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Abstract

Air-sea exchange of carbon dioxide (CO$ 2$) in the Southern Ocean plays an important role in the global carbon budget.

Previous studies have suggested that flow around topographic features of the Southern Ocean enhances the upward supply of

carbon from the deep to the surface, influencing air-sea CO$ 2$ exchange. Here, we investigate the role of seafloor topography on

the transport of carbon and associated air-sea CO$ 2$ flux in an idealized channel model. We find elevated CO$ 2$ outgassing

downstream of a seafloor ridge, driven by anomalous advection of dissolved inorganic carbon. Argo-like Lagrangian particles

in our channel model sample heterogeneously in the vicinity of the seafloor ridge, which could impact float-based estimates of

CO$ 2$ flux.
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Key Points:8

• We examine the localized patterns of air-sea CO2 fluxes in an idealized Southern9

Ocean-like model with simple biogeochemistry.10

• We find intense sea-air CO2 fluxes upstream of seafloor topography driven by anoma-11

lous advection of inorganic carbon.12

• Due to the topography, uncertainty in the flux is highly sensitive to sampling net-13

work design.14
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Abstract15

Air-sea exchange of carbon dioxide (CO2) in the Southern Ocean plays an important role16

in the global carbon budget. Previous studies have suggested that flow around topographic17

features of the Southern Ocean enhances the upward supply of carbon from the deep to18

the surface, influencing air-sea CO2 exchange. Here, we investigate the role of seafloor19

topography on the transport of carbon and associated air-sea CO2 flux in an idealized20

channel model. We find elevated CO2 outgassing downstream of a seafloor ridge, driven21

by anomalous advection of dissolved inorganic carbon. Argo-like Lagrangian particles22

in our channel model sample heterogeneously in the vicinity of the seafloor ridge, which23

could impact float-based estimates of CO2 flux.24

Plain Language Summary25

The Southern Ocean, the ocean surrounding Antarctica, contributes significantly26

to carbon exchange between the global ocean and the atmosphere, which in turn mat-27

ters for climate change. Here, we use a simplified model of the Southern Ocean to see28

how mountain ranges on the sea floor influence the carbon exchange at the ocean-atmosphere29

interface. We find that the seafloor mountain ranges lead to more carbon exchange. Float-30

ing carbon sensors in our model ocean may under or over sample the water near the moun-31

tains and this can affect the carbon exchange that they report.32

1 Introduction33

The Southern Ocean is an active driver in the global cycling of carbon dioxide (CO2).34

Studies based on coarse-resolution ocean general circulation models suggest that the South-35

ern Ocean carbon cycle is characterized by the surfacing of old, respired carbon from depth36

at high latitudes and the subduction of anthropogenic carbon driven by the meridional37

overturning circulation from the surface into the interior at mid latitudes (Mikaloff Fletcher38

et al., 2006, 2007). However, observations of the resulting air-sea CO2 fluxes from these39

physical circulation processes are sparse in both space and time (Bakker et al., 2016),40

and this has limited our ability to accurately quantify the Southern Ocean’s role in the41

global carbon budget. New observations from autonomous floats equipped with pH sen-42

sors as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOC-43

COM) program suggest that the outgassing of respired carbon in high latitudes has pre-44
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viously been underestimated (Gray et al., 2018; Bushinsky et al., 2019), suggesting there45

is more work to be done to constrain the air-sea carbon fluxes.46

One contributing factor to the uncertainty in the Southern Ocean carbon budget47

is spatial variability in the air-sea CO2 flux that is engendered by regional variations in48

the physical circulation. While the canonical view of Southern Ocean circulation is an49

annular circumpolar current with a broad region of surface divergence and upwelling at50

∼55◦S and convergence and subduction at ∼40◦S (Speer et al., 2000), current literature51

highlights the non-annular nature of the circumpolar current (Rintoul, 2018) and asso-52

ciated overturning circulation (Youngs & Flierl, 2023). Seafloor topographic features such53

as ridges create standing meanders in the current and drive localized upwelling (e.g., Tam-54

sitt et al., 2017; Youngs & Flierl, 2023), and it is thought that these topographic features55

may play an important role in carbon fluxes. High resolution ocean circulation and bio-56

geochemical modeling studies suggest that standing meanders contribute to southward57

transport of anthropogenic carbon (Ito et al., 2010), and that intensified residual upwelling58

downstream of regional topographic features provides an important conduit for deep, nat-59

ural carbon to enter the Southern Ocean surface (Brady et al., 2021). Despite the po-60

tentially important role that these regional topographic features play in the global car-61

bon budget, no study has directly quantified the influence of seafloor topography on South-62

ern Ocean air-sea CO2 flux nor addressed the potential effects these features may have63

on Lagrangian observations of the Southern Ocean.64

Here, we use an idealized, high-resolution ocean general circulation and biogeochem-65

ical model to assess the role of seafloor topography in Southern Ocean air-sea CO2 fluxes66

and the ability to quantify these fluxes via Lagrangian observations. Our study demon-67

strates that seafloor topography has a substantial impact on local CO2 flux via topography-68

driven advection of dissolved inorganic carbon (DIC). Lagrangian particles tend to het-69

erogeneously sample the surface pCO2 in the vicinity of topography, and this can affect70

estimates of average air-sea CO2 fluxes over the region. In section 2, we present the meth-71

ods used, in section 3 we present the results. In section 4 we discuss and conclude.72
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2 Methods73

2.1 Model description74

For this study, we use an idealized-geometry MITgcm ocean channel model (Youngs75

& Flierl, 2023) and couple it to a simple ocean biogeochemical model (Dutkiewicz et al.,76

2005; Lauderdale et al., 2016). The channel is 4000 km long and 2000 km wide with 1077

km horizontal resolution (Figure 1) with a total depth of 4000 m with 32 vertical lev-78

els, from 10 m vertical grid spacing at the surface to 280 meters at the bottom. We rep-79

resent seafloor topography using a 2000 m tall Gaussian ridge with a 200 km half-width,80

centered 800 km downstream of the channel entrance spanning the channel north to south81

(Figure 1). The domain is periodic with the outflow in the east reentering in the west-82

ern boundary and free-slip walls at the north and the south. The model is integrated us-83

ing a 600 second time step, an exponentially varying diffusivity (0.01 m2 s−1 to 1×10−5
84

m2 s−1), and linear bottom drag with a drag coefficient of 1.1×10−3m s−1. The wind85

stress is a cosine profile with a maximum value of 0.15 N m−2 at the center of the do-86

main and zero wind stress at the sides (SI Fig. 1). The salinity is set at 35 PSU and not87

allowed to vary.88

We employ the DIC package from MITgcm to represent biogeochemistry in our model89

(Dutkiewicz et al., 2005; Lauderdale et al., 2016). This model package carries alkalin-90

ity, DIC, dissolved organic phosphate, and phosphate as biogeochemical tracers, and rep-91

resents biological uptake as a function of phosphate and light availability. Phosphate is92

fluxed vertically with remineralization and sinking (see more in the SI). The calcium car-93

bonate formation is proportional to the organic phosphorous produced in the surface wa-94

ters following the parameterization of Yamanaka and Tajika (1996), with sinking and95

dissolution (Dutkiewicz et al., 2005).96

The rate of change of carbon in our model can be described by the following equa-

tion (Lauderdale et al., 2016)

∂CT

∂t
= −∇ · (~uCT )︸ ︷︷ ︸

Advection

+∇ · (κ∇CT )︸ ︷︷ ︸
Diffusion

−RCT :PSbio − SCaCO3︸ ︷︷ ︸
Biology

−FCO2

h︸ ︷︷ ︸
Air-sea fluxes

, (1)

where CT is the concentration of total dissolved organic carbon, κ is the eddy diffusiv-97

ity tensor, RCT :P is the biological transformation between carbon and phosphorous and98

FCO2
is the air-sea CO2 flux, h is the mixed layer depth, Sbio represents the sources and99
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sinks of biogenic soft tissue, and SCaCO3 represents the sources and sinks of biogenic car-100

bonate. Note that this equation neglects the dilution by freshwater fluxes, which in our101

case is appropriate due to a lack of salinity or freshwater forcing.102

The model is initialized with a uniform surface ocean pCO2 of 270 ppm with DIC103

and alkalinity at the northern boundary sponge region relaxed to prescribed DIC and104

alkalinity profiles based on GLODAPv2.2016 (Key et al., 2015; Lauvset et al., 2016) (SI105

F3), and spun up for 30 years for the biogeochemical and physical tracers to reach an106

approximate steady-state (table SI). At the end of the spin-up period, our model sim-107

ulates similar Southern Ocean-integrated pre-industrial air-sea CO2 fluxes (0.1 mol m−2
108

yr−1) as those estimated from more realistic model configurations (0.13 mol m−2 yr−1)109

(e.g., Lovenduski et al., 2007).110

2.2 Particle Tracking111

We model idealized “Argo” float trajectories to estimate how well a biogeochem-112

ical Argo float array can sample the air-sea carbon fluxes as a function of float density.113

We use the Ocean Parcels package to track idealized Argo floats (https://oceanparcels114

.org/) (Lange & van Sebille, 2017). We release 800 floats spaced uniformly throughout115

the model domain. Real Argo floats park at 1000 m depth for 10 days between profiles,116

so in our simulations the particles are advected using daily-averaged velocities at 1000 m;117

they sample the surface ocean pCO2 at their position every 10 days. Idealized floats are118

advected for 1 or 3 years. We take 100 random subsamples of each collection of ideal-119

ized floats with replacement. We run 4 collections of experiments: 10 floats for 1 year,120

33 floats for 1 year, 100 floats for 1 year, and 33 floats for 3 years. We use the randomly121

subsampled float data to create a climatology using objective mapping (e.g. Figure 3b).122

From the mapped pCO2, we calculate the air-sea carbon fluxes using the same equations123

used by the model (Wanninkhof, 1992).124

Objective mapping is a commonly used and well-justified technique for mapping125

sparsely sampled data to estimate regional averages (Dong et al., 2008; Friedrich & Os-126

chlies, 2009; Reeve et al., 2016). We create climatologies of these samples using the or-127

dinary kriging method with the PyKrige Python package (https://github.com/GeoStat-128

Framework/PyKrige/). Here, the various terms for the Gaussian variogram are fit us-129

ing the data from the selected floats to create the most optimal map.130

–5–
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Figure 1. The model is a re-entrant channel forced with both a zonal wind and a relaxation

to a meridional temperature gradient. Barotropic streamlines are shown with black contours on

the top faces. Shading shows temporally-averaged (A) surface eddy kinetic energy, (B) surface

carbon dioxide flux, and (C) dissolved inorganic carbon (DIC) concentration. In (C) the right

edge shows temporally and zonally averaged DIC concentration with temperature (density) con-

toured in black. The model geometry is shown in C. A 2000 m tall undersea Gaussian ridge is

centered at x = 800 km.
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3 Results131

3.1 DIC budget132

We investigate the asymmetry of the carbon properties in the channel model. Both133

air-sea CO2 flux and surface DIC concentration exhibit large zonal asymmetry, with en-134

hanced CO2 outgassing and elevated surface DIC located just upstream of the under-135

sea ridge (Figure 1BC). Away from the influence of topography, our model exhibits mod-136

erate outgassing of CO2 near the southern boundary, with weak uptake in the northern137

part of the domain (Figure 1B), which together contribute to an average flux of about138

-0.07 mol C m−2 yr−1. At the latitudes of the topographic ridge, however, we find sea-139

air CO2 fluxes that exceed 7 mol C m−2 yr−1 and outgassing that extends to the north-140

ern boundary of the domain, with an average flux of 0.8 mol C m−2 yr−1. The enhanced141

carbon flux is located in the region where the barotropic flow turns north as it approaches142

the ridge (Figure 1BC). This region is characterized by elevated surface DIC concentra-143

tions relative to the zonal mean for the domain (Figure 1C). We also show that as the144

wind stress forcing changes, the pCO2 flux changes are driven by changes in advection145

of DIC not other terms like temperature forcing or changes in alkalinity (SI figure 5),146

highlighting the importance of the advection of DIC.147

We investigate the drivers of the elevated surface ocean DIC upstream of the to-148

pographic ridge by quantifying the terms in Equation 1 averaged over the top 50 m. DIC149

advection tends to increase DIC upstream of the ridge, while sea-air CO2 flux tends to150

decrease DIC in this same region (Figure 2A,B). In contrast, biological productivity tends151

to decrease DIC relatively uniformly over the domain, with only a slightly larger influ-152

ence upstream of the ridge, and DIC diffusion exhibits only a small influence on upper153

ocean DIC tendency across the domain (Figure 2C,D). The elevated net DIC advection154

upstream of the ridge is mostly driven by vertical advection (SI Figure 4), though the155

contribution from the horizontal advection of DIC is non-negligible, especially in the north-156

ern portion of the model domain (SI Figure 4). Thus, results from our DIC tendency bud-157

get suggest that enhanced vertical advection of DIC upstream of the ridge is responsi-158

ble for the locally elevated DIC, and by inference, the enhanced outgassing of CO2 in159

this region. Our model also simulates elevated sea-air CO2 flux and surface ocean DIC160

in the northern portion of model domain over the ridge, albeit with lower magnitudes161

than in the region upstream of the ridge (Figure 1). Here, the elevated DIC is driven by162

–7–
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Figure 2. The drivers of the rate of change of DIC ( ∂CT
∂t

; mmol m−3 yr−1), as in Equation 1,

averaged over the 20 year simulation and the top 50 m: (A) DIC advection, (B) sea-air flux of

CO2, (C) biology, and (D) DIC diffusion. The vertical lines indicate the location of the top of the

ridge.
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Figure 3. Percent error in the domain-integrated sea-air CO2 fluxes with Argo-like model

sampling for 10, 33, and 100 floats advected for one year and 33 floats advected for 3 years,

respectively. The results of 100 trials with randomly initialized floats are shown for each float

density. The boxes show the interquartile range and median (orange line) and the whiskers show

1.5 times the interquartile range over the 100 trials. Positive numbers represent anomalous CO2

outgassing in the float estimate.

DIC advection (Figure 2), with horizontal DIC advection playing a key role (SI Figure163

4).164

3.2 Sampling heterogeneous carbon fluxes165

Topography-induced heterogeneity may challenge observation of ocean carbon pro-166

cesses. We quantify the ability of autonomous, Lagrangian floats to sample surface ocean167

DIC and associated CO2 fluxes by adding idealized particles to our model domain. These168

particles are transported by the model circulation at 1000 m and sample the surface once169

every 10 days, mimicing the behavior of Argo floats. Subsampled surface ocean pCO2170

from the simulated floats is mapped to the full model domain, and then the mapped pCO2171

used to calculate CO2 flux. We test four deployment strategies (1) 10 floats for one year,172

(2) 33 floats for one year, (3) 100 floats for one year, and (4) 33 floats for 3 years. For173

each float number and duration we select 100 collections of random initial conditions.174

–9–
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We calculate the error by subtracting the model truth from the calculated air-sea CO2175

fluxes, integrating over the residual and normalizing by the integrated value of the model176

truth air-sea CO2 fluxes. As such, our error estimate is fairly conservative; the error would177

certainly be larger using a square error metric.178

Our idealized sampling approach reveals substantial biases in the domain-integrated179

CO2 flux, as compared to the model truth. With 10 floats, the interquartile range of the180

air-sea CO2 flux error is large, from a 113% overestimate to a -146% underestimate, with181

larger extremes in the upper and lower 25% of the realizations. In this case, the median182

error (median = -50%, mean = -11%) is an underestimate of the net fluxes. With 33 floats183

over 1 year the interquartile range is smaller but still quite large – a 57% overestimate184

to a -45% underestimate (with mean = 2% and median = -1%). With 100 random floats,185

the error is substantially smaller with an interquartile range of -13% to 23%, and the me-186

dian (1%) and mean (3%) indicate an overestimate of the carbon flux. When we advect187

33 floats for 3 years, the error is larger than 100 floats for a single year, with an interquar-188

tile range of -11% to 48% and a positive flux bias (mean = 18%, median = 20%). Our189

analysis reveals that the interquartile range of the error of air-sea CO2 fluxes is quite large190

when we simulate a float density comparable to the current SOCCOM array (33 floats191

in a 4000 km sector of the Southern Ocean). Both adding more floats and advecting the192

floats for 3 years reduces the error. However, even in the absence of interannual variabil-193

ity, 33 floats advected for 3 years has an increased error range and a positive bias when194

compared with 100 floats for 1 year.195

The bias in the idealized float-like sampling of surface carbon arises from the in-196

fluence of topography on the float trajectories (Figure 4). As an example of the influ-197

ence of topographically influenced sampling on the calculated air-sea CO2 fluxes, we show198

annual-mean fluxes derived from the model (Figure 4a), calculated using the mapped199

pCO2 as sampled by 33 floats (Figure 4b; float trajectories in black), and the difference200

between the model truth and the subsampled fluxes, where blue indicates an underes-201

timate by the floats and red is an overestimate (Figure 4c). In this example, the floats202

produce a large underestimate of flux upstream of the ridge due to a lack of sampling203

in this region (Figure 4c). However, the CO2 flux is overestimated in other regions (Fig-204

ure 4c), such the net error is an overestimate of 19%. Particles tend to follow barotropic205

streamlines as they circumnavigate the Southern Ocean in our model (e.g., Figure 4b).206

Despite the random initial particle seeding, particles tend to undersample the region up-207

–10–



manuscript submitted to Geophysical Research Letters

Figure 4. Air-sea CO2 fluxes over one year derived from the idealized channel model. (a)

Modeled fluxes, (b) fluxes as sampled by 33 randomly spaced particles, and (c) the difference

between the sub-sampled fluxes and the model truth, with a 19% overestimate of the fluxes. Grey

contours indicate barotropic streamlines, while black lines show the tracks of the 33 floats used to

generate the images in panels (b) and (c).
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stream of topography where streamlines are close together (e.g., Figure 4b) and over-208

sample the region downstream of topography (e.g., Figure 4b) where eddy kinetic en-209

ergy is at a maximum (Figure 1a).210

4 Conclusions and Discussion211

Using an idealized channel model of the Southern Ocean with an undersea ridge,212

we examine the influence of topography on air-sea CO2 fluxes. We find intense sea-air213

CO2 fluxes and elevated surface ocean DIC upstream of topography, driven by enhanced214

DIC advection. Due to the nature of the flow near topography, Argo-like particles in our215

model tend to undersample the region upstream of the ridge and oversample the region216

downstream of the ridge, leading to biases in domain-integrated CO2 fluxes.217

In a previous paper using the same idealized model, Youngs and Flierl (2023) find218

localized upwelling upstream of the topographic ridge in association with a standing eddy;219

this localized upwelling is collocated with the region of enhanced CO2 outgassing reported220

in this study, suggesting that the standing eddy induced by topography can affect air-221

sea CO2 exchange. As water parcels approach the ridge, the flow is deflected northward,222

which also steepens the isopycnal surfaces and produces a vertical flux of DIC consis-223

tent with the along-isopycnal vertical tracer flux mechanism described in Freilich and224

Mahadevan (2019).225

The largest outgassing is associated with the barotropic effect of topographic fea-226

tures. Lagrangian floats advected at 1000 m are influenced by this topographic effect.227

Our results show that Lagrangian particle density is highest in regions with the high-228

est EKE, consistent with the study of Wang et al. (2020). Yet, our model predicts that229

the region associated with the highest DIC and thus the largest sea-air CO2 flux occurs230

upstream of the ridge, in a region with large gradients in barotropic flow and DIC that231

tends to be undersampled by Lagrangian particles. Our findings suggest that Lagrangian232

floats may also undersample topographically induced biogeochemical anomalies (e.g., DIC,233

oxygen, nitrate).234

Future efforts in observational network design should consider alternate means to235

estimate the biogeochemistry of topographically influenced regions. One approach is to236

use alternative technologies such as gliders (e.g. Dove et al., 2021). This study uses the237

current standard Gaussian objective mapping technique to map surface ocean pCO2 and238

–12–
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infer air-sea CO2 fluxes. A complementary approach to confronting the challenges posed239

by Lagrangian autonomous sampling platforms is developing mapping techniques that240

account for heterogeneous environments such as techniques that utilize information about241

correlation length scales (Chamberlain, 2022), and those that use ancillary data such as242

temperature and salinity to map biogeochemical variables (A. Gray, pers. comm.). Such243

approaches may improve the sampling error in topographically influenced regions.244

The idealized model geometry used in this study has enabled mechanistic insights245

into the drivers of outgassing hotspots at topographic features in the Southern Ocean246

(Tamsitt et al., 2017; Brady et al., 2021). The insight that barotropic effects have a pri-247

mary role in driving outgassing hotspots has direct implications for observing system de-248

sign. Increasing model complexity through more complex and realistic model geometry,249

improved realism of multiple biogeochemical tracers, finer resolution model configura-250

tions, and seasonal variability that can improve representation of wind-current interac-251

tions (Kwak et al., 2021) may enable additional insights about the ways that zonal asym-252

metry influences the Southern Ocean carbon cycle and the coupling between DIC and253

other biogeochemical factors in the Southern Ocean.254

Seafloor topography induces anomalies in both the flow and the surface ocean DIC255

concentration, leading to sub-optimal sampling of a key region for Southern Ocean CO2256

flux. Through the mechanistic insight provided by this study, we suggest that the cur-257

rent SOCCOM float array has most likely undersampled (rather than oversampled) po-258

tential areas of CO2 outgassing in the Southern Ocean, which could further amplify the259

differences in CO2 fluxes estimated from SOCCOM floats and those estimated from ship-260

based observations (Gray et al., 2018; Bushinsky et al., 2019). Topographically influenced261

regions in the Southern Ocean should be a focus for future biogeochemical observation262

and modeling programs.263
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Key Points:8

• We examine the localized patterns of air-sea CO2 fluxes in an idealized Southern9

Ocean-like model with simple biogeochemistry.10

• We find intense sea-air CO2 fluxes upstream of seafloor topography driven by anoma-11

lous advection of inorganic carbon.12

• Due to the topography, uncertainty in the flux is highly sensitive to sampling net-13

work design.14
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Abstract15

Air-sea exchange of carbon dioxide (CO2) in the Southern Ocean plays an important role16

in the global carbon budget. Previous studies have suggested that flow around topographic17

features of the Southern Ocean enhances the upward supply of carbon from the deep to18

the surface, influencing air-sea CO2 exchange. Here, we investigate the role of seafloor19

topography on the transport of carbon and associated air-sea CO2 flux in an idealized20

channel model. We find elevated CO2 outgassing downstream of a seafloor ridge, driven21

by anomalous advection of dissolved inorganic carbon. Argo-like Lagrangian particles22

in our channel model sample heterogeneously in the vicinity of the seafloor ridge, which23

could impact float-based estimates of CO2 flux.24

Plain Language Summary25

The Southern Ocean, the ocean surrounding Antarctica, contributes significantly26

to carbon exchange between the global ocean and the atmosphere, which in turn mat-27

ters for climate change. Here, we use a simplified model of the Southern Ocean to see28

how mountain ranges on the sea floor influence the carbon exchange at the ocean-atmosphere29

interface. We find that the seafloor mountain ranges lead to more carbon exchange. Float-30

ing carbon sensors in our model ocean may under or over sample the water near the moun-31

tains and this can affect the carbon exchange that they report.32

1 Introduction33

The Southern Ocean is an active driver in the global cycling of carbon dioxide (CO2).34

Studies based on coarse-resolution ocean general circulation models suggest that the South-35

ern Ocean carbon cycle is characterized by the surfacing of old, respired carbon from depth36

at high latitudes and the subduction of anthropogenic carbon driven by the meridional37

overturning circulation from the surface into the interior at mid latitudes (Mikaloff Fletcher38

et al., 2006, 2007). However, observations of the resulting air-sea CO2 fluxes from these39

physical circulation processes are sparse in both space and time (Bakker et al., 2016),40

and this has limited our ability to accurately quantify the Southern Ocean’s role in the41

global carbon budget. New observations from autonomous floats equipped with pH sen-42

sors as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOC-43

COM) program suggest that the outgassing of respired carbon in high latitudes has pre-44
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viously been underestimated (Gray et al., 2018; Bushinsky et al., 2019), suggesting there45

is more work to be done to constrain the air-sea carbon fluxes.46

One contributing factor to the uncertainty in the Southern Ocean carbon budget47

is spatial variability in the air-sea CO2 flux that is engendered by regional variations in48

the physical circulation. While the canonical view of Southern Ocean circulation is an49

annular circumpolar current with a broad region of surface divergence and upwelling at50

∼55◦S and convergence and subduction at ∼40◦S (Speer et al., 2000), current literature51

highlights the non-annular nature of the circumpolar current (Rintoul, 2018) and asso-52

ciated overturning circulation (Youngs & Flierl, 2023). Seafloor topographic features such53

as ridges create standing meanders in the current and drive localized upwelling (e.g., Tam-54

sitt et al., 2017; Youngs & Flierl, 2023), and it is thought that these topographic features55

may play an important role in carbon fluxes. High resolution ocean circulation and bio-56

geochemical modeling studies suggest that standing meanders contribute to southward57

transport of anthropogenic carbon (Ito et al., 2010), and that intensified residual upwelling58

downstream of regional topographic features provides an important conduit for deep, nat-59

ural carbon to enter the Southern Ocean surface (Brady et al., 2021). Despite the po-60

tentially important role that these regional topographic features play in the global car-61

bon budget, no study has directly quantified the influence of seafloor topography on South-62

ern Ocean air-sea CO2 flux nor addressed the potential effects these features may have63

on Lagrangian observations of the Southern Ocean.64

Here, we use an idealized, high-resolution ocean general circulation and biogeochem-65

ical model to assess the role of seafloor topography in Southern Ocean air-sea CO2 fluxes66

and the ability to quantify these fluxes via Lagrangian observations. Our study demon-67

strates that seafloor topography has a substantial impact on local CO2 flux via topography-68

driven advection of dissolved inorganic carbon (DIC). Lagrangian particles tend to het-69

erogeneously sample the surface pCO2 in the vicinity of topography, and this can affect70

estimates of average air-sea CO2 fluxes over the region. In section 2, we present the meth-71

ods used, in section 3 we present the results. In section 4 we discuss and conclude.72
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2 Methods73

2.1 Model description74

For this study, we use an idealized-geometry MITgcm ocean channel model (Youngs75

& Flierl, 2023) and couple it to a simple ocean biogeochemical model (Dutkiewicz et al.,76

2005; Lauderdale et al., 2016). The channel is 4000 km long and 2000 km wide with 1077

km horizontal resolution (Figure 1) with a total depth of 4000 m with 32 vertical lev-78

els, from 10 m vertical grid spacing at the surface to 280 meters at the bottom. We rep-79

resent seafloor topography using a 2000 m tall Gaussian ridge with a 200 km half-width,80

centered 800 km downstream of the channel entrance spanning the channel north to south81

(Figure 1). The domain is periodic with the outflow in the east reentering in the west-82

ern boundary and free-slip walls at the north and the south. The model is integrated us-83

ing a 600 second time step, an exponentially varying diffusivity (0.01 m2 s−1 to 1×10−5
84

m2 s−1), and linear bottom drag with a drag coefficient of 1.1×10−3m s−1. The wind85

stress is a cosine profile with a maximum value of 0.15 N m−2 at the center of the do-86

main and zero wind stress at the sides (SI Fig. 1). The salinity is set at 35 PSU and not87

allowed to vary.88

We employ the DIC package from MITgcm to represent biogeochemistry in our model89

(Dutkiewicz et al., 2005; Lauderdale et al., 2016). This model package carries alkalin-90

ity, DIC, dissolved organic phosphate, and phosphate as biogeochemical tracers, and rep-91

resents biological uptake as a function of phosphate and light availability. Phosphate is92

fluxed vertically with remineralization and sinking (see more in the SI). The calcium car-93

bonate formation is proportional to the organic phosphorous produced in the surface wa-94

ters following the parameterization of Yamanaka and Tajika (1996), with sinking and95

dissolution (Dutkiewicz et al., 2005).96

The rate of change of carbon in our model can be described by the following equa-

tion (Lauderdale et al., 2016)

∂CT

∂t
= −∇ · (~uCT )︸ ︷︷ ︸

Advection

+∇ · (κ∇CT )︸ ︷︷ ︸
Diffusion

−RCT :PSbio − SCaCO3︸ ︷︷ ︸
Biology

−FCO2

h︸ ︷︷ ︸
Air-sea fluxes

, (1)

where CT is the concentration of total dissolved organic carbon, κ is the eddy diffusiv-97

ity tensor, RCT :P is the biological transformation between carbon and phosphorous and98

FCO2
is the air-sea CO2 flux, h is the mixed layer depth, Sbio represents the sources and99
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sinks of biogenic soft tissue, and SCaCO3 represents the sources and sinks of biogenic car-100

bonate. Note that this equation neglects the dilution by freshwater fluxes, which in our101

case is appropriate due to a lack of salinity or freshwater forcing.102

The model is initialized with a uniform surface ocean pCO2 of 270 ppm with DIC103

and alkalinity at the northern boundary sponge region relaxed to prescribed DIC and104

alkalinity profiles based on GLODAPv2.2016 (Key et al., 2015; Lauvset et al., 2016) (SI105

F3), and spun up for 30 years for the biogeochemical and physical tracers to reach an106

approximate steady-state (table SI). At the end of the spin-up period, our model sim-107

ulates similar Southern Ocean-integrated pre-industrial air-sea CO2 fluxes (0.1 mol m−2
108

yr−1) as those estimated from more realistic model configurations (0.13 mol m−2 yr−1)109

(e.g., Lovenduski et al., 2007).110

2.2 Particle Tracking111

We model idealized “Argo” float trajectories to estimate how well a biogeochem-112

ical Argo float array can sample the air-sea carbon fluxes as a function of float density.113

We use the Ocean Parcels package to track idealized Argo floats (https://oceanparcels114

.org/) (Lange & van Sebille, 2017). We release 800 floats spaced uniformly throughout115

the model domain. Real Argo floats park at 1000 m depth for 10 days between profiles,116

so in our simulations the particles are advected using daily-averaged velocities at 1000 m;117

they sample the surface ocean pCO2 at their position every 10 days. Idealized floats are118

advected for 1 or 3 years. We take 100 random subsamples of each collection of ideal-119

ized floats with replacement. We run 4 collections of experiments: 10 floats for 1 year,120

33 floats for 1 year, 100 floats for 1 year, and 33 floats for 3 years. We use the randomly121

subsampled float data to create a climatology using objective mapping (e.g. Figure 3b).122

From the mapped pCO2, we calculate the air-sea carbon fluxes using the same equations123

used by the model (Wanninkhof, 1992).124

Objective mapping is a commonly used and well-justified technique for mapping125

sparsely sampled data to estimate regional averages (Dong et al., 2008; Friedrich & Os-126

chlies, 2009; Reeve et al., 2016). We create climatologies of these samples using the or-127

dinary kriging method with the PyKrige Python package (https://github.com/GeoStat-128

Framework/PyKrige/). Here, the various terms for the Gaussian variogram are fit us-129

ing the data from the selected floats to create the most optimal map.130
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Figure 1. The model is a re-entrant channel forced with both a zonal wind and a relaxation

to a meridional temperature gradient. Barotropic streamlines are shown with black contours on

the top faces. Shading shows temporally-averaged (A) surface eddy kinetic energy, (B) surface

carbon dioxide flux, and (C) dissolved inorganic carbon (DIC) concentration. In (C) the right

edge shows temporally and zonally averaged DIC concentration with temperature (density) con-

toured in black. The model geometry is shown in C. A 2000 m tall undersea Gaussian ridge is

centered at x = 800 km.

–6–



manuscript submitted to Geophysical Research Letters

3 Results131

3.1 DIC budget132

We investigate the asymmetry of the carbon properties in the channel model. Both133

air-sea CO2 flux and surface DIC concentration exhibit large zonal asymmetry, with en-134

hanced CO2 outgassing and elevated surface DIC located just upstream of the under-135

sea ridge (Figure 1BC). Away from the influence of topography, our model exhibits mod-136

erate outgassing of CO2 near the southern boundary, with weak uptake in the northern137

part of the domain (Figure 1B), which together contribute to an average flux of about138

-0.07 mol C m−2 yr−1. At the latitudes of the topographic ridge, however, we find sea-139

air CO2 fluxes that exceed 7 mol C m−2 yr−1 and outgassing that extends to the north-140

ern boundary of the domain, with an average flux of 0.8 mol C m−2 yr−1. The enhanced141

carbon flux is located in the region where the barotropic flow turns north as it approaches142

the ridge (Figure 1BC). This region is characterized by elevated surface DIC concentra-143

tions relative to the zonal mean for the domain (Figure 1C). We also show that as the144

wind stress forcing changes, the pCO2 flux changes are driven by changes in advection145

of DIC not other terms like temperature forcing or changes in alkalinity (SI figure 5),146

highlighting the importance of the advection of DIC.147

We investigate the drivers of the elevated surface ocean DIC upstream of the to-148

pographic ridge by quantifying the terms in Equation 1 averaged over the top 50 m. DIC149

advection tends to increase DIC upstream of the ridge, while sea-air CO2 flux tends to150

decrease DIC in this same region (Figure 2A,B). In contrast, biological productivity tends151

to decrease DIC relatively uniformly over the domain, with only a slightly larger influ-152

ence upstream of the ridge, and DIC diffusion exhibits only a small influence on upper153

ocean DIC tendency across the domain (Figure 2C,D). The elevated net DIC advection154

upstream of the ridge is mostly driven by vertical advection (SI Figure 4), though the155

contribution from the horizontal advection of DIC is non-negligible, especially in the north-156

ern portion of the model domain (SI Figure 4). Thus, results from our DIC tendency bud-157

get suggest that enhanced vertical advection of DIC upstream of the ridge is responsi-158

ble for the locally elevated DIC, and by inference, the enhanced outgassing of CO2 in159

this region. Our model also simulates elevated sea-air CO2 flux and surface ocean DIC160

in the northern portion of model domain over the ridge, albeit with lower magnitudes161

than in the region upstream of the ridge (Figure 1). Here, the elevated DIC is driven by162
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Figure 2. The drivers of the rate of change of DIC ( ∂CT
∂t

; mmol m−3 yr−1), as in Equation 1,

averaged over the 20 year simulation and the top 50 m: (A) DIC advection, (B) sea-air flux of

CO2, (C) biology, and (D) DIC diffusion. The vertical lines indicate the location of the top of the

ridge.
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Figure 3. Percent error in the domain-integrated sea-air CO2 fluxes with Argo-like model

sampling for 10, 33, and 100 floats advected for one year and 33 floats advected for 3 years,

respectively. The results of 100 trials with randomly initialized floats are shown for each float

density. The boxes show the interquartile range and median (orange line) and the whiskers show

1.5 times the interquartile range over the 100 trials. Positive numbers represent anomalous CO2

outgassing in the float estimate.

DIC advection (Figure 2), with horizontal DIC advection playing a key role (SI Figure163

4).164

3.2 Sampling heterogeneous carbon fluxes165

Topography-induced heterogeneity may challenge observation of ocean carbon pro-166

cesses. We quantify the ability of autonomous, Lagrangian floats to sample surface ocean167

DIC and associated CO2 fluxes by adding idealized particles to our model domain. These168

particles are transported by the model circulation at 1000 m and sample the surface once169

every 10 days, mimicing the behavior of Argo floats. Subsampled surface ocean pCO2170

from the simulated floats is mapped to the full model domain, and then the mapped pCO2171

used to calculate CO2 flux. We test four deployment strategies (1) 10 floats for one year,172

(2) 33 floats for one year, (3) 100 floats for one year, and (4) 33 floats for 3 years. For173

each float number and duration we select 100 collections of random initial conditions.174
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We calculate the error by subtracting the model truth from the calculated air-sea CO2175

fluxes, integrating over the residual and normalizing by the integrated value of the model176

truth air-sea CO2 fluxes. As such, our error estimate is fairly conservative; the error would177

certainly be larger using a square error metric.178

Our idealized sampling approach reveals substantial biases in the domain-integrated179

CO2 flux, as compared to the model truth. With 10 floats, the interquartile range of the180

air-sea CO2 flux error is large, from a 113% overestimate to a -146% underestimate, with181

larger extremes in the upper and lower 25% of the realizations. In this case, the median182

error (median = -50%, mean = -11%) is an underestimate of the net fluxes. With 33 floats183

over 1 year the interquartile range is smaller but still quite large – a 57% overestimate184

to a -45% underestimate (with mean = 2% and median = -1%). With 100 random floats,185

the error is substantially smaller with an interquartile range of -13% to 23%, and the me-186

dian (1%) and mean (3%) indicate an overestimate of the carbon flux. When we advect187

33 floats for 3 years, the error is larger than 100 floats for a single year, with an interquar-188

tile range of -11% to 48% and a positive flux bias (mean = 18%, median = 20%). Our189

analysis reveals that the interquartile range of the error of air-sea CO2 fluxes is quite large190

when we simulate a float density comparable to the current SOCCOM array (33 floats191

in a 4000 km sector of the Southern Ocean). Both adding more floats and advecting the192

floats for 3 years reduces the error. However, even in the absence of interannual variabil-193

ity, 33 floats advected for 3 years has an increased error range and a positive bias when194

compared with 100 floats for 1 year.195

The bias in the idealized float-like sampling of surface carbon arises from the in-196

fluence of topography on the float trajectories (Figure 4). As an example of the influ-197

ence of topographically influenced sampling on the calculated air-sea CO2 fluxes, we show198

annual-mean fluxes derived from the model (Figure 4a), calculated using the mapped199

pCO2 as sampled by 33 floats (Figure 4b; float trajectories in black), and the difference200

between the model truth and the subsampled fluxes, where blue indicates an underes-201

timate by the floats and red is an overestimate (Figure 4c). In this example, the floats202

produce a large underestimate of flux upstream of the ridge due to a lack of sampling203

in this region (Figure 4c). However, the CO2 flux is overestimated in other regions (Fig-204

ure 4c), such the net error is an overestimate of 19%. Particles tend to follow barotropic205

streamlines as they circumnavigate the Southern Ocean in our model (e.g., Figure 4b).206

Despite the random initial particle seeding, particles tend to undersample the region up-207

–10–



manuscript submitted to Geophysical Research Letters

Figure 4. Air-sea CO2 fluxes over one year derived from the idealized channel model. (a)

Modeled fluxes, (b) fluxes as sampled by 33 randomly spaced particles, and (c) the difference

between the sub-sampled fluxes and the model truth, with a 19% overestimate of the fluxes. Grey

contours indicate barotropic streamlines, while black lines show the tracks of the 33 floats used to

generate the images in panels (b) and (c).
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stream of topography where streamlines are close together (e.g., Figure 4b) and over-208

sample the region downstream of topography (e.g., Figure 4b) where eddy kinetic en-209

ergy is at a maximum (Figure 1a).210

4 Conclusions and Discussion211

Using an idealized channel model of the Southern Ocean with an undersea ridge,212

we examine the influence of topography on air-sea CO2 fluxes. We find intense sea-air213

CO2 fluxes and elevated surface ocean DIC upstream of topography, driven by enhanced214

DIC advection. Due to the nature of the flow near topography, Argo-like particles in our215

model tend to undersample the region upstream of the ridge and oversample the region216

downstream of the ridge, leading to biases in domain-integrated CO2 fluxes.217

In a previous paper using the same idealized model, Youngs and Flierl (2023) find218

localized upwelling upstream of the topographic ridge in association with a standing eddy;219

this localized upwelling is collocated with the region of enhanced CO2 outgassing reported220

in this study, suggesting that the standing eddy induced by topography can affect air-221

sea CO2 exchange. As water parcels approach the ridge, the flow is deflected northward,222

which also steepens the isopycnal surfaces and produces a vertical flux of DIC consis-223

tent with the along-isopycnal vertical tracer flux mechanism described in Freilich and224

Mahadevan (2019).225

The largest outgassing is associated with the barotropic effect of topographic fea-226

tures. Lagrangian floats advected at 1000 m are influenced by this topographic effect.227

Our results show that Lagrangian particle density is highest in regions with the high-228

est EKE, consistent with the study of Wang et al. (2020). Yet, our model predicts that229

the region associated with the highest DIC and thus the largest sea-air CO2 flux occurs230

upstream of the ridge, in a region with large gradients in barotropic flow and DIC that231

tends to be undersampled by Lagrangian particles. Our findings suggest that Lagrangian232

floats may also undersample topographically induced biogeochemical anomalies (e.g., DIC,233

oxygen, nitrate).234

Future efforts in observational network design should consider alternate means to235

estimate the biogeochemistry of topographically influenced regions. One approach is to236

use alternative technologies such as gliders (e.g. Dove et al., 2021). This study uses the237

current standard Gaussian objective mapping technique to map surface ocean pCO2 and238
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infer air-sea CO2 fluxes. A complementary approach to confronting the challenges posed239

by Lagrangian autonomous sampling platforms is developing mapping techniques that240

account for heterogeneous environments such as techniques that utilize information about241

correlation length scales (Chamberlain, 2022), and those that use ancillary data such as242

temperature and salinity to map biogeochemical variables (A. Gray, pers. comm.). Such243

approaches may improve the sampling error in topographically influenced regions.244

The idealized model geometry used in this study has enabled mechanistic insights245

into the drivers of outgassing hotspots at topographic features in the Southern Ocean246

(Tamsitt et al., 2017; Brady et al., 2021). The insight that barotropic effects have a pri-247

mary role in driving outgassing hotspots has direct implications for observing system de-248

sign. Increasing model complexity through more complex and realistic model geometry,249

improved realism of multiple biogeochemical tracers, finer resolution model configura-250

tions, and seasonal variability that can improve representation of wind-current interac-251

tions (Kwak et al., 2021) may enable additional insights about the ways that zonal asym-252

metry influences the Southern Ocean carbon cycle and the coupling between DIC and253

other biogeochemical factors in the Southern Ocean.254

Seafloor topography induces anomalies in both the flow and the surface ocean DIC255

concentration, leading to sub-optimal sampling of a key region for Southern Ocean CO2256

flux. Through the mechanistic insight provided by this study, we suggest that the cur-257

rent SOCCOM float array has most likely undersampled (rather than oversampled) po-258

tential areas of CO2 outgassing in the Southern Ocean, which could further amplify the259

differences in CO2 fluxes estimated from SOCCOM floats and those estimated from ship-260

based observations (Gray et al., 2018; Bushinsky et al., 2019). Topographically influenced261

regions in the Southern Ocean should be a focus for future biogeochemical observation262

and modeling programs.263
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Figure 1: Surface boundary conditions for the physical model. (a) the surface
wind stress, (b) surface fixed heat fluxes used generate (c) surface relaxation
temperature conditions using the mean from the fixed flux run (solid) with the
heat flux (b) to create relaxation surface temperature (dashed). Reproduced
from Youngs and Flierl (2023).

2 Biological Model Information

The biological parameters set are a light attenuation k0, timescale for biological
activity α, half saturation phosphate constant KPO4

, and an inorganic/organic
carbon rain ratio Rrat as seen in SI Table. The light attenuation is calculated
as

lit = e−k0z. (1)
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Figure 2: Surface heat flux forcing for the idealized channel model. The black
lines show the time-averaged barotropic streamlines. There is enhanced heat
flux over the ridge. This is averaged over 40 model years.

The constant used by default is k0 = 0.02 1/m. Biological growth is co-limited
by light and nutrients as given by:

Sbio = α
lit

lit+ lit0

PO4

PO4 +KPO4

(2)

and

SCaCO3 =
1

2
RratRCT :PSbio (3)

If phosphate is fluxed to the bottom, it is instantly remineralized.

3 Carbon Budget

The divergence of the horizontal DIC advection (A), and the divergence of the
vertical DIC advection (B) are the largest terms of the carbon budget, but the
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Figure 3: Northern boundary conditions for physical and biogeochemical model.
The carbon parameters are averaged from GLODAPv2 averaged at 45 S. (a)
Northern boundary temperature, (b) DIC, (c) Alkalinity, (d) Phosphate(PO4).

symbol meaning value
k0 light attenuation coefficient of water [1/m] 0.02
α timescale for biological activity [1/s] 2 · 10−3/(360 · 86400)

KPO4 half saturation phosphate constant (mol/m3) 5 · 10−4

Rrat inorganic/organic carbon rain ratio 7 · 10−2

Table 1: Biological parameters used in the MITgcm simulation and their values.

sum of the two primarily cancel out, and the sum’s magnitude is about the same
as the other terms. Cancellation of the horizontal and vertical components is
characteristic of eddies. Imagine an eddy with a high DIC anomaly in the center
translating horizontally past a point. This eddy will result in both horizontal
and vertical flux divergence even if there is no net vertical motion in the center
of the eddy. The result is a large cancellation.

There is a small component of vertical DIC diffusion (D) in the region over
the ridge but south of the jet. The dominant contributions to the air-sea fluxes
are the DIC advection (C), and biological activity (F) partially compensates.
The residual (I) has a large component to the north of the domain where the
DIC is relaxed to the GLODAP values.

4 Float displacement

The SOCCOM floats are an array of profiling floats with biogeochemical sensors
(oxygen, nitrate, and/or pH) in the Southern Ocean. These floats are part of
the Argo system. The floats sample the water column once every 10 days and
rest at 1000 m between samples. The floats are semi-Lagrangian, advecting with
the water at 1000 m, but not tracking individual water parcels, which can also
move vertically. When deploying the synthetic floats in the model, we assume

3



Figure 4: All of the terms of the carbon budget from Lauderdale et al. (2016).
The vertical line represents the location of the crest of the ridge.

that the floats mostly follow the flow field at 1000 m with little differential
displacement while profiling. We compare the synthetic floats to the SOCCOM
float database to validate the comparison. We compare the distribution of float
lateral displacements between samples (every 10 days) between the synthetic
floats and SOCCOM floats. We find that the distributions of the displacements
are very similar between the synthetic and SOCCOM floats (Figure 6).

Moreover, we find that the float displacements are affected by topography
in similar ways between the model and observations with both the observed
and model floats displaying a wider range of velocities near topography than
elsewhere, and particularly slower movement near topography (Figure 7).

Data were collected and made freely available by the Southern Ocean Carbon
and Climate Observations and Modeling (SOCCOM) Project funded by the
National Science Foundation, Division of Polar Programs (NSF PLR -1425989
and OPP-1936222), supplemented by NASA, and by the International Argo
Program and the NOAA programs that contribute to it. The Argo Program is
part of the Global Ocean Observing System.
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Figure 5: Figure showing the contribution of different terms to air-sea carbon
flux differences (weak wind (τ0 = 0.05 N m−2) - moderate wind (τ0 = 0.15N
m−2)) in µ atm. (a) shows the total difference in pCO2 fluxes, (b) shows the
contribution from DIC, (c) shows the contribution from Alk, and (d) shows the
contribution from temperature. Reproduced from Youngs (2020). In addition,
the wind speed used for the gas flux computation was set to 5 m/s everywhere.
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Figure 6: Histogram of the rate of lateral displacement across all SOCCOM
floats. The displacements are between float casts so the float velocity is averaged
over approximately 10 days.

Figure 7: 2D histogram of the float displacement as a function of longitude. The
black vertical lines show the locations of topographic features (Drake passage,
Southwest Indian Ridge, Kerguelen plateau).
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Figure 8: Histogram of the rate of lateral displacement across all model floats.
The displacements are between float casts so the float velocity is averaged over
approximately 10 days. This compares to the SOCCOM float displacement in
Figure 6.
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Figure 9: 2D histogram of the model float displacement as a function of longi-
tude. This compares to the SOCCOM float displacement in Figure 7.

7


