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Abstract

Reconstruction of complete seismic data is a crucial step in seismic data processing, which has seen the application of various

convolutional neural networks (CNNs). These CNNs typically establish a direct mapping function between input and output

data. In contrast, diffusion models which learn the feature distribution of the data, have shown promise in enhancing the

accuracy and generalization capabilities of predictions by capturing the distribution of output data. However, diffusion models

lack constraints based on input data. In order to use the diffusion model for seismic data interpolation, our study introduces

conditional constraints to control the interpolation results of diffusion models based on input data. Furthermore, we improving

the sampling process of the diffusion model to ensure higher consistency between the interpolation results and the existing data.

Experimental results conducted on synthetic and field datasets demonstrate that our method outperforms existing methods in

terms of achieving more accurate interpolation results.
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Key Points:8

• Introducing diffusion models for seismic data reconstruction.9
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• Improving the sampling process to ensure greater consistency between the12

interpolation results and the original data.13
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Abstract14

Reconstruction of complete seismic data is a crucial step in seismic data processing,15

which has seen the application of various convolutional neural networks (CNNs).16

These CNNs typically establish a direct mapping function between input and output17

data. In contrast, diffusion models which learn the feature distribution of the data,18

have shown promise in enhancing the accuracy and generalization capabilities of19

predictions by capturing the distribution of output data. However, diffusion models20

lack constraints based on input data. In order to use the diffusion model for seismic21

data interpolation, our study introduces conditional constraints to control the inter-22

polation results of diffusion models based on input data. Furthermore, we improving23

the sampling process of the diffusion model to ensure higher consistency between the24

interpolation results and the existing data. Experimental results conducted on syn-25

thetic and field datasets demonstrate that our method outperforms existing methods26

in terms of achieving more accurate interpolation results.27

Plain Language Summary28

Due to natural or economic constraints, acquired prestack seismic data often29

exhibits missing traces, making it essential to reconstruct complete seismic data30

during the data processing stage. While various convolutional neural networks with31

distinct structures have been used for seismic missing traces interpolation, their32

direct mapping relationship between input datas and output datas can lead to devia-33

tions between the interpolation results and the ground truth. Alternatively, diffusion34

models, as a novel deep learning model, exhibit higher generative accuracy and gen-35

eralization ability by learning data distribution. However, as pure generative models,36

diffusion models do not utilize existing data to guide the generation of unknown37

data. In order to use the diffusion model for seismic data interpolation, we intro-38

duce conditional constraints to control the interpolation results based on the input39

data and improve the sampling process to maintain greater consistency between40

the interpolation results and the existing data. Experimental results conducted on41

both synthetic and field datasets demonstrate that our proposed method yields more42

accurate interpolation results compared to discriminative-based methods.43

1 Introduction44

In seismic exploration, seismic data plays a pivotal role as the foundation for45

analysis and interpretation. However, there are instances where seismic acquisi-46

tion systems cannot be deployed in certain areas due to factors such as economic or47

natural constraints, as well as geographical or physical limitations (Kuijpers et al.,48

2021). Consequently, this leads to the occurrence of consecutive missing traces in49

the prestack seismic data (Wei et al., 2021; Pawelec et al., 2021). The presence of50

missing traces severely impacts the subsequent processing and analysis of seismic51

data, underscoring the need for a crucial step: the reconstruction of complete seismic52

data.53

The methods for interpolating and reconstructing irregular seismic data can be54

divided into two main categories:traditional interpolation based on the mathemati-55

cal or physical properties of the data (Zhou & Han, 2018), and deep learning-based56

methods that utilize neural networks to interpolate irregular data (Jia & Ma, 2017;57

Park et al., 2021). Methods based on mathematical or physical properties, such as58

the frequency-space (FX) prediction filtering method (Naghizadeh & Sacchi, 2009)59

and the projection onto convex sets (POCS) algorithm based on curvelet transform60

(Yang et al., 2012), are not dataset-specific. However, they are not as effective in61

handling complex field data and continuous large gaps. Therefore, they are often62

used as alternative approaches. On the other hand, deep learning-based methods63
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are not limited by data complexity and can effectively capture the features between64

traces (Pan et al., 2020), resulting in better reconstruction outcomes. For example,65

ResNet-based data interpolation method proposed by B. Wang et al. (2019), U-Net66

network used by Chai et al. (2020) for seismic data reconstruction, convolutional67

autoencoders proposed by Y. Wang et al. (2020) for interpolating missing traces,68

the reconstruction network combining deep learning with traditional methods intro-69

duced by Zhang et al. (2020), multistage U-Net trained by He et al. (2021) achieving70

certain results in interpolating low amplitude missing components, and the atten-71

tion mechanisms incorporated by Yu and Wu (2021) with a hybrid loss function to72

further improve the reconstruction capability of the U-Net network.73

Convolutional discriminative neural networks are capable of directly obtaining74

predictive outputs through the network, establishing a direct mapping relationship75

between input and output datas. However, interpolating practical data poses certain76

challenges, particularly when dealing with limited samples or continuous large gaps77

in the data traces. To address this issue, we propose a seismic data interpolation78

method based on a diffusion model (J. Song et al., 2020; Rombach et al., 2022).79

This method leverages the ability to learn the distribution (Dhariwal & Nichol,80

2021) of existing seismic data, enabling it to achieve superior results compared to81

existing methods. It demonstrates effectiveness in interpolating both high and low82

amplitude missing components, as well as large gap continuous missing traces and83

small gap random missing traces.84

This paper presents a novel deep learning paradigm, the diffusion model, for85

seismic data reconstruction. It outlines the architecture and mathematical principles86

of the diffusion model, which originally produces unconstrained results that are not87

correlated with the distribution of existing data, making it unsuitable for seismic88

data reconstruction. To address this issue, we propose the following improvements89

and contributions:90

1.To guide the generation of data based on the input seismic data, we incorpo-91

rate conditional constraints into the diffusion model.92

2.To avoid generating conflicting data distributions with the original data dis-93

tribution, we improve the sampling process by constraining the generation process94

through reverse diffusion iterations that sample from the given data.95

The comparative experimental results on synthetic and field datasets demon-96

strate the superiority of our method over existing approaches in terms of achieving97

more accurate interpolation results. Furthermore, the diffusion model exhibits supe-98

rior generative accuracy and enhanced generalization ability by learning the underly-99

ing data distribution(Dhariwal & Nichol, 2021). Consequently, our network enables100

the generalization to increasingly complex missing scenarios during the inference101

process.102

2 Diffusion model103

Diffusion model is a probabilistic generative model that learns the encoding104

distribution through the encoding process and then uses a neural network to reverse105

the encoding process to obtain the decoding distribution. The distribution itself is106

not the target data, so the reparameterization trick (D. P. Kingma & Welling, 2013)107

is employed to sample deterministic target data from the decoding distribution. This108

approach effectively avoids encoding distortion and reduces the deviation between109

the generated data and the ground truth.110

2.1 Training Process:111

During the training process, the diffusion model defines a forward encod-112

ing process. This process gradually encodes a real-space vector x0 into a latent-113

space vector xT over T encoding steps, with xT following a Gaussian distribution114
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xT ∼ N (0, I). In the diffusion model, based on the Langevin dynamics, a custom115

variance schedule can be used to stabilize the encoding process (Y. Song & Ermon,116

2019). The encoding process from step t− 1 to step t can be defined as follows:117

q(xt | xt−1) = N (µt, βtI) (1)118

The value of βt is obtained from a predefined variance table and typically linearly119

increases from 0.0001 to 0.002. µt represents the mean, and according to Nichol and120

Dhariwal (2021), µt =
√
1− βtxt−1. Therefore, equation (1) can be rewritten as:121

q(xt | xt−1) = N (
√
1− βtxt−1, βtI) (2)122

According to Ho et al. (2020), the encoding formula (3) from step 0 to step t can be123

derived from equation (2):124

q(xt | x0) = N (
√
αtx0, (1− αt)I) (3)125

Simultaneously, reparameterization can be used to obtain xt.126

xt =
√
αtx0 + ϵt

√
(1− αt), ϵt ∼ N (0, I) (4)127

where αt = 1− βt, αt =
∏t

s=0 αs. ϵt is sampled from a Gaussian distribution.128

The diffusion model is trained to reverse this process, modelling predicted by129

a neural network, aiming to obtain the data distribution of the step t-1, denoted as130

pθ(xt−1 | xt) as shown in Equation (5). In the diffusion model, pθ is also a Gaussian131

distribution (Sohl-Dickstein et al., 2015), so the network needs to estimate the mean132

µθ(xt, t) and variance βθ(xt, t) of the distribution.133

pθ(xt−1 | xt) = N (µθ(xt, t), βθ(xt, t)) (5)134

To facilitate model training, µθ(xt, t) can be further expressed as:135

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)) (6)136

Expressing βθ(xt, t) as:137

βθ(xt, t) = exp(ϵθ(xt, t) log βt + (1− ϵθ(xt, t)) log β̃t) (7)138

Where β̃t = 1−αt−1

1−αt
βt. Both µθ(xt, t) and βθ(xt, t) are functions of ϵθ(xt, t). There-139

fore, the network only needs to estimate ϵθ(xt, t).140

To train the network model, considering the variational lower bound141

(D. Kingma et al., 2021), we can derive the loss function Lvlb for the network:142

Lvlb = Eq[DKL(q(xT | x0) ∥ p(xT ))︸ ︷︷ ︸
LT

+
∑
t>1

DKL(q(xt | xt−1, x0) ∥ pθ(xt−1 | xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0 | x1)︸ ︷︷ ︸
L0

]

(8)143

The diffusion model randomly selects the step t for training during network training144

process. Therefore, in one training process, only the Lt−1 loss in the above equation145

needs to be considered. According to Ho et al. (2020), a simplified loss function can146

be further derived as shown in Equation (9), where ϵt is given by Equation (4).147

Lsimple = Et,x0,ϵt [∥ϵt − ϵθ(xt, t)∥2] (9)148

2.2 Generation Process:149

To generate real-space vectors, the diffusion model iteratively decodes a ran-150

domly sampled vector xT from the T-dimensional latent space, ultimately obtaining151

a vector x0 in the real space. The decoding process at step t is as follows:152
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Using a trained neural network model to predict the mean µθ(xt, t) and vari-153

ance βθ(xt, t) of the data distribution at the step t-1, obtaining the data distribution154

pθ(xt−1 | xt).155

pθ(xt−1 | xt) = N (µθ(xt, t), βθ(xt, t)) (10)156

By utilizing the reparameterization, obtain xt−1.157

xt−1 =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)) + ϵ
√

βθ(xt, t), ϵ ∼ N (0, I) (11)158

3 Method159

The diffusion model described in the previous section cannot be directly used160

for seismic data reconstruction. The diffusion model is a purely generative model161

that can only generate vectors in the real space by sampling from the latent space,162

once it is trained. However, in seismic data reconstruction, the original data pro-163

vided by the user must be used for reconstruction, rather than generating randomly.164

In this section, an improved diffusion model will be proposed to address this issue.165

3.1 Resampling166

The goal of seismic data reconstruction is to generate unknown traces based on167

known traces. However, the original diffusion model does not establish a direct link168

between the generated traces and the known traces, thereby failing to ensure that169

the distribution of the generated traces aligns with that of the known traces. We use170

the property that diffusion model naturally aims to generate consistent structural to171

solve this problem (Lugmayr et al., 2022).172

During sampling, the entire seismic data is represented as x, the unknown part173

is represented as m ⊙ x, and the known part is represented as (1 − m) ⊙ x. From174

equation (10), it can be observed that each sample xt−1 only depends on xt. There-175

fore, it is possible to modify the known part (1−m)⊙xt−1 of xt−1 while maintaining176

the corresponding distribution. According to (3) and (10), we can obtain:177

xknown
t−1 ∼ N (

√
αt−1x0, (1− αt−1)I) (12a)178

179

xunknown
t−1 ∼ N (µθ(xt, t), βθ(xt, t)I) (12b)180

181

xt−1 = (1−m)⊙ xknown
t−1 +m⊙ xunknown

t−1 (12c)182

Encode xt−1 into xt using equation (1), at which xt contains information from the183

known data, establishing a certain connection between the known and unknown184

data, reducing data conflicts. Then, obtain xt−1 from this xt using equation (11),185

and repeat this process.186

3.2 Correction187

Resampling is used to establish a connection between the known data and the188

generated data. However, there is a possibility that the reconstructed result may189

exhibit a distribution similar to the ground truth. During the iterative decoding190

process of the diffusion model, if the selected vector xT coincides with the one ob-191

tained by encoding the ground truth into the T th latent space, the decoded vectors192

in the real space can be considered as the ground truth. However, in practice, the193

original diffusion model randomly selects the vector xT , making it unlikely for the194

decoded vectors to represent the ground truth. Finding the corresponding xT for195

the ground truth is particularly challenging, especially in seismic data interpola-196

tion where the ground truth itself is uncertain. Therefore, we propose an iterative197

correction method that gradually approaches the ground truth by incorporating self-198

supervision constraints in each iterative sampling step. In each step t, the constraint199
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Algorithm 1 Seismic data reconstruction algorithm.

1: for t = T, . . . , 1 do
2: for u = 1, . . . , U do
3: ϵ ∼ N (0, I) if t > 1,else ϵ = 0
4: xknown

t−1 =
√
αtx0 + ϵ

√
(1− αt))

5: z ∼ N (0, I) if t > 1,else z = 0
6: xunknown

t−1 = 1√
αt
(xt − βt√

1−αt
ϵθ(xt, t)) + z

√
βθ(xt, t)

7: xt−1 = (1−m)⊙ xknown
t−1 +m⊙ xunknown

t−1

8: if u < U and t > 1 then
9: xt ∼ N (

√
1− βt−1xt−1, βt−1I)

10: end if
11: end for
12: end for
13: return x0

encourages the sampled xt−1 to be closer to the representation of the ground truth200

in the (t − 1)th latent space vector, thereby facilitating self-correction within the201

model. By performing T iterations of correction, the reconstructed vectors in the202

real space are compelled to approximate the ground truth.203

To incorporate self-supervision constraints into the training process of the204

diffusion model, equation (5) is rewritten as follows:205

pθ(xt−1 | xt) = N (µθ(xt, y, t), βθ(xt, y, t)) (13)206

Where µθ(xt, y, t) is defined as:207

µθ(xt, y, t) =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, y, t)) (14)208

βθ(xt, y, t) is represented as:209

βθ(xt, y, t) = exp(ϵθ(xt, y, t) log βt + (1− ϵθ(xt, y, t)) log β̃t) (15)210

Where β̃t = 1−αt−1

1−αt
βt. The network is modified to estimate ϵθ(xt, y, t). The varia-211

tional lower bound loss function Lvlb is rewritten as:212

Lvlb = Eq[DKL(q(xT | x0) ∥ p(xT ))︸ ︷︷ ︸
LT

+
∑
t>1

DKL(q(xt | xt−1,x0
) ∥ pθ(xt−1 | xt, y))︸ ︷︷ ︸

Lt−1

− log pθ(x0 | x1, y)︸ ︷︷ ︸
L0

]

(16)213

Based on Lt−1, the simplified loss function is rewritten as:214

Lsimple = Et,x0,ϵt [∥ϵt − ϵθ(xt, y, t)∥2] (17)215

In the generation process, the decoding process at step t is changed as follows:216

Using a trained neural network model to predict the mean µθ(xt, y, t) and217

variance βθ(xt, y, t) of the data distribution at the step t-1, obtaining the data distri-218

bution pθ(xt−1 | xt).219

pθ(xt−1 | xt) = N (µθ(xt, y, t), βθ(xt, y, t)) (18)220

Using the reparameterization, we obtain xt−1:221

xt−1 =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, y, t)) + ϵ
√
β(xt, y, t), ϵ ∼ N (0, I) (19)222
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Figure 1. The reconstruction results of different networks for small gap missing traces in the

synthetic dataset: (a) Interpolated data, (b) CAE, (c) POCSCNN, (d) ANet, (e) Diffusion model,

(f) Ground truth.

4 Experiments223

4.1 Synthetic Data224

To assess the effectiveness of the proposed method, we conducted experiments225

on a synthetic dataset using the publicly available Society of Exploration Geophysi-226

cists (SEG) C3 dataset. This dataset consists of 45 shots sampled at an 8 ms rate,227

with each shot containing a receiver grid of size 201 × 201 and 625 samples per228

trace.229

A total of 1800 patches were selected, out of which 1260 patches were used for230

training, 360 patches for validation and 180 patches for testing. The value of T for231

the forward process was set to 1000, and the number of resampling steps was set to232

250.233

In addition, three different network models were selected for comparative test-234

ing, including CAE (Y. Wang et al., 2020), POCSCNN (Zhang et al., 2020), and235

ANet (Yu & Wu, 2021). Following the methods described in the paper, these models236

were trained to their optimal states and then compared.237

Fig. 1 shows the reconstruction results of the four network models for small238

gap missing traces. In the data, 28% of the traces were intentionally set to 0 to239

represent the missing traces, which were distributed in seven locations with each240

location accounting for 4% of the data. The results demonstrate that CAE did not241

perform well in the task of reconstruction, POCSCNN exhibited relatively satis-242

factory results but introduced certain biases, and ANet achieved slightly improved243

results while still exhibiting some data biases. Conversely, our proposed method244

yielded the most plausible and reasonable results.245
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Figure 2. The reconstruction results of different networks for large gap missing traces in the

synthetic dataset: (a) Interpolated data, (b) CAE, (c) POCSCNN, (d) ANet, (e) Diffusion model,

(f) Ground truth.

To ensure an accurate assessment of the reconstruction results, three com-246

monly employed metrics were employed. Specifically, the Mean Squared Error247

(MSE), Mean Absolute Error (MAE), and Structural Similarity (SSIM) (Huang et248

al., 2022) were computed to quantify the disparities between the reconstructed data249

and the ground truth. The SSIM metric was employed to gauge the resemblance250

between the two datasets, with values ranging from 0 to 1. A higher SSIM value in-251

dicates a greater likeness between the datasets. The comparison of the four network252

models (see Table S1 in Supporting Information S1) revealing that our proposed253

method outperforms the other methods in terms of these metrics, demonstrating254

superior performance.255

To evaluate the reconstruction performance of the diffusion model in the con-256

text of large gap missing traces, 25% of the consecutive traces in the data were257

intentionally set to 0 to represent the missing traces. The results were compared258

with the other three models, as shown in Fig. 2. It can be observed that CAE and259

POCSCNN performed the worst, with CAE only reconstructing a portion of the260

traces near the known part, and POCSCNN even experiencing failure in reconstruc-261

tion. ANet lost some details and had slightly inferior performance compared to the262

method proposed in this paper. The comparison results of the four networks (see263

Table S2 in Supporting Information S1) show that our method still exhibited the264

best performance.265

4.2 Field Data266

To assess the effectiveness of our method on field data, we conducted experi-267

ments on the Mobil Avo Viking Graben Line 12 field dataset and compared it with268
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Figure 3. The reconstruction results of different networks for small gap missing traces in the

field dataset: (a) Interpolated data, (b) CAE, (c) POCSCNN, (d) ANet, (e) Diffusion model, (f)

Ground truth.

three other models. A total of 1000 patches were selected, with 700 patches allo-269

cated for training, 200 patches for validation and 100 patches for testing. The value270

of T for the forward process was set to 1000, and the number of resampling steps271

was set to 250.272

Fig. 3 shows the reconstruction results of the four network models for small273

gap missing traces in the field dataset. In the data, 20% of the traces were intention-274

ally set to 0 to represent the missing traces, which were distributed in five locations275

with each location accounting for 4% of the data. It is evident that CAE did not276

perform well in the reconstruction task, POCSCNN yielded slightly improved results277

but introduced certain biases, and ANet approached the correct reconstruction but278

still exhibited some data biases. In contrast, our proposed method produced the279

most reasonable results.280

Calculates the MSE, MAE, and SSIM between the reconstructed data and the281

ground truth (see Table S3 in Supporting Information S1), it can be observed that282

our method outperforms the other methods significantly in these metrics, demon-283

strating superior performance.284

To evaluate the reconstruction performance of the diffusion model on large gap285

missing traces in the field dataset, 25% of the continuous traces in the data were286

set to 0 as missing traces. A comparison was made with other three models, and287

the results are shown in Fig. 4. It can be observed that CAE and POCSCNN per-288

formed the worst. CAE only reconstructed partial traces near the known part, while289

POCSCNN even failed to reconstruct. ANet missed some details and had slightly290

worse performance compared to our method. The comparison of the four networks291

(see Table S4 in Supporting Information S1), show that our method still exhibited292
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Figure 4. The reconstruction results of different networks for large gap missing traces in the

field dataset: (a) Interpolated data, (b) CAE, (c) POCSCNN, (d) ANet, (e) Diffusion model, (f)

Ground truth.

superior performance. The above experiments thoroughly validate the effectiveness293

and applicability of the proposed method in this study.294

5 Conclusions295

This paper presents a constrained diffusion model for seismic data interpola-296

tion and utilize Resampling to impose additional constraints by sampling from given297

data during the reverse diffusion iterations. This marks the first successful applica-298

tion of the diffusion model in seismic data reconstruction. By learning the distribu-299

tion of existing seismic data, this method effectively mitigates substantial deviations300

between generated data and ground truth, which are caused by encoding distortions301

in traditional convolutional discriminative networks. Comparative experimental re-302

sults on synthetic and field datasets substantiate that our proposed method achieves303

more accurate interpolation results compared to existing methods. Additionally, the304

diffusion model exhibits superior generative accuracy and enhanced generalization305

ability by learning the data distribution, enabling our network generalizes to more306

complexity missing scenario during the inference period.307

6 Open Research308

The observation of Society of Exploration Geophysicists (SEG) C3 dataset309

(Aminzadeh et al., 1997) of this study are available at https://wiki.seg.org/310

wiki/SEG C3 45 shot.311
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The observation of Mobil Avo Viking Graben Line 12 field dataset (Keys312

& Foster, 1998) of this study are available at https://wiki.seg.org/wiki/313

Mobil AVO viking graben line 12.314
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Abstract14

Reconstruction of complete seismic data is a crucial step in seismic data processing,15

which has seen the application of various convolutional neural networks (CNNs).16

These CNNs typically establish a direct mapping function between input and output17

data. In contrast, diffusion models which learn the feature distribution of the data,18

have shown promise in enhancing the accuracy and generalization capabilities of19

predictions by capturing the distribution of output data. However, diffusion models20

lack constraints based on input data. In order to use the diffusion model for seismic21

data interpolation, our study introduces conditional constraints to control the inter-22

polation results of diffusion models based on input data. Furthermore, we improving23

the sampling process of the diffusion model to ensure higher consistency between the24

interpolation results and the existing data. Experimental results conducted on syn-25

thetic and field datasets demonstrate that our method outperforms existing methods26

in terms of achieving more accurate interpolation results.27

Plain Language Summary28

Due to natural or economic constraints, acquired prestack seismic data often29

exhibits missing traces, making it essential to reconstruct complete seismic data30

during the data processing stage. While various convolutional neural networks with31

distinct structures have been used for seismic missing traces interpolation, their32

direct mapping relationship between input datas and output datas can lead to devia-33

tions between the interpolation results and the ground truth. Alternatively, diffusion34

models, as a novel deep learning model, exhibit higher generative accuracy and gen-35

eralization ability by learning data distribution. However, as pure generative models,36

diffusion models do not utilize existing data to guide the generation of unknown37

data. In order to use the diffusion model for seismic data interpolation, we intro-38

duce conditional constraints to control the interpolation results based on the input39

data and improve the sampling process to maintain greater consistency between40

the interpolation results and the existing data. Experimental results conducted on41

both synthetic and field datasets demonstrate that our proposed method yields more42

accurate interpolation results compared to discriminative-based methods.43

1 Introduction44

In seismic exploration, seismic data plays a pivotal role as the foundation for45

analysis and interpretation. However, there are instances where seismic acquisi-46

tion systems cannot be deployed in certain areas due to factors such as economic or47

natural constraints, as well as geographical or physical limitations (Kuijpers et al.,48

2021). Consequently, this leads to the occurrence of consecutive missing traces in49

the prestack seismic data (Wei et al., 2021; Pawelec et al., 2021). The presence of50

missing traces severely impacts the subsequent processing and analysis of seismic51

data, underscoring the need for a crucial step: the reconstruction of complete seismic52

data.53

The methods for interpolating and reconstructing irregular seismic data can be54

divided into two main categories:traditional interpolation based on the mathemati-55

cal or physical properties of the data (Zhou & Han, 2018), and deep learning-based56

methods that utilize neural networks to interpolate irregular data (Jia & Ma, 2017;57

Park et al., 2021). Methods based on mathematical or physical properties, such as58

the frequency-space (FX) prediction filtering method (Naghizadeh & Sacchi, 2009)59

and the projection onto convex sets (POCS) algorithm based on curvelet transform60

(Yang et al., 2012), are not dataset-specific. However, they are not as effective in61

handling complex field data and continuous large gaps. Therefore, they are often62

used as alternative approaches. On the other hand, deep learning-based methods63
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are not limited by data complexity and can effectively capture the features between64

traces (Pan et al., 2020), resulting in better reconstruction outcomes. For example,65

ResNet-based data interpolation method proposed by B. Wang et al. (2019), U-Net66

network used by Chai et al. (2020) for seismic data reconstruction, convolutional67

autoencoders proposed by Y. Wang et al. (2020) for interpolating missing traces,68

the reconstruction network combining deep learning with traditional methods intro-69

duced by Zhang et al. (2020), multistage U-Net trained by He et al. (2021) achieving70

certain results in interpolating low amplitude missing components, and the atten-71

tion mechanisms incorporated by Yu and Wu (2021) with a hybrid loss function to72

further improve the reconstruction capability of the U-Net network.73

Convolutional discriminative neural networks are capable of directly obtaining74

predictive outputs through the network, establishing a direct mapping relationship75

between input and output datas. However, interpolating practical data poses certain76

challenges, particularly when dealing with limited samples or continuous large gaps77

in the data traces. To address this issue, we propose a seismic data interpolation78

method based on a diffusion model (J. Song et al., 2020; Rombach et al., 2022).79

This method leverages the ability to learn the distribution (Dhariwal & Nichol,80

2021) of existing seismic data, enabling it to achieve superior results compared to81

existing methods. It demonstrates effectiveness in interpolating both high and low82

amplitude missing components, as well as large gap continuous missing traces and83

small gap random missing traces.84

This paper presents a novel deep learning paradigm, the diffusion model, for85

seismic data reconstruction. It outlines the architecture and mathematical principles86

of the diffusion model, which originally produces unconstrained results that are not87

correlated with the distribution of existing data, making it unsuitable for seismic88

data reconstruction. To address this issue, we propose the following improvements89

and contributions:90

1.To guide the generation of data based on the input seismic data, we incorpo-91

rate conditional constraints into the diffusion model.92

2.To avoid generating conflicting data distributions with the original data dis-93

tribution, we improve the sampling process by constraining the generation process94

through reverse diffusion iterations that sample from the given data.95

The comparative experimental results on synthetic and field datasets demon-96

strate the superiority of our method over existing approaches in terms of achieving97

more accurate interpolation results. Furthermore, the diffusion model exhibits supe-98

rior generative accuracy and enhanced generalization ability by learning the underly-99

ing data distribution(Dhariwal & Nichol, 2021). Consequently, our network enables100

the generalization to increasingly complex missing scenarios during the inference101

process.102

2 Diffusion model103

Diffusion model is a probabilistic generative model that learns the encoding104

distribution through the encoding process and then uses a neural network to reverse105

the encoding process to obtain the decoding distribution. The distribution itself is106

not the target data, so the reparameterization trick (D. P. Kingma & Welling, 2013)107

is employed to sample deterministic target data from the decoding distribution. This108

approach effectively avoids encoding distortion and reduces the deviation between109

the generated data and the ground truth.110

2.1 Training Process:111

During the training process, the diffusion model defines a forward encod-112

ing process. This process gradually encodes a real-space vector x0 into a latent-113

space vector xT over T encoding steps, with xT following a Gaussian distribution114
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xT ∼ N (0, I). In the diffusion model, based on the Langevin dynamics, a custom115

variance schedule can be used to stabilize the encoding process (Y. Song & Ermon,116

2019). The encoding process from step t− 1 to step t can be defined as follows:117

q(xt | xt−1) = N (µt, βtI) (1)118

The value of βt is obtained from a predefined variance table and typically linearly119

increases from 0.0001 to 0.002. µt represents the mean, and according to Nichol and120

Dhariwal (2021), µt =
√
1− βtxt−1. Therefore, equation (1) can be rewritten as:121

q(xt | xt−1) = N (
√
1− βtxt−1, βtI) (2)122

According to Ho et al. (2020), the encoding formula (3) from step 0 to step t can be123

derived from equation (2):124

q(xt | x0) = N (
√
αtx0, (1− αt)I) (3)125

Simultaneously, reparameterization can be used to obtain xt.126

xt =
√
αtx0 + ϵt

√
(1− αt), ϵt ∼ N (0, I) (4)127

where αt = 1− βt, αt =
∏t

s=0 αs. ϵt is sampled from a Gaussian distribution.128

The diffusion model is trained to reverse this process, modelling predicted by129

a neural network, aiming to obtain the data distribution of the step t-1, denoted as130

pθ(xt−1 | xt) as shown in Equation (5). In the diffusion model, pθ is also a Gaussian131

distribution (Sohl-Dickstein et al., 2015), so the network needs to estimate the mean132

µθ(xt, t) and variance βθ(xt, t) of the distribution.133

pθ(xt−1 | xt) = N (µθ(xt, t), βθ(xt, t)) (5)134

To facilitate model training, µθ(xt, t) can be further expressed as:135

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)) (6)136

Expressing βθ(xt, t) as:137

βθ(xt, t) = exp(ϵθ(xt, t) log βt + (1− ϵθ(xt, t)) log β̃t) (7)138

Where β̃t = 1−αt−1

1−αt
βt. Both µθ(xt, t) and βθ(xt, t) are functions of ϵθ(xt, t). There-139

fore, the network only needs to estimate ϵθ(xt, t).140

To train the network model, considering the variational lower bound141

(D. Kingma et al., 2021), we can derive the loss function Lvlb for the network:142

Lvlb = Eq[DKL(q(xT | x0) ∥ p(xT ))︸ ︷︷ ︸
LT

+
∑
t>1

DKL(q(xt | xt−1, x0) ∥ pθ(xt−1 | xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0 | x1)︸ ︷︷ ︸
L0

]

(8)143

The diffusion model randomly selects the step t for training during network training144

process. Therefore, in one training process, only the Lt−1 loss in the above equation145

needs to be considered. According to Ho et al. (2020), a simplified loss function can146

be further derived as shown in Equation (9), where ϵt is given by Equation (4).147

Lsimple = Et,x0,ϵt [∥ϵt − ϵθ(xt, t)∥2] (9)148

2.2 Generation Process:149

To generate real-space vectors, the diffusion model iteratively decodes a ran-150

domly sampled vector xT from the T-dimensional latent space, ultimately obtaining151

a vector x0 in the real space. The decoding process at step t is as follows:152

–4–



manuscript submitted to Geophysical Research Letters

Using a trained neural network model to predict the mean µθ(xt, t) and vari-153

ance βθ(xt, t) of the data distribution at the step t-1, obtaining the data distribution154

pθ(xt−1 | xt).155

pθ(xt−1 | xt) = N (µθ(xt, t), βθ(xt, t)) (10)156

By utilizing the reparameterization, obtain xt−1.157

xt−1 =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)) + ϵ
√

βθ(xt, t), ϵ ∼ N (0, I) (11)158

3 Method159

The diffusion model described in the previous section cannot be directly used160

for seismic data reconstruction. The diffusion model is a purely generative model161

that can only generate vectors in the real space by sampling from the latent space,162

once it is trained. However, in seismic data reconstruction, the original data pro-163

vided by the user must be used for reconstruction, rather than generating randomly.164

In this section, an improved diffusion model will be proposed to address this issue.165

3.1 Resampling166

The goal of seismic data reconstruction is to generate unknown traces based on167

known traces. However, the original diffusion model does not establish a direct link168

between the generated traces and the known traces, thereby failing to ensure that169

the distribution of the generated traces aligns with that of the known traces. We use170

the property that diffusion model naturally aims to generate consistent structural to171

solve this problem (Lugmayr et al., 2022).172

During sampling, the entire seismic data is represented as x, the unknown part173

is represented as m ⊙ x, and the known part is represented as (1 − m) ⊙ x. From174

equation (10), it can be observed that each sample xt−1 only depends on xt. There-175

fore, it is possible to modify the known part (1−m)⊙xt−1 of xt−1 while maintaining176

the corresponding distribution. According to (3) and (10), we can obtain:177

xknown
t−1 ∼ N (

√
αt−1x0, (1− αt−1)I) (12a)178

179

xunknown
t−1 ∼ N (µθ(xt, t), βθ(xt, t)I) (12b)180

181

xt−1 = (1−m)⊙ xknown
t−1 +m⊙ xunknown

t−1 (12c)182

Encode xt−1 into xt using equation (1), at which xt contains information from the183

known data, establishing a certain connection between the known and unknown184

data, reducing data conflicts. Then, obtain xt−1 from this xt using equation (11),185

and repeat this process.186

3.2 Correction187

Resampling is used to establish a connection between the known data and the188

generated data. However, there is a possibility that the reconstructed result may189

exhibit a distribution similar to the ground truth. During the iterative decoding190

process of the diffusion model, if the selected vector xT coincides with the one ob-191

tained by encoding the ground truth into the T th latent space, the decoded vectors192

in the real space can be considered as the ground truth. However, in practice, the193

original diffusion model randomly selects the vector xT , making it unlikely for the194

decoded vectors to represent the ground truth. Finding the corresponding xT for195

the ground truth is particularly challenging, especially in seismic data interpola-196

tion where the ground truth itself is uncertain. Therefore, we propose an iterative197

correction method that gradually approaches the ground truth by incorporating self-198

supervision constraints in each iterative sampling step. In each step t, the constraint199
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Algorithm 1 Seismic data reconstruction algorithm.

1: for t = T, . . . , 1 do
2: for u = 1, . . . , U do
3: ϵ ∼ N (0, I) if t > 1,else ϵ = 0
4: xknown

t−1 =
√
αtx0 + ϵ

√
(1− αt))

5: z ∼ N (0, I) if t > 1,else z = 0
6: xunknown

t−1 = 1√
αt
(xt − βt√

1−αt
ϵθ(xt, t)) + z

√
βθ(xt, t)

7: xt−1 = (1−m)⊙ xknown
t−1 +m⊙ xunknown

t−1

8: if u < U and t > 1 then
9: xt ∼ N (

√
1− βt−1xt−1, βt−1I)

10: end if
11: end for
12: end for
13: return x0

encourages the sampled xt−1 to be closer to the representation of the ground truth200

in the (t − 1)th latent space vector, thereby facilitating self-correction within the201

model. By performing T iterations of correction, the reconstructed vectors in the202

real space are compelled to approximate the ground truth.203

To incorporate self-supervision constraints into the training process of the204

diffusion model, equation (5) is rewritten as follows:205

pθ(xt−1 | xt) = N (µθ(xt, y, t), βθ(xt, y, t)) (13)206

Where µθ(xt, y, t) is defined as:207

µθ(xt, y, t) =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, y, t)) (14)208

βθ(xt, y, t) is represented as:209

βθ(xt, y, t) = exp(ϵθ(xt, y, t) log βt + (1− ϵθ(xt, y, t)) log β̃t) (15)210

Where β̃t = 1−αt−1

1−αt
βt. The network is modified to estimate ϵθ(xt, y, t). The varia-211

tional lower bound loss function Lvlb is rewritten as:212

Lvlb = Eq[DKL(q(xT | x0) ∥ p(xT ))︸ ︷︷ ︸
LT

+
∑
t>1

DKL(q(xt | xt−1,x0
) ∥ pθ(xt−1 | xt, y))︸ ︷︷ ︸

Lt−1

− log pθ(x0 | x1, y)︸ ︷︷ ︸
L0

]

(16)213

Based on Lt−1, the simplified loss function is rewritten as:214

Lsimple = Et,x0,ϵt [∥ϵt − ϵθ(xt, y, t)∥2] (17)215

In the generation process, the decoding process at step t is changed as follows:216

Using a trained neural network model to predict the mean µθ(xt, y, t) and217

variance βθ(xt, y, t) of the data distribution at the step t-1, obtaining the data distri-218

bution pθ(xt−1 | xt).219

pθ(xt−1 | xt) = N (µθ(xt, y, t), βθ(xt, y, t)) (18)220

Using the reparameterization, we obtain xt−1:221

xt−1 =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, y, t)) + ϵ
√
β(xt, y, t), ϵ ∼ N (0, I) (19)222
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Figure 1. The reconstruction results of different networks for small gap missing traces in the

synthetic dataset: (a) Interpolated data, (b) CAE, (c) POCSCNN, (d) ANet, (e) Diffusion model,

(f) Ground truth.

4 Experiments223

4.1 Synthetic Data224

To assess the effectiveness of the proposed method, we conducted experiments225

on a synthetic dataset using the publicly available Society of Exploration Geophysi-226

cists (SEG) C3 dataset. This dataset consists of 45 shots sampled at an 8 ms rate,227

with each shot containing a receiver grid of size 201 × 201 and 625 samples per228

trace.229

A total of 1800 patches were selected, out of which 1260 patches were used for230

training, 360 patches for validation and 180 patches for testing. The value of T for231

the forward process was set to 1000, and the number of resampling steps was set to232

250.233

In addition, three different network models were selected for comparative test-234

ing, including CAE (Y. Wang et al., 2020), POCSCNN (Zhang et al., 2020), and235

ANet (Yu & Wu, 2021). Following the methods described in the paper, these models236

were trained to their optimal states and then compared.237

Fig. 1 shows the reconstruction results of the four network models for small238

gap missing traces. In the data, 28% of the traces were intentionally set to 0 to239

represent the missing traces, which were distributed in seven locations with each240

location accounting for 4% of the data. The results demonstrate that CAE did not241

perform well in the task of reconstruction, POCSCNN exhibited relatively satis-242

factory results but introduced certain biases, and ANet achieved slightly improved243

results while still exhibiting some data biases. Conversely, our proposed method244

yielded the most plausible and reasonable results.245
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Figure 2. The reconstruction results of different networks for large gap missing traces in the

synthetic dataset: (a) Interpolated data, (b) CAE, (c) POCSCNN, (d) ANet, (e) Diffusion model,

(f) Ground truth.

To ensure an accurate assessment of the reconstruction results, three com-246

monly employed metrics were employed. Specifically, the Mean Squared Error247

(MSE), Mean Absolute Error (MAE), and Structural Similarity (SSIM) (Huang et248

al., 2022) were computed to quantify the disparities between the reconstructed data249

and the ground truth. The SSIM metric was employed to gauge the resemblance250

between the two datasets, with values ranging from 0 to 1. A higher SSIM value in-251

dicates a greater likeness between the datasets. The comparison of the four network252

models (see Table S1 in Supporting Information S1) revealing that our proposed253

method outperforms the other methods in terms of these metrics, demonstrating254

superior performance.255

To evaluate the reconstruction performance of the diffusion model in the con-256

text of large gap missing traces, 25% of the consecutive traces in the data were257

intentionally set to 0 to represent the missing traces. The results were compared258

with the other three models, as shown in Fig. 2. It can be observed that CAE and259

POCSCNN performed the worst, with CAE only reconstructing a portion of the260

traces near the known part, and POCSCNN even experiencing failure in reconstruc-261

tion. ANet lost some details and had slightly inferior performance compared to the262

method proposed in this paper. The comparison results of the four networks (see263

Table S2 in Supporting Information S1) show that our method still exhibited the264

best performance.265

4.2 Field Data266

To assess the effectiveness of our method on field data, we conducted experi-267

ments on the Mobil Avo Viking Graben Line 12 field dataset and compared it with268
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Figure 3. The reconstruction results of different networks for small gap missing traces in the

field dataset: (a) Interpolated data, (b) CAE, (c) POCSCNN, (d) ANet, (e) Diffusion model, (f)

Ground truth.

three other models. A total of 1000 patches were selected, with 700 patches allo-269

cated for training, 200 patches for validation and 100 patches for testing. The value270

of T for the forward process was set to 1000, and the number of resampling steps271

was set to 250.272

Fig. 3 shows the reconstruction results of the four network models for small273

gap missing traces in the field dataset. In the data, 20% of the traces were intention-274

ally set to 0 to represent the missing traces, which were distributed in five locations275

with each location accounting for 4% of the data. It is evident that CAE did not276

perform well in the reconstruction task, POCSCNN yielded slightly improved results277

but introduced certain biases, and ANet approached the correct reconstruction but278

still exhibited some data biases. In contrast, our proposed method produced the279

most reasonable results.280

Calculates the MSE, MAE, and SSIM between the reconstructed data and the281

ground truth (see Table S3 in Supporting Information S1), it can be observed that282

our method outperforms the other methods significantly in these metrics, demon-283

strating superior performance.284

To evaluate the reconstruction performance of the diffusion model on large gap285

missing traces in the field dataset, 25% of the continuous traces in the data were286

set to 0 as missing traces. A comparison was made with other three models, and287

the results are shown in Fig. 4. It can be observed that CAE and POCSCNN per-288

formed the worst. CAE only reconstructed partial traces near the known part, while289

POCSCNN even failed to reconstruct. ANet missed some details and had slightly290

worse performance compared to our method. The comparison of the four networks291

(see Table S4 in Supporting Information S1), show that our method still exhibited292
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Figure 4. The reconstruction results of different networks for large gap missing traces in the

field dataset: (a) Interpolated data, (b) CAE, (c) POCSCNN, (d) ANet, (e) Diffusion model, (f)

Ground truth.

superior performance. The above experiments thoroughly validate the effectiveness293

and applicability of the proposed method in this study.294

5 Conclusions295

This paper presents a constrained diffusion model for seismic data interpola-296

tion and utilize Resampling to impose additional constraints by sampling from given297

data during the reverse diffusion iterations. This marks the first successful applica-298

tion of the diffusion model in seismic data reconstruction. By learning the distribu-299

tion of existing seismic data, this method effectively mitigates substantial deviations300

between generated data and ground truth, which are caused by encoding distortions301

in traditional convolutional discriminative networks. Comparative experimental re-302

sults on synthetic and field datasets substantiate that our proposed method achieves303

more accurate interpolation results compared to existing methods. Additionally, the304

diffusion model exhibits superior generative accuracy and enhanced generalization305

ability by learning the data distribution, enabling our network generalizes to more306

complexity missing scenario during the inference period.307

6 Open Research308

The observation of Society of Exploration Geophysicists (SEG) C3 dataset309

(Aminzadeh et al., 1997) of this study are available at https://wiki.seg.org/310

wiki/SEG C3 45 shot.311
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The observation of Mobil Avo Viking Graben Line 12 field dataset (Keys312

& Foster, 1998) of this study are available at https://wiki.seg.org/wiki/313

Mobil AVO viking graben line 12.314
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Table S4 calculates the MSE, MAE, and SSIM between the reconstructed data and the

ground truth for the four networks on field dataset with large gap missing traces.
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Table S1. comparison of four reconstruction networks for small gap missing traces in the

synthetic dataset.

MSE MAE SSIM
CAE 1.9647 0.21 0.80

POCSCNN 0.1901 0.13 0.62
ANET 0.4251 0.09 0.89

Diffusion Model 0.0384 0.03 0.94

Table S2. Comparison of four reconstruction networks for large gap missing traces in the

synthetic dataset.

MSE MAE SSIM
CAE 2.7150 0.22 0.82

POCSCNN 100.1771 2.05 0.53
ANET 0.7328 0.13 0.89

Diffusion Model 0.1388 0.06 0.93

Table S3. Comparison of four reconstruction networks for small gap missing traces in the

field dataset.
MSE MAE SSIM

CAE 55.0735 1.34 0.82
POCSCNN 48.8067 2.35 0.50

ANET 19.7354 0.84 0.86
Diffusion Model 0.8422 0.18 0.93

Table S4. Comparison of four reconstruction networks for large gap missing traces in the field

dataset.
MSE MAE SSIM

CAE 227.0666 3.61 0.78
POCSCNN 7882.4298 26.52 0.33

ANET 148.1965 2.90 0.82
Diffusion Model 28.0099 1.34 0.92
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