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Abstract

We implement a damage parametrization in the standard viscous-plastic sea ice model to disentangle its effect from model

physics (visco-elastic or elasto-brittle vs. visco-plastic) on its ability to reproduce observed scaling laws of deformation. To

this end, we compare scaling properties and multifractality of simulated divergence and shear strain rate (as proposed in

SIREx1), with those derived from the RADARSAT Geophysical Processor System (RGPS). Results show that including a

damage parametrization in the standard viscous-plastic model increases the spatial, but decreases temporal localization of

simulated Linear Kinematic Features, and brings all spatial deformation rate statistics in line with observations from RGPS

without the need to increase the mechanical shear strength of sea ice as recently proposed for lower resolution viscous-plastic

sea ice models. In fact, including damage an healing timescale of $t h=30\>$days and an increased mechanical strength unveil

multifractal behavior that does not fit the theory. Therefore, a damage parametrization is a powerful tuning knob affecting the

deformation statistics.
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Key Points:4

• Inclusion of a damage parametrization brings low-resolution plastic models in line5

with observations;6

• Damage is a powerful parametrization to adjust scaling statistics of sea ice deforma-7

tions;8

• Viscous-plastic model with a damage parametrization reproduces the multifractality9

and spatiotemporal scaling behavior of RGPS observations.10
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Abstract11

We implement a damage parametrization in the standard viscous-plastic sea ice model12

to disentangle its effect from model physics (visco-elastic or elasto-brittle vs. visco-plastic)13

on its ability to reproduce observed scaling laws of deformation. To this end, we compare14

scaling properties and multifractality of simulated divergence and shear strain rate (as pro-15

posed in SIREx1), with those derived from the RADARSAT Geophysical Processor System16

(RGPS). Results show that including a damage parametrization in the standard viscous-17

plastic model increases the spatial, but decreases temporal localization of simulated Linear18

Kinematic Features, and brings all spatial deformation rate statistics in line with observa-19

tions from RGPS without the need to increase the mechanical shear strength of sea ice as20

recently proposed for lower resolution viscous-plastic sea ice models. In fact, including21

damage an healing timescale of th = 30 days and an increased mechanical strength unveil22

multifractal behavior that does not fit the theory. Therefore, a damage parametrization is a23

powerful tuning knob affecting the deformation statistics.24

Plain Language Summary25

Sea ice possesses the property that fracture patterns — or Linear Kinematics Features26

(LKF) — are self-similar. LKFs are locations where large shear and divergence associated27

with floes sliding along one another and/or moving apart (leads) or colliding (ridges) are28

present. A proper representation of LKFs is a desirable feature in sea ice models since var-29

ious energetic processes affecting heat, salt, and moisture exchange between the surface30

ocean and the atmosphere occur. Realistic LKFs densities start to appear at (high) reso-31

lution (∼2 km) in finite difference models (FDM) and at lower resolution in finite element32

models (FEM). It was recently argued that the key to correctly reproducing deformation33

statistics of sea ice was the inclusion of an elastic regime followed by brittle fracture and34

damage build-up allowing for significant deformation whether divergence or convergence35

is present post-fracture. In the following, we include a suitable damage parametrization36

in the standard viscous-plastic (VP) model to disentangle its effect from model physics37

(visco-elastic or elasto-brittle vs. visco-plastic) on its ability to reproduce observed scaling38

laws of deformation. This study shows that including a damage parametrization in the VP39

model improves its performance in simulating the statistical behavior of LKFs: damage is40

a powerful tuning knob.41
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1 Introduction42

It is reasonable to assume that ice could be a material simple enough to describe. Af-43

ter all, it is just frozen water. However, this apparent simplicity hides tremendous atomic,44

chemical, and mechanical complexity. Northern communities succeeded in capturing the45

spirit of this complexity in their language. The fact that they use numerous rich and pre-46

cise words for various ilks of ice and snow reveals a profound implicit understanding of47

the importance of the symbiotic relation between daily activities and ice identification via48

both its visual features and its formation (Krupnik, 2010). Ice color, for example, marks49

the melting zones of sea ice in spring and allows for the identification of hazardous sea ice50

for walking. Regardless of the beauty and intelligence of this process, other more quanti-51

tative metrics are used for problems covering a larger range of scales (from the kilometer52

scale to thousands of kilometers), including short-term forecast and decadal projections for53

navigation and global climate applications.54

Sea ice moves under the action of winds and ocean currents, leading to collisions55

between floes. Internal stresses rapidly redistribute these forces from ice–ice interactions56

over long distances. Sea ice deformations occur along well-defined lines of deformation57

called Linear Kinematic Features (LKFs; Kwok, 2001) that are scale-independent and mul-58

tifractal, ranging from floe size (10 km) to the size of the Arctic Basin, with width ranging59

from 0 m to 10 km (Hoffman et al., 2019). Along these lines, sea ice floes can slide along60

one another (shear), ridge (convergence), or move apart creating leads (divergence). These61

mechanical processes affect both lead patterns, and the local and pan-Arctic state of the62

atmosphere-ice-ocean system, notably the sea ice mass balance, salt fluxes in the upper63

ocean via brine rejection, and vertical heat and moisture fluxes between the ocean and the64

atmosphere (Aagaard et al., 1981; McPhee et al., 2005). As such, their multifractality and65

scaling properties are important to capture in a sea ice model for all applications.66

Statistical properties derived from Synthetic Aperture Radar (SAR) imagery of Arc-67

tic sea ice show that LKFs exhibit complex laws, including spatiotemporal scaling (e.g.68

Marsan et al., 2004; Marsan & Weiss, 2010; Rampal et al., 2008). These statistical charac-69

teristics are theorized to result from brittle compressive shear faults (Schulson, 2004), and70

a cascade of fracture that redistributes stresses within the pack ice (e.g. Marsan & Weiss,71

2010; Dansereau et al., 2016). The complexity of these interactions is undeniable, and a72

desirable sea ice model for the Arctic system should represent LKFs adequately.73
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Dynamical sea ice models use a diverse range of rheologies to simulate sea ice motion.74

A rheology describes the relationship between internal stress and deformation (rate) for75

a given material. In the standard viscous-plastic (VP) rheology — elliptical yield curve76

and normal flow rule (e.g. Hibler, 1979, and its variants) —, sea ice is considered as a77

highly-viscous fluid for small deformations. In this case, sea ice deforms as a creeping78

material. When a critical threshold in shear, compression and tension, defined by the yield79

curve, is reached, the ice fractures and enters a plastic regime (larger, permanent, rate-80

independent deformation). The main advantage of using a viscous-plastic model over a81

more physical elastic-plastic (EP) model (e.g. Coon et al., 1974) is that the material has no82

”memory” of past deformations and it is not necessary to keep track of all the previous83

strain state, rendering the VP formulation mathematically and numerically simpler. Since84

the first formulation of the VP model, much work has been done to improve the efficiency85

of the numerical solver used to solve the highly non-linear momentum equations (Hunke86

& Dukowicz, 1997; Hunke, 2001; Lemieux et al., 2008; Lemieux & Tremblay, 2009; Lemieux87

et al., 2010; Bouillon et al., 2013).88

Following a reassessment of basic (incorrect) assumptions behind models developed89

from the Arctic Ice Dynamics Joint EXperiment (AIDJEX) (sea ice is isotropic and has no90

tensile strength, Coon et al., 1974, 2007) new rheologies are proposed to mend some of these91

problems. For instance, ice would be better described with the inclusion of deformation on92

discontinuities, and an anisotropic yield curve with tension (Coon et al., 2007). Models93

that incorporate some of these recommendations include the Elasto-Brittle and modifica-94

tion thereof (EB, MEB, and BBM: Girard et al., 2011; Dansereau et al., 2016; Olason et al.,95

2022) Finite Element Models (FEM), in which elastic deformations are followed by brittle96

failure, while larger deformations along fault lines following damage build-up are viscous.97

These models include a damage parametrization that accounts for the fact that damage as-98

sociated with (prior) fractures also affects ice strength in addition to ice thickness and con-99

centration (see, for example, Girard et al., 2011; Rampal et al., 2016; Dansereau et al., 2016;100

Olason et al., 2022). These authors argued that the inclusion of a damage parametrization101

was a key factor for the proper simulation of sea ice deformations that follows observed102

spatial and temporal scaling properties (see also Dansereau et al., 2016). In other models103

(e.g. Elastic-Anisotropic-Plastic (EAP), Tsamados et al., 2013; Wilchinsky & Feltham, 2006),104

the fracture angle between conjugates pairs of LKFs is specified, leading to anisotropy be-105

tween interacting diamond-shaped floes. Other approaches include the elastic-decohesive106
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rheology using a material-point method (Schreyer et al., 2006; Sulsky & Peterson, 2011), in107

which the lead mechanics are simulated through decohesion.108

Damage parametrizations — first developed in rock mechanics — are ad-hoc in that109

they are not derived from observations and/or from first physics principle. For instance,110

a damage parameter can be quantitatively expressed as a scalar relationship between the111

elastic modulus of a material before and after fracture (Amitrano et al., 1999). In this model,112

the ice strength does not decrease when damage is present; instead, it is the Young’s mod-113

ulus that decreases, resulting in larger deformation for the same stress state. This was put114

to advantage in the EB model family where the damage is expressed as a function of the115

(time-step dependant) stress overshoot in principal stress space referenced to a yield crite-116

rion (Rampal et al., 2016; Plante et al., 2020). Another approach used in rock mechanics first117

considers mode I (tensile) failure on the plane where the maximum tensile stress occurs,118

followed by crack propagation along the plane where the mode II (shear) stress intensity119

factor is maximized (Isaksson & Ståhle, 2002a, 2002b). Other more complex descriptions120

of damage in brittle materials such as fracture initiation around elliptical flaws are used in121

rock mechanics (e.g. Hoek, 1968) and could in principle be implemented in sea ice models.122

Earlier model–observation comparison studies, aimed at defining the most appro-123

priate rheology for sea ice, found that any rheological model that includes compressive124

and shear strength reproduces observed sea ice drift, thickness, and concentration equally125

well (e.g. Flato & Hibler, 1992; Kreyscher et al., 2000; Ungermann et al., 2017). The mod-126

eling community subsequently used deformation statistics (probability density function,127

spatiotemporal scaling, and multifractality) to discriminate between different sea ice rheo-128

logical models (Marsan et al., 2004). Results from the community-driven Sea Ice Rheology129

Experiment (SIREx), under the auspice of the Forum for Arctic Modeling and Observa-130

tional Synthesis (FAMOS), showed that any model with a sharp transition from low (elas-131

tic or viscous creep) deformations to large (plastic or viscous) deformations can reproduce132

the new deformation-based metrics — provided the models are run at sufficiently high133

resolution: 2 km for Finite Difference Models (FDM), and 10 km for FEM Bouchat et al.134

(2022). A last unsuccessful attempt at discriminating between rheological models includes135

the analysis of the LKF density and angles of fracture between conjugate pairs of LKFs;136

to this point, all rheologies overestimate the angles of fracture and all reproduce densities137

of LKF comparable to observations provided a small enough resolution is used (2 km for138

FDM, and 10 km for FEM) (Hutter et al., 2021).139
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Ultimately the best way to compare models is to isolate one aspect between two dif-140

ferent models. An important step toward this goal was the implementation of the MEB141

rheology in finite difference, allowing for a direct comparison between VP and MEB rhe-142

ologies in the same numerical framework (Plante et al., 2020). Other significant differences143

between the VP and MEB models include the sub-grid-scale damage parametrization and144

the consideration of elastic deformations prior to fracture allowing the material to retain145

a memory of past deformations. In an attempt to further disentangle the effect of elas-146

ticity, damage and discretization, we include a damage parametrization in the standard147

VP model, following recommendations from SIREx (Bouchat et al., 2022), and Olason et148

al. (2022). To this end, we compare both simulated (with and without damage) and the149

RADARSAT-derived Eulerian deformation products using probability density functions150

(PDFs), spatiotemporal scaling laws, and multifractality.151

The paper is organized as follows. First, we describe the model in section 2. Then152

we introduce a damage parametrization that can be used in the context of a viscous plastic153

model. The sea ice deformation data and deformation metrics used to evaluate the model’s154

performance are described in sections 3 and 4. Results and discussion of the results are155

presented in sections 5 and 6. Finally, concluding remarks and directions for future work156

are summarized in section 7.157

2 Models158

2.1 Governing Equations159

The two-dimensional equation governing the temporal evolution of sea ice motion is160

given by:161

m

[
∂u

∂t
+ (u ·∇)u

]
= −mf k̂× u+ τa + τw −mg∇Hd +∇ · σ, (1)

where m (= ρih) is the sea ice mass per unit area, ρi is the ice density, h is the mean ice162

thickness, u (= (u, v)) is the horizontal ice velocity vector, k̂ is a unit vector perpendic-163

ular to the sea ice plane, f is the Coriolis parameter, τa is the surface wind stress, τw is164

the water drag, g is the gravitational acceleration, Hd is the sea surface dynamic height,165

and σ is the vertically integrated internal ice stress tensor. In the following, the advection166

term is neglected because it is orders of magnitude smaller than the other terms for a 10-167

kilometer spatial resolution (Zhang & Hibler, 1997). The surface air stress and water drag168

are parametrized as quadratic functions of the ice velocities with constant turning angle169
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(θa, θw) for the atmosphere and the ocean (e.g. McPhee, 1975, 1986; Brown, 1979):170

τa = ρaCa
∣∣ug

a
∣∣ (ug

a cos θa + k̂× u
g
a sin θa

)
, (2)

τw = ρwCw
∣∣ug

w − u
∣∣ [(ug

w − u
)
cos θw + k̂×

(
u

g
w − u

)
sin θw

]
, (3)

where ρa and ρw are the air and water densities, ug
a and u

g
w are the geostrophic winds171

and ocean currents, and Ca and Cw are the air and water drag coefficients. The reader is172

referred to Tremblay and Mysak (1997) and Lemieux et al. (2008, 2010) for more details on173

the model and the numerical solver.174

The constitutive law for the standard viscous-plastic rheology with an elliptical yield175

curve and associated (normal) flow rule can be written as, (Hibler, 1977, 1979),176

σij = 2ηε̇ij + (ζ− η)ε̇kkδij −
Pr

2
δij, (4)

where Pr/2 is a replacement pressure term and ζ and η are the nonlinear bulk and shear177

viscosities defined as:178

ζ =
P

2∆
, (5)

η =
ζ

e2
, (6)

∆ =
[
(ε̇11 + ε̇22)

2 + e−2 (ε̇11 − ε̇22)
2 + 4e−2ε̇212

]1/2
. (7)

The sea ice pressure P is parametrized as:179

P = P∗h exp {−C(1−A)} , (8)

where P∗ (= 27.5 × 103 N/m) is the ice strength parameter, A is the sea ice concentration,180

and C (= 20) is the ice concentration parameter, an empirical constant characterizing the181

dependence of the compressive strength on sea ice concentration (Hibler, 1979). For small182

strain rates (∆ −→ 0), the viscosities tend to infinity, and the bulk and shear viscosities ζ183

and η are capped to a maximum value using a continuous version of the classical replace-184

ment scheme (Hibler, 1979; Lemieux & Tremblay, 2009):185

ζ = ζmax tanh

(
P

2∆ζmax

)
, (9)

where ζmax = 2.5 × 108 P (Hibler, 1979), equivalent to a minimum value of ∆min = 2 ×186

10−9 s−1 (Kreyscher et al., 1997). In the limit where ∆ −→ ∞ (x −→ 0), tanh x ≈ x, and187

Equation 9 reduces to ζ = P/2∆ (Equation 5). In the limit where ∆ −→ 0 (x −→ ∞),188

tanh x −→ 1, and ζ = ζmax. The replacement pressure Pr is given by189

Pr = 2ζ∆, (10)
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which ensures a smooth transition between the viscous and plastic regimes, and stress190

states that lie on ellipses that all pass through the origin.191

2.2 Damage Parametrization192

2.2.1 Background193

Progressive damage models were initially developed to model the nonlinear brittle194

behavior of rocks (Cowie et al., 1993; Tang, 1997; Amitrano & Helmstetter, 2006). Since195

then, many studies integrated some damage mechanism in which the mechanical ice prop-196

erties (e.g., elastic stiffness E and viscous relaxation time η and λ) are written in terms of197

a scalar, non-dimensional parameter d that represents the sub-grid scale damage of the ice198

(Girard et al., 2011; Dansereau et al., 2016; Rampal et al., 2016; Plante et al., 2020). For exam-199

ple, Dansereau et al. (2016) proposed the following parametrization of the elastic stiffness200

(E) and the viscosity (η) akin to the ice pressure in Hibler (1979):201

E = E0h exp {−C(1−A)} (1− d(t)), (11)

η = η0h exp {−C(1−A)} (1− d(t))α, (12)

η

E
= λ =

η0

E0
(1− d(t))α−1, (13)

where E0 and η0 are the (constant) Young’s modulus and viscosity of undeformed ice, and202

α (> 1) is a parameter that controls the rate at which the viscosity decreases and the ice203

loses its elastic properties. In this formulation, E and η depend on their undamaged value204

(E0 and η0), sea ice thickness and concentration (A and h), and a time-dependent damage205

(d(t)).206

In progressive damage parametrization, damage builds as a function of the stress207

overshoot beyond the yield curve. Following Plante and Tremblay (2021), the scaling factor208

Ψ (0 < Ψ < 1) required to bring a super-critical stress (σ ′) state back on the yield curve (σf)209

is written as:210

σf = Ψσ ′, (14)

where σf is the corrected stress. The corrected state of stress (σf
1,σ

f
2) is defined as the in-211

tersection point of the line joining (σ ′
1,σ

′
2) and the failure envelope of the Mohr-Coulomb212

criterion along any stress correction path. Note that the stress correction path is not a flow213

rule; it does not change the visco-elastic constitutive equation of the MEB model. Its pur-214

pose is to convert the excess stress into damage (d). This definition of damage assumes that215

–8–
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only stresses change post-fracture, and the strain (rate) does not. The evolution equation216

for the damage parameter can be written as (Dansereau et al., 2016; Plante et al., 2020):217

d

dt
d =

(1− Ψ)(1− d)

td
−

1

th
, (15)

where td ( = O(1) s) and th ( = O(105) s) are the damage and healing timescales, and the218

condition ∆t ≪ λ must be met for stability reason (Dansereau et al., 2016). Consequently,219

the damage at any given time is a function of the previously accumulated damage. This220

constitutes the memory of the previous stress state in the MEB model.221

2.2.2 New VP Model Damage Parametrization222

In the standard VP model, the ice strength P depends only on the ice concentration223

A and the ice mean thickness h. Sea ice, therefore, weakens only when sea ice divergence224

is present along an LKF — affecting the ice strength through the exponential dependence225

on the sea ice concentration (Equation 8) — contrary to real sea ice that weakens when226

a fracture is present irrespective of whether post fracture divergence or convergence is227

present.228

We include damage in the VP model (akin to what is used in the MEB formulation)229

using a simple advection equation with source/sink terms of the form:230

∂d

∂t
+∇ · (ud) = 1− (ζ/ζmax)

1/n − d

td
−

d

th
, (16)

which asymptotes to the steady state solution d = 1 − (ζ/ζmax)
1/n, — a generalization231

of the damage parameter for VP models proposed by Plante (2021) — in the absence of232

advection and healing, and exponentially decays to zero when only healing is considered.233

In contrast with the MEB model, damage is not bound by the propagation speed of elastic234

waves. We choose td (= 1 day) and th (ranging from 2 to 30 days) as typical times scales235

for fracture propagation and healing (see Dansereau et al., 2016; Murdza et al., 2022, for236

small healing timescale explanations). The choice of a small damage timescale comes from237

the synoptic timescale at which fractures develop, while a large healing timescale comes238

from the thermodynamic growth of one meter of ice. Note that a VP model is a nearly ideal239

plastic material, i.e. it can be considered as an elastic-plastic material with an infinite elastic240

wave speed; therefore, the fracture propagation is instantaneous (i.e., it is resolved with the241

outer loop solver of an implicit solver or the sub-cycling of an EVP model). In the above242

equation, n is a free parameter setting the steady-state damage for a given deformation243

–9–
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state. Using Equation 9, and the fact that ζmax = P/2∆min, Equation 16 can be written as:244

∂d

∂t
+∇ · (ud) = 1− tanh1/n (∆min/∆) − d

td
−

d

th
. (17)

Following (Dansereau et al., 2016; Rampal et al., 2016), the coupling between the ice245

strength and the damage is written as,246

P = P∗h exp {−C(1−A)} (1− d), (18)

where P varies linearly with d, and where d incorporates the full non-linearity of the vis-247

cous coefficients (ζ). We refer to this model as VPd in the following.248

2.3 Forcing, Domain, and Numerical Scheme249

The model is forced with 6-hourly geostrophic winds calculated using sea level pres-250

sure (SLP) from the National Centers for Environmental Prediction/National Center for251

Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al., 1996). First, SLPs are inter-252

polated at the tracer point on the model C-grid using bicubic interpolation (Akima, 1996).253

The field is then smoothed using a gaussian filter with σ = 3, and the geostrophic winds254

are computed from the smoothed field, yielding winds on the model’s B-grid. The winds255

are interpolated linearly in time to get the wind forcing at each time step. The model is256

coupled thermodynamically to a slab ocean. The climatological ocean currents were ob-257

tained from the steady-state solution of the Navier–Stokes equation with a quadratic drag258

law, without momentum advection, assuming a two-dimensional, non-divergent velocity259

field and forced with a 30-year climatological wind stress field. Monthly climatological260

ocean temperatures are specified at the model’s open boundaries from the Polar Science261

Center Hydrographic Climatology (PHC 3.0) (Steele et al., 2001). The reader is referred to262

Tremblay and Mysak (1997) for more details.263

The equations are solved on a cartesian plane (polar stereographic projection) with a264

regular 10 km grid. The equations are discretized on an Arakawa C-grid and solved at each265

time step (∆t = 1 hour) using the Jacobian Free Newton-Krylov (JFNK) method (Lemieux266

et al., 2010). At each Newton Loop (NL) of the solver, the linearized set of equations is267

solved using a line successive over-relaxation (LSOR) preconditioner, and the Generalized268

Minimum RESidual (GMRES) method (Lemieux et al., 2008) with a relaxation parameter269

ωlsor = 1.3. The non-linear shear and bulk viscosity coefficients and the water drag are270

then updated, and the process is repeated using an inexact Newton’s method until either271

–10–
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the total residual norm of the solution reaches a user-defined value (γ = 10−2) or the272

maximum number of Newton Loop is reached (NLmax = 200) (Lemieux et al., 2010).273

Following Bouchat and Tremblay (2017), the model is first spun-up (with damage274

turned off), with a set of ten random years between 1970 and 1990, a constant one-meter275

ice thickness, and 100% concentration as initial conditions. The shuffling of the spin-up276

years is used to prevent biases associated with low-frequency variability, such as the Arctic277

Oscillations or Arctic Ocean Oscillations (Thompson & Wallace, 1998; Rigor et al., 2002;278

Proshutinsky & Johnson, 2011). From the spun-up state, each simulation is run from Jan-279

uary 1, 2002, to January 31, 2002. The deformations statistics presented below are robust to280

the exact choice of winter (Bouchat & Tremblay, 2017).281

Both the control and simulation with damage use the same initial conditions. In order282

to test the sensitivity of the results to the choice of initial conditions, the model was spun283

up for one additional year including the damage parametrization (recall that the healing284

timescale is 30 days) and the simulations were repeated. The results presented below are285

also robust to the exact choice of initial conditions.286

3 Observations287

We use the three-day gridded sea ice deformation from the Sea Ice Measures dataset,288

formerly called RADARSAT Geophysical Processor System (and referred to as RGPS in the289

following for simplicity) (Kwok et al., 1998; Kwok, 1997). The RGPS data set is obtained290

from Lagrangian ice velocity fields by tracking the corners of initially uniform grid cells291

on consecutive synthetic aperture radar (SAR) images. The deformation of the grid cells292

is used to approximate the velocity derivatives and the strain rate invariants εI and εII293

using line integrals (Kwok et al., 1998). The initial Lagrangian grid spatial resolution is294

10 km × 10 km, except in a 100 km band along the coasts, where a coarser resolution295

of 25 km is used. Finally, the data is regridded onto a 12.5 km × 12.5 km fixed polar296

stereographic projection using a three-day temporal resolution. The three-day gridded297

data set is available from 1997 to 2008 for summer and winter (November to July) on the298

ASF DAAC website (https://asf.alaska.edu/). Following Bouchat and Tremblay299

(2017), we only use strain rates larger than |0.005| day−1 — equal to the tracking error of300

about 100 m (or 0.005 day−1 for a three-day period) on the vertices of the Lagrangian grid301

cells (Lindsay & Stern, 2003).302

–11–
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4 Methods303

Following Bouchat and Tremblay (2017), Hutter et al. (2018), Girard et al. (2009), and304

Marsan et al. (2004), we compare the probability density functions, spatiotemporal scaling305

laws of the mean deformation rates, and multifractal properties simulated by the model306

with the RGPS data (see section 4.1 to 4.4 below for details). We calculate all metrics inside307

the SAR sea ice RGPS data where an 80% temporal data coverage is present for the winters308

1997–2008 — referred to as RGPS80 in the following (see Figure 1 or Bouchat & Tremblay,309

2017).310

4.1 Simulated Deformation Fields311

Following Marsan et al. (2004) and Bouchat and Tremblay (2017), the total sea ice312

deformation rates are calculated from the (hourly) divergence (ε̇I) and the maximum shear313

strain rate (ε̇II) as:314

ε̇total =
√
ε̇2I + ε̇2II, (19)

where315

ε̇I =
∂u

∂x
+

∂v

∂y
, (20)

ε̇II =

√(
∂u

∂x
−

∂v

∂y

)2

+

(
∂u

∂y
+

∂v

∂x

)2

. (21)

The sea ice velocities are first averaged over a period of three days in order to match the316

temporal resolution of the RADARSAT observations. The averaged velocity fields are then317

used to calculate the strain rate invariants at the center of each grid cell. These values318

represent averaged Eulerian deformation rates over the grid cells area.319

4.2 Probability Density Functions (PDFs)320

Probability density functions are used to assess the ability of the models to reproduce321

large deformation rates and to determine their statistical distribution. We separate the do-322

main into logarithmically increasing bins and perform a least-square power-law fit on the323

tail of the log–log distributions where the interval for a given model consists of all bins up324

to an order of magnitude from the largest deformation bin available. Therefore, intervals325

between runs differ, but each interval is the most representative of the deformation decay326

for a given model (Bouchat et al., 2022). To quantify the difference between the shape of the327

simulated and observed PDFs, we use the Kolmogorov-Smirnov (KS) distance D, defined328
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as the absolute difference between the cumulative density functions (CDFs) of the models329

Cm(ε̇n) and the data Cd(ε̇n):330

D = max
ε̇n⩾ε̇n,min

|Cm(ε̇n) − Cd(ε̇n)|. (22)

In this approach, the shape of the PDF is taken into account directly and there is no need to331

a priori assume the underlying statistical distribution of the PDF. The interpretation of the332

KS-distance is straightforward: a smaller D implies a closer agreement between observed333

and simulated statistical distributions.334

As noted in Bouchat and Tremblay (2020) and Bouchat et al. (2022), a linear decay in335

deformations does not imply a power law, as other distributions (e.g., log-normal distri-336

butions) can also approximately decay linearly (Clauset et al., 2009). Therefore, we do not337

assume that the power-law exponents derived from the CDFs are representative of the true338

distributions; we instead use them as a means to differentiate between simulated and ob-339

served PDFs of deformation rates. We therefore use the average of the absolute difference340

of the logarithms of the simulated and observed PDFs (see also Bouchat et al., 2022). This341

metric has the advantage of giving more weight to the tail of the PDFs (small probabilities,342

large deformation rates). Finally, we present results for negative and positive divergence343

separately to avoid error cancellation (Bouchat et al., 2022).344

4.3 Spatiotemporal Scaling Analysis345

Following Marsan et al. (2004), we use the following coarsening algorithm to compute346

the spatiotemporal scaling exponent of the mean deformation rates derived from models347

and RGPS observations to estimate the scaling exponents:348

⟨ε̇tot(L, T)⟩ ∼ L−β(T), (23)

⟨ε̇tot(L, T)⟩ ∼ T−α(L), (24)

where L and T are the spatial and temporal scales at which sea ice total deformation rates349

are averaged, and β and α are the spatial and temporal scaling exponents. As pointed350

out by Weiss (2017), β can take values between 0 (homogeneous deformations) and 2 (de-351

formations concentrated in a single point), while α can take values between 0 (random352

deformation events) and 1 (one single extreme event).353

We find β, by first averaging the simulated velocity fields to match the 3-day tempo-354

ral aggregate of RGPS. We then compute the mean ice velocities in boxes of varying sizes355
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L from that of the models’ spatial resolution (10 km) to the full domain size with doubling356

steps: L = 10, 20, 40, 80, 160, 320, 640 km. The same procedure is repeated with the RGPS357

data set starting from a 12.5 km resolution. At each step, the boxes of length L are over-358

lapping with their neighbors at their midpoint. The RGPS80 mask does not necessarily359

contain a whole number of boxes, n ̸≡ 0 mod L
L0

in general, where n is the maximal size of360

the mask along a given axis and L0 is the resolution of one grid cell. The mean inside the361

fractions of squares that are left at the boundaries of the domain is included only for boxes362

that are filled with at least 50% data. We calculate the deformations rates using the average363

in time and space velocities, and we also compute the effective size of the box by taking364

the square root of the total number of occupied cells in the box. From these points, we take365

the mean of the deformation rates for each box size and fit a least-square power law in the366

log–log space to find β, the spatial scaling exponent.367

For the temporal scaling α, we instead fix L to the spatial resolution value of the368

data set (10 km), and we compute the mean deformations with the different time-averaged369

velocities ranging from 3 days to 24 days (i.e. T = 3, 6, 12, 24) and fit a least-square power370

law to calculate the temporal scaling exponent α.371

4.4 Multifractal Analysis372

The scaling exponents (β and α) are functions of the moment q of the deformation373

rate distribution:374

⟨ε̇qtot(L, T)⟩ ∼ L−β(q), (25)

⟨ε̇qtot(L, T)⟩ ∼ T−α(q). (26)

While it is usually assumed that the structure functions β(q) and α(q) are quadratic in q for375

the sea ice total deformation rates (Marsan et al., 2004; Bouillon & Rampal, 2015; Rampal376

et al., 2019), the structure functions are not necessarily quadratic in q for the generalized377

multifractal formalism (see Schmitt et al., 1995; Lovejoy & Schertzer, 2007; Weiss, 2008;378

Bouchat & Tremblay, 2017), and are expressed instead as (for the spatial structure function),379

β(q) = q(1−H) + K(q) =
C1

ν− 1
qν +

(
1−H−

C1

ν− 1

)
q, (27)

where380

K(q) =
C1

ν− 1
(qν − q). (28)
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In the above Equation, C1 (0 ⩽ C1 ⩽ 2) characterizes the sparseness of the field, ν (0 ⩽381

ν ⩽ 2, ν ̸= 1) is the Lévy index, or the degree of multifractality (0 for a mono-fractal382

process, 2 for a log-normal model with a maximal degree of multifractality), and H (0 ⩽383

H ⩽ 1) is the Hurst exponent. We use a general non-linear least squares fit for the structure384

functions’ parameters. A similar equation holds for the temporal structure function α(q).385

K(q) is called the ”moment scaling function exponent” for a random variable. It defines the386

singularity spectrum, a function that describes the distribution of singularities (or points387

of non-smoothness) across different scales in the system.388

Note that the scaling exponents for q = 1 (β(1) and α(1)) are equal to 1 − H, and389

therefore, a higher H means a less localized or smoother field. Moreover, the degree of390

multifractality ν defines how fast the fractality increases with larger singularities. As ν391

increases, larger deformation will dominate, and there will be fewer low-value smooth392

regions for example. C1 represents how ”far” the multifractal process is from the mean393

singularity value given by β(1) = 1 − H; we can understand this by taking the derivative394

β ′(1) = (1 − H) + C1: the higher C1 is compared to 1 − H, the fewer field values will cor-395

respond to any given singularity, i.e., the singular field values are more sparsely grouped396

(Lovejoy & Schertzer, 2007).397

As noted in Bouchat et al. (2022), the computed parameter values are sensitive to398

the number of points used to define the structure functions. Therefore, we use the same399

moment increments of 0.1 in order to derive the three multifractal parameters (ν, C1, H).400

5 Results401

5.1 Simulated Total Deformation Field402

In the control run (d = 0 or n = ∞), the simulated LKFs are more diffuse, less intense403

and the LKF density is lower when compared with RGPS observations (see Figure 2b).404

When including damage, LKFs are better defined, more intense, and the LKF density is405

higher, in better qualitative agreement with observations (this is true for all configurations406

of VPd models except n = 1); the ice strength along LKFs is much weaker, providing407

a strong positive feedback for the simulation of higher intensity and density of fracture408

lines, akin to RGPS-derived LKFs (see Figure 2). As n decreases from n = 50 (∼infinity)409

to n = 1, the intensity, definition, and density of LKF increase until maximum damage is410

present in all grid cells and LKFs are no longer distinguishable from the undeformed ice,411
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effectively rendering the ice soup-like 2. These results are robust to the exact choice of a412

healing timescale (th = 2–30 days), except when th ≈ td when fewer extreme deformation413

events are present. In all cases, however, the simulated LKFs are not as well-defined as the414

LKFs in RGPS observations presumably due to spatial resolution (see for instance Bouchat415

et al., 2022). Note that increasing shear strength (e = 0.7) with damage does improve the416

localization of LKFs as for simulation without damage in accord with results from Bouchat417

and Tremblay (2017) (see Figure 2i). Another key visual difference is that the spatial mean418

of the deformation rates is higher for the VPd model than for the VP model and RGPS data,419

see also section 5.2 below for a discussion and more quantitative assessment.420

The mean ice thickness over the Arctic Ocean is also sensitive to the amount of dam-421

age in the model (results not shown). For instance, the VPd model with n = 5 and th = 2422

(low damage), and n = 3 and th = 30 (high damage) gives a 1 cm and 5 cm mean ice thick-423

ness anomaly respectively. This thickness increase occurs mostly along LKFs in the form424

of ridges and clearly shows the impact of damage on the deformation fields. Interestingly,425

we see a reduction in sea ice thickness anomalies for the VPd model with maximal damage426

(n = 1 and th = 30). In this case, convergence (thickening) occurs over broader areas and427

when integrated, leads to a reduction in the positive ice thickness anomaly.428

5.2 Probability Density Functions (PDFs)429

When considering damage, a larger number of LKFs is present for any mean total430

strain rate with a transfer from lower to larger total deformation rates in the PDF. This431

shift results in a linear decay in the tail of the PDFs (log–log plot) for shear rate and diver-432

gence/convergence that is in better agreement with RGPS. Interestingly, the VPd model433

is particularly good at reproducing the large divergence and convergence rate (and to a434

lesser extent large shear strain rate) present in RGPS observations contrary to the standard435

VP model that has a limited ability to simulate both observed divergence and convergence436

rate larger than 10−1 day−1 (see Figure 3). The PDFs of shear strain rates are more sensitive437

to the healing timescale th than the damage exponent parameter n; with larger healing438

timescales leading to more shear. The best fit with observations occurs for n = 3, 5 and439

th = 2, or at n = 1 and th = 30. A smaller n leads to more extensive but less intense dam-440

age that can be compensated by keeping a larger th. Similarly, the PDFs of convergence441

are more sensitive to th than n, with larger values of th resulting in more convergence.442

The best correspondences between models and observations are with no damage and a re-443
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duced ellipse ratio (e = 0.7) or with low damage n = 5 with low healing timescale th = 2.444

Interestingly, higher values of P∗ with some damage have little to no impact on the conver-445

gence PDF contrary to lowering the ellipse ratio and to results from Bouchat and Tremblay446

(2017). Nevertheless, any damage configuration is better than the control run at reproduc-447

ing high convergence events. In contrast, the PDFs of divergence are equally sensitive to n448

and th with more damage (lower n or higher th) resulting in a higher count of large defor-449

mations in divergence. In this case, both configurations (VP(0.7) and VPd(0.7, 5, 30, 27.5))450

with a lower ellipse ratio (e = 0.7) overestimate divergence (Figure 3, yellow curves). In-451

terestingly, a higher P∗ leads to higher divergence, in better agreement with observations452

(Figure 3, deep rose curves), with PDFs comparable to the fully damaged (n = 1) and lower453

ellipse ratio (e = 0.7) configurations.454

We note that damage increases convergence and to a lesser extent divergence. This455

asymmetry between changes in positive and negative divergence, when damage is in-456

creased, precludes a perfect fit with observations with the default ellipse aspect ratio. The457

fact that reducing e from e = 2 to e = 0.7 or increasing P∗ both increase divergence while458

keeping convergence the same suggests that a combination of some damage (n = 3, 5, and459

th = 2) together with a higher P∗ or reduced ellipse aspect ratio will lead to the best fit in460

the three types of PDFs. See the section below on the sensitivity of the parameters for a461

nuanced discussion of their optimal values.462

5.3 Cumulative Density Functions (CDFs)463

The cumulative density functions (CDFs) (Figure 4) of the two models differ sub-464

stantially because of the higher count of large deformations of the VPd model bringing465

its CDFs further from that of the control run. For shear strain rate, the KS-distances com-466

puted from the CDFs of the different configurations of the VPd model are all slightly higher467

(0.21 ⩽ Dε̇II
⩽ 0.36) than that of the control run (0.19). The fact that the latter crosses the468

CDF of the data while keeping a similar maximal vertical range as the CDFs of the VPd469

model results in this slightly lower KS-distance, something that is not apparent from the470

PDFs alone. In contrast, the KS-distances of the VPd CDFs for convergence are similar or471

smaller (0.07 ⩽ Dε̇I<0
⩽ 0.40) than that of the control run (0.37). Not surprisingly, the472

configurations with th = 2 have a very low KS-distance (0.07 and 0.10), in line with the473

PDF of convergence that showed that large values of th result in overshooting. Yet again,474

the key improvement resides in the divergence rate with KS-distances for the VPd model475
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configurations that are smaller (0.05 ⩽ Dε̇I>0
⩽ 0.43) than that of the control run (0.53),476

highlighting the success of the VPd model at simulating a higher count of large deforma-477

tions in divergence. Again, VPd configurations with th = 2 days have the largest KS-478

distance in divergence with values closer to the control run (0.36 and 0.43). Interestingly,479

the best fit with observations comes from the standard VP model with a reduced ellipse480

aspect ratio (e = 0.7) with very small KS-distances (0.03, 0.03, 0.15 respectively). These481

small values may be due to the interannual variability in the RGPS data; the KS-distances482

of a particular RGPS year can vary by as much as 0.17 when compared to the RGPS mean483

(Bouchat et al., 2022). Nonetheless, combining damage (n = 5, th = 30) with an increased484

P∗ does lead to very small KS-distances (respectively, 0.21, 0.20, and 0.20) and supports the485

conclusions drawn from the PDFs alone. Unsurprisingly, the KS-distance decreases with486

increasing n and decreasing th for shear strain rate and convergence, while for divergence,487

the KS-distance decreases with decreasing n and increasing th — as for the PDFs.488

5.4 Spatiotemporal Scaling489

Both the VPd and VP models are able to reproduce some level of spatial and temporal490

scaling, as in RGPS (Figure 5-6). The spatial scaling exponent β at T = 3 days of the VPd491

model is highly sensitive to the exponent n and the healing timescale th; it increases with492

decreasing n and increasing th, i.e. with more damage. The spatial scaling exponents493

are ranging from β = 0.06 to β = 0.14 for the different configurations of the VPd model,494

with the slope of the spatial scaling curve for the fully damaged VPd(2, 1, 30, 27.5) model495

being morally the same as that of RGPS (0.15), while the standard VP model has a 3 times496

smaller exponent (β = 0.05); all configurations of the VPd model have better spatial scaling497

than the VP model. Note how reducing the ellipse ratio (e = 0.7, as proposed by Bouchat498

& Tremblay, 2017) also increases the spatial scaling exponent for the VPd model (yellow499

curve). The increase in the scaling factor for the VPd model indicates that LKFs are more500

localized in space than those of the VP model.501

On the other hand, the temporal scaling α at L = 10 km of the VPd model for all502

configurations is lower (α = 0.13 to α = 0.19) than that of the observations (0.28) or the503

VP model (0.23). Note that the combination of damage and a reduced ellipse aspect ratio504

(e = 0.7) decreases the temporal scaling exponent (yellow curve), contrary to its effect on505

the spatial scaling exponent.506
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Interestingly, all VPd simulation curves have a higher mean deformation rate (for507

both the spatial and temporal scaling), since damage increases the mean velocity of the ice508

(result not shown). Increasing P∗ reduces the mean ice velocity and the mean deformation509

rates across all scales to the same level as the control run (deep rose curves compared to510

light green curves). This shift towards higher mean deformations is visible from the pan-511

Arctic simulations but has no impact on the spatial and temporal scaling.512

In summary, the VPd model improves spatial localization at the expense of a weaker513

temporal localization of deformations. Temporal localization (or scaling) is not to be con-514

fused with intermittency. Temporal localization originates from the autocorrelations of the515

deformations time series at a given location and the rate at which these correlations de-516

crease when increasing the time lag between deformation rate values. In other words, a517

lower temporal scaling means that a high deformation event is more likely to be followed518

by another high deformation event in the ”near future”, resulting in a smeared time local-519

ization in the mean at a given scale. On the other hand, intermittency (or heterogeneity)520

is reflected in the change of localization within the same data set; the intermittency can be521

quantified from the shape of the structure function (as discussed below in section 5.5). With522

this in mind, it is expected that the VPd model would have a lower temporal scaling, as523

the damage increases the probability of future (for t < th) deformation at a given grid cell.524

For the same reason, decreasing th increases temporal scaling.525

5.5 Multifractal Analysis526

When fractal structures have local variations in fractal dimension, they are said to be527

multifractals. In the case of sea ice deformation or strain rates, multifractality arises from528

the higher space and time localization of larger deformation rates, compared to smaller529

deformations (Weiss & Dansereau, 2017; Rampal et al., 2019).530

The spatial structure functions of all the VPd configurations are in better agreement531

with observations when compared with that of the control run (Figure 7). The spatial532

multifractality parameter (1.50 ⩽ ν ⩽ 1.96) of the VPd configurations increases when533

increasing th, but the dependence on n only appears for high values of th. Larger values534

of ν characterize a field dominated by singularities of larger values; for sea ice, this means535

that configurations of the VPd model with a small healing timescale reflect this poorer536

multifractal behavior because the sea ice heals faster. For short healing timescales (th ≈ 2)537
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the dependency of the multifractal parameter ν on n disappears, but for th = 30, the538

dependency of ν on n becomes apparent; the spatial multifractality parameter ν reaches a539

local minimum (ν = 1.61) for n = 3, followed by a local maximum at n = 5 (ν = 1.96),540

then plateaus at some intermediate value (ν = 1.76) as damage decreases towards that of541

the control run (see insert of Figure 7).542

The VPd(2, 3, 30, 27.5) configuration highlights a complex transient state in the multi-543

fractal behavior of the model from fully damaged ice (the VPd(2, 1, 30, 27.5) configuration)544

with high multifractality (ν = 1.94) but low heterogeneity (C1 = 0.04), to high multifrac-545

tality (ν = 1.96) and high heterogeneity (C1 = 0.14) corresponding to the VPd(2, 5, 30, 27.5)546

configuration. Further decreasing damage (e.g. VPd(2, 50, th, 27.5)) leads to lower values547

of both multifractality and heterogeneity. The heterogeneity of the field (C1) of all VPd548

model configurations (0.04 ⩽ C1 ⩽ 0.21) are also in better agreement with observations549

(C1 = 0.17) than that of the control run (C1 = 0.03) although still lower than RGPS for the550

lower values of th and n, again suggesting that the VPd model is better at focusing LKFs551

spatially. This is also in agreement with the higher Hurst exponent for the control run552

(H = 0.95) suggesting a spatially smoother field than the different configurations of the553

VPd model (0.85 ⩽ H ⩽ 94) and RGPS observations (H = 0.87). This is, again, consistent554

with the results from the spatial scaling analysis. Interestingly, values of the Hurst expo-555

nent at q = 1 do not necessarily translate into having observation-fitting values in the other556

two multifractal parameters, which leads to graphs that are far from that of RGPS observa-557

tions. Notably, the VPd(2, 1, 30, 27.5) has a similar value for the Hurst exponent (H = 0.86)558

compared to RGPS observations (H = 0.87), but has the lowest heterogeneity (C1 = 0.04)559

of all the VPd model configurations, resulting in one of the poorest representation of the560

observations, together with the th = 2 configurations.561

The most striking differences between the control run and the VPd model are their562

heterogeneity and spatial autocorrelations. Combining the damage parametrization with563

a different value for the ellipse ratio (e = 0.7) further increases the heterogeneity (C1 =564

0.21) of the deformation field at the cost of lowering the spatial multifractality (ν = 1.57).565

Increasing P∗ also leads to higher heterogeneity (C1 = 0.16), while still maintaining the566

high values of the multifractality (ν = 1.95). Interestingly, a third root appears in the range567

q < 1 when we change the ellipse aspect ratio or P∗ (see Figure 7). The multifractal theory568

does not allow for more than two roots, and the fact that this is observed is indicative that569

the model (the VPd at least) might not follow the multifractal theory. This might also be570
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the case for the other configurations, the observations, and the control run. Whether this571

is a new behavior associated with the damage parametrization in tandem with the change572

in ellipse aspect ratio and P∗ or an enhancement of an already existing property remains to573

be investigated.574

The differences in the temporal structure functions of the VPd model and the control575

run are more subtle (see Figure 8). Temporal multifractality is also reproduced by the dif-576

ferent configurations of the VPd model (1.20 ⩽ ν ⩽ 1.86), and they are all somewhat worse577

than the standard VP model (ν = 1.67) compared to RGPS data (ν = 1.87). Similarly to578

the spatial structure functions, almost all configurations of the VPd model are as tempo-579

rally heterogeneous (0.04 ⩽ C1 ⩽ 0.22) — also called intermittency — as the observations580

(C1 = 0.14), while the control run is the least heterogeneous (C1 = 0.09), except for the fully581

damaged VPd(2, 1, 30, 27.5) configuration. RGPS observations have a somewhat low Hurst582

exponent value (H = 0.73), while all configurations of the VPd model have a high value583

(0.82 ⩽ H ⩽ 84), even compared to the control run (H = 0.77). This high Hurst exponent584

brings down the graph of the VPd temporal structure functions, even if their curvature585

(governed by ν and C1) is always higher than that of the control run structure function,586

and in agreement with the curvature of the graph of the structure function computed from587

RGPS observations, especially for high values of n and th. This curvature change accounts588

for the majority of the difference between the simulated temporal structure functions and589

the high Hurst exponent is indicative of a temporally smoother field — in agreement with590

the results from the temporal scaling analysis. The only configuration that has a lower cur-591

vature than the control run is the fully damaged VPd(2, 1, 30, 27.5). This configuration has592

both low heterogeneity and high Hurst exponent, leading to a temporal structure function593

that does not have enough curvature. Overall, reducing n (more damage) reduces the tem-594

poral multifractality, and reducing th reduces the heterogeneity. Moreover, increasing P∗ or595

reducing the ellipse ratio increases heterogeneity but reduces multifractality. Interestingly,596

the Hurst exponent is almost constant for all configurations of the VPd and the standard597

VP with a reduced ellipse aspect ratio. As in the spatial structure function, changing the598

shape or size of the ellipse does unveil a third root in the temporal structure function in599

the range q < 1, which is indicative that the VPd model does not follow the multifractal600

theory.601
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5.6 Sensitivity to th, n, and the e602

In the VPd model, a shorter healing timescale results in an overall smoother deforma-603

tion field with fewer intense LKFs (see Figure 2e–h). Therefore a shorter healing timescale604

in this model is not necessarily wanted, as it reduces the effects of the damage source term605

(see Equation 16). As a result, the spatial scaling improves marginally, but the temporal606

scaling becomes significantly worse (see blue curves and their insert in Figures 5 and 6).607

This is also apparent in the multifractality as there are only small discrepancies between608

the VPd model with a short healing timescale and the control run (see Figures 7–8). The609

optimal healing timescale value t∗h therefore should be on the order of one month rather610

than days in a VPd model, in contrast with the value commonly used in the MEB model of611

1 day and that derived from observations (Dansereau et al., 2016; Murdza et al., 2022). This612

is of course expected since damage in the VPd model does not represent necessarily the613

same thing as damage in the MEB model. Moreover, in Murdza et al. (2022), the authors614

raised the question of whether the rapid strength recovery of the ice that they measured615

can be applied to larger scales.616

In the VPd model, deformation rates are sensitive to the exponent parameter n. When617

n is low, the damage reaches one in a few time steps, and remains high, such that all the ice618

is nearly fully damaged (see Figure 2d), except for grid cells in the viscous regime. When n619

is large (> 50), the VPd model gives morally the same results as the VP model. Considering620

all deformation metrics above, we suggest the value of n∗ = 5 for the damage parameter621

n.622

When combining these values with the reduced value for the ellipse ratio (e = 0.7623

Bouchat & Tremblay, 2017), we find that the spatial scaling is stronger, while temporal624

scaling is even lower. This is in disagreement with Bouchat and Tremblay (2017) who625

found that changing e increases both spatial and temporal scaling. This is presumably due626

to the fact that reducing e strengthens the ice in shear, and thus enhances the impact of the627

damage parametrization. Moreover, increasing P∗ does result in better multifractality and628

magnitude of deformation rates, without any consequences on the scaling. We suggest to629

increase P∗ when implementing the VPd model.630

–22–



manuscript submitted to JGR: Oceans

6 Discussion631

Deformation rate statistics simulated by the VPd model are in better agreement with632

RGPS observations and than that of the standard VP model. Not surprisingly, the plastic633

rheology with damage is particularly good at reproducing the spatial scaling and struc-634

ture function. Moreover, while a lower temporal scaling was achieved with the damage635

parametrization, the temporal intermittency of the VPd model was slightly higher and636

closer to the observations. This shows that the inclusion of a damage parametrization in-637

side a model has a non-negligible impact on the scaling, multifractality, and heterogeneity638

of the deformation fields both spatially and temporally.639

Considering that the VP model can still produce some low level of multifractality,640

we hypothesize that the governing factor in reproducing deformation rate statistics is not641

necessarily the physics behind the parametrizations nor the pre-fracture elastic regime but642

rather the ”amount of memory” of past deformation present in a model. Memory in the643

VP model is present through the concentration and thickness of the ice; in the VPd model644

(or EB family), memory is also associated with damage which is present for both conver-645

gent and divergent flows and has a much faster timescale (td = 1 day) than h and A.646

Another possibility could simply be the addition of some form of spatiotemporal hetero-647

geneity in the ice strength, which the damage parametrization presented in this study does648

— highlighting that even ad-hoc parametrizations are going to improve deformation rate649

statistics.650

Since damage is expressed in terms of the bulk viscosity term, the ”memory” of the651

system resides in the ice strength through the damage coupling factor (see Equation 18).652

The plastic deformation therefore instantaneously reduces the ice strength locally. This653

new memory in the system complements the memory associated with sea ice divergence654

via the concentration and thickness of the ice. That is, the ice is more susceptible to break655

where — or near where — it has been previously broken. LKFs are, therefore, a mem-656

ory network of the viscous-plastic model that includes a damage parametrization with a657

”learning” curve that depends on the specific choice of damage timescale and exponent658

with a slow regenerative healing mechanism that acts as a memory eraser. This behavior is659

reflected in higher temporal intermittency as well as a higher spatial multifractality, hetero-660

geneity and scaling in the VPd model. The downside is that the temporal multifractality661

and scaling exponent in the VPd model are lower, which indicates that long-time auto-662
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correlations are especially strong in the VPd model. This is explained by the memory of663

previously damaged ice, which prompts the ice to break where it already broke in the past.664

Usually, when critical stress is reached in an MEB model, the Young’s modulus is665

instantaneously reduced locally, and the excess stress results in brittle fracture and in-666

creased damage. On the other hand, in a standard viscous-plastic model, when plasticity667

is reached, the ice strength is reduced only for large — grid-scale — diverging ice events.668

In this scenario, the ice thickness and concentration are reduced, leading to a lower ice669

strength at the next time step. This process is slow and much smoother than the one in the670

VPd model, which mimics the behavior of the MEB model. In that regard, the VPd model671

permits new types of weakening that reduce the ice strength (i.e., shear and convergence),672

something that is not possible in a standard VP model, hence creating more well-defined673

LKFs that lead to a better statistical fit of the observations. This is reflected in the higher674

counts of high deformation events in both convergence and divergence.675

In the VPd model with a modified smaller ellipse aspect ratio, a third root appeared676

in both the spatial and temporal multifractality plots. This means that the theory, which677

is only valid for a Lévy index between 0 and 2, does not hold anymore. Is this particu-678

lar configuration of the VPd model uncovering a new property, or is it simply amplifying679

something that was already there, and was overlooked? What does it mean for the multi-680

fractality of LKFs?681

In light of the results presented above, we recommend the implementation of this682

damage parametrization in a standard viscous-plastic model. This parametrization comes683

at no additional cost, contrary to increasing the spatial resolution of the model, which684

increases the computational time of simulations by a factor of ∼25 for a 5-fold increased685

spatial grid resolution of 2 km × 2 km, or even the tuning of the ellipse ratio, which de-686

creases the numerical convergence substantially. The damage parametrization, together687

with a careful choice of yield curve parameters (see for example Bouchat & Tremblay, 2017;688

Bouchat et al., 2022) would prove to be a low-cost, efficient way of improving deformation689

statistics, even if sea ice models are not run a very high resolution.690

As the MEB model includes a damage parametrization, we ask the question of whether691

the agreement between the MEB model and the RGPS observations is in part due to this692

sub-grid fracturing parametrization in conjunction with the Lagrangian mesh used in MEB693

models, rather than the explicit choice of rheology — elastic deformation followed by brit-694
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tle fracture. Recent studies (together with results presented here) suggest that the inclusion695

of a damage parameter (Plante et al., 2020) and the Lagrangian mesh (Bouchat et al., 2022)696

are key factors in a better description of deformation rate statistics. RGPS observations697

are obtained from the displacement of tracers at a 10 km spatial scale, but ice motion is698

much more complex, and these observations of emergent properties include the effects699

of processes that take place at much finer scales (sub-kilometer) such as bending, twist-700

ing, micro-fractures, and fusion. We hypothesize that efforts put into developing sub-grid701

parametrizations will be the go-to for fast and light deformation rate statistics improve-702

ment in the short term. Notably, using discrete element models (DEM) as toy models for703

developing and calibrating new sub-grid-scale parametrizations may provide exciting re-704

sults.705

Note that we used the same methodology as in Bouchat and Tremblay (2017). This is706

important to keep in mind as their results show that maximum likelihood estimators (MLE)707

of the scaling parameters for the tail of PDFs of RGPS gridded deformation products are708

29% (convergence), 25% (divergence), and 14% (shear) higher than those obtained using709

RGPS Lagrangian product (Marsan et al., 2004; Girard et al., 2009). They attributed about710

10% of the higher scaling parameters to the choice of mask and the rest to the smoothing711

inherent to the gridding procedure. Therefore, our results are not necessarily reflecting712

reality, but nevertheless are still useful as they help discriminate our model’s configurations713

with RGPS gridded observations for a particular year. The results presented are robust to714

the exact choice of year. However, the mask we are using is located above the Canada715

Basin and extends to the East Siberian Sea, and we are only using the data from January716

2002. Exact numbers are therefore probably influenced by local — in space and time —717

effects. As a matter of fact, when doing the same analysis for other years, the values for the718

parameters of the multifractal analysis and the PDFs decay exponents vary, but conclusions719

drawn from this study are robust, as the general behavior of the models stays the same for720

different years (results not shown). It is believed that specific numbers given here are not721

necessarily representative of reality, but are rather just a rough estimate of the behavior of722

the models and RGPS.723

7 Concluding Remarks724

We implement a sub-grid damage parametrization in the standard viscous-plastic725

model to investigate the effects of damage on the deformation rate statistics, namely, the726
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probability density functions (PDFs) exponential decay and shape, the Kolmogorov-Smirnov727

distance between cumulative density functions (CDFs) of simulations and observations,728

the spatiotemporal scaling exponents, and the multifractal parameters expressing the spa-729

tiotemporal structure functions. Results show that the deformation rate statistics are very730

sensitive to the inclusion of a damage parametrization, including advection of damage and731

a healing mechanism. Therefore, we argue that sub-grid-scale parametrizations should be732

considered when comparing different rheological models. Specifically, we find that this733

new damage parametrization improves power-law scaling and multifractality of defor-734

mations in space in the viscous-plastic model, the trade-off being a lower exponent than735

the standard VP model for the temporal power-law scaling. We show that the new VPd736

model increases the number of large divergence and convergence rates in better agree-737

ment with RGPS observations as per the new quantitative metric introduced by Bouchat738

et al. (2022). Moreover, we show that the VPd model is especially good at producing spa-739

tial multifractality, which was expected since the damage parameter was constructed to740

improve the spatial localization of LKFs. The fact that the standard VP model can still741

produce some spatial multifractality, without including any ”cascade-like” mechanisms742

that would permit multifractality as in the VPd model, indicates that other physical mech-743

anisms are at play in both models. These other mechanisms are not identified, and the744

origin of multifractality in the VP model remains an open question. We hypothesize that745

one likely candidate is the ”amount of memory” that a model possesses. The proposed746

damage parametrization is a compelling low-cost add-on to viscous-plastic models747

The implementation of the proposed damage parametrization inside viscous-plastic748

models provides an efficient, low-cost option for improving deformation rate statistics749

in low-resolution sea ice models, in tandem with a relatively long healing timescale and750

an increased P∗. Other possibilities would be to couple the damage parameter to the el-751

lipse ratio directly rather than the ice strength, which would change the physics of the ice752

locally rather than changing its strength. Future work will include other sub-grid scale753

parametrizations, such as the inclusion of memory through an evolution equation for di-754

lation along Linear Kinematic Features — memory seems to be a determining factor for755

deformation statistics — and non-normal flow rules, i.e. rheologies that allow for plastic756

deformations and for time-varying internal angle of friction. These would allow models to757

have a better memory of past deformations.758
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Data Availability Statement759

All analysis codes are available on GitHub: https://github.com/antoinesavard/760

SIM-plots.git. All published code and data products can be found on Zenodo: will761

.be.put.at.final.submission. This includes the published analysis code (?, ?), the762

ice velocities from model output (?, ?), and RGPS gridded velocity derivatives (Kwok,763

1997).764
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Figure 1. Hotness map of temporal presence in the RGPS observations for January 2002. The black

line represents the RGPS80 mask and is drawn at the 80% temporal frequency contour. This mask is

used for all results.

–35–



manuscript submitted to JGR: Oceans

Figure 2. Simulated (VPd(e,n, th,P∗)) and observed total deformation rates at a 10 km resolution

(12.5 km for observations) for a 3-day average between January 29–31, 2002 compared with observa-

tions as a function of the ellipse aspect ratio (e), damage exponent (n), healing timescale (th, days),

and compressive strength (P∗, kN/m2). The VP with e = 2 (control) and e = 0.7 (VP(0.7)) are equiv-

alent to VPd(2, 50, th, 27.5) and VPd(0.7, 50, th, 27.5) respectively.
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Figure 3. Top row: simulated (color) and observed (black) probability density functions for shear

strain rate, convergence, and divergence at 10 km resolution and 3-day average (L = 10 km and T = 3

days) for January 2002. The power-law exponent calculated over one order of magnitude from the

end of the distributions for each model and RGPS are shown in the inserts. Bottom row: binwise

difference between the logarithms of models and RGPS PDFs. The average absolute difference per

bin is shown in the inserts.
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Figure 4. Simulated (color) and observed (black) cumulative density functions for shear strain rate,

convergence, and divergence for models at 10 km resolution (L = 10 km and T = 3 days) for January

2002. The Kolmogorov-Smirnov distance between each model and the CDFs of RGPS observations

is shown in the inserts.
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Figure 5. Simulated (color) and observed (black) spatial scaling of mean total deformation rates for

T = 3 days in January 2002. Lines are least-square power-law fits, and their slope gives the scaling

exponent β (shown in the insert).
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Figure 6. Simulated (color) and observed (black) temporal scaling of mean total deformation rates

for L = 10 km in January 2002. Lines are least-square power-law fits, and their slope gives the scaling

exponent α (shown in the insert).
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Figure 7. Simulated (color) and observed (black) spatial structure functions β(q) of the total defor-

mation rates for T = 3 days for January 2002. Dotted lines are the least-square fit for Equation 27,

and the inserts are the value of the parameters of the fit (ν, C1, H).
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Figure 8. Simulated (color) and observed (black) temporal structure functions α(q) of the total

deformation rates for L = 10 km for January 2002. Dotted lines are the least-square fit for Equation

27, and the inserts are the value of the parameters of the fit (ν, C1, H).
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Key Points:4

• Inclusion of a damage parametrization brings low-resolution plastic models in line5
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and spatiotemporal scaling behavior of RGPS observations.10
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Abstract11

We implement a damage parametrization in the standard viscous-plastic sea ice model12

to disentangle its effect from model physics (visco-elastic or elasto-brittle vs. visco-plastic)13

on its ability to reproduce observed scaling laws of deformation. To this end, we compare14

scaling properties and multifractality of simulated divergence and shear strain rate (as pro-15

posed in SIREx1), with those derived from the RADARSAT Geophysical Processor System16

(RGPS). Results show that including a damage parametrization in the standard viscous-17

plastic model increases the spatial, but decreases temporal localization of simulated Linear18

Kinematic Features, and brings all spatial deformation rate statistics in line with observa-19

tions from RGPS without the need to increase the mechanical shear strength of sea ice as20

recently proposed for lower resolution viscous-plastic sea ice models. In fact, including21

damage an healing timescale of th = 30 days and an increased mechanical strength unveil22

multifractal behavior that does not fit the theory. Therefore, a damage parametrization is a23

powerful tuning knob affecting the deformation statistics.24

Plain Language Summary25

Sea ice possesses the property that fracture patterns — or Linear Kinematics Features26

(LKF) — are self-similar. LKFs are locations where large shear and divergence associated27

with floes sliding along one another and/or moving apart (leads) or colliding (ridges) are28

present. A proper representation of LKFs is a desirable feature in sea ice models since var-29

ious energetic processes affecting heat, salt, and moisture exchange between the surface30

ocean and the atmosphere occur. Realistic LKFs densities start to appear at (high) reso-31

lution (∼2 km) in finite difference models (FDM) and at lower resolution in finite element32

models (FEM). It was recently argued that the key to correctly reproducing deformation33

statistics of sea ice was the inclusion of an elastic regime followed by brittle fracture and34

damage build-up allowing for significant deformation whether divergence or convergence35

is present post-fracture. In the following, we include a suitable damage parametrization36

in the standard viscous-plastic (VP) model to disentangle its effect from model physics37

(visco-elastic or elasto-brittle vs. visco-plastic) on its ability to reproduce observed scaling38

laws of deformation. This study shows that including a damage parametrization in the VP39

model improves its performance in simulating the statistical behavior of LKFs: damage is40

a powerful tuning knob.41
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1 Introduction42

It is reasonable to assume that ice could be a material simple enough to describe. Af-43

ter all, it is just frozen water. However, this apparent simplicity hides tremendous atomic,44

chemical, and mechanical complexity. Northern communities succeeded in capturing the45

spirit of this complexity in their language. The fact that they use numerous rich and pre-46

cise words for various ilks of ice and snow reveals a profound implicit understanding of47

the importance of the symbiotic relation between daily activities and ice identification via48

both its visual features and its formation (Krupnik, 2010). Ice color, for example, marks49

the melting zones of sea ice in spring and allows for the identification of hazardous sea ice50

for walking. Regardless of the beauty and intelligence of this process, other more quanti-51

tative metrics are used for problems covering a larger range of scales (from the kilometer52

scale to thousands of kilometers), including short-term forecast and decadal projections for53

navigation and global climate applications.54

Sea ice moves under the action of winds and ocean currents, leading to collisions55

between floes. Internal stresses rapidly redistribute these forces from ice–ice interactions56

over long distances. Sea ice deformations occur along well-defined lines of deformation57

called Linear Kinematic Features (LKFs; Kwok, 2001) that are scale-independent and mul-58

tifractal, ranging from floe size (10 km) to the size of the Arctic Basin, with width ranging59

from 0 m to 10 km (Hoffman et al., 2019). Along these lines, sea ice floes can slide along60

one another (shear), ridge (convergence), or move apart creating leads (divergence). These61

mechanical processes affect both lead patterns, and the local and pan-Arctic state of the62

atmosphere-ice-ocean system, notably the sea ice mass balance, salt fluxes in the upper63

ocean via brine rejection, and vertical heat and moisture fluxes between the ocean and the64

atmosphere (Aagaard et al., 1981; McPhee et al., 2005). As such, their multifractality and65

scaling properties are important to capture in a sea ice model for all applications.66

Statistical properties derived from Synthetic Aperture Radar (SAR) imagery of Arc-67

tic sea ice show that LKFs exhibit complex laws, including spatiotemporal scaling (e.g.68

Marsan et al., 2004; Marsan & Weiss, 2010; Rampal et al., 2008). These statistical charac-69

teristics are theorized to result from brittle compressive shear faults (Schulson, 2004), and70

a cascade of fracture that redistributes stresses within the pack ice (e.g. Marsan & Weiss,71

2010; Dansereau et al., 2016). The complexity of these interactions is undeniable, and a72

desirable sea ice model for the Arctic system should represent LKFs adequately.73
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Dynamical sea ice models use a diverse range of rheologies to simulate sea ice motion.74

A rheology describes the relationship between internal stress and deformation (rate) for75

a given material. In the standard viscous-plastic (VP) rheology — elliptical yield curve76

and normal flow rule (e.g. Hibler, 1979, and its variants) —, sea ice is considered as a77

highly-viscous fluid for small deformations. In this case, sea ice deforms as a creeping78

material. When a critical threshold in shear, compression and tension, defined by the yield79

curve, is reached, the ice fractures and enters a plastic regime (larger, permanent, rate-80

independent deformation). The main advantage of using a viscous-plastic model over a81

more physical elastic-plastic (EP) model (e.g. Coon et al., 1974) is that the material has no82

”memory” of past deformations and it is not necessary to keep track of all the previous83

strain state, rendering the VP formulation mathematically and numerically simpler. Since84

the first formulation of the VP model, much work has been done to improve the efficiency85

of the numerical solver used to solve the highly non-linear momentum equations (Hunke86

& Dukowicz, 1997; Hunke, 2001; Lemieux et al., 2008; Lemieux & Tremblay, 2009; Lemieux87

et al., 2010; Bouillon et al., 2013).88

Following a reassessment of basic (incorrect) assumptions behind models developed89

from the Arctic Ice Dynamics Joint EXperiment (AIDJEX) (sea ice is isotropic and has no90

tensile strength, Coon et al., 1974, 2007) new rheologies are proposed to mend some of these91

problems. For instance, ice would be better described with the inclusion of deformation on92

discontinuities, and an anisotropic yield curve with tension (Coon et al., 2007). Models93

that incorporate some of these recommendations include the Elasto-Brittle and modifica-94

tion thereof (EB, MEB, and BBM: Girard et al., 2011; Dansereau et al., 2016; Olason et al.,95

2022) Finite Element Models (FEM), in which elastic deformations are followed by brittle96

failure, while larger deformations along fault lines following damage build-up are viscous.97

These models include a damage parametrization that accounts for the fact that damage as-98

sociated with (prior) fractures also affects ice strength in addition to ice thickness and con-99

centration (see, for example, Girard et al., 2011; Rampal et al., 2016; Dansereau et al., 2016;100

Olason et al., 2022). These authors argued that the inclusion of a damage parametrization101

was a key factor for the proper simulation of sea ice deformations that follows observed102

spatial and temporal scaling properties (see also Dansereau et al., 2016). In other models103

(e.g. Elastic-Anisotropic-Plastic (EAP), Tsamados et al., 2013; Wilchinsky & Feltham, 2006),104

the fracture angle between conjugates pairs of LKFs is specified, leading to anisotropy be-105

tween interacting diamond-shaped floes. Other approaches include the elastic-decohesive106
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rheology using a material-point method (Schreyer et al., 2006; Sulsky & Peterson, 2011), in107

which the lead mechanics are simulated through decohesion.108

Damage parametrizations — first developed in rock mechanics — are ad-hoc in that109

they are not derived from observations and/or from first physics principle. For instance,110

a damage parameter can be quantitatively expressed as a scalar relationship between the111

elastic modulus of a material before and after fracture (Amitrano et al., 1999). In this model,112

the ice strength does not decrease when damage is present; instead, it is the Young’s mod-113

ulus that decreases, resulting in larger deformation for the same stress state. This was put114

to advantage in the EB model family where the damage is expressed as a function of the115

(time-step dependant) stress overshoot in principal stress space referenced to a yield crite-116

rion (Rampal et al., 2016; Plante et al., 2020). Another approach used in rock mechanics first117

considers mode I (tensile) failure on the plane where the maximum tensile stress occurs,118

followed by crack propagation along the plane where the mode II (shear) stress intensity119

factor is maximized (Isaksson & Ståhle, 2002a, 2002b). Other more complex descriptions120

of damage in brittle materials such as fracture initiation around elliptical flaws are used in121

rock mechanics (e.g. Hoek, 1968) and could in principle be implemented in sea ice models.122

Earlier model–observation comparison studies, aimed at defining the most appro-123

priate rheology for sea ice, found that any rheological model that includes compressive124

and shear strength reproduces observed sea ice drift, thickness, and concentration equally125

well (e.g. Flato & Hibler, 1992; Kreyscher et al., 2000; Ungermann et al., 2017). The mod-126

eling community subsequently used deformation statistics (probability density function,127

spatiotemporal scaling, and multifractality) to discriminate between different sea ice rheo-128

logical models (Marsan et al., 2004). Results from the community-driven Sea Ice Rheology129

Experiment (SIREx), under the auspice of the Forum for Arctic Modeling and Observa-130

tional Synthesis (FAMOS), showed that any model with a sharp transition from low (elas-131

tic or viscous creep) deformations to large (plastic or viscous) deformations can reproduce132

the new deformation-based metrics — provided the models are run at sufficiently high133

resolution: 2 km for Finite Difference Models (FDM), and 10 km for FEM Bouchat et al.134

(2022). A last unsuccessful attempt at discriminating between rheological models includes135

the analysis of the LKF density and angles of fracture between conjugate pairs of LKFs;136

to this point, all rheologies overestimate the angles of fracture and all reproduce densities137

of LKF comparable to observations provided a small enough resolution is used (2 km for138

FDM, and 10 km for FEM) (Hutter et al., 2021).139
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Ultimately the best way to compare models is to isolate one aspect between two dif-140

ferent models. An important step toward this goal was the implementation of the MEB141

rheology in finite difference, allowing for a direct comparison between VP and MEB rhe-142

ologies in the same numerical framework (Plante et al., 2020). Other significant differences143

between the VP and MEB models include the sub-grid-scale damage parametrization and144

the consideration of elastic deformations prior to fracture allowing the material to retain145

a memory of past deformations. In an attempt to further disentangle the effect of elas-146

ticity, damage and discretization, we include a damage parametrization in the standard147

VP model, following recommendations from SIREx (Bouchat et al., 2022), and Olason et148

al. (2022). To this end, we compare both simulated (with and without damage) and the149

RADARSAT-derived Eulerian deformation products using probability density functions150

(PDFs), spatiotemporal scaling laws, and multifractality.151

The paper is organized as follows. First, we describe the model in section 2. Then152

we introduce a damage parametrization that can be used in the context of a viscous plastic153

model. The sea ice deformation data and deformation metrics used to evaluate the model’s154

performance are described in sections 3 and 4. Results and discussion of the results are155

presented in sections 5 and 6. Finally, concluding remarks and directions for future work156

are summarized in section 7.157

2 Models158

2.1 Governing Equations159

The two-dimensional equation governing the temporal evolution of sea ice motion is160

given by:161

m

[
∂u

∂t
+ (u ·∇)u

]
= −mf k̂× u+ τa + τw −mg∇Hd +∇ · σ, (1)

where m (= ρih) is the sea ice mass per unit area, ρi is the ice density, h is the mean ice162

thickness, u (= (u, v)) is the horizontal ice velocity vector, k̂ is a unit vector perpendic-163

ular to the sea ice plane, f is the Coriolis parameter, τa is the surface wind stress, τw is164

the water drag, g is the gravitational acceleration, Hd is the sea surface dynamic height,165

and σ is the vertically integrated internal ice stress tensor. In the following, the advection166

term is neglected because it is orders of magnitude smaller than the other terms for a 10-167

kilometer spatial resolution (Zhang & Hibler, 1997). The surface air stress and water drag168

are parametrized as quadratic functions of the ice velocities with constant turning angle169
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(θa, θw) for the atmosphere and the ocean (e.g. McPhee, 1975, 1986; Brown, 1979):170

τa = ρaCa
∣∣ug

a
∣∣ (ug

a cos θa + k̂× u
g
a sin θa

)
, (2)

τw = ρwCw
∣∣ug

w − u
∣∣ [(ug

w − u
)
cos θw + k̂×

(
u

g
w − u

)
sin θw

]
, (3)

where ρa and ρw are the air and water densities, ug
a and u

g
w are the geostrophic winds171

and ocean currents, and Ca and Cw are the air and water drag coefficients. The reader is172

referred to Tremblay and Mysak (1997) and Lemieux et al. (2008, 2010) for more details on173

the model and the numerical solver.174

The constitutive law for the standard viscous-plastic rheology with an elliptical yield175

curve and associated (normal) flow rule can be written as, (Hibler, 1977, 1979),176

σij = 2ηε̇ij + (ζ− η)ε̇kkδij −
Pr

2
δij, (4)

where Pr/2 is a replacement pressure term and ζ and η are the nonlinear bulk and shear177

viscosities defined as:178

ζ =
P

2∆
, (5)

η =
ζ

e2
, (6)

∆ =
[
(ε̇11 + ε̇22)

2 + e−2 (ε̇11 − ε̇22)
2 + 4e−2ε̇212

]1/2
. (7)

The sea ice pressure P is parametrized as:179

P = P∗h exp {−C(1−A)} , (8)

where P∗ (= 27.5 × 103 N/m) is the ice strength parameter, A is the sea ice concentration,180

and C (= 20) is the ice concentration parameter, an empirical constant characterizing the181

dependence of the compressive strength on sea ice concentration (Hibler, 1979). For small182

strain rates (∆ −→ 0), the viscosities tend to infinity, and the bulk and shear viscosities ζ183

and η are capped to a maximum value using a continuous version of the classical replace-184

ment scheme (Hibler, 1979; Lemieux & Tremblay, 2009):185

ζ = ζmax tanh

(
P

2∆ζmax

)
, (9)

where ζmax = 2.5 × 108 P (Hibler, 1979), equivalent to a minimum value of ∆min = 2 ×186

10−9 s−1 (Kreyscher et al., 1997). In the limit where ∆ −→ ∞ (x −→ 0), tanh x ≈ x, and187

Equation 9 reduces to ζ = P/2∆ (Equation 5). In the limit where ∆ −→ 0 (x −→ ∞),188

tanh x −→ 1, and ζ = ζmax. The replacement pressure Pr is given by189

Pr = 2ζ∆, (10)
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which ensures a smooth transition between the viscous and plastic regimes, and stress190

states that lie on ellipses that all pass through the origin.191

2.2 Damage Parametrization192

2.2.1 Background193

Progressive damage models were initially developed to model the nonlinear brittle194

behavior of rocks (Cowie et al., 1993; Tang, 1997; Amitrano & Helmstetter, 2006). Since195

then, many studies integrated some damage mechanism in which the mechanical ice prop-196

erties (e.g., elastic stiffness E and viscous relaxation time η and λ) are written in terms of197

a scalar, non-dimensional parameter d that represents the sub-grid scale damage of the ice198

(Girard et al., 2011; Dansereau et al., 2016; Rampal et al., 2016; Plante et al., 2020). For exam-199

ple, Dansereau et al. (2016) proposed the following parametrization of the elastic stiffness200

(E) and the viscosity (η) akin to the ice pressure in Hibler (1979):201

E = E0h exp {−C(1−A)} (1− d(t)), (11)

η = η0h exp {−C(1−A)} (1− d(t))α, (12)

η

E
= λ =

η0

E0
(1− d(t))α−1, (13)

where E0 and η0 are the (constant) Young’s modulus and viscosity of undeformed ice, and202

α (> 1) is a parameter that controls the rate at which the viscosity decreases and the ice203

loses its elastic properties. In this formulation, E and η depend on their undamaged value204

(E0 and η0), sea ice thickness and concentration (A and h), and a time-dependent damage205

(d(t)).206

In progressive damage parametrization, damage builds as a function of the stress207

overshoot beyond the yield curve. Following Plante and Tremblay (2021), the scaling factor208

Ψ (0 < Ψ < 1) required to bring a super-critical stress (σ ′) state back on the yield curve (σf)209

is written as:210

σf = Ψσ ′, (14)

where σf is the corrected stress. The corrected state of stress (σf
1,σ

f
2) is defined as the in-211

tersection point of the line joining (σ ′
1,σ

′
2) and the failure envelope of the Mohr-Coulomb212

criterion along any stress correction path. Note that the stress correction path is not a flow213

rule; it does not change the visco-elastic constitutive equation of the MEB model. Its pur-214

pose is to convert the excess stress into damage (d). This definition of damage assumes that215
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only stresses change post-fracture, and the strain (rate) does not. The evolution equation216

for the damage parameter can be written as (Dansereau et al., 2016; Plante et al., 2020):217

d

dt
d =

(1− Ψ)(1− d)

td
−

1

th
, (15)

where td ( = O(1) s) and th ( = O(105) s) are the damage and healing timescales, and the218

condition ∆t ≪ λ must be met for stability reason (Dansereau et al., 2016). Consequently,219

the damage at any given time is a function of the previously accumulated damage. This220

constitutes the memory of the previous stress state in the MEB model.221

2.2.2 New VP Model Damage Parametrization222

In the standard VP model, the ice strength P depends only on the ice concentration223

A and the ice mean thickness h. Sea ice, therefore, weakens only when sea ice divergence224

is present along an LKF — affecting the ice strength through the exponential dependence225

on the sea ice concentration (Equation 8) — contrary to real sea ice that weakens when226

a fracture is present irrespective of whether post fracture divergence or convergence is227

present.228

We include damage in the VP model (akin to what is used in the MEB formulation)229

using a simple advection equation with source/sink terms of the form:230

∂d

∂t
+∇ · (ud) = 1− (ζ/ζmax)

1/n − d

td
−

d

th
, (16)

which asymptotes to the steady state solution d = 1 − (ζ/ζmax)
1/n, — a generalization231

of the damage parameter for VP models proposed by Plante (2021) — in the absence of232

advection and healing, and exponentially decays to zero when only healing is considered.233

In contrast with the MEB model, damage is not bound by the propagation speed of elastic234

waves. We choose td (= 1 day) and th (ranging from 2 to 30 days) as typical times scales235

for fracture propagation and healing (see Dansereau et al., 2016; Murdza et al., 2022, for236

small healing timescale explanations). The choice of a small damage timescale comes from237

the synoptic timescale at which fractures develop, while a large healing timescale comes238

from the thermodynamic growth of one meter of ice. Note that a VP model is a nearly ideal239

plastic material, i.e. it can be considered as an elastic-plastic material with an infinite elastic240

wave speed; therefore, the fracture propagation is instantaneous (i.e., it is resolved with the241

outer loop solver of an implicit solver or the sub-cycling of an EVP model). In the above242

equation, n is a free parameter setting the steady-state damage for a given deformation243
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state. Using Equation 9, and the fact that ζmax = P/2∆min, Equation 16 can be written as:244

∂d

∂t
+∇ · (ud) = 1− tanh1/n (∆min/∆) − d

td
−

d

th
. (17)

Following (Dansereau et al., 2016; Rampal et al., 2016), the coupling between the ice245

strength and the damage is written as,246

P = P∗h exp {−C(1−A)} (1− d), (18)

where P varies linearly with d, and where d incorporates the full non-linearity of the vis-247

cous coefficients (ζ). We refer to this model as VPd in the following.248

2.3 Forcing, Domain, and Numerical Scheme249

The model is forced with 6-hourly geostrophic winds calculated using sea level pres-250

sure (SLP) from the National Centers for Environmental Prediction/National Center for251

Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al., 1996). First, SLPs are inter-252

polated at the tracer point on the model C-grid using bicubic interpolation (Akima, 1996).253

The field is then smoothed using a gaussian filter with σ = 3, and the geostrophic winds254

are computed from the smoothed field, yielding winds on the model’s B-grid. The winds255

are interpolated linearly in time to get the wind forcing at each time step. The model is256

coupled thermodynamically to a slab ocean. The climatological ocean currents were ob-257

tained from the steady-state solution of the Navier–Stokes equation with a quadratic drag258

law, without momentum advection, assuming a two-dimensional, non-divergent velocity259

field and forced with a 30-year climatological wind stress field. Monthly climatological260

ocean temperatures are specified at the model’s open boundaries from the Polar Science261

Center Hydrographic Climatology (PHC 3.0) (Steele et al., 2001). The reader is referred to262

Tremblay and Mysak (1997) for more details.263

The equations are solved on a cartesian plane (polar stereographic projection) with a264

regular 10 km grid. The equations are discretized on an Arakawa C-grid and solved at each265

time step (∆t = 1 hour) using the Jacobian Free Newton-Krylov (JFNK) method (Lemieux266

et al., 2010). At each Newton Loop (NL) of the solver, the linearized set of equations is267

solved using a line successive over-relaxation (LSOR) preconditioner, and the Generalized268

Minimum RESidual (GMRES) method (Lemieux et al., 2008) with a relaxation parameter269

ωlsor = 1.3. The non-linear shear and bulk viscosity coefficients and the water drag are270

then updated, and the process is repeated using an inexact Newton’s method until either271
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the total residual norm of the solution reaches a user-defined value (γ = 10−2) or the272

maximum number of Newton Loop is reached (NLmax = 200) (Lemieux et al., 2010).273

Following Bouchat and Tremblay (2017), the model is first spun-up (with damage274

turned off), with a set of ten random years between 1970 and 1990, a constant one-meter275

ice thickness, and 100% concentration as initial conditions. The shuffling of the spin-up276

years is used to prevent biases associated with low-frequency variability, such as the Arctic277

Oscillations or Arctic Ocean Oscillations (Thompson & Wallace, 1998; Rigor et al., 2002;278

Proshutinsky & Johnson, 2011). From the spun-up state, each simulation is run from Jan-279

uary 1, 2002, to January 31, 2002. The deformations statistics presented below are robust to280

the exact choice of winter (Bouchat & Tremblay, 2017).281

Both the control and simulation with damage use the same initial conditions. In order282

to test the sensitivity of the results to the choice of initial conditions, the model was spun283

up for one additional year including the damage parametrization (recall that the healing284

timescale is 30 days) and the simulations were repeated. The results presented below are285

also robust to the exact choice of initial conditions.286

3 Observations287

We use the three-day gridded sea ice deformation from the Sea Ice Measures dataset,288

formerly called RADARSAT Geophysical Processor System (and referred to as RGPS in the289

following for simplicity) (Kwok et al., 1998; Kwok, 1997). The RGPS data set is obtained290

from Lagrangian ice velocity fields by tracking the corners of initially uniform grid cells291

on consecutive synthetic aperture radar (SAR) images. The deformation of the grid cells292

is used to approximate the velocity derivatives and the strain rate invariants εI and εII293

using line integrals (Kwok et al., 1998). The initial Lagrangian grid spatial resolution is294

10 km × 10 km, except in a 100 km band along the coasts, where a coarser resolution295

of 25 km is used. Finally, the data is regridded onto a 12.5 km × 12.5 km fixed polar296

stereographic projection using a three-day temporal resolution. The three-day gridded297

data set is available from 1997 to 2008 for summer and winter (November to July) on the298

ASF DAAC website (https://asf.alaska.edu/). Following Bouchat and Tremblay299

(2017), we only use strain rates larger than |0.005| day−1 — equal to the tracking error of300

about 100 m (or 0.005 day−1 for a three-day period) on the vertices of the Lagrangian grid301

cells (Lindsay & Stern, 2003).302
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4 Methods303

Following Bouchat and Tremblay (2017), Hutter et al. (2018), Girard et al. (2009), and304

Marsan et al. (2004), we compare the probability density functions, spatiotemporal scaling305

laws of the mean deformation rates, and multifractal properties simulated by the model306

with the RGPS data (see section 4.1 to 4.4 below for details). We calculate all metrics inside307

the SAR sea ice RGPS data where an 80% temporal data coverage is present for the winters308

1997–2008 — referred to as RGPS80 in the following (see Figure 1 or Bouchat & Tremblay,309

2017).310

4.1 Simulated Deformation Fields311

Following Marsan et al. (2004) and Bouchat and Tremblay (2017), the total sea ice312

deformation rates are calculated from the (hourly) divergence (ε̇I) and the maximum shear313

strain rate (ε̇II) as:314

ε̇total =
√
ε̇2I + ε̇2II, (19)

where315

ε̇I =
∂u

∂x
+

∂v

∂y
, (20)

ε̇II =

√(
∂u

∂x
−

∂v

∂y

)2

+

(
∂u

∂y
+

∂v

∂x

)2

. (21)

The sea ice velocities are first averaged over a period of three days in order to match the316

temporal resolution of the RADARSAT observations. The averaged velocity fields are then317

used to calculate the strain rate invariants at the center of each grid cell. These values318

represent averaged Eulerian deformation rates over the grid cells area.319

4.2 Probability Density Functions (PDFs)320

Probability density functions are used to assess the ability of the models to reproduce321

large deformation rates and to determine their statistical distribution. We separate the do-322

main into logarithmically increasing bins and perform a least-square power-law fit on the323

tail of the log–log distributions where the interval for a given model consists of all bins up324

to an order of magnitude from the largest deformation bin available. Therefore, intervals325

between runs differ, but each interval is the most representative of the deformation decay326

for a given model (Bouchat et al., 2022). To quantify the difference between the shape of the327

simulated and observed PDFs, we use the Kolmogorov-Smirnov (KS) distance D, defined328
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as the absolute difference between the cumulative density functions (CDFs) of the models329

Cm(ε̇n) and the data Cd(ε̇n):330

D = max
ε̇n⩾ε̇n,min

|Cm(ε̇n) − Cd(ε̇n)|. (22)

In this approach, the shape of the PDF is taken into account directly and there is no need to331

a priori assume the underlying statistical distribution of the PDF. The interpretation of the332

KS-distance is straightforward: a smaller D implies a closer agreement between observed333

and simulated statistical distributions.334

As noted in Bouchat and Tremblay (2020) and Bouchat et al. (2022), a linear decay in335

deformations does not imply a power law, as other distributions (e.g., log-normal distri-336

butions) can also approximately decay linearly (Clauset et al., 2009). Therefore, we do not337

assume that the power-law exponents derived from the CDFs are representative of the true338

distributions; we instead use them as a means to differentiate between simulated and ob-339

served PDFs of deformation rates. We therefore use the average of the absolute difference340

of the logarithms of the simulated and observed PDFs (see also Bouchat et al., 2022). This341

metric has the advantage of giving more weight to the tail of the PDFs (small probabilities,342

large deformation rates). Finally, we present results for negative and positive divergence343

separately to avoid error cancellation (Bouchat et al., 2022).344

4.3 Spatiotemporal Scaling Analysis345

Following Marsan et al. (2004), we use the following coarsening algorithm to compute346

the spatiotemporal scaling exponent of the mean deformation rates derived from models347

and RGPS observations to estimate the scaling exponents:348

⟨ε̇tot(L, T)⟩ ∼ L−β(T), (23)

⟨ε̇tot(L, T)⟩ ∼ T−α(L), (24)

where L and T are the spatial and temporal scales at which sea ice total deformation rates349

are averaged, and β and α are the spatial and temporal scaling exponents. As pointed350

out by Weiss (2017), β can take values between 0 (homogeneous deformations) and 2 (de-351

formations concentrated in a single point), while α can take values between 0 (random352

deformation events) and 1 (one single extreme event).353

We find β, by first averaging the simulated velocity fields to match the 3-day tempo-354

ral aggregate of RGPS. We then compute the mean ice velocities in boxes of varying sizes355
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L from that of the models’ spatial resolution (10 km) to the full domain size with doubling356

steps: L = 10, 20, 40, 80, 160, 320, 640 km. The same procedure is repeated with the RGPS357

data set starting from a 12.5 km resolution. At each step, the boxes of length L are over-358

lapping with their neighbors at their midpoint. The RGPS80 mask does not necessarily359

contain a whole number of boxes, n ̸≡ 0 mod L
L0

in general, where n is the maximal size of360

the mask along a given axis and L0 is the resolution of one grid cell. The mean inside the361

fractions of squares that are left at the boundaries of the domain is included only for boxes362

that are filled with at least 50% data. We calculate the deformations rates using the average363

in time and space velocities, and we also compute the effective size of the box by taking364

the square root of the total number of occupied cells in the box. From these points, we take365

the mean of the deformation rates for each box size and fit a least-square power law in the366

log–log space to find β, the spatial scaling exponent.367

For the temporal scaling α, we instead fix L to the spatial resolution value of the368

data set (10 km), and we compute the mean deformations with the different time-averaged369

velocities ranging from 3 days to 24 days (i.e. T = 3, 6, 12, 24) and fit a least-square power370

law to calculate the temporal scaling exponent α.371

4.4 Multifractal Analysis372

The scaling exponents (β and α) are functions of the moment q of the deformation373

rate distribution:374

⟨ε̇qtot(L, T)⟩ ∼ L−β(q), (25)

⟨ε̇qtot(L, T)⟩ ∼ T−α(q). (26)

While it is usually assumed that the structure functions β(q) and α(q) are quadratic in q for375

the sea ice total deformation rates (Marsan et al., 2004; Bouillon & Rampal, 2015; Rampal376

et al., 2019), the structure functions are not necessarily quadratic in q for the generalized377

multifractal formalism (see Schmitt et al., 1995; Lovejoy & Schertzer, 2007; Weiss, 2008;378

Bouchat & Tremblay, 2017), and are expressed instead as (for the spatial structure function),379

β(q) = q(1−H) + K(q) =
C1

ν− 1
qν +

(
1−H−

C1

ν− 1

)
q, (27)

where380

K(q) =
C1

ν− 1
(qν − q). (28)
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In the above Equation, C1 (0 ⩽ C1 ⩽ 2) characterizes the sparseness of the field, ν (0 ⩽381

ν ⩽ 2, ν ̸= 1) is the Lévy index, or the degree of multifractality (0 for a mono-fractal382

process, 2 for a log-normal model with a maximal degree of multifractality), and H (0 ⩽383

H ⩽ 1) is the Hurst exponent. We use a general non-linear least squares fit for the structure384

functions’ parameters. A similar equation holds for the temporal structure function α(q).385

K(q) is called the ”moment scaling function exponent” for a random variable. It defines the386

singularity spectrum, a function that describes the distribution of singularities (or points387

of non-smoothness) across different scales in the system.388

Note that the scaling exponents for q = 1 (β(1) and α(1)) are equal to 1 − H, and389

therefore, a higher H means a less localized or smoother field. Moreover, the degree of390

multifractality ν defines how fast the fractality increases with larger singularities. As ν391

increases, larger deformation will dominate, and there will be fewer low-value smooth392

regions for example. C1 represents how ”far” the multifractal process is from the mean393

singularity value given by β(1) = 1 − H; we can understand this by taking the derivative394

β ′(1) = (1 − H) + C1: the higher C1 is compared to 1 − H, the fewer field values will cor-395

respond to any given singularity, i.e., the singular field values are more sparsely grouped396

(Lovejoy & Schertzer, 2007).397

As noted in Bouchat et al. (2022), the computed parameter values are sensitive to398

the number of points used to define the structure functions. Therefore, we use the same399

moment increments of 0.1 in order to derive the three multifractal parameters (ν, C1, H).400

5 Results401

5.1 Simulated Total Deformation Field402

In the control run (d = 0 or n = ∞), the simulated LKFs are more diffuse, less intense403

and the LKF density is lower when compared with RGPS observations (see Figure 2b).404

When including damage, LKFs are better defined, more intense, and the LKF density is405

higher, in better qualitative agreement with observations (this is true for all configurations406

of VPd models except n = 1); the ice strength along LKFs is much weaker, providing407

a strong positive feedback for the simulation of higher intensity and density of fracture408

lines, akin to RGPS-derived LKFs (see Figure 2). As n decreases from n = 50 (∼infinity)409

to n = 1, the intensity, definition, and density of LKF increase until maximum damage is410

present in all grid cells and LKFs are no longer distinguishable from the undeformed ice,411
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effectively rendering the ice soup-like 2. These results are robust to the exact choice of a412

healing timescale (th = 2–30 days), except when th ≈ td when fewer extreme deformation413

events are present. In all cases, however, the simulated LKFs are not as well-defined as the414

LKFs in RGPS observations presumably due to spatial resolution (see for instance Bouchat415

et al., 2022). Note that increasing shear strength (e = 0.7) with damage does improve the416

localization of LKFs as for simulation without damage in accord with results from Bouchat417

and Tremblay (2017) (see Figure 2i). Another key visual difference is that the spatial mean418

of the deformation rates is higher for the VPd model than for the VP model and RGPS data,419

see also section 5.2 below for a discussion and more quantitative assessment.420

The mean ice thickness over the Arctic Ocean is also sensitive to the amount of dam-421

age in the model (results not shown). For instance, the VPd model with n = 5 and th = 2422

(low damage), and n = 3 and th = 30 (high damage) gives a 1 cm and 5 cm mean ice thick-423

ness anomaly respectively. This thickness increase occurs mostly along LKFs in the form424

of ridges and clearly shows the impact of damage on the deformation fields. Interestingly,425

we see a reduction in sea ice thickness anomalies for the VPd model with maximal damage426

(n = 1 and th = 30). In this case, convergence (thickening) occurs over broader areas and427

when integrated, leads to a reduction in the positive ice thickness anomaly.428

5.2 Probability Density Functions (PDFs)429

When considering damage, a larger number of LKFs is present for any mean total430

strain rate with a transfer from lower to larger total deformation rates in the PDF. This431

shift results in a linear decay in the tail of the PDFs (log–log plot) for shear rate and diver-432

gence/convergence that is in better agreement with RGPS. Interestingly, the VPd model433

is particularly good at reproducing the large divergence and convergence rate (and to a434

lesser extent large shear strain rate) present in RGPS observations contrary to the standard435

VP model that has a limited ability to simulate both observed divergence and convergence436

rate larger than 10−1 day−1 (see Figure 3). The PDFs of shear strain rates are more sensitive437

to the healing timescale th than the damage exponent parameter n; with larger healing438

timescales leading to more shear. The best fit with observations occurs for n = 3, 5 and439

th = 2, or at n = 1 and th = 30. A smaller n leads to more extensive but less intense dam-440

age that can be compensated by keeping a larger th. Similarly, the PDFs of convergence441

are more sensitive to th than n, with larger values of th resulting in more convergence.442

The best correspondences between models and observations are with no damage and a re-443
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duced ellipse ratio (e = 0.7) or with low damage n = 5 with low healing timescale th = 2.444

Interestingly, higher values of P∗ with some damage have little to no impact on the conver-445

gence PDF contrary to lowering the ellipse ratio and to results from Bouchat and Tremblay446

(2017). Nevertheless, any damage configuration is better than the control run at reproduc-447

ing high convergence events. In contrast, the PDFs of divergence are equally sensitive to n448

and th with more damage (lower n or higher th) resulting in a higher count of large defor-449

mations in divergence. In this case, both configurations (VP(0.7) and VPd(0.7, 5, 30, 27.5))450

with a lower ellipse ratio (e = 0.7) overestimate divergence (Figure 3, yellow curves). In-451

terestingly, a higher P∗ leads to higher divergence, in better agreement with observations452

(Figure 3, deep rose curves), with PDFs comparable to the fully damaged (n = 1) and lower453

ellipse ratio (e = 0.7) configurations.454

We note that damage increases convergence and to a lesser extent divergence. This455

asymmetry between changes in positive and negative divergence, when damage is in-456

creased, precludes a perfect fit with observations with the default ellipse aspect ratio. The457

fact that reducing e from e = 2 to e = 0.7 or increasing P∗ both increase divergence while458

keeping convergence the same suggests that a combination of some damage (n = 3, 5, and459

th = 2) together with a higher P∗ or reduced ellipse aspect ratio will lead to the best fit in460

the three types of PDFs. See the section below on the sensitivity of the parameters for a461

nuanced discussion of their optimal values.462

5.3 Cumulative Density Functions (CDFs)463

The cumulative density functions (CDFs) (Figure 4) of the two models differ sub-464

stantially because of the higher count of large deformations of the VPd model bringing465

its CDFs further from that of the control run. For shear strain rate, the KS-distances com-466

puted from the CDFs of the different configurations of the VPd model are all slightly higher467

(0.21 ⩽ Dε̇II
⩽ 0.36) than that of the control run (0.19). The fact that the latter crosses the468

CDF of the data while keeping a similar maximal vertical range as the CDFs of the VPd469

model results in this slightly lower KS-distance, something that is not apparent from the470

PDFs alone. In contrast, the KS-distances of the VPd CDFs for convergence are similar or471

smaller (0.07 ⩽ Dε̇I<0
⩽ 0.40) than that of the control run (0.37). Not surprisingly, the472

configurations with th = 2 have a very low KS-distance (0.07 and 0.10), in line with the473

PDF of convergence that showed that large values of th result in overshooting. Yet again,474

the key improvement resides in the divergence rate with KS-distances for the VPd model475
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configurations that are smaller (0.05 ⩽ Dε̇I>0
⩽ 0.43) than that of the control run (0.53),476

highlighting the success of the VPd model at simulating a higher count of large deforma-477

tions in divergence. Again, VPd configurations with th = 2 days have the largest KS-478

distance in divergence with values closer to the control run (0.36 and 0.43). Interestingly,479

the best fit with observations comes from the standard VP model with a reduced ellipse480

aspect ratio (e = 0.7) with very small KS-distances (0.03, 0.03, 0.15 respectively). These481

small values may be due to the interannual variability in the RGPS data; the KS-distances482

of a particular RGPS year can vary by as much as 0.17 when compared to the RGPS mean483

(Bouchat et al., 2022). Nonetheless, combining damage (n = 5, th = 30) with an increased484

P∗ does lead to very small KS-distances (respectively, 0.21, 0.20, and 0.20) and supports the485

conclusions drawn from the PDFs alone. Unsurprisingly, the KS-distance decreases with486

increasing n and decreasing th for shear strain rate and convergence, while for divergence,487

the KS-distance decreases with decreasing n and increasing th — as for the PDFs.488

5.4 Spatiotemporal Scaling489

Both the VPd and VP models are able to reproduce some level of spatial and temporal490

scaling, as in RGPS (Figure 5-6). The spatial scaling exponent β at T = 3 days of the VPd491

model is highly sensitive to the exponent n and the healing timescale th; it increases with492

decreasing n and increasing th, i.e. with more damage. The spatial scaling exponents493

are ranging from β = 0.06 to β = 0.14 for the different configurations of the VPd model,494

with the slope of the spatial scaling curve for the fully damaged VPd(2, 1, 30, 27.5) model495

being morally the same as that of RGPS (0.15), while the standard VP model has a 3 times496

smaller exponent (β = 0.05); all configurations of the VPd model have better spatial scaling497

than the VP model. Note how reducing the ellipse ratio (e = 0.7, as proposed by Bouchat498

& Tremblay, 2017) also increases the spatial scaling exponent for the VPd model (yellow499

curve). The increase in the scaling factor for the VPd model indicates that LKFs are more500

localized in space than those of the VP model.501

On the other hand, the temporal scaling α at L = 10 km of the VPd model for all502

configurations is lower (α = 0.13 to α = 0.19) than that of the observations (0.28) or the503

VP model (0.23). Note that the combination of damage and a reduced ellipse aspect ratio504

(e = 0.7) decreases the temporal scaling exponent (yellow curve), contrary to its effect on505

the spatial scaling exponent.506
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Interestingly, all VPd simulation curves have a higher mean deformation rate (for507

both the spatial and temporal scaling), since damage increases the mean velocity of the ice508

(result not shown). Increasing P∗ reduces the mean ice velocity and the mean deformation509

rates across all scales to the same level as the control run (deep rose curves compared to510

light green curves). This shift towards higher mean deformations is visible from the pan-511

Arctic simulations but has no impact on the spatial and temporal scaling.512

In summary, the VPd model improves spatial localization at the expense of a weaker513

temporal localization of deformations. Temporal localization (or scaling) is not to be con-514

fused with intermittency. Temporal localization originates from the autocorrelations of the515

deformations time series at a given location and the rate at which these correlations de-516

crease when increasing the time lag between deformation rate values. In other words, a517

lower temporal scaling means that a high deformation event is more likely to be followed518

by another high deformation event in the ”near future”, resulting in a smeared time local-519

ization in the mean at a given scale. On the other hand, intermittency (or heterogeneity)520

is reflected in the change of localization within the same data set; the intermittency can be521

quantified from the shape of the structure function (as discussed below in section 5.5). With522

this in mind, it is expected that the VPd model would have a lower temporal scaling, as523

the damage increases the probability of future (for t < th) deformation at a given grid cell.524

For the same reason, decreasing th increases temporal scaling.525

5.5 Multifractal Analysis526

When fractal structures have local variations in fractal dimension, they are said to be527

multifractals. In the case of sea ice deformation or strain rates, multifractality arises from528

the higher space and time localization of larger deformation rates, compared to smaller529

deformations (Weiss & Dansereau, 2017; Rampal et al., 2019).530

The spatial structure functions of all the VPd configurations are in better agreement531

with observations when compared with that of the control run (Figure 7). The spatial532

multifractality parameter (1.50 ⩽ ν ⩽ 1.96) of the VPd configurations increases when533

increasing th, but the dependence on n only appears for high values of th. Larger values534

of ν characterize a field dominated by singularities of larger values; for sea ice, this means535

that configurations of the VPd model with a small healing timescale reflect this poorer536

multifractal behavior because the sea ice heals faster. For short healing timescales (th ≈ 2)537
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the dependency of the multifractal parameter ν on n disappears, but for th = 30, the538

dependency of ν on n becomes apparent; the spatial multifractality parameter ν reaches a539

local minimum (ν = 1.61) for n = 3, followed by a local maximum at n = 5 (ν = 1.96),540

then plateaus at some intermediate value (ν = 1.76) as damage decreases towards that of541

the control run (see insert of Figure 7).542

The VPd(2, 3, 30, 27.5) configuration highlights a complex transient state in the multi-543

fractal behavior of the model from fully damaged ice (the VPd(2, 1, 30, 27.5) configuration)544

with high multifractality (ν = 1.94) but low heterogeneity (C1 = 0.04), to high multifrac-545

tality (ν = 1.96) and high heterogeneity (C1 = 0.14) corresponding to the VPd(2, 5, 30, 27.5)546

configuration. Further decreasing damage (e.g. VPd(2, 50, th, 27.5)) leads to lower values547

of both multifractality and heterogeneity. The heterogeneity of the field (C1) of all VPd548

model configurations (0.04 ⩽ C1 ⩽ 0.21) are also in better agreement with observations549

(C1 = 0.17) than that of the control run (C1 = 0.03) although still lower than RGPS for the550

lower values of th and n, again suggesting that the VPd model is better at focusing LKFs551

spatially. This is also in agreement with the higher Hurst exponent for the control run552

(H = 0.95) suggesting a spatially smoother field than the different configurations of the553

VPd model (0.85 ⩽ H ⩽ 94) and RGPS observations (H = 0.87). This is, again, consistent554

with the results from the spatial scaling analysis. Interestingly, values of the Hurst expo-555

nent at q = 1 do not necessarily translate into having observation-fitting values in the other556

two multifractal parameters, which leads to graphs that are far from that of RGPS observa-557

tions. Notably, the VPd(2, 1, 30, 27.5) has a similar value for the Hurst exponent (H = 0.86)558

compared to RGPS observations (H = 0.87), but has the lowest heterogeneity (C1 = 0.04)559

of all the VPd model configurations, resulting in one of the poorest representation of the560

observations, together with the th = 2 configurations.561

The most striking differences between the control run and the VPd model are their562

heterogeneity and spatial autocorrelations. Combining the damage parametrization with563

a different value for the ellipse ratio (e = 0.7) further increases the heterogeneity (C1 =564

0.21) of the deformation field at the cost of lowering the spatial multifractality (ν = 1.57).565

Increasing P∗ also leads to higher heterogeneity (C1 = 0.16), while still maintaining the566

high values of the multifractality (ν = 1.95). Interestingly, a third root appears in the range567

q < 1 when we change the ellipse aspect ratio or P∗ (see Figure 7). The multifractal theory568

does not allow for more than two roots, and the fact that this is observed is indicative that569

the model (the VPd at least) might not follow the multifractal theory. This might also be570
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the case for the other configurations, the observations, and the control run. Whether this571

is a new behavior associated with the damage parametrization in tandem with the change572

in ellipse aspect ratio and P∗ or an enhancement of an already existing property remains to573

be investigated.574

The differences in the temporal structure functions of the VPd model and the control575

run are more subtle (see Figure 8). Temporal multifractality is also reproduced by the dif-576

ferent configurations of the VPd model (1.20 ⩽ ν ⩽ 1.86), and they are all somewhat worse577

than the standard VP model (ν = 1.67) compared to RGPS data (ν = 1.87). Similarly to578

the spatial structure functions, almost all configurations of the VPd model are as tempo-579

rally heterogeneous (0.04 ⩽ C1 ⩽ 0.22) — also called intermittency — as the observations580

(C1 = 0.14), while the control run is the least heterogeneous (C1 = 0.09), except for the fully581

damaged VPd(2, 1, 30, 27.5) configuration. RGPS observations have a somewhat low Hurst582

exponent value (H = 0.73), while all configurations of the VPd model have a high value583

(0.82 ⩽ H ⩽ 84), even compared to the control run (H = 0.77). This high Hurst exponent584

brings down the graph of the VPd temporal structure functions, even if their curvature585

(governed by ν and C1) is always higher than that of the control run structure function,586

and in agreement with the curvature of the graph of the structure function computed from587

RGPS observations, especially for high values of n and th. This curvature change accounts588

for the majority of the difference between the simulated temporal structure functions and589

the high Hurst exponent is indicative of a temporally smoother field — in agreement with590

the results from the temporal scaling analysis. The only configuration that has a lower cur-591

vature than the control run is the fully damaged VPd(2, 1, 30, 27.5). This configuration has592

both low heterogeneity and high Hurst exponent, leading to a temporal structure function593

that does not have enough curvature. Overall, reducing n (more damage) reduces the tem-594

poral multifractality, and reducing th reduces the heterogeneity. Moreover, increasing P∗ or595

reducing the ellipse ratio increases heterogeneity but reduces multifractality. Interestingly,596

the Hurst exponent is almost constant for all configurations of the VPd and the standard597

VP with a reduced ellipse aspect ratio. As in the spatial structure function, changing the598

shape or size of the ellipse does unveil a third root in the temporal structure function in599

the range q < 1, which is indicative that the VPd model does not follow the multifractal600

theory.601
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5.6 Sensitivity to th, n, and the e602

In the VPd model, a shorter healing timescale results in an overall smoother deforma-603

tion field with fewer intense LKFs (see Figure 2e–h). Therefore a shorter healing timescale604

in this model is not necessarily wanted, as it reduces the effects of the damage source term605

(see Equation 16). As a result, the spatial scaling improves marginally, but the temporal606

scaling becomes significantly worse (see blue curves and their insert in Figures 5 and 6).607

This is also apparent in the multifractality as there are only small discrepancies between608

the VPd model with a short healing timescale and the control run (see Figures 7–8). The609

optimal healing timescale value t∗h therefore should be on the order of one month rather610

than days in a VPd model, in contrast with the value commonly used in the MEB model of611

1 day and that derived from observations (Dansereau et al., 2016; Murdza et al., 2022). This612

is of course expected since damage in the VPd model does not represent necessarily the613

same thing as damage in the MEB model. Moreover, in Murdza et al. (2022), the authors614

raised the question of whether the rapid strength recovery of the ice that they measured615

can be applied to larger scales.616

In the VPd model, deformation rates are sensitive to the exponent parameter n. When617

n is low, the damage reaches one in a few time steps, and remains high, such that all the ice618

is nearly fully damaged (see Figure 2d), except for grid cells in the viscous regime. When n619

is large (> 50), the VPd model gives morally the same results as the VP model. Considering620

all deformation metrics above, we suggest the value of n∗ = 5 for the damage parameter621

n.622

When combining these values with the reduced value for the ellipse ratio (e = 0.7623

Bouchat & Tremblay, 2017), we find that the spatial scaling is stronger, while temporal624

scaling is even lower. This is in disagreement with Bouchat and Tremblay (2017) who625

found that changing e increases both spatial and temporal scaling. This is presumably due626

to the fact that reducing e strengthens the ice in shear, and thus enhances the impact of the627

damage parametrization. Moreover, increasing P∗ does result in better multifractality and628

magnitude of deformation rates, without any consequences on the scaling. We suggest to629

increase P∗ when implementing the VPd model.630
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6 Discussion631

Deformation rate statistics simulated by the VPd model are in better agreement with632

RGPS observations and than that of the standard VP model. Not surprisingly, the plastic633

rheology with damage is particularly good at reproducing the spatial scaling and struc-634

ture function. Moreover, while a lower temporal scaling was achieved with the damage635

parametrization, the temporal intermittency of the VPd model was slightly higher and636

closer to the observations. This shows that the inclusion of a damage parametrization in-637

side a model has a non-negligible impact on the scaling, multifractality, and heterogeneity638

of the deformation fields both spatially and temporally.639

Considering that the VP model can still produce some low level of multifractality,640

we hypothesize that the governing factor in reproducing deformation rate statistics is not641

necessarily the physics behind the parametrizations nor the pre-fracture elastic regime but642

rather the ”amount of memory” of past deformation present in a model. Memory in the643

VP model is present through the concentration and thickness of the ice; in the VPd model644

(or EB family), memory is also associated with damage which is present for both conver-645

gent and divergent flows and has a much faster timescale (td = 1 day) than h and A.646

Another possibility could simply be the addition of some form of spatiotemporal hetero-647

geneity in the ice strength, which the damage parametrization presented in this study does648

— highlighting that even ad-hoc parametrizations are going to improve deformation rate649

statistics.650

Since damage is expressed in terms of the bulk viscosity term, the ”memory” of the651

system resides in the ice strength through the damage coupling factor (see Equation 18).652

The plastic deformation therefore instantaneously reduces the ice strength locally. This653

new memory in the system complements the memory associated with sea ice divergence654

via the concentration and thickness of the ice. That is, the ice is more susceptible to break655

where — or near where — it has been previously broken. LKFs are, therefore, a mem-656

ory network of the viscous-plastic model that includes a damage parametrization with a657

”learning” curve that depends on the specific choice of damage timescale and exponent658

with a slow regenerative healing mechanism that acts as a memory eraser. This behavior is659

reflected in higher temporal intermittency as well as a higher spatial multifractality, hetero-660

geneity and scaling in the VPd model. The downside is that the temporal multifractality661

and scaling exponent in the VPd model are lower, which indicates that long-time auto-662
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correlations are especially strong in the VPd model. This is explained by the memory of663

previously damaged ice, which prompts the ice to break where it already broke in the past.664

Usually, when critical stress is reached in an MEB model, the Young’s modulus is665

instantaneously reduced locally, and the excess stress results in brittle fracture and in-666

creased damage. On the other hand, in a standard viscous-plastic model, when plasticity667

is reached, the ice strength is reduced only for large — grid-scale — diverging ice events.668

In this scenario, the ice thickness and concentration are reduced, leading to a lower ice669

strength at the next time step. This process is slow and much smoother than the one in the670

VPd model, which mimics the behavior of the MEB model. In that regard, the VPd model671

permits new types of weakening that reduce the ice strength (i.e., shear and convergence),672

something that is not possible in a standard VP model, hence creating more well-defined673

LKFs that lead to a better statistical fit of the observations. This is reflected in the higher674

counts of high deformation events in both convergence and divergence.675

In the VPd model with a modified smaller ellipse aspect ratio, a third root appeared676

in both the spatial and temporal multifractality plots. This means that the theory, which677

is only valid for a Lévy index between 0 and 2, does not hold anymore. Is this particu-678

lar configuration of the VPd model uncovering a new property, or is it simply amplifying679

something that was already there, and was overlooked? What does it mean for the multi-680

fractality of LKFs?681

In light of the results presented above, we recommend the implementation of this682

damage parametrization in a standard viscous-plastic model. This parametrization comes683

at no additional cost, contrary to increasing the spatial resolution of the model, which684

increases the computational time of simulations by a factor of ∼25 for a 5-fold increased685

spatial grid resolution of 2 km × 2 km, or even the tuning of the ellipse ratio, which de-686

creases the numerical convergence substantially. The damage parametrization, together687

with a careful choice of yield curve parameters (see for example Bouchat & Tremblay, 2017;688

Bouchat et al., 2022) would prove to be a low-cost, efficient way of improving deformation689

statistics, even if sea ice models are not run a very high resolution.690

As the MEB model includes a damage parametrization, we ask the question of whether691

the agreement between the MEB model and the RGPS observations is in part due to this692

sub-grid fracturing parametrization in conjunction with the Lagrangian mesh used in MEB693

models, rather than the explicit choice of rheology — elastic deformation followed by brit-694
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tle fracture. Recent studies (together with results presented here) suggest that the inclusion695

of a damage parameter (Plante et al., 2020) and the Lagrangian mesh (Bouchat et al., 2022)696

are key factors in a better description of deformation rate statistics. RGPS observations697

are obtained from the displacement of tracers at a 10 km spatial scale, but ice motion is698

much more complex, and these observations of emergent properties include the effects699

of processes that take place at much finer scales (sub-kilometer) such as bending, twist-700

ing, micro-fractures, and fusion. We hypothesize that efforts put into developing sub-grid701

parametrizations will be the go-to for fast and light deformation rate statistics improve-702

ment in the short term. Notably, using discrete element models (DEM) as toy models for703

developing and calibrating new sub-grid-scale parametrizations may provide exciting re-704

sults.705

Note that we used the same methodology as in Bouchat and Tremblay (2017). This is706

important to keep in mind as their results show that maximum likelihood estimators (MLE)707

of the scaling parameters for the tail of PDFs of RGPS gridded deformation products are708

29% (convergence), 25% (divergence), and 14% (shear) higher than those obtained using709

RGPS Lagrangian product (Marsan et al., 2004; Girard et al., 2009). They attributed about710

10% of the higher scaling parameters to the choice of mask and the rest to the smoothing711

inherent to the gridding procedure. Therefore, our results are not necessarily reflecting712

reality, but nevertheless are still useful as they help discriminate our model’s configurations713

with RGPS gridded observations for a particular year. The results presented are robust to714

the exact choice of year. However, the mask we are using is located above the Canada715

Basin and extends to the East Siberian Sea, and we are only using the data from January716

2002. Exact numbers are therefore probably influenced by local — in space and time —717

effects. As a matter of fact, when doing the same analysis for other years, the values for the718

parameters of the multifractal analysis and the PDFs decay exponents vary, but conclusions719

drawn from this study are robust, as the general behavior of the models stays the same for720

different years (results not shown). It is believed that specific numbers given here are not721

necessarily representative of reality, but are rather just a rough estimate of the behavior of722

the models and RGPS.723

7 Concluding Remarks724

We implement a sub-grid damage parametrization in the standard viscous-plastic725

model to investigate the effects of damage on the deformation rate statistics, namely, the726
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probability density functions (PDFs) exponential decay and shape, the Kolmogorov-Smirnov727

distance between cumulative density functions (CDFs) of simulations and observations,728

the spatiotemporal scaling exponents, and the multifractal parameters expressing the spa-729

tiotemporal structure functions. Results show that the deformation rate statistics are very730

sensitive to the inclusion of a damage parametrization, including advection of damage and731

a healing mechanism. Therefore, we argue that sub-grid-scale parametrizations should be732

considered when comparing different rheological models. Specifically, we find that this733

new damage parametrization improves power-law scaling and multifractality of defor-734

mations in space in the viscous-plastic model, the trade-off being a lower exponent than735

the standard VP model for the temporal power-law scaling. We show that the new VPd736

model increases the number of large divergence and convergence rates in better agree-737

ment with RGPS observations as per the new quantitative metric introduced by Bouchat738

et al. (2022). Moreover, we show that the VPd model is especially good at producing spa-739

tial multifractality, which was expected since the damage parameter was constructed to740

improve the spatial localization of LKFs. The fact that the standard VP model can still741

produce some spatial multifractality, without including any ”cascade-like” mechanisms742

that would permit multifractality as in the VPd model, indicates that other physical mech-743

anisms are at play in both models. These other mechanisms are not identified, and the744

origin of multifractality in the VP model remains an open question. We hypothesize that745

one likely candidate is the ”amount of memory” that a model possesses. The proposed746

damage parametrization is a compelling low-cost add-on to viscous-plastic models747

The implementation of the proposed damage parametrization inside viscous-plastic748

models provides an efficient, low-cost option for improving deformation rate statistics749

in low-resolution sea ice models, in tandem with a relatively long healing timescale and750

an increased P∗. Other possibilities would be to couple the damage parameter to the el-751

lipse ratio directly rather than the ice strength, which would change the physics of the ice752

locally rather than changing its strength. Future work will include other sub-grid scale753

parametrizations, such as the inclusion of memory through an evolution equation for di-754

lation along Linear Kinematic Features — memory seems to be a determining factor for755

deformation statistics — and non-normal flow rules, i.e. rheologies that allow for plastic756

deformations and for time-varying internal angle of friction. These would allow models to757

have a better memory of past deformations.758
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Data Availability Statement759

All analysis codes are available on GitHub: https://github.com/antoinesavard/760

SIM-plots.git. All published code and data products can be found on Zenodo: will761

.be.put.at.final.submission. This includes the published analysis code (?, ?), the762

ice velocities from model output (?, ?), and RGPS gridded velocity derivatives (Kwok,763

1997).764
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Figure 1. Hotness map of temporal presence in the RGPS observations for January 2002. The black

line represents the RGPS80 mask and is drawn at the 80% temporal frequency contour. This mask is

used for all results.
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Figure 2. Simulated (VPd(e,n, th,P∗)) and observed total deformation rates at a 10 km resolution

(12.5 km for observations) for a 3-day average between January 29–31, 2002 compared with observa-

tions as a function of the ellipse aspect ratio (e), damage exponent (n), healing timescale (th, days),

and compressive strength (P∗, kN/m2). The VP with e = 2 (control) and e = 0.7 (VP(0.7)) are equiv-

alent to VPd(2, 50, th, 27.5) and VPd(0.7, 50, th, 27.5) respectively.
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Figure 3. Top row: simulated (color) and observed (black) probability density functions for shear

strain rate, convergence, and divergence at 10 km resolution and 3-day average (L = 10 km and T = 3

days) for January 2002. The power-law exponent calculated over one order of magnitude from the

end of the distributions for each model and RGPS are shown in the inserts. Bottom row: binwise

difference between the logarithms of models and RGPS PDFs. The average absolute difference per

bin is shown in the inserts.
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Figure 4. Simulated (color) and observed (black) cumulative density functions for shear strain rate,

convergence, and divergence for models at 10 km resolution (L = 10 km and T = 3 days) for January

2002. The Kolmogorov-Smirnov distance between each model and the CDFs of RGPS observations

is shown in the inserts.
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Figure 5. Simulated (color) and observed (black) spatial scaling of mean total deformation rates for

T = 3 days in January 2002. Lines are least-square power-law fits, and their slope gives the scaling

exponent β (shown in the insert).
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Figure 6. Simulated (color) and observed (black) temporal scaling of mean total deformation rates

for L = 10 km in January 2002. Lines are least-square power-law fits, and their slope gives the scaling

exponent α (shown in the insert).
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Figure 7. Simulated (color) and observed (black) spatial structure functions β(q) of the total defor-

mation rates for T = 3 days for January 2002. Dotted lines are the least-square fit for Equation 27,

and the inserts are the value of the parameters of the fit (ν, C1, H).

–41–



manuscript submitted to JGR: Oceans

1 2 3
Moment q

0.0

0.5

1.0

1.5

2.0

(q
)

( , C1, H)
(1.87, 0.14, 0.73)
(1.67, 0.09, 0.77)
(1.41, 0.24, 0.83)
(1.86, 0.04, 0.83)
(1.20, 0.17, 0.84)
(1.62, 0.18, 0.83)
(1.37, 0.15, 0.82)
(1.49, 0.14, 0.82)
(1.41, 0.21, 0.83)
(1.44, 0.21, 0.82)
(1.28, 0.22, 0.82)

RGPS
Control
VP(0.7)
VPd(2,1,30,27.5)
VPd(2,3,30,27.5)
VPd(2,5,30,27.5)
VPd(2,3,2,27.5)
VPd(2,5,2,27.5)
VPd(0.7,5,30,27.5)
VPd(2,5,30,35)
VPd(2,5,30,55)

Figure 8. Simulated (color) and observed (black) temporal structure functions α(q) of the total

deformation rates for L = 10 km for January 2002. Dotted lines are the least-square fit for Equation

27, and the inserts are the value of the parameters of the fit (ν, C1, H).
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