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Key Points: 14 

• The high initial stress accumulated in the seismic gap leads to the successful 15 

triggering of the East Anatolian Fault. 16 

• The change of fault geometry in the southwest segment prevented the sustained 17 

supershear rupture. 18 

• The risk of earthquake nucleation on the secondary fault triggering the major fault 19 

rupture and the related disaster was highlighted. 20 

  21 
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Abstract 22 

We considered various non-uniformities such as branch faults, rotation of stress field 23 

directions, and changes in tectonic environments to simulate the dynamic rupture process of 24 

the 6th February 2023 Mw 7.8 Kahramanmaraş earthquake in SE Türkiye. We utilized near-25 

fault waveform data, GNSS static displacements, and surface rupture to constrain the 26 

dynamic model. The results indicate that the high initial stress accumulated in the 27 

Kahramanmaraş-Çelikhan seismic gap leads to the successful triggering of the East Anatolian 28 

Fault (EAF) and the supershear rupture in the northeast segment. Due to the complexity of 29 

fault geometry, the rupture speed along the southeastern segment of the EAF varied 30 

repeatedly between supershear and subshear, which contributed to the unexpectedly strong 31 

ground motion. Furthermore, the triggering of the EAF reminds us to be aware of the risk of 32 

seismic gaps on major faults being triggered by secondary faults, which is crucial to prevent 33 

significant disasters. 34 

Plain Language Summary 35 

On February 6, 2023, the south-central Türkiye was hit by two major earthquakes with 36 

magnitudes of Mw 7.8 and Mw 7.6 respectively. Among them, the complex rupture process 37 

and unexpected ground motion of the Mw 7.8 event attracted the attention of seismologists. In 38 

this paper, the 3D dynamic rupture process of this mainshock is simulated based on complex 39 

multi-fault system and heterogeneous initial stress. And the simulation results are in good 40 

agreement with the observations. Our results show that high initial stress is required for the 41 

EAF to be triggered. The supershear rupture occurred only in certain fault segments and is 42 

unable to sustain itself in a significant area on the fault due to the along-strike variations in 43 
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fault geometry and strength. More importantly, the dynamic model suggests that we must be 44 

alert to the risk of major fault being triggered by earthquakes on nearby small faults, 45 

especially when there are seismic gaps on the major fault. 46 

1 Introduction 47 

On 6th February 2023, at 01:17:34 UTC, the Mw 7.8 earthquake struck the Nurdağı-Pazarcık 48 

region in the Kahramanmaraş-Gaziantep province of south-central Türkiye, near the NW 49 

Syria (Melgar et al., 2023). The 2023 SE Türkiye earthquake sequence occurred in a region 50 

where a tectonically deforming complex network of faults controlled by the triple junction 51 

between the Anatolian, Arabian, and African plates (Figure. 1). The U.S. Geological Survey, 52 

National Earthquake Information Center (USGS-NEIC) located the Mw 7.8 hypocenter on a 53 

splay fault south of the EAF, with a strike-slip mechanism consistent with the left-lateral 54 

motion of the East Anatolian Fault Zone (EAFZ) (Goldberg et al., 2023a, b). The main 55 

shock’s epicenter and its subsequent aftershocks were consistently located along the EAF and 56 

widespread structural damage was reported in a wide region over eleven major cities and the 57 

NW Syria. The EAFZ is the major plate boundary that accommodates the westward extrusion 58 

of the Anatolia toward the Aegean Sea, and the fault zone has caused destructive earthquakes 59 

throughout recorded history (e.g., Ambraseys, 1989; Emre et al., 2018). The 2023 sequence’s 60 

mainshock Mw 7.8 has been the most significant and destructive earthquake along the EAFZ 61 

and surrounding fault segments since the 22 May 1971 Ms 6.9 Bingöl, and 24 January 2020 62 

Mw 6.7 Doğanyol-Sivrice earthquakes (Taymaz et al., 1991, 2021). To the south of the EAFZ, 63 

the left-lateral Dead Sea Fault (DSF) accommodates northward motion of the Arabian 64 

Peninsula relative to the African and Eurasian plates (Taymaz et al., 1991; Figure. 1). 65 
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 66 

Figure 1. Tectonic map of the 2023 SE Türkiye-Syria earthquake doublet and strong-motion 67 

stations depicted by red-filled triangles. Two epicenters of Mw 7.8 and Mw 7.6 earthquakes 68 

and focal mechanisms from the AFAD are shown as red stars and red beachballs, respectively. 69 

Brown lines represents the fault segments used in the dynamic modeling, while black lines 70 

show fault traces of mapped surface ruptures from Reitman et al. (2023). The colored-filled 71 

circles show the first 11 days of relocated aftershocks (color varying according to the 72 

hypocenter depth) from Melgar et al. (2023). Inset illustrates two major tectonic plates 73 

(Arabian and Anatolian) and active faults (Emre et al., 2018) and plate boundaries (Bird, 74 

2003), such as East Anatolian Fault Zone (EAFZ) and North Anatolian Fault Zone (NAFZ) 75 

(see also Taymaz et al., 1991). 76 
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After the 2023 doublet sequence, many preliminary results of finite-fault source 77 

inversion based on strong ground motion, near-field geodetic data and/or teleseismic data 78 

have been published (Delouis et al., 2023; Mai et al., 2023; Melgar et al., 2023; Goldberg et 79 

al., 2023,a, b; Okuwaki et al., 2023; Xu et al., 2023). However, a highly debated controversy 80 

exists regarding the presence of a supershear rupture during the Mw 7.8 event. The 81 

controversy is multifaceted. Rosakis et al. (2023) analyzed the waveforms of two near-fault 82 

stations, concluding that the supershear rupture occurred on the splay fault at a distance of 83 

about 19 km from the epicenter. Conversely, some inversion results do not support this 84 

conclusion (Delouis et al., 2023; Melgar et al., 2023). Through analyzing the rupture phase, 85 

Yao & Yang (2023) determined that the average rupture speed of the southwest section of the 86 

EAF is estimated to be ~3.1-3.4 km/s. However, this still does not eliminate the possibility of 87 

transient supershear. The preliminary dynamic rupture models also remain disputed. The first 88 

order model by Gabriel et al. (2023) is subshear, while Abdelmeguid et al. (2023) observe 89 

many transient supershear ruptures in the southwest segment and sustained supershear in the 90 

northeast segment of the EAF in their 2D simulation. Therefore, to comprehensively 91 

understand the rupture process of the 2023 Kahramanmaraş earthquake, it is necessary to 92 

conduct detailed data-constrained 3D dynamic simulations. 93 

In this study, we utilize near-fault waveform data, GNSS static horizontal 94 

displacement, and surface rupture as constraints to develop a dynamic rupture model for the 95 

Mw 7.8 Kahramanmaraş earthquake based on cascading multi-scale network of fault system 96 

and heterogeneous initial stress. We thoroughly analyzed the triggering process of the EAF 97 

and the rupture speed of our model, followed by a discussion on the implications for the 98 
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seismogenic environment and widespread earthquake disaster. Finally, we discuss the 99 

earthquake physics and the future improvement for the dynamic model of this earthquake. 100 

2 Materials and Methods 101 

Fault geometry, initial stress, and rock properties control the dynamic rupture process 102 

of tectonic faults. However, these data cannot always be measured directly in-situ. In this 103 

section, we will discuss the fault model and dynamic parameters adopted based on various 104 

previous studies of the EAFZ and introduce the numerical method used for this work. 105 

We construct 3D non-planar fault geometry based on the mapped surface ruptures 106 

from Reitman et al. (2023) and earthquake relocation results provided by Melgar et al. (2023). 107 

Some smaller fault branches were ignored but we kept the two major ones (Figure 1). These 108 

two branches of faults have not been mapped before. Melgar et al. (2023) designated the fault 109 

where the rupture was initiated as the Nurdağı-Pazarcık Fault (NPF). In this work, we label 110 

another branch fault as the F3 segment (Figure 1). The dip of the EAF is set to 85° trending 111 

southeast but bends to 80° trending northwest in northeastmost segment. This dip transition is 112 

the same as the fault model of Melgar et al. (2023). The dip of the NPF is set to 80° (trending 113 

northwest) based on the earthquake relocation results. The F3 segment shares the same dip 114 

and trend as the main portion of the EAF. All fault widths are set to 20 km. 115 

The EAF is located at the intersection of the Arabian, Eurasian, and African plates, 116 

resulting in a complex stress state (Taymaz et al., 1991, 2021). Güvercin et al. (2022) studied 117 

the stress orientations based on focal mechanisms and found that the orientation varies across 118 

different fault segments. In the region that ruptured in the 2023 Mw 7.8 event, the direction of 119 
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maximum principal compressive stress 𝑆𝐻 is roughly between N169°E and N203°E, with a 120 

clockwise trend from southwest to northeast. Early research (Lyberis et al., 1992; Yilmaz et 121 

al., 2006) also confirmed the same features. Therefore, after trial-and-error, the 𝑆𝐻 orientation 122 

is set as shown in Figure 2a. 123 

 124 

 125 

Figure 2. Model setting and dynamic rupture results. (a) The orientation of 𝑆𝐻. (b) Initial 126 

shear stress Ts. (c) The relative fault strength S. (d)-(i) Key snapshots of the dynamic rupture 127 
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process. A shared color bar is illustrated in (i). The black arrows indicate the supershear 128 

rupture. The red arrow indicates the dynamic triggering. The black star indicates the epicenter. 129 

Another factor that can constrain the initial stress is the stress shape ratio R, which is 130 

defined as 𝑅 = (𝑆𝑣 − 𝑆𝐻)/(𝑆ℎ − 𝑆𝐻), where 𝑆ℎ is the minimum principal stress, 𝑆𝑣 is the 131 

vertical stress. Generally, considering lithostatic pressure and pore pressure, 𝑆𝑣 can be 132 

described as 133 

𝑆𝑣 = (1 − 𝛾)𝜌𝑔ℎ.                                                      （1） 134 

Where 𝜌 is the density of rock, 𝑔 is the acceleration of gravity, ℎ is the depth, 𝛾 is the pore-135 

fluid factor, respectively. Therefore, using a lateral pressure coefficient expressed as 𝑘 =136 

𝑆𝐻/𝑆𝑣, we can obtain 137 

𝑆ℎ = (1 − 𝑘 + 𝑘𝑅)𝑆𝑣/𝑅.                                              （2） 138 

According to the focal mechanism inversion conducted by Yilmaz et al. (2006), the average 139 

value of R in the Kahramanmaraş to Çelikhan segment (KC segment) of the EAF is 0.715. 140 

This indicates that the tectonic environment in this region is characterized by transpression. 141 

But in the southwest segment of the EAF, the tectonic environment shifts to transtension 142 

(Lyberis et al., 1992), we assume R = 0.3 in this region. 143 

After trial-and-error, we set 𝛾 = 0.7. To prevent excessive stress drop in the deep part 144 

and consider the increased pore pressure along depth (Rice, 1992), the stress only increases to 145 

5 km with depth. The final initial shear stress and the relative fault strength S (defined as 146 

(𝜏𝑝 − 𝜏0)/(𝜏0 − 𝜏𝑑), where 𝜏𝑝, 𝜏0 and 𝜏𝑑 are the peak shear stress, the initial shear stress and 147 

the dynamic friction stress, respectively)are shown in Figure 2b-c. We set the location of the 148 
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nucleation zone based on the hypoDD relocations of Melgar et al. (2023). The radius of the 149 

nucleation zone is artificially set to 1.8 km. And the shear stress of the nucleation zone is set 150 

to a value 0.1% higher than the shear strength to trigger the rupture. The distribution of k and 151 

R are illustrated in Figure S1. 152 

Here, slip-weakening friction law (Ida, 1972) is applied in our simulation, and also in 153 

a recent study by Taymaz et al. (2022). Khalifa et al. (2018) investigated the rock strength of 154 

the EAFZ, they found that the rock strength varied from very low to moderate from west to 155 

east in the KC segment of the fault. Thus, the friction coefficients are also heterogeneous in 156 

the fault plane (Figure S2). The critical slip distance 𝐷𝑐 only varies with depth (Figure S3). 157 

The value of 𝐷𝑐 is set to 0.36 m in the depth of 0-15 km and is linearly increased when the 158 

depth is larger than 15 km to mimic the brittle-ductile transition in the crust. 159 

In addition, noting that our model setting is very heterogeneous, we explain the 160 

necessity of considering stress field rotation and non-uniform friction coefficients in the 161 

supplementary materials (see Text S1, Figure S5-S6).A layered seismic velocity structure 162 

(Güvercin et al., 2022) is adopted in our dynamic modeling (see Table S1). This model only 163 

provides P and S wave velocity Vp and Vs, hence we use the empirical formula (Brocher, 164 

2005) to calculate the density 𝜌 according to Vp. 165 

In this work, we use an open-source software DRDG3D, which was developed by 166 

Zhang et al. (2023) for the dynamic rupture modeling. DRDG3D is based on a nodal 167 

discontinuous Galerkin (DG) framework (Hesthaven and Warburton, 2008) with tetrahedral 168 

mesh adopted. Due to the flexibility for modeling geometric complex faults, DG methods has 169 

been widely used in dynamic rupture modeling of real or scenario earthquakes (Biemiller et 170 
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al., 2022; Ramos et al., 2021; Ulrich et al., 2019; Wollherr et al., 2019). DRDG3D adopts an 171 

upwind/central mixed flux scheme, which removes numerical artifacts when the near-fault 172 

asymmetric unstructured tetrahedral mesh is generated. The numerical scheme of DRDG3D 173 

reduces the dependence of mesh quality thereby increasing the efficiency. The DRDG3D has 174 

been verified by many benchmark models in the SCEC/USGS Spontaneous Rupture Code 175 

Verification Project (https://strike.scec.org/cvws/, Harris et al, 2009). The accuracy and 176 

efficiency of DRDG3D has been analyzed in detail by Zhang et al. (2023). 177 

3 Results 178 

The fault element size of our dynamic simulation is 570 m, with the spatial-order-of-179 

accuracy of 3. The time step is 0.0031 s and the total simulation time is 90 s. Figure 2d-i 180 

shows some key snapshots of the rupture process. The complete dynamic rupture process can 181 

be found in Movie S1. The rupture nucleated at the NPF and generated a supershear rupture 182 

at about 9 s (Figure 2d), supporting the preliminary analysis of Rosakis et al. (2023). And 183 

then, the EAF was dynamically triggered in the northeast of the junction (Figure 2e). After 184 

being triggered, the rupture propagated northeast on the EAF and transitioned to a supershear 185 

rupture very quickly (Figure 2f). As the fault strength increased along the strike, the rupture 186 

speed returned to subshear (Figure 2g). A few seconds later, the rupture began to propagate 187 

southwest. Due to the complex segmented fault geometry, the rupture speed varies frequently 188 

(see Figure 2g-i, Figure3b). The supershear rupture encounters barriers caused by fault 189 

geometry changes, making it unsustainable. The final slip distribution of our dynamic model 190 

is presented in Figure 3a. The maximum strike-slip displacement exceeds 7 m.  191 

https://strike.scec.org/cvws/
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We calculate the rupture speed by the reciprocal of the gradient of the rupture time 192 

(Figure 3b), and the rupture time definition threshold is slip rate greater than 0.001 m/s. The 193 

overall results of rupture speed are different from Melgar et al. (2023) but are similar to that 194 

of Delouis et al. (2023). There may be various reasons for the different results, such as 195 

different velocity models or data processing of different research groups. Moreover, 196 

Abdelmeguid et al. (2023) analyzed the fault normal and fault parallel components of near-197 

fault stations. They concluded the Station NAR and 3145 showing the characteristics of 198 

supershear rupture, which also consistent with our results. 199 

From the S value and the snapshot of rupture process shown in Figure 2c, we can find 200 

that the supershear rupture in the northeast section of the EAF (Figure 2f) may be caused by 201 

Burridge-Andrews mechanism, and the supershear rupture in Figure 2g should be induced by 202 

free surface. Two supershear ruptures in the southwest section of the EAF (Figure 2h-i) also 203 

started from the free surface, but the corresponding S value is also very low. 204 

The rupture duration for the earthquake simulated in this study is approximately 80 s, 205 

and the moment magnitude achieved is Mw 7.8665. Figure 3c compared the moment rate 206 

release process of this work, the inversion results of Melgar et al. (2023), Okuwaki et al. 207 

(2023), USGS (2023) (for details see Goldberg et al., 2023a, b). All the results show 208 

consistency in terms of duration and seismic moment release characteristics, with the 209 

maximum peak occurring at 20-30 s and the second peak at 40-50 s. These two peaks 210 

correspond to the two periods of maximum energy release for this earthquake. 211 

 212 
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 213 

Figure 3. (a) Final slip distribution of the dynamic model. (b) The ratio of rupture speed Vr 214 

and Vs. Vr/Vs greater than 1 indicates the supershear rupture. The three faults are drawn 215 

separately and marked on the figure. There is no rupture in the crimson region except the 216 

nucleation zone. The white star indicates the epicenter. (c) Moment rate release comparison. 217 
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(d) Comparison of waveforms of near-fault stations. The black line is the observed waveform, 218 

and the red line is the synthesized waveform, both of which are filtered to 0.01-0.4 Hz. The 219 

station name is marked on the left. The maximum absolute values of each component of the 220 

observations (m/s) are listed at the end of each seismogram (see Figure 1 for the location of 221 

the stations). (e) Comparison of surface strike-slip displacement. The red line is the 222 

simulation result, and the black line is the data provided by Mai et al. (2023). The two blue 223 

dashed lines represent the intersections of NPF (left) and F3 (right) with EAF, respectively. (f) 224 

Compared with the static horizontal displacement of GNSS. The black arrow is the observed 225 

value and the red arrow is the synthetic value. 226 

Figure 3d shows a comparison of the near-fault station waveforms (filtered to 0.01-0.4 227 

Hz). Our results successfully reproduce the primary features of the observations, and the 228 

agreement in travel time between our simulation and the observations suggests that the 229 

rupture speed in our model is reasonable. Several stations at the most southwest segment of 230 

the fault are not well fitted, which may be because we ignore some small branches at the end 231 

of the fault and the 3D heterogeneous velocity models are lacking and the relatively uniform 232 

dynamic parameters. The triggering and stopping of the rupture on the small branches we 233 

ignore will produce strong ground motion, and our layered model cannot well reflect the 234 

amplification effect of the sedimentary basin. We noticed that the aforementioned stations are 235 

all located near the southwest segment of the EAF. Unfortunately, the near-fault station 236 

records in the northeast segment of the EAF were abruptly terminated for unknown reasons, 237 

which made the rupture process in the northeast segment less constrained. Nonetheless, we 238 

still select 4 stations to compare the relevant waveforms in Figure S4. The stop time of the 239 



manuscript submitted to Geophysical Research Letters 

 

recording is very close to the arrival time of the waveforms, leading us to suspect that the 240 

cause of station damage is related to the arrival of rupture. Therefore, it is possible and 241 

acceptable that a supershear rupture occurred in the northeast segment of the EAF. 242 

The detailed investigation results of surface rupture have not been seen yet, hence the 243 

surface strike-slip is compared with the on-fault displacement measured by Mai et al. (2023) 244 

based on the satellite data (Liu et al., 2022a; 2022b; Figure 3e). We have captured the first-245 

order characteristics of surface displacement. Notably, the surface displacement on the 246 

backward side of the fault intersection has changed suddenly because of the dynamic 247 

unclamping. We also calculate the static horizontal displacement based on the triangular 248 

elastic half-space dislocation model (Nikkhoo et al., 2015; Meade, 2007) and compare to the 249 

observations (Barbot et al., 2023; Figure 3f). The observational and synthetic displacements 250 

are a general match. Some mismatches in displacement vectors may be due to the stronger 251 

spatial heterogeneity of the actual slip distribution, as well as the lack of consideration of 252 

complex medium models in the calculation of the synthesized displacement. 253 

4 Discussions 254 

4.1 Implications for seismogenic environment, process of EAF being triggered and 255 

earthquake disaster 256 

Our dynamic model indicates a high initial stress level in the KC segment of the EAF. 257 

Actually, this segment has been identified as a seismic gap with Coulomb stress in an 258 

elevated state proposed by Sunbul (2019). Thus, the stress state is consistent with the current 259 

seismogenic environment. This plays a crucial role in the triggering process of the EAF. 260 
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Because the angle between the NSF and the EAF is about 30°, if the direction of 𝑆𝐻 is close 261 

to the optimal stress orientation of one fault, it will be far from the optimal stress orientation 262 

of another fault in the range of N169°E-N203°E. In our model, the 𝑆𝐻 orientation of the fault 263 

junction is N184°E, closer to the optimal stress orientation of the EAF. Therefore, near the 264 

fault intersection, the slip rate on the NSF decreases and the dynamic stress decreases, which 265 

is not conducive to the rupture propagates to the EAF. However, because the stress in this 266 

segment of EAF is high enough, the rupture propagated to the EAF in the northeast of the 267 

fault intersection through dynamic triggering. Figure 4 and Movie S2 show the ratio of shear 268 

stress and normal stress during the triggering process. More importantly, the high initial 269 

stress also leads to the generation of supershear rupture in the northeast segment of the EAF 270 

(Figure 3b) and accumulated enough energy to make the rupture propagates backward 271 

(Figure 4f-h). 272 

The 2023 Mw 7.8 Kahramanmaraş earthquake reminds us of the 2001 Kokoxili 273 

earthquake in China and the 2002 Denali earthquake in USA. These two events were also 274 

nucleated on secondary faults (Antolik et al., 2004; Eberhart-Phillips et al., 2003). After the 275 

rupture propagated to the main fault, a supershear rupture occurred, and the rupture length 276 

was also greater than 300km. The difference is that these two earthquakes were unilateral 277 

rupture. In addition, the change of rupture speed will produce high-frequency seismic 278 

radiation (Vallée et al., 2008), this may also be one of the reasons for the serious damage to 279 

Hatay province in southern Türkiye. Therefore, these earthquakes serve as a reminder to 280 

remain vigilant as major faults can be triggered by earthquakes nucleated on nearby 281 

unrecognized small fault fragments, eventually evolving into giant earthquakes that cause 282 
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significant damage. This is especially important when there are seismic gaps along the major 283 

fault. 284 

 285 

Figure 4. The ratio of shear stress and normal stress during the triggering process. A ratio 286 

equal to 𝜇𝑠 (0.4) indicates the position of the rupture front in the EAF. (a) Before the rupture 287 

front reaches the fault intersection. (b) The rupture front reaches the fault intersection. (c-d) 288 

The EAF is triggered, and the red boxes indicate the trigger location. (e) The rupture 289 

propagates northeast and the stress ratio in the backward side is very low indicating it is 290 
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difficult to rupture. (f-h) Enough energy is accumulated, and the rupture begins to propagate 291 

backward. The red boxes indicate that the rupture is beginning to propagate backward. 292 

4.2 Open questions and future work 293 

Previous studies have suggested that the EAF is an immature fault (Gallovič et al., 294 

2020; Melgar et al., 2020; Pousse-Beltran et al., 2020; Taymaz et al., 2021). However, 295 

earthquake cycle research shows immature faults are more prone to moderate earthquakes 296 

(Thakur & Huang, 2021), this is inconsistent with the situation of the 2023 Kahramanmaraş 297 

earthquake. Therefore, does this earthquake manifest that the EAF is going to be mature? If 298 

not, why does the rupture length of an immature fault reach 300 km? Thus, there remains 299 

further research, such as radiation efficiency should be investigated in detail. Moreover, the 300 

2023 Kahramanmaraş earthquake may be another example of transient supershear ruptures on 301 

an immature strike-slip fault like the 2021 Madoi earthquake in China (Cheng et al., 2023). 302 

We didn't consider the topography and the off-fault damage in the dynamic simulation, 303 

which may also affect the results. For example, terrain fluctuation is not conducive to the 304 

occurrence of free-surface-induced supershear rupture (Zhang et al., 2016). Asymmetric 305 

topography along the fault can cause normal stress perturbation of the rupture front near the 306 

free surface (Kyriakopoulos et al., 2021). Off-fault plasticity will also consume energy and 307 

influence the dynamic rupture process, necessitating a higher initial stress (Gabriel et al., 308 

2013). Future work should also consider the rate and state friction law (Dieterich, 1994; 309 

Ruina, 1983), and discuss the impact of thermal pressurization (Rempel & Rice, 2006; 310 

Wibberley & Shimamoto, 2005) or flash heating (Goldsby & Tullis, 2011). 311 
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5 Conclusions 312 

In this work, a data-constrained 3D dynamic rupture model with a complex fault 313 

geometry of the 2023 Kahramanmaraş Mw 7.8 earthquake is established. The results show 314 

that high initial stress in the KC segment causes the EAF to be triggered. The transient 315 

supershear rupture occurs many times, and the change of fault geometry prevents the 316 

sustainability of the supershear rupture. Moreover, the triggering process of the NPF to the 317 

EAF reminds us that we should pay attention to the seismic activity of the secondary faults 318 

adjoining the major fault, and carefully study the risk of the main fault being triggered to 319 

prevent the severe casualties from repeating in the future. 320 
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Introduction  22 

This supporting material includes supplementary figures of stress and friction 23 

parameter settings (Figure S1-S3), and a waveform comparison of several stations 24 

with incomplete records (Figure S4). In addition, text S1 and Figure S5-S6 25 

supplement the necessity of heterogeneous of the stress orientation and friction 26 

coefficients. 27 

Text S1. The necessity of heterogeneous of the stress orientation and friction 28 

coefficients 29 

We present the initial shear stress and relative fault strength S of three 30 

homogeneous stress orientation case (Figure S5). It is obvious from the S value 31 

that when the stress orientation is N169° or N180°, the northeast segment of the 32 

EAF will be very difficult to rupture (S value even smaller than 0, that is, the stress 33 

drop is negative). Coincidentally, if the stress orientation is N201°, the NPF and 34 

the southwest segment of the EAF will be very difficult to rupture. Therefore, 35 

consider the clockwise trend of stress orientation is necessary. 36 

Furthermore, we calculate the distribution of initial shear stress and S value 37 

when the friction coefficients of the EAF is uniform (Figure S6). From the S value, 38 

we can expect that there will be a sustain supershear rupture in the northeast 39 

segment of the EAF. However, in this case, the waveforms of the four stations in 40 

Figure S4 will arrive earlier, and if so, these four stations should record more 41 

waveforms before the recording stops suddenly. This is inconsistent with the 42 

observation. Therefore, we increase the friction coefficients of the easternmost 43 

segment of the EAF (see Figure S2) according to the geological survey results of 44 

Khalifa et al. (2018). 45 
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 46 

Figure S1. The distribution of lateral pressure coefficient k and stress shape ratio 47 

R. On the NPF, 𝑘 = 1.51 and 𝑅 = 0.68. On the southwest segment of the EAF, 𝑘 =48 

1.15 and 𝑅 = 0.3. On the F3 and the northeast segment of the EAF, 𝑘 = 1.51 and 49 

𝑅 = 0.7.  50 
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 51 

 52 

Figure S2. The distribution of static and dynamic friction coefficients 𝜇𝑠 and 𝜇𝑑 . 53 

On the NPF, 𝜇𝑠 = 0.42 and 𝜇𝑑 = 0.2. On the F3 and the southwest segment of the 54 

EAF, 𝜇𝑠 = 0.4 and 𝜇𝑑 = 0.11. On the northeast segment of the EAF, 𝜇𝑠 increases to 55 

0.5 and 𝜇𝑑 increases to 0.19.  56 
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 57 

 58 

Figure S3. Variation of critical slip distance Dc with depth. Dc reaches a 59 

maximum of 2.4 m at a depth of 20 km.  60 
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 62 

Figure S4. Comparison of incomplete waveform records of four near-fault 63 

stations in the northeast segment of EAF. (a) The location of four stations (white 64 

hollow triangle). Other things are same as Figure 1 in the text. (b) Waveform 65 

comparison. The black line is the observed waveform, and the red line is the 66 

synthesized waveform, both of which are filtered to 0.01-0.4 Hz. The station name 67 

is marked on the left. The maximum absolute values of each component of the 68 

synthesized waveform (m/s) are listed at the end of each seismogram.  69 
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 71 

Figure S5. Initial shear stress and relative fault strength S in different 72 

homogeneous SH orientation cases. (a) SH orientation N169°E; (b) SH orientation 73 

N180°E; (c) SH orientation N201°E.  74 
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 75 

Figure S6. Initial shear stress and relative fault strength S with uniform friction 76 

coefficient of the EAF.  77 
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Tabel S1. Layer velocity model used in the dynamic simulation (Form Güvercin et 78 

al., 2022, Tabel S1) 79 

Depth (km) Vp(m/s) Vs(m/s) 

0 3880 2040 

1 4520 2430 

2 5620 3030 

4 5750 3310 

6 5850 3380 

8 5960 3430 

10 6000 3440 

12 6050 3460 

16 6320 3620 

20 6400 3670 

25 6830 3920 

30 6890 3940 

37 7800 4400 

45 8220 4560 

60 8300 4610 

  80 
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Movie S1. Snapshots of slip rate from the dynamic rupture of the Mw 7.8 81 

Kahramanmaras earthquake. 82 

Movie S2. The ratio of shear stress and normal stress during the triggering 83 

process. A ratio equal to 𝝁𝒔 (0.4) indicates the position of the rupture front in the 84 

EAF. 85 
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