gc at a given point219

in an atmospheric column is physically determined by the thermodynamic inputs at that220

same level, a property we refer to as grid-point locality. The gscond emulator takes ad-221

vantage of this property by applying a single MLP to each grid point, which we refer to222

as a dense-local model. The MLP is 2 layers of 256 channels, each with ReLU activa-223

tion. It takes in 79-level × 13-channel inputs, applies the model to each level, and out-224

puts a single column (79×1) through a linear readout layer. We train the gscond dense-225

local regressor for 50 epochs using the Adam optimizer with a learning rate of 0.0001.226

We use a mean squared error (MSE; Eq. 2) based loss (Eq. 3).227

MSE(a, b) =
1

N

N∑
i=1

(ai − bi)
2 (2)

L = MSE(ỹ, ŷ) + λ ·MSE(c′g, ĉ
′
g) (3)

ỹ =
∆gc− µ̃(Tin)

σ̃(Tin)
(4)

ŷ = f(x) (5)

cg = ∆gc+ cin (6)

ĉg = ŷσ(Tin) + µ(Tin) + cin (7)

The target increment in the loss (ỹ, Eq. 4) is conditionally scaled due to a phys-228

ical expectation that cloud properties depend strongly on temperature (Fig. S1). To ac-229

curately emulate cold cirrus clouds, which typically have little condensate and correspond-230

ingly small condensate increments, and also emulate warm liquid clouds, which can have231

hundred-fold larger condensate increments, the loss function normalizes to be sensitive232

in both cases. The scaling terms for the mean µ̃(Tin) and standard deviation σ̃(Tin) rep-233

resent a piecewise interpolation based on the input temperature Tin. We compute the234

underlying interpolation function by calculating binned mean and standard deviation235

values after grouping samples of ∆gc into 50 linearly-spaced bins between the minimum236

and maximum input temperature. We optimize the gscond emulator ŷ = f(x) to pre-237

dict temperature-scaled increments (ỹ) as functions of the grid point features x. These238

increments are descaled into a predicted post-gscond condensate amount (ĉg, Eq. 7) by239

adding the de-scaled increment to the input condensate amount. We include a post-gscond240

condensate MSE in the loss (Eq. 3) using the normalized condensate amounts (c′g, ĉ
′
g)241

scaled by λ = 50000 to make the loss contribution O(1). The addition of the final con-242

densate value to the loss function improves validation MSE for the unscaled condensate243

increment by over 80%. This likely happens because the final condensate term gives ad-244

ditional weight to warm-cloud condensation. The remaining state increments for T and245

q are determined at runtime from the predicted ∆gc value (see Section 2.3).246

We train an activity classifier to handle the mixed discrete-continuous nature of247

the condensation scheme, i.e., the need to force the emulator prediction to either (i) zero248

tendency when there should be no cloud change during the time step, or (ii) the exact249

tendency to fully evaporate cloud condensate present at the beginning of the time step.250

The classifier model employs the same dense-local architecture as the regressor, but pre-251

dicts four target variables to identify the following classes:252

• ∆gc = 0,253

• cg = 0 and ∆gc ̸= 0,254

• cg ̸= 0 and ∆gc > 0, and255

• cg ̸= 0 and ∆gc < 0.256
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The first two cases, corresponding to situations (i) and (ii) above, together usually ac-257

count for 80% or more of the outcomes depending on the level (Fig. S2). During infer-258

ence, the model constrains ∆gc when the classifier identifies either of the first two cases.259

Otherwise, the regressor makes the condensate prediction. We train the classifier using260

categorical cross-entropy loss with the same hyperparameters as the regressor, except261

for an increased learning rate of 0.001. After training, the classifier is approximately 98%262

accurate over all classes and levels (Table S2). Please refer to Section 4.1 for a more in-263

depth discussion on the impacts of the conditional loss function and activity classifier.264

2.2.2 Precipitation emulator265

The diagnostic precipitation scheme (precpd) generates precipitation through au-266

toconversion of cloud condensate in upper levels. The precipitation falls and can either267

evaporate in lower layers or reach the surface. To enforce this downward dependence in268

the precpd emulator by construction, we use a recurrent neural network (RNN) that re-269

curses over vertical layers starting at the top of atmosphere (see schematic in Fig. S3).270

A single RNN layer,271

hj+1 = (Whhj +Wxxj + b)+, (8)

uses the same normalized inputs, x′
j , as the gscond emulator where j ∈ [0, 79) and j =272

0 is the top of the atmosphere. In this form, hj is the RNN hidden state at level j, Wh273

represents trainable weights for the recursion on hidden state, Wx are the trainable weights274

for inputs, b is the bias, and (·)+ represents a ReLU activation function. We stack two275

hidden 256-channel layers followed by a level-independent linear readout layer (ŷj = Ahj+276

b) to predict the increments ∆pT , ∆pq, and ∆pc. This construction ensures that only277

inputs xi from levels at and above level j (i ≤ j) can affect RNN predictions at level278

j. We embed additional constraints within the precpd emulator such that it converts clouds279

to precipitation (∆pc ≤ 0 ), that it evaporates precipitation (∆pq ≥ 0 and ∆pT ≤ 0),280

and that the final cloud is non-negative (cp ≥ 0). The RNN loss includes the MSE for281

the normalized increments (using Eq. 1 instead of conditional normalization) and the282

MSE of the normalized post-precpd output for each variable scaled such that the indi-283

vidual contributions are O(1). The surface precipitation rate (P ) is diagnosed from the284

net loss in total column water at runtime using:285

P = −
78∑
j=0

(∆pcj +∆pqj) · ∆pj / g, (9)

where for each level j, (∆pcj +∆pqj) is the local water change due to autoconversion286

and evaporation, ∆pj is the input pressure thickness of the atmospheric layer, and g is287

gravity.288

2.3 Prognostic runs289

The utility of a microphysics emulator ultimately depends on its performance when290

used within the atmospheric model as a substitute for the human-designed parameter-291

ization it is trained to replace. Specifically, the emulator should not cause catastrophic292

model failures, it should consistently provide a skillful representation of the original mi-293

crophysics behavior, and it should have a minimal impact on the integrated statistics (i.e.,294

the climate) of the underlying model. To test this, we embed the ZC microphysics em-295

ulator in FV3GFS and run a series of prognostic tests using two model configurations:296

one with the emulator as the active microphysics scheme (online) and a baseline with297

the Fortran microphysics active (offline). In each case, we run the inactive component298
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in a diagnostic mode (“piggybacked”; Grabowski, 2019) and save the resulting tenden-299

cies for comparison.300

To evaluate the skill and climate impact of the emulated microphysics, we initial-301

ize 30-day simulations in each calendar month from February 2016 to January 2017. The302

initializations are taken from the end of the training data simulations, testing both model303

configurations on atmospheric states independent of the training data. We compute skill304

scores for all microphysics tendencies (∆T , ∆q, ∆c; converted to a tendency by divid-305

ing increments by ∆t = 900) and P using a modified R2 score 1 -
∑

(ŷ − y)2/
∑

y2.306

A score of 1 indicates a perfect emulation, while a value of 0 or lower indicates an em-307

ulator worse than a no-information prediction. We also compute the bias of the micro-308

physics outputs and the atmospheric state over all levels and times of the 12 simulations.309

To assess long-term stability, we simulate a full year using the emulator in place of the310

ZC microphysics and check the global averages and bias for evidence of any climate drifts.311

The last step in applying the emulator as part of an online simulation is to apply312

final physical limiters and constraints and generate the full set of outputs for the em-313

ulated ZC microphysics. For the gscond emulator, we compute the increments ∆gT and314

∆gq through local conservation of the net condensation. First, we limit the net conden-315

sation based on moisture availability using:316

∆gc =

{
max(−cin, ∆gc), if ∆gc < 0

min(qin, ∆gc), if ∆gc > 0
. (10)

Then, the change in water vapor mirrors the change in condensate (∆gq = −∆gc) and317

the temperature change is determined via latent heating (∆gT = (Lv/cp)∆gc), where318

Lv is the latent heat of vaporization and cp is the specific heat of air at constant pres-319

sure. This is an approximation, as some phase changes in ZC occur between ice and va-320

por, releasing additional latent heat; however, these phase changes are not fully locally321

determined and our efforts to use a posthoc determination of ice cloud latent heating ef-322

fects slightly degraded online emulator skill. For online application, we set the top 5 lev-323

els of gscond increments to zero since the ZC microphysics scheme is never active in those324

stratospheric levels and noise issues in ML-predicted condensate increments arise in these325

levels (see Section 4.2 for further discussion). Finally, we add the increments to the cor-326

responding input state variable to obtain fields after gscond (Tg = Tin + ∆gT , qg =327

qin +∆gq, and cg = cin +∆gc).328

The precpd increment constraints are directly integrated into the ML model as de-329

scribed earlier. We derive the surface precipitation (Eq. 9), and then add the precpd in-330

crements to the post-gscond values to generate the final scheme outputs (Tp = Tg +331

∆pT , qp = qg +∆pq, and cp = cg +∆pc).332

3 Results333

We begin with the top-level results of our ZC emulation 30-day runs in Table 1.334

The offline skill scores for all emulated quantities are nearly perfect at ∼99%, with low335

root mean-square error (RMSE) values and biases that are 1–2 orders of magnitude smaller336

than the RMSE (i.e., a small component of the error).337

Online skill is a strict test where deviations from a realistic physical state can cause338

the diagnostic Fortran microphysics to output large state adjustments or even crash. Nev-339

ertheless, when the emulator is used online, it maintains high skill scores with only a ∼1–340

5% reduction compared to the offline case. Predicted cloud water tendencies show the341

lowest average performance at 94%, which is still quite high for a sparse and highly sen-342

sitive tendency field. The corresponding tendency RMSEs of emulator tendencies vs. pig-343

gybacked Fortran tendencies are roughly double those of the offline configuration, ex-344
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Offline Online

ZC Output Skill score RMSE Bias Skill Score RMSE Bias

∆T [K/day] 0.99 0.42 -0.03 0.98 0.58 -0.02
∆q [mg/kg/day] 0.995 110 3.0 0.99 200 -1.1
∆c [mg/kg/day] 0.99 140 -1.0 0.94 330 -0.7
P [mm/day] 0.998 0.21 -0.02 0.97 0.77 0.02

Table 1. Skill metrics for the ZC microphysics emulator outputs compared to the Fortran mi-

crophysics outputs for the offline (Fortran driving) and online (emulator driving) configurations.

All table metrics are calculated for twelve 30-day runs initialized at the start of each calendar

month and then averaged together.

cept for P , where the tendency RMSE is nearly four times larger. The larger online er-345

ror result is an expected outcome due to detrimental feedbacks between the model and346

the ML emulator that cannot be accounted for when using offline training. The biases347

remain small in the online case, suggesting no systematic breakdown of the emulator be-348

havior from the diagnostic Fortran microphysics.349

We compare the time-averaged atmospheric state averaged across the twelve 30-350

day online simulations with identically initialized baseline simulations to show that the351

emulator produces little mean-state drift when used in FV3GFS in place of the original352

ZC microphysics. Figure 4 depicts zonal averages of the online bias of the emulator-based353

simulation compared to the baseline simulation, which have been interpolated from model354

level to pressure coordinates to display biases at a true relative height. Table 2 gives global355

average area- and mass-weighted bias for selected output fields.356

Cloud water is a key output of the microphysics scheme. Its zonal average mixing357

ratio (Fig. 4a, b) has the largest absolute bias near the surface in Antarctica, ∼6 mg/kg.358

This bias is relatively large for the characteristically cold,dry air there. Outside of the359

Antarctic, the cloud water biases are ∼3 mg/kg or less— a much smaller relative change360

from the baseline— and are generally positive, except for a negative bias in the tropi-361

cal upper troposphere. The global-mean cloud water bias is small— 0.2 mg/kg, an ap-362

proximately 2% increase compared to the baseline state (Table 2). These cloud changes363

result in O(1%) changes to the outgoing top-of-atmosphere longwave (-1.4 W/m2) and364

shortwave radiation (+1.3 W/m2), but in total the changes largely cancel out.365

Figure 4d depicts the online bias in RH, which displays a small shift towards sat-366

uration in the middle-to-lower troposphere. The largest biases in RH (>10%) occur in367

the Antarctic upper atmosphere near the large gradient in drying near the tropopause.368

There are also similar albeit smaller positive RH biases in the tropics and Arctic tropopause369

regions. Overall, the global-mean RH shows a small positive bias of 0.8% (Table 2), con-370

gruent with the small positive cloud water bias.371

The zonal average temperature has a small cold bias of up to -1.5 K in the high372

latitudes. Between 50◦S–50◦N, this bias is weakened or even slightly reversed at some373

pressures, but there is a thin layer of warm bias up to 1 K near the tropopause. The zonal374

temperature biases largely cancel out when averaged globally over the 30-day runs (Ta-375

ble 2).376

Lastly, the total surface precipitation (emulated ZC microphysics + convective sources)377

has a slight positive bias of 0.03 mm/day, a 1% increase from the baseline simulation (Ta-378

ble 2). Fig. 5a depicts the online zonal average surface precipitation just from the ZC379

microphysics component. The emulated ZC precipitation production is nearly identical380

to the baseline simulation owing to the high emulation skill of ∆q and ∆c, but produces381
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Field Bias Baseline mean

Air temperature [K] -0.1 251
Specific humidity [mg/kg] -0.7 2590
Relative humidity [%] 0.8 45.5
Cloud water [mg/kg] 0.2 9.6
Total surface precipitation [mm/day] 0.03 3.04
Upward shortwave at TOA [W/m2] 1.3 91.9
Upward longwave at TOA [W/m2] -1.4 237
Total outgoing radiation at TOA [W/m2] -0.06 329

Table 2. Global average online biases and baseline means for selected state fields averaged over

all 30-day simulations.

Online skill
ZC Output 1-year run 30-day runs avg.

∆T 0.98 0.98
∆q 0.98 0.99
∆c 0.94 0.94
P 0.97 0.97

Table 3. Online skill score for 1-year online simulation compared against the skill scores aver-

aged across the twelve 30-day runs initialized across the calendar year.

0.02 mm/day less global precipitation than the baseline ZC scheme. This bias must mostly382

be associated with state drift rather than offline emulator errors, because the piggybacked383

Fortran ZC scheme, which is applied to the online emulator state, diagnoses slightly less384

precipitation than the online emulator, especially in the Northern Hemisphere storm track.385

The Fortran convection parameterization also responds to the slight emulator-induced386

state changes by producing a global mean convective precipitation increase of 0.05 mm/day.387

The instantaneous precipitation-rate distribution based on all grid columns and sam-388

pling times (Fig. 5b) corroborates this analysis. It shows that the emulator overproduces389

light precipitation (< 0.1 mm/day) compared to the piggybacked Fortran scheme, but390

these two schemes agree well at most higher precipitation rates, and their small discrep-391

ancies don’t explain the online emulator differences from the baseline simulation. Instead,392

the largest precipitation rate bins (∼100 mm/day) suggest that the online emulator-driven393

simulation shifts to fewer states that support heavy precipitation events compared to the394

baseline simulation.395

3.1 1-year continuous simulation396

The monthly-initialized runs show the embedded ZC emulator is stable for at least397

30 days during all calendar months of the year, with low biases. To further explore the398

long-term fidelity of emulator-based simulations, we present results from a continuous399

1-year integration starting in July 2016. We ran two simulations, one masking only the400

top 5 levels of the gscond increments (i.e., setting the increments to 0) and the other mask-401

ing the top 5 levels of both gscond and precpd increments. We found adding the mask402

to the top 5 levels of the precpd scheme reduced the number and severity of transient403

tendency skill dropouts (Fig. B1) for the 1-year simulation. Both online simulations ran404

with online emulation for the full year. We present results for the top 5 gscond and precpd405

increment configuration due to better performance. We discuss the unresolved sensitiv-406

ity of the emulator to the upper levels in Section 4.2.407
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Figure 4. Latitude–pressure sections of zonal and time average state from baseline Fortran

simulations (left) and online bias of simulation using the emulator (right) for cloud water mixing

ratio (a, b), relative humidity (c, d), and air temperature (e, f). Averages are over twelve 30-day

simulations initialized in each month of the calendar year, using values vertically interpolated

from model levels.
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Figure 5. (a) Zonal average surface precipitation rate from ZC microphysics compared be-

tween the online emulator (blue) baseline Fortran (orange) and diagnostic Fortran microphysics

(grey), which is generated diagnostically using inputs from the online emulation state. (b) Sur-

face precipitation rate distribution compared between the same schemes. Shown quantities are

calculated from twelve 30-day simulations initialized at the beginning of each calendar month.
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Figure 6. Time–latitude plots of the instantanous surface precipitation rate saved every 3

hours from the 1-year (a) baseline and (b) online emulation simulations.

The online skill metrics for the 1-year continuous run are, reassuringly, almost iden-408

tical to the average of the 30-day runs (Table 3). A time–latitude plot of total surface409

precipitation (Fig. 6) compares the baseline and online emulation runs, demonstrating410

the emulation retains the spatiotemporal character of the baseline precipitation (and pre-411

cipitating clouds by proxy) throughout the seasonal cycle. A slight reduction in the largest412

precipitation events for the online emulation is apparent in the tropics; we already noted413

this issue for the month-long simulations in Fig. 5b. Some global-annual-average biases414

(Table 4) are somewhat larger than in the 30-day runs: T (-0.3 K), RH (1.9%), and net415

TOA outgoing radiation (-0.4 W/m2; the difference of a -2.1 W/m2 outgoing longwave416

bias and a 1.6 W/m2 reflected shortwave bias). Absolute cloud water and surface pre-417

cipitation biases remain similar to those of the 30-day runs. Cloud water and RH have418

the largest relative bias from the baseline simulation at ∼4%, respectively.419

The zonal average biases of T and RH from the 1-year emulator-based simulation420

are very small in the troposphere but become more significant in the polar stratosphere421

(Fig. 7). In this region, large negative cold biases (as low as -8 K) are co-located with422

positive RH biases up to 30%. The temperature bias appears within the first few months423

of the simulation and stabilizes for the rest of the simulation. We further investigated424

these biases and found that both the gscond and precpd emulators have deficiencies in425

the dry, cold polar stratosphere. Within a few hours after the start of the simulation,426

the gscond emulator produces too much condensate because the emulator predicts con-427

densation for what the Fortran piggybacked microphysics diagnoses should mostly be428

evaporation at marginal relative humidities (40–50%; Fig. S4). We have confirmed that429

the gscond bias drift is unrelated to precpd or the classifier. We hypothesize that the430

tendency drift is likely related to a subtle online shift in some characteristics of the in-431

put distribution specific to this region.432
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Figure 7. Zonal mean bias of the 1-year online emulation simulation for (a) temperature and

(b) relative humidity.

Field Bias Baseline mean

Air temperature [K] -0.3 247
Specific humidity [mg/kg] 17.2 2680
Relative humidity [%] 1.9 45.6
Cloud water [mg/kg] 0.2 7.6
Surface precipitation [mm/day] 0.03 3.03
Upward shortwave at TOA [W/m2] 1.6 92.1
Upward longwave at TOA [W/m2] -2.1 237
Total outgoing radiation at TOA [W/m2] -0.44 329

Table 4. As in Table 2 but for the 1-year simulation.

The precpd emulator’s shortcomings in the polar stratosphere are evident from of-433

fline diagnosis. Specifically, errors from the emulator’s noise floor produce evaporation434

despite no falling precipitation (Fig. S5) in this region. This is a particular failing of the435

the single-scaling loss normalization (Eq. 1), where optimization fails to minimize the436

large relative errors in the polar stratosphere. The errors produce a directional bias due437

to constraints imposed in the model architecture (∆pq > 0 and ∆pT < 0) and a lack438

of enforced conservation. As they grow, these biases in the high-latitude stratosphere likely439

feed back with radiation and the atmospheric circulation before ultimately equilibrat-440

ing.441

4 Challenges and choices442

In this section, we highlight key decisions that led to a skillful, stable, and low-bias443

emulation, as well as some remaining challenges. From the outset, our goal was to use444

simpler ML models with the potential for general applicability in emulating atmospheric445

physics parameterizations. However, the path to the final emulator necessitated several446

problem-specific choices to successfully emulate the ZC microphysics scheme.447

4.1 Key decisions448

One of the most influential decisions was to target subcomponents of the micro-449

physics scheme, specifically grid-scale condensation (gscond) and precipitation (precpd).450

Initial attempts to encapsulate the total ZC scheme tendency increments in a single model451

yielded high offline skill, but the online integration often resulted in difficult-to-interpret452

failures that crashed the simulation. This is a common failure mode when training mod-453

els outside of the environment in which they are deployed (e.g., Brenowitz & Brether-454
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run type gscond arch. precpd arch. ∆T ∆q ∆c P

offline dense-local RNN 0.99 0.995 0.99 0.998
dense-local dense-column 0.99 0.99 0.97 0.99
dense-column dense-column 0.97 0.98 0.95 0.99

online dense-local RNN 0.98 0.98 0.95 0.98
dense-local dense-column 0.74 0.76 0.01 0.01
dense-column dense-column -0.39 -0.46 -0.07 0.17

Table 5. Sensitivity of emulation skill to the use of general vs. prior-informed model architec-

tures. “Dense-column” refers to a fully connected MLP with 2 hidden layers of 256 width and a

linear readout layer. “Dense-local” and “RNN” refer to the architectures described in the meth-

ods section.

ton, 2019). Separating the subcomponents simplifies the enforcement of physical priors455

through model architecture design or output postprocessing.456

Following component separation, we observed substantial improvements in online457

emulation skill by incorporating physically informed architectures. For the gscond em-458

ulator, we enforce grid point locality (i.e., dependence only on the grid point-local ther-459

modynamic state) by using a dense-local MLP that does not mix any vertical informa-460

tion. For the precpd emulator, we enforce the downward dependence (i.e., rain falls down-461

ward) using an RNN that recurses downward over a vertical column. Table 5 displays462

the offline and online skill for a single 30-day run initialized in July, comparing the per-463

formance of the informed architectures to a reasonable uninformed default for atmospheric464

model process parameterization— a dense MLP combining features over the entire grid465

column to predict the full column increments. While these dense-column models exhibit466

high skill offline (always >95%), they fail online when continuously integrating on the467

atmospheric state. Replacing the RNN used for precpd emulation with a dense-column468

architecture that does not enforce downward dependence reduces cloud and precipita-469

tion skill to nearly 0%, even when using the physically informed gscond architecture. Us-470

ing dense-column models for both subroutines results in negative skill (i.e., worse than471

zero-increment predictions) for all variables except surface precipitation.472

The discrete-continuous nature of outputs from some atmospheric physics param-473

eterizations (e.g., for microphysics) poses a unique challenge for emulation. Neural net-474

work regressors have difficulty producing exact zeros, since they are trained to a certain475

degree of precision and will produce noise below that threshold. This can complicate on-476

line integration, particularly for a microphysical scheme, where the local thermodynamic477

state may be quite sensitive to small changes in condensate or humidity, especially in very478

cold regions (e.g., Antarctica or the upper troposphere). For this reason, we introduced479

the activity classifier described in Sect. 2.2.1 into the gscond emulator. Figure 8 illus-480

trates the need for such a classifier by comparing cloud distributions from simulations481

with and without a classifier to a baseline run. By day 15 after initialization, the con-482

densate histogram shows that the emulation scheme without an activity classifier accu-483

mulates small values of cloud water (≤2 mg/kg) at many grid points. Including a clas-484

sifier within the gscond emulator to constrain the microphysical activity resolves this is-485

sue. Based on the good performance of the 30-day online simulations and non-locality486

of the precipitation scheme, we decided not to pursue an activity mask for the precpd487

emulator. However, the erroneous T and q precpd increments in the polar stratosphere488

contributing to biases in the 1-year run suggest a classifier might be helpful overall.489

The final choice important to the success of the ZC emulator involved optimizing490

the model to predict condensate increments that span many orders of magnitude. As de-491
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Figure 8. Cloud water mixing ratio distributions compared between three configurations:

online emulation with a gscond activity classifier (blue), online emulation without an activity

classifier (orange), and a baseline simulation (grey). Samples are taken from 8 3-hourly snapshots

across day 15 of a 30-day simulation initialized on July 1.

scribed in Sect. 2.2.1, we used a temperature-dependent scaling in the gscond loss func-492

tion, ensuring proportionate errors across a large range of local microphysical states. Model-493

level scaling is insufficient to handle this because a given model level may span a broad494

range of temperatures (e.g., the tropical boundary layer vs. the Antarctic plateau).495

In addition to the conditional scaling, we added select rescaled input values (RH,496

log-scaled q and c) into the emulator inputs. Removing log-scaled inputs negatively im-497

pacts offline skill in polar and upper-level model regions (not shown). Including RH as498

an input increased skill and reduced condensate biases, particularly in the Antarctic re-499

gion. For example, by day 5 of a July 1 initialized simulation, the emulator using RH500

as an input has an Antarctic average column-integrated condensate of 87 g/m2 compared501

to a baseline value of 79 g/m2. When not including RH, the average Antarctic column-502

integrated condensate value is 154 g/m2 by July 5, roughly double the baseline value.503

Despite the overlap of the additional inputs, we believe they help reduce errors in cold-504

cloud regions by allowing the emulator discern vertical position, which is removed by per-505

level demeaning in the input normalization (Eq. 1). We conducted an experiment to rein-506

troduce the vertical information by adjusting the input normalization for air pressure507

to remove the column mean instead of the per-level mean from each level. This config-508

uration also increased offline skill and largely removed the Antarctic condensate bias with-509

out the need for RH, but was generally more sensitive to skill dropouts when used on-510

line.511

4.2 Remaining challenges512

In developing our emulation scheme, online simulations commonly presented un-513

expected challenges that needed to be addressed. Certain months, primarily October and514

November, tended to have lower online skill (∼85–90% compared to ∼93–96%) for clouds515

and precipitation compared to other months. The lower aggregate skill in these months516

was mainly due to significant precpd autoconversion misses (“skill dropouts”) during con-517

vective events for a few low-latitude columns (see Appendix B for an example). These518
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skill dropouts start in the mid-troposphere near the freezing level and quickly affect the519

entire upper troposphere. The emulator recovers in the affected grid columns within a520

few hours or, at worst, a few days.521

To minimize such dropouts, we employed a strategy of training an ensemble of em-522

ulators initialized with varying random seeds (e.g., as in Clark et al., 2022) and then se-523

lect combinations of gscond and precpd emulators with the best online skill during the524

most problematic months of October and November. While this approach does not guar-525

antee prevention of severe skill dropouts during other months or in a year-long simula-526

tion, it consistently produces stable, low-bias emulators with high skill.527

We still do not have a foolproof approach for designing emulators without occa-528

sional skill dropouts. For instance, the emulator configuration that gave the most skill-529

ful 1-year online simulation (masking the top 5 levels of increments from both gscond530

and precpd) produces a substantial skill dropout in a 30-day simulation initialized at the531

start of December, leading to a December ∆c skill = 54%, while the original gscond-only532

top 5 mask configuration has no issues (December ∆c skill = 94%).533

Altogether, this suggests the need for further refinement of the architectural de-534

sign and training choices, such as whether recursion from the top model level is neces-535

sary, whether additional measures should be adopted to reduce sensitivity to the upper536

levels, or whether more training data are needed to handle the few convective events on537

the edges of the data distribution.538

To handle the large dynamic range of condensate increments, we use temperature539

scaling in the gscond loss function. While this is generally very beneficial, especially in540

tandem with the gscond classifier, it does not prevent the emulator from occasionally cre-541

ating spurious cloud in the uppermost model levels. These levels lie in the stratosphere,542

where temperature increases with height. Warmer temperatures lead to larger-amplitude543

condensate “noise”, which the emulator later struggles to remove. Because there should544

never be any cloud in the top-most levels, we pragmatically resolved this by masking gscond545

increments in the top 5 model levels. However, as seen in the 1-year simulation polar strato-546

spheric biases, a few issues remain related to emulator deficiencies in the upper levels.547

While the current manuscript focuses on the development and evaluation of a ro-548

bust, accurate ZC emulator, we recognize that speed of execution is a paramount con-549

sideration for emulator adoption, especially in operational settings. The current code in-550

frastructure was designed for flexibility and ease of testing new ideas, rather than for op-551

timal speed. In its current unoptimized state, the model with online emulation runs ap-552

proximately 30% slower (∼5.8 s/time step) than to the original C48 simulation (∼4.8553

s/time step) even when using available GPUs (4x Nvidia T4). Variable transfer between554

Python and Fortran adds around 7% to the run time. The remaining slowdown is likely555

related to choices in model architecture, such as shallow depth and sequential RNN steps,556

which lead to low GPU utilization (<10%). We believe that it will be possible to design557

ML emulators of more complex microphysical schemes that are more speed-competitive558

with the Fortran code which they aim to replace.559

5 Conclusions560

We have successfully developed an emulator to replace a simple Fortran microphysics561

scheme (Zhao-Carr) in FV3GFS, which controls grid-scale condensation (gscond) and562

precipitation (precpd) processes. Our findings demonstrate that when used online as a563

replacement for the Fortran scheme, the emulator maintains high skill (≥94%) with low564

global-average bias (on the order of 1% or less) and remains stable for at least one year565

of continuous simulation. To our knowledge, this is the first successful emulation of a bulk566

microphysics scheme, and the first successful online emulation of a fast-timescale atmo-567

spheric parameterization central to global atmospheric forecasting.568
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A key contributor to the success of our emulator was tailoring its architecture to569

the underlying physical processes. By creating separate emulators for gscond and precpd,570

we enforce grid point locality and conservation for the condensation scheme, and we use571

an RNN to impose downward dependence in the atmosphere associated with falling pre-572

cipition. This greatly improves the emulator’s skill, especially when used online. Adding573

an activity classifier to the condensation emulator alleviated issues of excess condensate574

related to the discrete-continuous nature of the tendencies and field outputs. Using a temperature-575

scaled conditional loss function for the gscond emulator and providing re-scaled inputs576

to all emulators helped maintain skill across the high dynamic range of condensate and577

humidity tendencies that must be accurately predicted to simulate cloud processes through-578

out the global atmosphere.579

As with any ML-based emulation problem, achieving perfection is difficult, and the580

current scheme is no exception. In 1-year online integrations, biases develop in the po-581

lar stratospheric temperature and humidity fields. These regions challenge the ML train-582

ing because they have distinctly different local environments than the rest of the atmo-583

sphere and comprise a small fraction of the emulator’s training data. Further improve-584

ments could clearly be made, but are beyond the scope of this paper, which was to demon-585

strate the feasibility of a skillful ML microphysics emulator for online use. For instance,586

a natural possibility that we did not have time to implement would be to explicitly pre-587

dict precipitation flux at every model interface, which carries all the nonlocality in the588

microphysics. The hidden state of the precpd RNN is a skillful but imprecise proxy for589

this design, causing potential biases and drifts because physical constraints are imper-590

fectly respected (e.g., that the evaporation of precipitation in any model level cannot ex-591

ceed the downward flux of precipitation into that model level).592

A compounding difficulty in the present work and generally for physics emulation593

is the inability to train emulation schemes directly in the context of their deployment594

within an atmospheric model. Fortran tooling for ML applications is challenging com-595

pared to the Python, but is still required for current atmospheric models. We utilize a596

Python package (call_py_fort) that provides an exceptional solution for interactive pro-597

totyping, but is not optimized for computational efficiency. Modeling frameworks on the598

horizon may simplify this process of ML integration and speed the development path to599

emulators that perform well online (Schneider et al., 2017; Dahm et al., 2023).600

Our results stress the importance of evaluating the online performance for any pro-601

posed emulator, as it is straightforward to produce skillful offline models that may not602

perform well when integrated back into the model. It is also important to recognize that603

the development of emulators that perform well online is a challenging and time-consuming604

endeavor. If efficiency is the only goal, it may sometimes be more practical to invest in605

porting existing codes to run on GPUs, for example, as emulation requires significant606

human effort and problem-specific tuning.607

Despite the challenges, our method and results are a proof-of-concept that machine608

learning techniques can effectively emulate fast physical processes central to the dynam-609

ics in weather and climate models. While our focus has been on a specific microphysics610

parameterization, we hope that the illustration of our problem-specific decisions will in-611

form the application to similar or more complex physical schemes. With further research612

and development, emulation techniques can continue to contribute to improved skill and613

efficiency of weather and climate models.614

Appendix A Zhao-Carr Microphysics615

This scheme handles both phase changes—condensation and evaporation—and pre-616

cipitation processes. Tendencies due to the former are typically 10x larger in magnitude.617
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The prognostic variables used by the scheme are the temperature T , specific humidity618

q, and a combined cloud water/ice mixing ratio c.619

The gscond scheme handles evaporation of cloud and condensation. Evaporation620

of cloud is given by Ec = 1
∆t max[min[qs(f0 − f), c], 0]. f is relative humidity. f0 is a621

critical relative humidity threshold which Zhao and Carr (1997) describe as “empirically622

set to 0.75 over land and 0.90 over ocean.” qs is the saturation specific humidity.623

Condensation Cg on the other hand is given by a more complex formula involving624

a relative humidity tendency. See Eq. (8) of Zhao and Carr (1997). Both formulas de-625

pend only on the thermodynamic state of a single (x, y, z) location, but there is some626

non-local dependence on the assumed phase of the cloud and the corresponding latent627

heating rate.628

The precpd scheme handles the conversion of cloud into rain/snow and the evap-
oration of the latter as it falls through the atmosphere. Broadly speaking, it can be writ-
ten as the following:

Err = Er(T, f, Pr)

Ers = Er(T, f, Ps)

P = P (T, f, c, Pr, Ps)

Psm = Psm(T, f, c, Pr, Ps)

Pr =

∫ p

pt

(P − Err)dp/g

Ps =

∫ p

pt

(Psm − Ers)dp/g.

Most of the formulas are proportional to rainfall Pr and snowfall Pr rates at a given level,629

though are some rate constants that depend exponentially on temperature. pt is the pres-630

sure at the top of the atmosphere.631

Appendix B Precpd emulator skill dropouts632

Over the course of refining the emulation methodology, we observed larger variabil-633

ity in the online skill scores of cloud and precipitation predictions, despite minimal-or-634

no changes in emulator training or runtime configuration. In this section, we discuss the635

primary source of that variance, which we refer to as skill dropouts. As an example, Fig-636

ure B1 displays the surface precipitation skill over time for two 1-year simulations. When637

the top 5 layer increment mask is adjusted from application to only gscond to both gscond638

and precpd, the severity of skill dropouts decreases markedly.639

Upon closer examination of the skill dropouts, the precpd emulator appears to be640

the source of the issue. We focus on the dropout about 6 months into the gscond-only641

masking experiment to illustrate this point. In this case, a cluster of columns near the642

Maritime Continent is responsible for most of skill reduction. By removing the five grid643

columns with the largest tendency errors, the overall snapshot skill goes from approx-644

imately 0% to over 70%. When examining the tendency profiles from the column with645

the largest errors (Fig. B2), the gscond emulator largely matches the diagnostic Fortran,646

while the precpd emulator completely misses the autoconversion of condensate to pre-647

cipitation in middle-and-upper levels. Leading up to this time step, we have confirmed648

that gscond remains skillfull, while precpd skill degrades (not shown). The gscond em-649

ulator retaining skill throughout this event suggests that a process outside of the ZC scheme,650

such as deep convection, adds condensate throughout the column. The precpd emula-651

tor then fails to precipitate the added condensate.652

Overall, we hypothesize that the skill dropouts are associated with training data653

insufficiency related to intense convection and/or unconstrained sensitivities of the RNN654
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Figure B1. Surface precipitation skill over the 1-year online simulation for two increment

masking configurations: (orange) gscond-only top 5 layer masking and (blue) gscond and precpd

top 5 layer masking.
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Figure B2. Vertical tendency profiles from the (a) gscond and (b) precpd schemes during the

December 22nd 12 UTC skill dropout event in the gscond top 5 layer increment mask 1-year sim-

ulation. Each subcomponent panel shows the condensate tendencies predicted from the emulator

(blue) and the diagnostic Fortran (orange dashed) for the selected column with the largest errors.
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to upper-level inputs. It is encouraging that despite the magnitude of the misses, the ZC655

emulators resolve the issue in a few days or less for all cases observed (e.g., see Fig. S6).656

We also note that the dropouts tend to be confined to only a few grid columns, typically657

occurring in the tropics or subtropics. The isolated spatial extent of the skill dropout658

sources highlights the challenge in achieving consistently high skill in our chosen met-659

rics throughout the simulations. It also demonstrates how quickly the skill can deteri-660

orate if even a few predictions degrade.661

Glossary662

dense-local An MLP that takes in a single vertical level of inputs from a column and663

produces outputs for that same level. The vertical independence makes it ”local”.664

gscond The gridscale condensation component of Zhao-Carr microphysics665

precpd The precipitation component of Zhao-Carr microphysics666

skill dropout A temporary reduction in the online skill metric calculated between the667

emulator tendencies and the diagnostic Fortran tendencies668

Acronyms669

ML machine learning670

MLP multi-layer perceptron (feed-forward neural net)671

RNN recurrent neural net672

ZC Zhao-Carr673

Appendix C Open Research674

The code and configurations used to produce training data, train ML models, and675

run FV3GFS simulations are available on Github (https://github.com/ai2cm/zc-emulation-manuscript)676

and archived on Zenodo (https://doi.org/10.5281/zenodo.7976184). The data and677

docker images to reproduce results with the code are available on Zenodo (https://doi.org/10.5281/zenodo.7963397).678
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Abstract13

We present a machine learning based emulator of a microphysics scheme for condensa-14

tion and precipitation processes (Zhao-Carr) used operationally in a global atmospheric15

forecast model (FV3GFS). Our tailored emulator architecture achieves high skill (≥94%)16

in predicting condensate and precipitation amounts and maintains low global-average17

bias (≤4%) for 1 year of continuous simulation when replacing the Fortran scheme. The18

stability and success of this emulator stems from key design decisions. By separating the19

emulation of condensation and precipitation processes, we can better enforce physical20

priors such as mass conservation and locality of condensation, and the vertical depen-21

dence of precipitation falling downward, using specific network architectures. An activ-22

ity classifier for condensation imitates the discrete-continuous nature of the Fortran mi-23

crophysics outputs (i.e., tendencies are identically zero where the scheme is inactive, and24

condensate is zero where clouds are fully evaporated). A temperature-scaled conditional25

loss function ensures accurate condensate adjustments for a high dynamic range of cloud26

types (e.g., cold, low-condensate cirrus clouds or warm, condensate-rich clouds). Despite27

excellent overall performance, the emulator exhibits some deficiencies in the uppermost28

model levels, leading to biases in the stratosphere. The emulator also has short episodic29

skill dropouts in isolated grid columns and is computationally slower than the original30

Fortran scheme. Nonetheless, our challenges and strategies should be applicable to the31

emulation of other microphysical schemes. More broadly, our work demonstrates that32

with suitable physically motivated architectural choices, ML techniques can accurately33

emulate complex human-designed parameterizations of fast physical processes central34

to weather and climate models.35

Plain Language Summary36

In this study, we create computer code that uses machine learning to mimic a weather37

model’s algorithm for handling how clouds form and rain falls. When used in the weather38

model to replace this algorithm, our machine learning code is highly accurate in simu-39

lations for a whole year. We achieve this by making smart code design choices. We split40

the code into two parts: one for cloud formation and one for rain and snow. This allows41

us to better build important aspects of these processes into the machine learning approach.42

For instance, clouds form where it is moist and evaporate when it gets dry, and rain and43

snow fall downward. Our code learns cloud behavior based on temperature to ensure it44

works both for cold, thin clouds high up in the sky and warm, thick clouds closer to the45

ground. Our work shows a path for suitably-designed machine learning code to eventu-46

ally replace important parts of weather and climate models, but also that this path still47

requires careful human design respecting known physical principles.48

1 Introduction49

Atmospheric models combine fluid dynamics integrated on a discrete global grid50

with parameterizations of unresolved physical processes for weather and climate predic-51

tion. These parameterizations, encompassing phenomena such as cloud formation, pre-52

cipitation, and radiative transfer, are crafted by experts and typically blend theoretical53

foundations with empirical relationships to capture interactions between various atmo-54

spheric processes. The ongoing development and refinement of these components require55

a careful balance between accuracy and efficiency to achieve high-fidelity simulations us-56

ing limited computational resources.57

Over the past few decades, advances in machine learning have led to substantial58

investments in computing facilities that combine more traditional CPU-based comput-59

ing resources with accelerators such as GPUs. This shift in computational infrastruc-60

ture has motivated the atmospheric modeling community to explore ways to capitalize61

on these newer resources to speed up simulations. The fluid dynamics algorithms imple-62
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mented in atmospheric models can often be recoded for more efficient GPU computa-63

tion using compiler directives or domain-specific language extensions (Dahm et al., 2023).64

However, the column-based physics parameterizations often involve more complex logic65

and data dependences that do not naturally fit into this paradigm.66

An alternative approach to accelerating the physical components of atmospheric67

models is the creation of machine-learned emulators. Emulators are machine learning68

(ML) models trained directly on the inputs and outputs of a specific component, aim-69

ing to provide a seamless replacement of the original scheme. This strategy offers a nat-70

ural path to speed up model operation on accelerator-based compute resources, which71

are optimized to run ML workloads. Consequently, most emulation studies have focused72

on radiative transfer (Chevallier et al., 1998; Krasnopolsky et al., 2005, 2010; Veerman73

et al., 2021; Ukkonen et al., 2020), the most expensive subcomponent in the typical at-74

mospheric physics suite. However, recent studies have also emulated deep convection (O’Gorman75

& Dwyer, 2018), gravity wave drag (Chantry et al., 2021), atmospheric chemistry (Keller76

& Evans, 2019; Kelp et al., 2022; Schreck et al., 2022), and details of the warm rain pro-77

cess (Gettelman et al., 2021).78

Emulation also serves as an excellent test bed for ML approaches that aim to im-79

prove on existing physical parameterizations, such as those using fine-resolution data to80

train corrective ML models (e.g., Brenowitz & Bretherton, 2019; Rasp et al., 2018; Yu-81

val & O’Gorman, 2020; Bretherton et al., 2022). Typically, these learn improvements to82

the combined suite of physical parameterizations, e.g. radiation, microphysics, turbu-83

lence and surface exchange, cumulus convection and orographic drag. Emulation of in-84

dividual component physical processes is clearly posed as a supervised learning task, so85

it can be used to explore skill bounds, quirks, and optimal architectural choices for em-86

ulating an entire parameterization suite.87

The cloud microphysics scheme plays a central role in atmospheric modeling, man-88

aging rapid phase changes such as condensation, evaporation, and precipitation. It is tightly89

coupled to the model dynamics through latent heat release. We are not aware of past90

studies using ML to emulate an entire microphysics scheme, perhaps due to its lower com-91

putational cost compared to radiation. Nevertheless, it is a key part of emulating the92

combined physical parameterization suite and exposes a variety of ML challenges that93

are relevant to that broader problem. It is also a fast-acting process, producing local-94

ized atmosphere heating and drying tendencies that are much larger than for radiation.95

Thus, emulation of a representative microphysics scheme is a worthy complement to em-96

ulation of radiation parameterizations. It can provide valuable insights into the poten-97

tial and challenges of ML emulators of atmospheric physical processes.98

In this work, we train an ML model to emulate the Zhao and Carr (1997, ZC) mi-99

crophysics scheme. This scheme was used for many years in the Global Forecast System100

(GFS) model by the U. S. National Centers for Environmental Prediction (NCEP). Here,101

it is included in a recent version of GFS that uses the FV3 dynamical core (Harris & Lin,102

2013), which we call the FV3GFS global atmospheric model. The ZC scheme, with only103

one prognostic condensate variable, seemed to be a simple machine learning target. How-104

ever, for a variety of reasons, developing a successful emulator of this scheme proved more105

challenging than anticipated, and required several architectural choices relevant to em-106

ulating other more complex microphysical parameterizations with many more prognos-107

tic hydrometeor types.108

In Section 2, we describe the emulator architecture, training data, and integration109

into the FV3GFS model. In Section 3, we demonstrate that the emulator serves as a sta-110

ble, skillful replacement to the original Fortran Zhao-Carr microphysics scheme, with low111

global average bias for at least 1 year of simulation. Despite impressive overall perfor-112

mance, the emulator induces regional biases in the uppermost model levels— in our ex-113

perience, a relatively common online issue with ML integrated as one component in con-114
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ventional atmospheric models (e.g., Brenowitz & Bretherton, 2019; Clark et al., 2022).115

In Section 4, we discuss the major decisions that influenced the emulator’s performance116

and address some remaining challenges and limitations of our approach.117

In accordance with AGU’s AI tool policy, the authors acknowledge the use of Ope-118

nAI’s ChatGPT-4 tool to help edit the manuscript draft for clarity, conciseness, and gram-119

matical correctness. All suggestions provided by the AI tool were reviewed and edited120

by the authors for correctness and consistency. The plain language summary was gen-121

erated by prompting the tool for a generally accessible version of our written abstract122

and then edited by the authors.123

2 Methods124

In this work, we utilize the FV3GFS global atmospheric model (Harris & Lin, 2013),125

which is currently used by NOAA for operational weather forecasting. FV3GFS com-126

bines the FV3 nonhydrostatic finite-volume dynamical core with a suite of physical pa-127

rameterizations developed for the Global Forecast System (GFS). For the simulations128

presented here, the FV3GFS model is run on a C48 cubed-sphere grid (approximately129

200 km horizontal grid spacing) with 79 vertical levels.130

Within FV3GFS, we target the emulation of the Zhao-Carr (ZC) microphysics (Zhao131

& Carr, 1997), which was used in the operational version of GFS until 2018. The ZC mi-132

crophysics scheme predicts changes in cloud condensate, precipitation, and the associ-133

ated heating and moistening rates at each grid point in a vertical column, based on state134

inputs. The scheme divides the prediction into two subroutines: one calculating the lo-135

cal condensate change via grid-scale condensation (gscond) and the other calculating col-136

umn precipitation and associated condensate adjustments (precpd). Figure 1 shows a137

graphical depiction of the information flow through the ZC microphysics subroutines.138

The scheme diagnoses the phase partitioning of cloud condensate into liquid and ice at139

each step based on temperature and the presence of overlying ice cloud. Furthermore,140

it diagnoses the downward precipitation flux and its phase partitioning into rain and snow141

at each grid level during each time step. Appendix A gives further details.142

The ZC scheme initially seemed appealing for ML emulation due to its simplicity,143

featuring only a single prognostic hydrometeor type: the cloud water mixing ratio. De-144

spite the initial appearance of simplicity, the schematic (Fig. 1) illustrates that the ZC145

scheme is architecturally more complex than we anticipated due to the implicit depen-146

dence on the column thermodynamic state sampled within the previous time step. Fur-147

thermore, vertically and temporally nonlocal phase partitioning of condensate does not148

appear as an explicit output of the scheme, despite its use by other parameterizations.149

These subtleties add considerable time-consuming challenge to the accurate ML emu-150

lation of the ZC scheme.151

To emulate the ZC scheme, we employ hooks to interact with the Fortran model152

via the package call_py_fort (https://github.com/nbren12/call py fort). This pack-153

age enables users to call functions and interact with selected Fortran state fields within154

an initialized Python environment, giving access to the comprehensive suite of ML and155

data tools available in Python and accelerating ML prototyping and testing.156

2.1 Training Data157

We generate the training dataset by initializing 30-day simulations from GFS anal-158

ysis on the first day of each month in 2016, saving fields every 5 hours to sample the di-159

urnal cycle. A list of all stored fields is shown in Table S1. We reserve three months of160

data for validation during training (February, June, and September). The training dataset161

–4–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

pressure
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call to gscond
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call to gscond
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call to gscond

Grid-scale
condensation
“gscond”

Precipitation
“precpd” Rest of model

Figure 1. Information flow of the Zhao-Carr microphysics within FV3GFS for a single time

step. Inputs of a given scheme are represented as inward arrows. The “after last call to gscond”

inputs are used to compute a relative humidity tendency that encompasses the rest of the model

and prepcd. This approach to computing the tendency effectively adds three new state variables

to the model.

includes 1080 global snapshots consisting of 482×6 = 13824 atmospheric columns, to-162

taling nearly 15 million samples.163

From the saved training data, we derive the target increments for the ZC micro-164

physics that we seek to emulate. The total change, denoted as ∆ = ∆g + ∆p, is the165

sum of the two subroutine updates from gscond (∆g) and precpd (∆p). Both gscond and166

precpd calculate updates for temperature (T ), specific humidity (q), and the cloud wa-167

ter mixing ratio (c); precpd also diagnoses the amount of surface precipitation (P ) dur-168

ing the time step. We note that the use of tendencies in this manuscript refers to the sub-169

routine increment divided by the model time step (15 minutes).170

Figure 2 displays an example transect of tendencies of the target data for clouds171

and humidity along the 100◦W meridian. The gscond cloud water tendency (Fig. 2a; ∆gc)172

can be positive (condensation) or negative (evaporation), depending on local thermo-173

dynamic state. Active regions in this snapshot include the boundary layer of the sub-174

tropical Pacific and free-tropospheric weather features (e.g., convection or frontal zones)175

over land. Because cloud water tendency involves a phase change between water vapor176

and condensate, the corresponding tendencies of temperature (∆gT ) and specific humid-177

ity (∆gq) exhibit similar patterns to the cloud water tendency. The gscond tendencies178

for these three fields are fully determined by grid-local thermodynamic state, with the179

exception of one vertically non-local flag, which influences the diagnostic decomposition180

between liquid and ice clouds and the resulting latent heating tendency. That flag in-181

dicates whether mixed-phase clouds with temperatures between 0◦ and -15◦C are over-182

laid by contiguous ice cloud colder than -15◦C.183

The corresponding precpd condensate tendency transect (Fig. 2b; ∆pc) shows losses184

due to autoconversion of thicker clouds to precipitation. Regions of positive precpd va-185
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Figure 2. Latitude–pressure transects along longitude 100◦W for a sample Zhao-Carr micro-

physics step on July 8th, 2016 at 06Z showing: (a) the condensation rate from gscond, (b) the

conversion rate of cloud to precipitation in precpd, and (c) the precipitation evaporation rate in

precpd. Transect data has been interpolated to pressure levels from model levels for presentation.

por tendency (Fig. 2c; ∆pq) are due to the evaporation of precipitation falling from over-186

lying grid layers.187

These transects highlight two general challenges for emulating microphysics. First,188

the microphysics scheme is not active at the majority of grid points. It produces a range189

of adjustments to the state fields where clouds or precipitation are present, but elsewhere,190

the tendencies should be exactly zero. Second, the condensation scheme can generate191

large condensate increments throughout the troposphere despite the humidity being or-192

ders of magnitude smaller in the upper troposphere than near the surface.193

Some other general considerations are also important for ML microphysics emu-194

lation. For instance, clouds are very sensitive to relative humidity. A small error in pre-195

dicted water vapor or temperature can significantly impact clouds and precipitation. Sec-196

ond, cirrus clouds with small condensate mixing ratios can be as radiatively important197

as liquid water clouds with hundred-fold higher condensate mixing ratios. Thus, an ML198

emulator must accurately predict a large range of condensate tendencies to skillfully re-199
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Figure 3. A schematic of the ZC microphysics emulation architecture.

produce the original model’s climate. Third, complete cloud evaporation/sublimation200

is common; to obtain this outcome in a model time step requires the condensate tendency201

to exactly remove all cloud condensate in a grid box. Lastly, microphysical tendencies202

are a combination of local (e.g., condensation) and non-local (e.g., precipitation) pro-203

cesses and constraints. An emulation scheme must replicate these dependencies to yield204

accurate and physically consistent results.205

These factors heavily influenced the final design of our emulation methodology, which206

we detail in the following section. We elaborate on the sensitivity of results to these choices207

and discuss remaining challenges in Section 4.208

2.2 Emulator Architecture209

The emulation model architecture is shown in Figure 3. Separate emulators for gscond
and precpd take a total of 13 input variables, including the same set of inputs as the For-
tran ZC scheme: T , q, c, and surface pressure as well as the “after last gscond” values
of T , q, and surface pressure. We provide additional inputs of air pressure and pressure
thickness of the atmospheric layer, as well as derived inputs of relative humidity (RH),
and log-scaled q, c, and q after last gscond. Each input is normalized:

x′
j = (xj − µj)/σ (1)

and combined to form input channels for the emulation models. The mean, µj , is a sam-210

ple mean at level j using 150,000 random columns from the training data. The scaling211

factor, σ, is calculated using the standard deviation over all per-level centered (xj−µj)212

values in the same sample. This scaling enhances training stability and conveniently down-213

weights inputs from the upper levels, where the microphysics scheme is less active. Sur-214

face variables are normalized as a single level and then broadcast to 79 levels when merged215

into model inputs to simplify general usage. The same input data are passed to all three216

of the emulator subcomponents.217
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2.2.1 Condensation emulator218

In the condensation subroutine (gscond), net condensation ∆gc at a given point219

in an atmospheric column is physically determined by the thermodynamic inputs at that220

same level, a property we refer to as grid-point locality. The gscond emulator takes ad-221

vantage of this property by applying a single MLP to each grid point, which we refer to222

as a dense-local model. The MLP is 2 layers of 256 channels, each with ReLU activa-223

tion. It takes in 79-level × 13-channel inputs, applies the model to each level, and out-224

puts a single column (79×1) through a linear readout layer. We train the gscond dense-225

local regressor for 50 epochs using the Adam optimizer with a learning rate of 0.0001.226

We use a mean squared error (MSE; Eq. 2) based loss (Eq. 3).227

MSE(a, b) =
1

N

N∑
i=1

(ai − bi)
2 (2)

L = MSE(ỹ, ŷ) + λ ·MSE(c′g, ĉ
′
g) (3)

ỹ =
∆gc− µ̃(Tin)

σ̃(Tin)
(4)

ŷ = f(x) (5)

cg = ∆gc+ cin (6)

ĉg = ŷσ(Tin) + µ(Tin) + cin (7)

The target increment in the loss (ỹ, Eq. 4) is conditionally scaled due to a phys-228

ical expectation that cloud properties depend strongly on temperature (Fig. S1). To ac-229

curately emulate cold cirrus clouds, which typically have little condensate and correspond-230

ingly small condensate increments, and also emulate warm liquid clouds, which can have231

hundred-fold larger condensate increments, the loss function normalizes to be sensitive232

in both cases. The scaling terms for the mean µ̃(Tin) and standard deviation σ̃(Tin) rep-233

resent a piecewise interpolation based on the input temperature Tin. We compute the234

underlying interpolation function by calculating binned mean and standard deviation235

values after grouping samples of ∆gc into 50 linearly-spaced bins between the minimum236

and maximum input temperature. We optimize the gscond emulator ŷ = f(x) to pre-237

dict temperature-scaled increments (ỹ) as functions of the grid point features x. These238

increments are descaled into a predicted post-gscond condensate amount (ĉg, Eq. 7) by239

adding the de-scaled increment to the input condensate amount. We include a post-gscond240

condensate MSE in the loss (Eq. 3) using the normalized condensate amounts (c′g, ĉ
′
g)241

scaled by λ = 50000 to make the loss contribution O(1). The addition of the final con-242

densate value to the loss function improves validation MSE for the unscaled condensate243

increment by over 80%. This likely happens because the final condensate term gives ad-244

ditional weight to warm-cloud condensation. The remaining state increments for T and245

q are determined at runtime from the predicted ∆gc value (see Section 2.3).246

We train an activity classifier to handle the mixed discrete-continuous nature of247

the condensation scheme, i.e., the need to force the emulator prediction to either (i) zero248

tendency when there should be no cloud change during the time step, or (ii) the exact249

tendency to fully evaporate cloud condensate present at the beginning of the time step.250

The classifier model employs the same dense-local architecture as the regressor, but pre-251

dicts four target variables to identify the following classes:252

• ∆gc = 0,253

• cg = 0 and ∆gc ̸= 0,254

• cg ̸= 0 and ∆gc > 0, and255

• cg ̸= 0 and ∆gc < 0.256
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The first two cases, corresponding to situations (i) and (ii) above, together usually ac-257

count for 80% or more of the outcomes depending on the level (Fig. S2). During infer-258

ence, the model constrains ∆gc when the classifier identifies either of the first two cases.259

Otherwise, the regressor makes the condensate prediction. We train the classifier using260

categorical cross-entropy loss with the same hyperparameters as the regressor, except261

for an increased learning rate of 0.001. After training, the classifier is approximately 98%262

accurate over all classes and levels (Table S2). Please refer to Section 4.1 for a more in-263

depth discussion on the impacts of the conditional loss function and activity classifier.264

2.2.2 Precipitation emulator265

The diagnostic precipitation scheme (precpd) generates precipitation through au-266

toconversion of cloud condensate in upper levels. The precipitation falls and can either267

evaporate in lower layers or reach the surface. To enforce this downward dependence in268

the precpd emulator by construction, we use a recurrent neural network (RNN) that re-269

curses over vertical layers starting at the top of atmosphere (see schematic in Fig. S3).270

A single RNN layer,271

hj+1 = (Whhj +Wxxj + b)+, (8)

uses the same normalized inputs, x′
j , as the gscond emulator where j ∈ [0, 79) and j =272

0 is the top of the atmosphere. In this form, hj is the RNN hidden state at level j, Wh273

represents trainable weights for the recursion on hidden state, Wx are the trainable weights274

for inputs, b is the bias, and (·)+ represents a ReLU activation function. We stack two275

hidden 256-channel layers followed by a level-independent linear readout layer (ŷj = Ahj+276

b) to predict the increments ∆pT , ∆pq, and ∆pc. This construction ensures that only277

inputs xi from levels at and above level j (i ≤ j) can affect RNN predictions at level278

j. We embed additional constraints within the precpd emulator such that it converts clouds279

to precipitation (∆pc ≤ 0 ), that it evaporates precipitation (∆pq ≥ 0 and ∆pT ≤ 0),280

and that the final cloud is non-negative (cp ≥ 0). The RNN loss includes the MSE for281

the normalized increments (using Eq. 1 instead of conditional normalization) and the282

MSE of the normalized post-precpd output for each variable scaled such that the indi-283

vidual contributions are O(1). The surface precipitation rate (P ) is diagnosed from the284

net loss in total column water at runtime using:285

P = −
78∑
j=0

(∆pcj +∆pqj) · ∆pj / g, (9)

where for each level j, (∆pcj +∆pqj) is the local water change due to autoconversion286

and evaporation, ∆pj is the input pressure thickness of the atmospheric layer, and g is287

gravity.288

2.3 Prognostic runs289

The utility of a microphysics emulator ultimately depends on its performance when290

used within the atmospheric model as a substitute for the human-designed parameter-291

ization it is trained to replace. Specifically, the emulator should not cause catastrophic292

model failures, it should consistently provide a skillful representation of the original mi-293

crophysics behavior, and it should have a minimal impact on the integrated statistics (i.e.,294

the climate) of the underlying model. To test this, we embed the ZC microphysics em-295

ulator in FV3GFS and run a series of prognostic tests using two model configurations:296

one with the emulator as the active microphysics scheme (online) and a baseline with297

the Fortran microphysics active (offline). In each case, we run the inactive component298
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in a diagnostic mode (“piggybacked”; Grabowski, 2019) and save the resulting tenden-299

cies for comparison.300

To evaluate the skill and climate impact of the emulated microphysics, we initial-301

ize 30-day simulations in each calendar month from February 2016 to January 2017. The302

initializations are taken from the end of the training data simulations, testing both model303

configurations on atmospheric states independent of the training data. We compute skill304

scores for all microphysics tendencies (∆T , ∆q, ∆c; converted to a tendency by divid-305

ing increments by ∆t = 900) and P using a modified R2 score 1 -
∑

(ŷ − y)2/
∑

y2.306

A score of 1 indicates a perfect emulation, while a value of 0 or lower indicates an em-307

ulator worse than a no-information prediction. We also compute the bias of the micro-308

physics outputs and the atmospheric state over all levels and times of the 12 simulations.309

To assess long-term stability, we simulate a full year using the emulator in place of the310

ZC microphysics and check the global averages and bias for evidence of any climate drifts.311

The last step in applying the emulator as part of an online simulation is to apply312

final physical limiters and constraints and generate the full set of outputs for the em-313

ulated ZC microphysics. For the gscond emulator, we compute the increments ∆gT and314

∆gq through local conservation of the net condensation. First, we limit the net conden-315

sation based on moisture availability using:316

∆gc =

{
max(−cin, ∆gc), if ∆gc < 0

min(qin, ∆gc), if ∆gc > 0
. (10)

Then, the change in water vapor mirrors the change in condensate (∆gq = −∆gc) and317

the temperature change is determined via latent heating (∆gT = (Lv/cp)∆gc), where318

Lv is the latent heat of vaporization and cp is the specific heat of air at constant pres-319

sure. This is an approximation, as some phase changes in ZC occur between ice and va-320

por, releasing additional latent heat; however, these phase changes are not fully locally321

determined and our efforts to use a posthoc determination of ice cloud latent heating ef-322

fects slightly degraded online emulator skill. For online application, we set the top 5 lev-323

els of gscond increments to zero since the ZC microphysics scheme is never active in those324

stratospheric levels and noise issues in ML-predicted condensate increments arise in these325

levels (see Section 4.2 for further discussion). Finally, we add the increments to the cor-326

responding input state variable to obtain fields after gscond (Tg = Tin + ∆gT , qg =327

qin +∆gq, and cg = cin +∆gc).328

The precpd increment constraints are directly integrated into the ML model as de-329

scribed earlier. We derive the surface precipitation (Eq. 9), and then add the precpd in-330

crements to the post-gscond values to generate the final scheme outputs (Tp = Tg +331

∆pT , qp = qg +∆pq, and cp = cg +∆pc).332

3 Results333

We begin with the top-level results of our ZC emulation 30-day runs in Table 1.334

The offline skill scores for all emulated quantities are nearly perfect at ∼99%, with low335

root mean-square error (RMSE) values and biases that are 1–2 orders of magnitude smaller336

than the RMSE (i.e., a small component of the error).337

Online skill is a strict test where deviations from a realistic physical state can cause338

the diagnostic Fortran microphysics to output large state adjustments or even crash. Nev-339

ertheless, when the emulator is used online, it maintains high skill scores with only a ∼1–340

5% reduction compared to the offline case. Predicted cloud water tendencies show the341

lowest average performance at 94%, which is still quite high for a sparse and highly sen-342

sitive tendency field. The corresponding tendency RMSEs of emulator tendencies vs. pig-343

gybacked Fortran tendencies are roughly double those of the offline configuration, ex-344
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Offline Online

ZC Output Skill score RMSE Bias Skill Score RMSE Bias

∆T [K/day] 0.99 0.42 -0.03 0.98 0.58 -0.02
∆q [mg/kg/day] 0.995 110 3.0 0.99 200 -1.1
∆c [mg/kg/day] 0.99 140 -1.0 0.94 330 -0.7
P [mm/day] 0.998 0.21 -0.02 0.97 0.77 0.02

Table 1. Skill metrics for the ZC microphysics emulator outputs compared to the Fortran mi-

crophysics outputs for the offline (Fortran driving) and online (emulator driving) configurations.

All table metrics are calculated for twelve 30-day runs initialized at the start of each calendar

month and then averaged together.

cept for P , where the tendency RMSE is nearly four times larger. The larger online er-345

ror result is an expected outcome due to detrimental feedbacks between the model and346

the ML emulator that cannot be accounted for when using offline training. The biases347

remain small in the online case, suggesting no systematic breakdown of the emulator be-348

havior from the diagnostic Fortran microphysics.349

We compare the time-averaged atmospheric state averaged across the twelve 30-350

day online simulations with identically initialized baseline simulations to show that the351

emulator produces little mean-state drift when used in FV3GFS in place of the original352

ZC microphysics. Figure 4 depicts zonal averages of the online bias of the emulator-based353

simulation compared to the baseline simulation, which have been interpolated from model354

level to pressure coordinates to display biases at a true relative height. Table 2 gives global355

average area- and mass-weighted bias for selected output fields.356

Cloud water is a key output of the microphysics scheme. Its zonal average mixing357

ratio (Fig. 4a, b) has the largest absolute bias near the surface in Antarctica, ∼6 mg/kg.358

This bias is relatively large for the characteristically cold,dry air there. Outside of the359

Antarctic, the cloud water biases are ∼3 mg/kg or less— a much smaller relative change360

from the baseline— and are generally positive, except for a negative bias in the tropi-361

cal upper troposphere. The global-mean cloud water bias is small— 0.2 mg/kg, an ap-362

proximately 2% increase compared to the baseline state (Table 2). These cloud changes363

result in O(1%) changes to the outgoing top-of-atmosphere longwave (-1.4 W/m2) and364

shortwave radiation (+1.3 W/m2), but in total the changes largely cancel out.365

Figure 4d depicts the online bias in RH, which displays a small shift towards sat-366

uration in the middle-to-lower troposphere. The largest biases in RH (>10%) occur in367

the Antarctic upper atmosphere near the large gradient in drying near the tropopause.368

There are also similar albeit smaller positive RH biases in the tropics and Arctic tropopause369

regions. Overall, the global-mean RH shows a small positive bias of 0.8% (Table 2), con-370

gruent with the small positive cloud water bias.371

The zonal average temperature has a small cold bias of up to -1.5 K in the high372

latitudes. Between 50◦S–50◦N, this bias is weakened or even slightly reversed at some373

pressures, but there is a thin layer of warm bias up to 1 K near the tropopause. The zonal374

temperature biases largely cancel out when averaged globally over the 30-day runs (Ta-375

ble 2).376

Lastly, the total surface precipitation (emulated ZC microphysics + convective sources)377

has a slight positive bias of 0.03 mm/day, a 1% increase from the baseline simulation (Ta-378

ble 2). Fig. 5a depicts the online zonal average surface precipitation just from the ZC379

microphysics component. The emulated ZC precipitation production is nearly identical380

to the baseline simulation owing to the high emulation skill of ∆q and ∆c, but produces381
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Field Bias Baseline mean

Air temperature [K] -0.1 251
Specific humidity [mg/kg] -0.7 2590
Relative humidity [%] 0.8 45.5
Cloud water [mg/kg] 0.2 9.6
Total surface precipitation [mm/day] 0.03 3.04
Upward shortwave at TOA [W/m2] 1.3 91.9
Upward longwave at TOA [W/m2] -1.4 237
Total outgoing radiation at TOA [W/m2] -0.06 329

Table 2. Global average online biases and baseline means for selected state fields averaged over

all 30-day simulations.

Online skill
ZC Output 1-year run 30-day runs avg.

∆T 0.98 0.98
∆q 0.98 0.99
∆c 0.94 0.94
P 0.97 0.97

Table 3. Online skill score for 1-year online simulation compared against the skill scores aver-

aged across the twelve 30-day runs initialized across the calendar year.

0.02 mm/day less global precipitation than the baseline ZC scheme. This bias must mostly382

be associated with state drift rather than offline emulator errors, because the piggybacked383

Fortran ZC scheme, which is applied to the online emulator state, diagnoses slightly less384

precipitation than the online emulator, especially in the Northern Hemisphere storm track.385

The Fortran convection parameterization also responds to the slight emulator-induced386

state changes by producing a global mean convective precipitation increase of 0.05 mm/day.387

The instantaneous precipitation-rate distribution based on all grid columns and sam-388

pling times (Fig. 5b) corroborates this analysis. It shows that the emulator overproduces389

light precipitation (< 0.1 mm/day) compared to the piggybacked Fortran scheme, but390

these two schemes agree well at most higher precipitation rates, and their small discrep-391

ancies don’t explain the online emulator differences from the baseline simulation. Instead,392

the largest precipitation rate bins (∼100 mm/day) suggest that the online emulator-driven393

simulation shifts to fewer states that support heavy precipitation events compared to the394

baseline simulation.395

3.1 1-year continuous simulation396

The monthly-initialized runs show the embedded ZC emulator is stable for at least397

30 days during all calendar months of the year, with low biases. To further explore the398

long-term fidelity of emulator-based simulations, we present results from a continuous399

1-year integration starting in July 2016. We ran two simulations, one masking only the400

top 5 levels of the gscond increments (i.e., setting the increments to 0) and the other mask-401

ing the top 5 levels of both gscond and precpd increments. We found adding the mask402

to the top 5 levels of the precpd scheme reduced the number and severity of transient403

tendency skill dropouts (Fig. B1) for the 1-year simulation. Both online simulations ran404

with online emulation for the full year. We present results for the top 5 gscond and precpd405

increment configuration due to better performance. We discuss the unresolved sensitiv-406

ity of the emulator to the upper levels in Section 4.2.407
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Figure 4. Latitude–pressure sections of zonal and time average state from baseline Fortran

simulations (left) and online bias of simulation using the emulator (right) for cloud water mixing

ratio (a, b), relative humidity (c, d), and air temperature (e, f). Averages are over twelve 30-day

simulations initialized in each month of the calendar year, using values vertically interpolated

from model levels.
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tween the online emulator (blue) baseline Fortran (orange) and diagnostic Fortran microphysics

(grey), which is generated diagnostically using inputs from the online emulation state. (b) Sur-

face precipitation rate distribution compared between the same schemes. Shown quantities are

calculated from twelve 30-day simulations initialized at the beginning of each calendar month.
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Figure 6. Time–latitude plots of the instantanous surface precipitation rate saved every 3

hours from the 1-year (a) baseline and (b) online emulation simulations.

The online skill metrics for the 1-year continuous run are, reassuringly, almost iden-408

tical to the average of the 30-day runs (Table 3). A time–latitude plot of total surface409

precipitation (Fig. 6) compares the baseline and online emulation runs, demonstrating410

the emulation retains the spatiotemporal character of the baseline precipitation (and pre-411

cipitating clouds by proxy) throughout the seasonal cycle. A slight reduction in the largest412

precipitation events for the online emulation is apparent in the tropics; we already noted413

this issue for the month-long simulations in Fig. 5b. Some global-annual-average biases414

(Table 4) are somewhat larger than in the 30-day runs: T (-0.3 K), RH (1.9%), and net415

TOA outgoing radiation (-0.4 W/m2; the difference of a -2.1 W/m2 outgoing longwave416

bias and a 1.6 W/m2 reflected shortwave bias). Absolute cloud water and surface pre-417

cipitation biases remain similar to those of the 30-day runs. Cloud water and RH have418

the largest relative bias from the baseline simulation at ∼4%, respectively.419

The zonal average biases of T and RH from the 1-year emulator-based simulation420

are very small in the troposphere but become more significant in the polar stratosphere421

(Fig. 7). In this region, large negative cold biases (as low as -8 K) are co-located with422

positive RH biases up to 30%. The temperature bias appears within the first few months423

of the simulation and stabilizes for the rest of the simulation. We further investigated424

these biases and found that both the gscond and precpd emulators have deficiencies in425

the dry, cold polar stratosphere. Within a few hours after the start of the simulation,426

the gscond emulator produces too much condensate because the emulator predicts con-427

densation for what the Fortran piggybacked microphysics diagnoses should mostly be428

evaporation at marginal relative humidities (40–50%; Fig. S4). We have confirmed that429

the gscond bias drift is unrelated to precpd or the classifier. We hypothesize that the430

tendency drift is likely related to a subtle online shift in some characteristics of the in-431

put distribution specific to this region.432
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Figure 7. Zonal mean bias of the 1-year online emulation simulation for (a) temperature and

(b) relative humidity.

Field Bias Baseline mean

Air temperature [K] -0.3 247
Specific humidity [mg/kg] 17.2 2680
Relative humidity [%] 1.9 45.6
Cloud water [mg/kg] 0.2 7.6
Surface precipitation [mm/day] 0.03 3.03
Upward shortwave at TOA [W/m2] 1.6 92.1
Upward longwave at TOA [W/m2] -2.1 237
Total outgoing radiation at TOA [W/m2] -0.44 329

Table 4. As in Table 2 but for the 1-year simulation.

The precpd emulator’s shortcomings in the polar stratosphere are evident from of-433

fline diagnosis. Specifically, errors from the emulator’s noise floor produce evaporation434

despite no falling precipitation (Fig. S5) in this region. This is a particular failing of the435

the single-scaling loss normalization (Eq. 1), where optimization fails to minimize the436

large relative errors in the polar stratosphere. The errors produce a directional bias due437

to constraints imposed in the model architecture (∆pq > 0 and ∆pT < 0) and a lack438

of enforced conservation. As they grow, these biases in the high-latitude stratosphere likely439

feed back with radiation and the atmospheric circulation before ultimately equilibrat-440

ing.441

4 Challenges and choices442

In this section, we highlight key decisions that led to a skillful, stable, and low-bias443

emulation, as well as some remaining challenges. From the outset, our goal was to use444

simpler ML models with the potential for general applicability in emulating atmospheric445

physics parameterizations. However, the path to the final emulator necessitated several446

problem-specific choices to successfully emulate the ZC microphysics scheme.447

4.1 Key decisions448

One of the most influential decisions was to target subcomponents of the micro-449

physics scheme, specifically grid-scale condensation (gscond) and precipitation (precpd).450

Initial attempts to encapsulate the total ZC scheme tendency increments in a single model451

yielded high offline skill, but the online integration often resulted in difficult-to-interpret452

failures that crashed the simulation. This is a common failure mode when training mod-453

els outside of the environment in which they are deployed (e.g., Brenowitz & Brether-454
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run type gscond arch. precpd arch. ∆T ∆q ∆c P

offline dense-local RNN 0.99 0.995 0.99 0.998
dense-local dense-column 0.99 0.99 0.97 0.99
dense-column dense-column 0.97 0.98 0.95 0.99

online dense-local RNN 0.98 0.98 0.95 0.98
dense-local dense-column 0.74 0.76 0.01 0.01
dense-column dense-column -0.39 -0.46 -0.07 0.17

Table 5. Sensitivity of emulation skill to the use of general vs. prior-informed model architec-

tures. “Dense-column” refers to a fully connected MLP with 2 hidden layers of 256 width and a

linear readout layer. “Dense-local” and “RNN” refer to the architectures described in the meth-

ods section.

ton, 2019). Separating the subcomponents simplifies the enforcement of physical priors455

through model architecture design or output postprocessing.456

Following component separation, we observed substantial improvements in online457

emulation skill by incorporating physically informed architectures. For the gscond em-458

ulator, we enforce grid point locality (i.e., dependence only on the grid point-local ther-459

modynamic state) by using a dense-local MLP that does not mix any vertical informa-460

tion. For the precpd emulator, we enforce the downward dependence (i.e., rain falls down-461

ward) using an RNN that recurses downward over a vertical column. Table 5 displays462

the offline and online skill for a single 30-day run initialized in July, comparing the per-463

formance of the informed architectures to a reasonable uninformed default for atmospheric464

model process parameterization— a dense MLP combining features over the entire grid465

column to predict the full column increments. While these dense-column models exhibit466

high skill offline (always >95%), they fail online when continuously integrating on the467

atmospheric state. Replacing the RNN used for precpd emulation with a dense-column468

architecture that does not enforce downward dependence reduces cloud and precipita-469

tion skill to nearly 0%, even when using the physically informed gscond architecture. Us-470

ing dense-column models for both subroutines results in negative skill (i.e., worse than471

zero-increment predictions) for all variables except surface precipitation.472

The discrete-continuous nature of outputs from some atmospheric physics param-473

eterizations (e.g., for microphysics) poses a unique challenge for emulation. Neural net-474

work regressors have difficulty producing exact zeros, since they are trained to a certain475

degree of precision and will produce noise below that threshold. This can complicate on-476

line integration, particularly for a microphysical scheme, where the local thermodynamic477

state may be quite sensitive to small changes in condensate or humidity, especially in very478

cold regions (e.g., Antarctica or the upper troposphere). For this reason, we introduced479

the activity classifier described in Sect. 2.2.1 into the gscond emulator. Figure 8 illus-480

trates the need for such a classifier by comparing cloud distributions from simulations481

with and without a classifier to a baseline run. By day 15 after initialization, the con-482

densate histogram shows that the emulation scheme without an activity classifier accu-483

mulates small values of cloud water (≤2 mg/kg) at many grid points. Including a clas-484

sifier within the gscond emulator to constrain the microphysical activity resolves this is-485

sue. Based on the good performance of the 30-day online simulations and non-locality486

of the precipitation scheme, we decided not to pursue an activity mask for the precpd487

emulator. However, the erroneous T and q precpd increments in the polar stratosphere488

contributing to biases in the 1-year run suggest a classifier might be helpful overall.489

The final choice important to the success of the ZC emulator involved optimizing490

the model to predict condensate increments that span many orders of magnitude. As de-491
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Figure 8. Cloud water mixing ratio distributions compared between three configurations:

online emulation with a gscond activity classifier (blue), online emulation without an activity

classifier (orange), and a baseline simulation (grey). Samples are taken from 8 3-hourly snapshots

across day 15 of a 30-day simulation initialized on July 1.

scribed in Sect. 2.2.1, we used a temperature-dependent scaling in the gscond loss func-492

tion, ensuring proportionate errors across a large range of local microphysical states. Model-493

level scaling is insufficient to handle this because a given model level may span a broad494

range of temperatures (e.g., the tropical boundary layer vs. the Antarctic plateau).495

In addition to the conditional scaling, we added select rescaled input values (RH,496

log-scaled q and c) into the emulator inputs. Removing log-scaled inputs negatively im-497

pacts offline skill in polar and upper-level model regions (not shown). Including RH as498

an input increased skill and reduced condensate biases, particularly in the Antarctic re-499

gion. For example, by day 5 of a July 1 initialized simulation, the emulator using RH500

as an input has an Antarctic average column-integrated condensate of 87 g/m2 compared501

to a baseline value of 79 g/m2. When not including RH, the average Antarctic column-502

integrated condensate value is 154 g/m2 by July 5, roughly double the baseline value.503

Despite the overlap of the additional inputs, we believe they help reduce errors in cold-504

cloud regions by allowing the emulator discern vertical position, which is removed by per-505

level demeaning in the input normalization (Eq. 1). We conducted an experiment to rein-506

troduce the vertical information by adjusting the input normalization for air pressure507

to remove the column mean instead of the per-level mean from each level. This config-508

uration also increased offline skill and largely removed the Antarctic condensate bias with-509

out the need for RH, but was generally more sensitive to skill dropouts when used on-510

line.511

4.2 Remaining challenges512

In developing our emulation scheme, online simulations commonly presented un-513

expected challenges that needed to be addressed. Certain months, primarily October and514

November, tended to have lower online skill (∼85–90% compared to ∼93–96%) for clouds515

and precipitation compared to other months. The lower aggregate skill in these months516

was mainly due to significant precpd autoconversion misses (“skill dropouts”) during con-517

vective events for a few low-latitude columns (see Appendix B for an example). These518
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skill dropouts start in the mid-troposphere near the freezing level and quickly affect the519

entire upper troposphere. The emulator recovers in the affected grid columns within a520

few hours or, at worst, a few days.521

To minimize such dropouts, we employed a strategy of training an ensemble of em-522

ulators initialized with varying random seeds (e.g., as in Clark et al., 2022) and then se-523

lect combinations of gscond and precpd emulators with the best online skill during the524

most problematic months of October and November. While this approach does not guar-525

antee prevention of severe skill dropouts during other months or in a year-long simula-526

tion, it consistently produces stable, low-bias emulators with high skill.527

We still do not have a foolproof approach for designing emulators without occa-528

sional skill dropouts. For instance, the emulator configuration that gave the most skill-529

ful 1-year online simulation (masking the top 5 levels of increments from both gscond530

and precpd) produces a substantial skill dropout in a 30-day simulation initialized at the531

start of December, leading to a December ∆c skill = 54%, while the original gscond-only532

top 5 mask configuration has no issues (December ∆c skill = 94%).533

Altogether, this suggests the need for further refinement of the architectural de-534

sign and training choices, such as whether recursion from the top model level is neces-535

sary, whether additional measures should be adopted to reduce sensitivity to the upper536

levels, or whether more training data are needed to handle the few convective events on537

the edges of the data distribution.538

To handle the large dynamic range of condensate increments, we use temperature539

scaling in the gscond loss function. While this is generally very beneficial, especially in540

tandem with the gscond classifier, it does not prevent the emulator from occasionally cre-541

ating spurious cloud in the uppermost model levels. These levels lie in the stratosphere,542

where temperature increases with height. Warmer temperatures lead to larger-amplitude543

condensate “noise”, which the emulator later struggles to remove. Because there should544

never be any cloud in the top-most levels, we pragmatically resolved this by masking gscond545

increments in the top 5 model levels. However, as seen in the 1-year simulation polar strato-546

spheric biases, a few issues remain related to emulator deficiencies in the upper levels.547

While the current manuscript focuses on the development and evaluation of a ro-548

bust, accurate ZC emulator, we recognize that speed of execution is a paramount con-549

sideration for emulator adoption, especially in operational settings. The current code in-550

frastructure was designed for flexibility and ease of testing new ideas, rather than for op-551

timal speed. In its current unoptimized state, the model with online emulation runs ap-552

proximately 30% slower (∼5.8 s/time step) than to the original C48 simulation (∼4.8553

s/time step) even when using available GPUs (4x Nvidia T4). Variable transfer between554

Python and Fortran adds around 7% to the run time. The remaining slowdown is likely555

related to choices in model architecture, such as shallow depth and sequential RNN steps,556

which lead to low GPU utilization (<10%). We believe that it will be possible to design557

ML emulators of more complex microphysical schemes that are more speed-competitive558

with the Fortran code which they aim to replace.559

5 Conclusions560

We have successfully developed an emulator to replace a simple Fortran microphysics561

scheme (Zhao-Carr) in FV3GFS, which controls grid-scale condensation (gscond) and562

precipitation (precpd) processes. Our findings demonstrate that when used online as a563

replacement for the Fortran scheme, the emulator maintains high skill (≥94%) with low564

global-average bias (on the order of 1% or less) and remains stable for at least one year565

of continuous simulation. To our knowledge, this is the first successful emulation of a bulk566

microphysics scheme, and the first successful online emulation of a fast-timescale atmo-567

spheric parameterization central to global atmospheric forecasting.568
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A key contributor to the success of our emulator was tailoring its architecture to569

the underlying physical processes. By creating separate emulators for gscond and precpd,570

we enforce grid point locality and conservation for the condensation scheme, and we use571

an RNN to impose downward dependence in the atmosphere associated with falling pre-572

cipition. This greatly improves the emulator’s skill, especially when used online. Adding573

an activity classifier to the condensation emulator alleviated issues of excess condensate574

related to the discrete-continuous nature of the tendencies and field outputs. Using a temperature-575

scaled conditional loss function for the gscond emulator and providing re-scaled inputs576

to all emulators helped maintain skill across the high dynamic range of condensate and577

humidity tendencies that must be accurately predicted to simulate cloud processes through-578

out the global atmosphere.579

As with any ML-based emulation problem, achieving perfection is difficult, and the580

current scheme is no exception. In 1-year online integrations, biases develop in the po-581

lar stratospheric temperature and humidity fields. These regions challenge the ML train-582

ing because they have distinctly different local environments than the rest of the atmo-583

sphere and comprise a small fraction of the emulator’s training data. Further improve-584

ments could clearly be made, but are beyond the scope of this paper, which was to demon-585

strate the feasibility of a skillful ML microphysics emulator for online use. For instance,586

a natural possibility that we did not have time to implement would be to explicitly pre-587

dict precipitation flux at every model interface, which carries all the nonlocality in the588

microphysics. The hidden state of the precpd RNN is a skillful but imprecise proxy for589

this design, causing potential biases and drifts because physical constraints are imper-590

fectly respected (e.g., that the evaporation of precipitation in any model level cannot ex-591

ceed the downward flux of precipitation into that model level).592

A compounding difficulty in the present work and generally for physics emulation593

is the inability to train emulation schemes directly in the context of their deployment594

within an atmospheric model. Fortran tooling for ML applications is challenging com-595

pared to the Python, but is still required for current atmospheric models. We utilize a596

Python package (call_py_fort) that provides an exceptional solution for interactive pro-597

totyping, but is not optimized for computational efficiency. Modeling frameworks on the598

horizon may simplify this process of ML integration and speed the development path to599

emulators that perform well online (Schneider et al., 2017; Dahm et al., 2023).600

Our results stress the importance of evaluating the online performance for any pro-601

posed emulator, as it is straightforward to produce skillful offline models that may not602

perform well when integrated back into the model. It is also important to recognize that603

the development of emulators that perform well online is a challenging and time-consuming604

endeavor. If efficiency is the only goal, it may sometimes be more practical to invest in605

porting existing codes to run on GPUs, for example, as emulation requires significant606

human effort and problem-specific tuning.607

Despite the challenges, our method and results are a proof-of-concept that machine608

learning techniques can effectively emulate fast physical processes central to the dynam-609

ics in weather and climate models. While our focus has been on a specific microphysics610

parameterization, we hope that the illustration of our problem-specific decisions will in-611

form the application to similar or more complex physical schemes. With further research612

and development, emulation techniques can continue to contribute to improved skill and613

efficiency of weather and climate models.614

Appendix A Zhao-Carr Microphysics615

This scheme handles both phase changes—condensation and evaporation—and pre-616

cipitation processes. Tendencies due to the former are typically 10x larger in magnitude.617
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The prognostic variables used by the scheme are the temperature T , specific humidity618

q, and a combined cloud water/ice mixing ratio c.619

The gscond scheme handles evaporation of cloud and condensation. Evaporation620

of cloud is given by Ec = 1
∆t max[min[qs(f0 − f), c], 0]. f is relative humidity. f0 is a621

critical relative humidity threshold which Zhao and Carr (1997) describe as “empirically622

set to 0.75 over land and 0.90 over ocean.” qs is the saturation specific humidity.623

Condensation Cg on the other hand is given by a more complex formula involving624

a relative humidity tendency. See Eq. (8) of Zhao and Carr (1997). Both formulas de-625

pend only on the thermodynamic state of a single (x, y, z) location, but there is some626

non-local dependence on the assumed phase of the cloud and the corresponding latent627

heating rate.628

The precpd scheme handles the conversion of cloud into rain/snow and the evap-
oration of the latter as it falls through the atmosphere. Broadly speaking, it can be writ-
ten as the following:

Err = Er(T, f, Pr)

Ers = Er(T, f, Ps)

P = P (T, f, c, Pr, Ps)

Psm = Psm(T, f, c, Pr, Ps)

Pr =

∫ p

pt

(P − Err)dp/g

Ps =

∫ p

pt

(Psm − Ers)dp/g.

Most of the formulas are proportional to rainfall Pr and snowfall Pr rates at a given level,629

though are some rate constants that depend exponentially on temperature. pt is the pres-630

sure at the top of the atmosphere.631

Appendix B Precpd emulator skill dropouts632

Over the course of refining the emulation methodology, we observed larger variabil-633

ity in the online skill scores of cloud and precipitation predictions, despite minimal-or-634

no changes in emulator training or runtime configuration. In this section, we discuss the635

primary source of that variance, which we refer to as skill dropouts. As an example, Fig-636

ure B1 displays the surface precipitation skill over time for two 1-year simulations. When637

the top 5 layer increment mask is adjusted from application to only gscond to both gscond638

and precpd, the severity of skill dropouts decreases markedly.639

Upon closer examination of the skill dropouts, the precpd emulator appears to be640

the source of the issue. We focus on the dropout about 6 months into the gscond-only641

masking experiment to illustrate this point. In this case, a cluster of columns near the642

Maritime Continent is responsible for most of skill reduction. By removing the five grid643

columns with the largest tendency errors, the overall snapshot skill goes from approx-644

imately 0% to over 70%. When examining the tendency profiles from the column with645

the largest errors (Fig. B2), the gscond emulator largely matches the diagnostic Fortran,646

while the precpd emulator completely misses the autoconversion of condensate to pre-647

cipitation in middle-and-upper levels. Leading up to this time step, we have confirmed648

that gscond remains skillfull, while precpd skill degrades (not shown). The gscond em-649

ulator retaining skill throughout this event suggests that a process outside of the ZC scheme,650

such as deep convection, adds condensate throughout the column. The precpd emula-651

tor then fails to precipitate the added condensate.652

Overall, we hypothesize that the skill dropouts are associated with training data653

insufficiency related to intense convection and/or unconstrained sensitivities of the RNN654
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Figure B1. Surface precipitation skill over the 1-year online simulation for two increment

masking configurations: (orange) gscond-only top 5 layer masking and (blue) gscond and precpd

top 5 layer masking.
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Figure B2. Vertical tendency profiles from the (a) gscond and (b) precpd schemes during the

December 22nd 12 UTC skill dropout event in the gscond top 5 layer increment mask 1-year sim-

ulation. Each subcomponent panel shows the condensate tendencies predicted from the emulator

(blue) and the diagnostic Fortran (orange dashed) for the selected column with the largest errors.
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to upper-level inputs. It is encouraging that despite the magnitude of the misses, the ZC655

emulators resolve the issue in a few days or less for all cases observed (e.g., see Fig. S6).656

We also note that the dropouts tend to be confined to only a few grid columns, typically657

occurring in the tropics or subtropics. The isolated spatial extent of the skill dropout658

sources highlights the challenge in achieving consistently high skill in our chosen met-659

rics throughout the simulations. It also demonstrates how quickly the skill can deteri-660

orate if even a few predictions degrade.661

Glossary662

dense-local An MLP that takes in a single vertical level of inputs from a column and663

produces outputs for that same level. The vertical independence makes it ”local”.664

gscond The gridscale condensation component of Zhao-Carr microphysics665

precpd The precipitation component of Zhao-Carr microphysics666

skill dropout A temporary reduction in the online skill metric calculated between the667

emulator tendencies and the diagnostic Fortran tendencies668

Acronyms669

ML machine learning670

MLP multi-layer perceptron (feed-forward neural net)671

RNN recurrent neural net672

ZC Zhao-Carr673

Appendix C Open Research674

The code and configurations used to produce training data, train ML models, and675

run FV3GFS simulations are available on Github (https://github.com/ai2cm/zc-emulation-manuscript)676

and archived on Zenodo (https://doi.org/10.5281/zenodo.7976184). The data and677

docker images to reproduce results with the code are available on Zenodo (https://doi.org/10.5281/zenodo.7963397).678
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Figure S1. A 2D histogram comparing the input air temperature against the gscond ∆gq

tendency using 150,000 random columns from the training dataset.
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Figure S2. Class membership fraction by level for the gscond activity classifier. Class fractions

are calculated over 150,000 random columns from the training dataset.
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Figure S3. A schematic of information flow through the RNN network, which enforces a

downward dependence in the output state starting at the top of atmosphere (TOA). All inputs

for a given level level are fed into the two-layer hidden state as the model recurses downward

in the atmosphere. For each level (recursive step), the model translates to outputs via a linear

readout layer.
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a) Arctic stratosphere input RH vs. emu dq [t=0]
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Figure S4. A 2D histogram of the gscond emulator humidity increment vs. input relative

humidity at (a) t=0 (first model timestep) and (b) t=21 (5.25 hours later). The humidity

increment and relative humidity values are gathered from the selected timestep of all 12 monthly

initializations. The solid white line depicts the average bias of the emulator increment compared

against diagnostic Fortran increment binned by relative humidity for bins with >0.05% of the

total samples.
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Figure S5. A 2D histogram comparing the vertically cumulative precipitation flux (at and

above a given gridpoint) with the local evaporation in the Arctic stratosphere for the offline

precpd emulator predictions. The grey dashed line depicts the 1-to-1 ratio where all precipitation

falling through a given level is evaporated. Any points above and to the left of this line signify

non-conservation, where more liquid is evaporated than available from the precipitation. A value

of 1e-4 is added to precipitation in order to visualize all values (including zero precipitation) on

the log-log scale.
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Figure S6. A time–height plot of precpd emulator skill focusing on the days surrounding a

large skill dropout occurring on Dec. 22nd of the gscond top-5 masking 1-year simulation (see

Figure B1).
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Field Description

delp pressure thickness of the atmospheric layer

air pressure pressure at center of atmospheric layer

surface air pressure air pressure at the surface (lowest model interface)

air temperature input air temperature input into the ZC scheme

specific humidity input specific humidity input into the ZC scheme

cloud water mixing ratio input cloud water mixing ratio input to the ZC scheme

specific humidity after gscond specific humidity after the current timestep call to the
gscond subroutine

air temperature after gscond air temperature after the current timestep call to the
gscond subroutine

cloud water mixing ratio after gscond cloud water mixing ratio after the current timestep call
to the gscond subroutine

air temperature after precpd air temperatureafter the current timestep call to the
precpd subroutine

specific humidity after precpd specific humidity after the current timestep call to the
precpd subroutine

cloud water mixing ratio after precpd cloud water mixing ratio after the current timestep call
to the precpd subroutine

total precipitation surface precipitation rate after the current timestep call
to the precpd subroutine

air temperature after last gscond air temperature after the previous timestep call to
gscond

specific humidity after last gscond specific humidity after the previous timestep call to
gscond

surface air pressure after last gscond surface air pressure after the previous timestep call to
gscond

Table S1. A list of ZC microphysics fields pushed from the Fortran state to the call py fort

Python environment to save for training and to use for inference at runtime.
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observed % predicted % precision recall accuracy

positive tendency 0.11 0.11 0.95 0.96 0.99
zero tendency 0.63 0.65 0.95 0.99 0.96
zero cloud 0.24 0.21 0.98 0.86 0.96
negative tendency 0.02 0.02 0.90 0.90 0.99

Table S2. Metrics for the gscond activity classifier calculated on 150,000 random sample

columns from the test dataset.
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