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Abstract18

Seismic time series provide crucial information for monitoring the state of a volcano with19

discrete event catalogs describing impulsive seismic activity and manual features describing20

more emergent signals (e.g. real-time seismic amplitude measurement for volcanic tremor21

signals). However, the emergent and long-term seismo-volcanic activity such as volcanic22

tremors are a complex and non-stationary phenomena that might contain more information23

than current methods can retrieve. In the present study, we consider the whole seismic24

time series as a valuable source of information by retrieving data-driven continuous fea-25

tures with an independent component analysis (ICA) and seismogram atlases with Uniform26

Manifold Approximation and Projection (UMAP). The data of interest are year-long seismo-27

grams recorded at individual stations near the Klyuchevskoy Volcanic Group (Kamchatka,28

Russia). The features extracted from data recorded close to the active volcano depict a29

succession of short-lived patterns in the time series, indicating continuously changing signal30

characteristics. Additionally, the seismogram atlas reveals that, especially during periods of31

volcanic activation, the signal evolves continuously with some occasional sudden changes,32

resulting in new patterns throughout the recording time. Through additional data, we can33

relate areas in the atlas to various states of the volcano such as shallow and deep activity,34

deep reactivation, weak signals during quiet times, and eruptive activity. The time evolution35

represented by the atlas depicts continuous and sudden transitions between different states36

of the active Klyuchevskoy volcano. The atlases open new avenues to perceive large seismic37

time series visually and to connect the signal changes to physical processes.38

Plain Language Summary39

Seismic time series are a valuable source for monitoring volcanic activity. Traditional40

methods rely on discrete event catalogs and hand-designed features to analyze seismic sig-41

nals, but they may not capture all the valuable information, especially for long-term volcanic42

tremors. To overcome this limitation, we applied machine learning techniques on the con-43

tinuous seismic time series, capturing patterns in a data-driven fashion. This approach44

reveals a continuously evolving seismogram close to the volcano, indicating ongoing changes45

in signal characteristics during and outside cataloged tremor periods. Additionally, a two-46

dimensional representation of the time series data – called a seismogram atlas – showed47

that, during periods of volcanic activity, the seismic signal evolved continuously with occa-48

sional sudden changes, resulting in new patterns throughout the recording period. These49

findings highlight the unique characteristics of continuous seismograms near the volcano,50

suggesting that there is valuable information in the complete seismic time series that con-51

ventional methods may miss. The seismogram atlases offer a new visual approach to analyze52

large seismic data and establish connections between signal changes and underlying physical53

processes.54

1 Introduction55

Volcanoes produce a wide range of seismic signals providing valuable information about56

the underlying magmatic feeding systems and dynamics (e.g. Chouet & Matoza, 2013;57

Journeau et al., 2022; Wilding et al., 2022). Volcano seismologists have classified seismic58

signals with volcanic origin into distinct classes based on the source mechanism and signal59

characteristics. These classes include volcano-tectonic earthquakes, long-period (LP) events,60

hybrid events, tornillos, rockfalls, and volcanic tremors (an overview of different signal classes61

is given by, e.g., McNutt, 2005; Chouet & Matoza, 2013). Tools adapted from earthquake62

seismology can detect the short-duration impulsive signals in continuous seismograms and63

most often locate their underlying sources, resulting in a discrete event catalog. In the64

recent years, supervised learning strategies have been used extensively for event detection65

and classification tasks (e.g., Curilem et al., 2009; Hibert et al., 2017; Maggi et al., 2017;66

Malfante et al., 2018; Titos et al., 2018; Lara et al., 2020; Falcin et al., 2021).67

–2–



manuscript submitted to Solid Earth

Long-duration signals such as volcanic tremors can last from minutes to months and68

have a varying appearance in frequency and amplitude (e.g. Julian, 1994; Konstantinou &69

Schlindwein, 2003; Hotovec et al., 2013; Unglert & Jellinek, 2015). Some studies observed70

a continuous transition from discrete LP events to tremor episodes and back, making the71

boundary between these two signal classes blurry (e.g. Latter, 1979; Fehler, 1983; Beroza72

& Ide, 2011). Often, an observed tremor signal in the data can not be directly linked73

to a single process, since many different source mechanisms may act simultaneously, with74

potential interactions, resulting in a non-stationary mixed signal (e.g. Konstantinou &75

Schlindwein, 2003; Chouet & Matoza, 2013). The complex nature of tremor signals makes76

it difficult to extract meaningful information from the data, link it to volcanic processes, and77

challenge the notion of tremor signals as a single signal class. While volcano observatories78

often use simple single-station measurements based on the occurrence of volcanic tremors to79

monitor the state of the volcano, recent studies have developed more sophisticated methods80

to identify and locate tremor sources within a given time window (Seydoux et al., 2016;81

Soubestre et al., 2018, 2019; Journeau et al., 2020, 2022). For tremor signals, supervised82

models are problematic due to the a-priori information given by the label “volcanic tremor”,83

referring to a complex signal with many possible source mechanisms.84

Due to advancements in information processing and the introduction of continuous85

recordings, some studies have shown that continuous seismograms contain relevant infor-86

mation beyond classical event catalogs. The entropy of the seismic noise and the seismic87

background level seem to vary significantly prior to eruptions (Glynn & Konstantinou, 2016;88

Rey-Devesa et al., 2023; Ichihara et al., 2023). Machine learning strategies, in particular un-89

supervised learning, provide a promising approach for automatically analyzing large amounts90

of continuous seismograms and inferring such patterns without requiring predefined labels91

(e.g. Köhler et al., 2010; Holtzman et al., 2018; Ren et al., 2020; Seydoux et al., 2020;92

Jenkins et al., 2021; Steinmann, Seydoux, Beaucé, & Campillo, 2022; Steinmann, Seydoux,93

& Campillo, 2022; Zali et al., 2023).94

In this study, we explore individual year-long continuous seismograms recorded in the95

vicinity of Klyuchevskoy volcano (Kamchatka, Russia) during an active tremor-dominated96

period using independent component analysis (ICA; Comon, 1994) and Uniform Manifold97

Approximation and Projection (UMAP; McInnes et al., 2018)). Many volcano observatories98

use a single reference station situated in close proximity to the volcano, measuring in real-99

time the amplitude of raw continuous seismograms (RSAM) as an estimation of volcanic100

activity (e.g. Endo & Murray, 1991). Given the rich and various appearance of seismicity101

in a volcanic environment, we test the hypothesis that the data-driven analysis of con-102

tinuous seismograms offers new and different insights into the inner workings of a volcano103

than what current discrete event catalogs, the continuous seismic amplitude, or supervised104

classification schemes can provide. ICA retrieves continuous features from the seismic time105

series, describing the temporal evolution of signal patterns. We are motivated by the re-106

sults presented in Steinmann, Seydoux, and Campillo (2022) where the authors capture the107

signal-altering effect of surface freezing and thawing onto a single independent component.108

In a similar mindset, Hyvärinen et al. (2010) applied ICA to the Short-Term Fourier Trans-109

form (STFT) of electroencephalography (EEG) and magnetoencephalography (MEG) time110

series data, revealing interesting information related to brain activity. Additionally, ICA111

has shown successful applications in analyzing various types of time series data, such as112

the examination of InSAR image time series (Ebmeier, 2016; Gaddes et al., 2018; Ghosh113

et al., 2021). Besides the interpretation of independent components, the seismogram atlas114

—a two-dimensional data representation of the seismic time series obtained using UMAP—115

offers a novel way to visualize the signal content of large seismic time series. By avoiding116

clustering and focusing on the analysis of the features and the seismogram atlas, we can117

observe the continuous evolution of the signal characteristics over time, providing a more118

complete picture of the mixing of different non-stationary seismic sources in seismo-volcanic119

signals.120
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2 Klyuchevskoy Volcano Group and its Seismic Activity121

The Klyuchevskoy volcano group (KVG) is one of the largest and most active clusters of122

subduction volcanoes in the World (e.g., Fedotov et al., 2010; Shapiro, Sens-Schönfelder, et123

al., 2017). Its origin is related to the unique tectonic setting at the corner between the Kuril-124

Kamchatka and Aleutian trenches. The enhanced supply of the melt from the mantle might125

be caused by the around-slab-edge asthenospheric flow (Yogodzinski et al., 2001; Levin et126

al., 2002) and related crustal extension (Green et al., 2020; Koulakov et al., 2020) or by127

fluids released from the thick, highly hydrated Hawaiian-Emperor crust subducted beneath128

this corner(Dorendorf et al., 2000). There is also evidence that the distinct volcanoes of129

KVG interact with each other on various time scales, affecting their steady state regimes130

and magma output (Coppola et al., 2021).131

The sustained volcanic activity of the KVG results in nearly constantly occurring seis-132

micity including long periods of seismo-volcanic tremors (Droznin et al., 2015; Soubestre et133

al., 2018, 2019; Journeau et al., 2022) and numerous earthquakes (Senyukov et al., 2009;134

Thelen et al., 2010; Senyukov, 2013; Koulakov et al., 2021). In particular, the deep long-135

period earthquakes (DLP) have been observed at the crust-mantle boundary beneath the136

Klyuchevskoy volcano(Gorelchik et al., 2004; Levin et al., 2014; Shapiro, Droznin, et al.,137

2017; Frank et al., 2018; Galina et al., 2020; Melnik et al., 2020). The temporal correlation138

between the deep and shallow seismic activity has been attributed to the transfer of the139

fluid pressure from the deep-seated parts of the magmatic system towards shallow mag-140

matic reservoirs beneath the active volcanoes (Shapiro, Droznin, et al., 2017; Journeau et141

al., 2022).142

3 From Continuous Seismograms to Data-Driven Features and Seismo-143

gram Atlases144

3.1 An ideal data representation with a scattering network145

In the following, we want to outline how we create data-driven features with ICA and
seismogram atlases with UMAP from continuous seismograms. For two main reasons, wave-
form data is a poor data representation to perform those tasks. Firstly, waveform data is
sensitive to translation, meaning it encodes information about the signal’s position in time.
Secondly, waveform data is sensitive to small signal deformations, meaning that small de-
formations cause large variations in the data representation. To address these challenges, it
is essential to find a representation that is both translation-invariant and stable to small de-
formations. While the amplitude spectrum of the Fourier transform is translation-invariant,
it lacks stability to signal deformations, particularly at higher frequencies Bruna and Mallat
(2013). The wavelet transform replaces the non-localized sine waves of the Fourier transform
with localized waveforms, offering stability to deformations. However, it is not inherently
translation-invariant. By adding non-linear averaging operators to the wavelet transform,
we achieve both translation invariance and stability and create an architecture similar to
Convolutional Neural Networks (CNNs). However, it’s worth noting that the non-linear
averaging operator can potentially remove important signal information. To mitigate this
information loss, we repeat the wavelet transform in combination with the averaging non-
linear operators and extract information at each layer. This iterative approach allows us to
recover most of the lost information, resulting in a representation that is both translation-
invariant and stable to small deformations. This architecture has been mainly introduced
in Bruna and Mallat (2013); Andén and Mallat (2014) and has been recently applied to
continuous seismograms, capturing intriguing patterns (Seydoux et al., 2020; Barkaoui et
al., 2021; Rodŕıguez et al., 2021; Steinmann, Seydoux, Beaucé, & Campillo, 2022; Stein-
mann, Seydoux, & Campillo, 2022; Moreau et al., 2022). Moreover, scattering coefficients
performed better for classification and data exploration tasks in comparison to spectral co-
efficients from the Fourier transform (Andén & Mallat, 2014; Steinmann, Seydoux, Beaucé,
& Campillo, 2022). We apply a scattering network with a sliding window to the continuous
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three-component seismograms to retrieve the scattering coefficients (Figure 2). Each layer
produces an output and the convolutional filters, classically learned in the case of CNNs, are
restricted to a set of predefined wavelets. Considering a mother wavelet ψ(t), we can define
a set of filter bank ψλ(t) = λψ(λt) by dilating the mother wavelet ψ(t) with a set of dilation
factors λ ∈ R. In the frequency domain, the set of wavelet banks would be ψ̂λ(ω) = ψ̂(ω/λ).
The dilation factor λ can then be defined as

λ = 2
k
Q , k = {0, 1, ..., JQ− 1}, (1)

with Q ∈ N being the number of wavelets per octave and J ∈ N being the number of octaves.146

This definition of the dilation factor provides a logarithmic grid of the center frequencies for147

the set of wavelet filter banks.148

By convolving a time series x(t) ∈ R with a set of wavelet filter banks ψλ(t) and
taking the modulus (which plays the role of an activation function), we obtain a real-valued
time-frequency representation Uλ(t) of the time series called a scalogram such as

Uλ(t) = |x ⋆ ψλ|(t), (2)

defining the first convolutional layer of the scattering network with ⋆ standing for convolution
operation. In Andén and Mallat (2014) the authors introduce a low-pass filter ϕ(t) to retrieve
the first-order scattering coefficients, as

S1x(t, λ) = (Uλ ⋆ ϕ)(t) = (|x ⋆ ψλ| ⋆ ϕ)(t), (3)

where the low pass filter ϕ(t) smooths the representation and makes it more stable for small
deformation of the signal. However, it also removes other small-scale structures of the signal
which might be important for pattern recognition tasks. This information is recovered by
repeating the convolution and modulus operation, retrieving higher-order scattering coeffi-
cients. Note that the set of dilation factors λ differs with the layer of the scattering network.
With two sets of wavelet filter banks, ψλ1(t) at the first layer and ψλ2(t) at the second layer,
we can calculate the second-order scattering coefficients

S2x(t, λ1, λ2) = (||x ⋆ ψλ1
| ⋆ ψλ2

| ⋆ ϕ)(t). (4)

By repeating this operation many times, we can retrieve higher-order scattering coefficients
which add more and more information. However, Andén and Mallat (2014) already con-
cluded that the information gain beyond second-order scattering coefficients is marginal
compared to the increasing computational costs. Therefore, we build a two-layer scattering
network recovering first- and second-order scattering coefficients. The wavelets of the scat-
tering network are Gabor wavelets as initially proposed in Andén and Mallat (2014). The
Gabor wavelet ψ(t) with a center frequency f is a complex exponential multiplied with a
Gaussian window, defined by

ψ(t) = exp(−i2πft) exp(−t2/a2). (5)

While f are the center frequencies defining the modulation of the Gabor wavelet, a defines
the exponential drop-off of the waveform. We define a as a function of the wavelet’s band-
width d and its center frequency f , which in turn depends on the Nyquist frequency fN of
the signal x(t) and the dilation factor λ

aj =
d

f
=

d

λfN
. (6)

In this work, we design a two-layered scattering network with a sliding window of 20min149

and an overlap of 10min, resulting in a temporal resolution of 10min of the scattering150

coefficient matrix. The first layer wavelets are adapted to the possible frequency content of151

the tremors; their center frequencies range from 0.78 to 10Hz with a logarithmic grid. The152

second layer wavelets start at much lower frequencies since they gather information about153

the modulation and shape of the signal. The first layer covers 4 octaves and is densely154

spaced with 4 wavelets per octave. The second layer covers 8 octaves and is sparsely sampled155

with 1 wavelet per octave. With three-component seismograms, this results in a scattering156

coefficient matrix of 480 dimensions.157
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3.2 Pooling as a low pass filter in the scattering network158

We use a pooling operation with a one-dimensional kernel as the low-pass filter ϕ(t)159

retrieving the scattering coefficients from the scalogram at each layer. The pooling op-160

eration retrieves a single value for each scale in the scalogram and, thus, acts as a low161

pass filter and downsampling operation (Dumoulin & Visin, 2016) , ensuring a stable and162

translation-invariant representation for the scalograms. There are many different types of163

pooling operations, filtering different types of information and preserving different signal164

characteristics. In Seydoux et al. (2020) , the authors applied the scattering network with165

an average pooling and other possibilities are maximum pooling or median pooling, taking166

the maximum or median value of each scale in the scalogram. As an example case, we167

analyze the scattering coefficient retrieved with maximum and median pooling for a 20min168

seismogram recorded at station SV13 (Figure 1). The dominant signal in this 20min seis-169

mogram is a broadband transient event arriving after 800 s and lasting for 100 s. Moreover,170

there are also persistent harmonic signals , possibly of volcanic origin, around 0.8 and 2Hz171

with a lower amplitude than the transient event. Besides the broadband transient and the172

harmonics, we can identify changing amplitudes at frequencies around 10Hz. This example173

shows the variety of signals of a single seismogram and we must acknowledge that any repre-174

sentation without time information - such as the Fourier spectrum or scattering coefficients175

- will simplify the data. The information retrieved by the scattering coefficients depends176

largely on the settings of the scattering network: number of wavelets, frequency range of177

wavelets and pooling operation. Figure 1c, d and e show the median and maximum pooled178

scattering coefficients together with the Fourier spectrum. The first-order maximum pooled179

coefficients resemble a smoothed Fourier spectrum (Figure 1c). The first-order median180

pooled coefficients are lower in amplitude and contain different local maxima and minima.181

They show larger amplitude for the two harmonics and lower amplitudes in between. The182

transient event with large amplitudes between 0.2 and 10Hz seems to have no influence183

on the median pooled coefficients. In contrast, the maximum pooled coefficients have an184

amplitude distribution that matches much better the transient event. The type of pooling185

operation, which transforms the scalogram into scattering coefficients, filters the data and186

stores different types of information. Median pooled coefficients contain the information of187

the background wavefield and ignore any short lived transients in the seismogram. Maxi-188

mum pooled coefficients are sensitive to any type of short-lived transient in the seismogram189

which mask the background wavefield. Note also that maximum pooling would save the190

information of two transient events, if they appear in different frequency ranges. Thus, it191

could be a representation of a mixture of large amplitude events with different frequency192

content. Both pooling operations are valid, however, we need to acknowledge that both193

representations are biased and simplify the nature of the seismic data, an important fact194

to consider for exploratory data analysis. In this work, we will consider median pooling to195

mitigate the effects of impulsive short-term signals196

197

3.3 Feature Extraction with Independent Component Analysis198

The scattering coefficients are collected in a data matrix X in such a way that the
rows contain the scattering coefficient time series and the columns contain all scattering
coefficients for one sliding time window (Figure 2). We refer to the time series of the
independent sources as features for the following text. The aim of ICA is the separation of
multivariate signals into independent, non-Gaussian source signals, which can be formalized
in the following way

X = AS, (7)

where X ∈ RF×N are the N observations of dimension F , A ∈ RF×C is the mixing matrix,
and S ∈ RC×N are the C independent sources. ICA estimates S by applying the inverse or
pseudo-inverse of the mixing matrix, called unmixing matrix, W ∈ RC×F to the observed

–6–
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Figure 1. Comparison between Fourier spectrum and scattering coefficients of a seismic signal.

(a) shows an example seismogram with normalized amplitude in time domain. (b) shows its

corresponding Fourier spectrogram. (c) shows the Fourier amplitude spectrum and the first order

median and maximum pooled scattering coefficients of the signal shown in (a). (d) shows the

second order maximum pooled scattering coefficients and (e) shows the second order median pooled

scattering coefficients as a function of the center frequencies f1 and f2.
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Figure 2. Detailed view of a two-layered scattering network applied to continuous three-

component seismograms with a sliding window. The dashed line in the 1st-order scalogram indicates

the data row which is convolved with the second-layer wavelet banks. The final scattering coeffi-

cient matrix contains the first- and second-order scattering coefficients from the three-component

seismogram.
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data in X

S = WX. (8)

ICA solves this equation by maximizing the statistical independence of the sources in S.199

The independence is estimated by a measurement of non-Gaussianity such as the kurtosis200

or negentropy (Hyvärinen & Oja, 2000). The number of sources C is not known and is one201

of the most important parameters impacting the results of ICA. Often, this parameter is set202

according to a measurement estimating the information loss such as the explained variance203

score. Note that ICA is often described as a generalization of principal component analysis204

(PCA), since the independent components (sources) have no constraints of orthogonality205

(Comon, 1994). Also in contrast to PCA, the sign and amplitude of the independent sources206

can not be determined, because both S and A are unknown and a scaling factor can always207

be canceled out. Therefore, ICA does not provide any ranking to the retrieved sources. It208

is common practice to center and whiten the data in X since it constrains the unmixing209

matrix to be orthogonal and therefore the number of free parameters reduces (Hyvärinen &210

Oja, 2000).211

3.4 Seismogram Atlases with UMAP212

UMAP is a manifold learning technique, which has been introduced in the work of213

McInnes et al. (2018). Similar to ICA, UMAP is a tool to reduce the dimensions of a high-214

dimensional dataset for downstream tasks such as visualization. Since we are interested in a215

visualization of the high dimensional scattering coefficient matrix, we restrict the number of216

dimensions to two. Any dimensionality reduction technique comes with a loss of information217

and the loss depends on the objective of the dimensionality reduction technique. Because218

ICA performs a linear mapping, it preserves well the pair-wise distances, but it loses in-219

formation about local structures. UMAP learns the manifold of the given data and, thus,220

performs better in preserving local structures at the price of distorting the global structure.221

Hence, the distances between neighboring points are more reliable than distances between222

clusters of data points or the area of a cluster. Without going into further details, the223

inner workings of UMAP are based on topological data analysis and Riemannian Geometry,224

providing a complex but safe and sound mathematical background (see the original work of225

McInnes et al., 2018, for more details). It shares similarities with the t-distributed Stochas-226

tic Neighbor Embedding (t-SNE), which has been used extensively for visualizations since its227

appearance in the 2000s (Van der Maaten & Hinton, 2008). However, compared to UMAP,228

t-SNE performs poorly in preserving global structures and its computation time is much229

slower (McInnes et al., 2018; Becht et al., 2019). Despite its relatively recent introduction,230

UMAP has been already utilized in many scientific domains to create a two-dimensional231

representations, simplifying the visualization of large and high-dimensional datasets. The232

resulting two-dimensional UMAP spaces have been coined “atlases” such as the activation233

atlas of neural networks (Carter et al., 2019), the mouse organogenesis cell atlas (Cao et al.,234

2019), or the metagenomic atlas (Lin et al., 2022).235

UMAP comes with a set of hyperparameters to tune such as the number of neighbors236

and the minimum distance, drawing the focus either towards preserving local or global237

structures. The number of neighbors limits the number of neighboring points when UMAP238

learns the local manifold structure. A low number draws the focus to the local structure239

while losing the bigger picture. A large number draws the focus on the global structure while240

losing finer details. The minimum distance controls how closely UMAP is allowed to bring241

data points together. A low number results in a more dense and clumpier representation242

and preserves better the local structure of the data. A large number avoids putting points243

close to each other and draws a broader picture of the data.244

–9–
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4 The Data: continuous seismograms, catalogs and lava discharge rate245

In this work, we apply exploratory data analysis to the continuous seismograms of a joint246

Russian-German-French temporary seismic experiment named KISS (Klyuchevskoy Investi-247

gation – Seismic Structure of an Extraordinary Volcanic System; Shapiro, Sens-Schönfelder,248

et al., 2017), including short period and broadband sensors and covering the time period249

between August 2015 and July 2016. We focus on continuous three-component seismograms250

recorded by six individual broadband stations (Figure 3). The seismograms are demeaned,251

detrended, and down-sampled to a sampling rate of 25Hz. Additional data such as a tremor252

catalog from Journeau et al. (2022) and the time averaged lava discharge rate (TADR) time253

series from Coppola et al. (2021) will support the exploratory data analysis, connecting254

signal patterns to known state changes of the volcanic system. Due to the remoteness of255

the KVG, seismic and satellite data are the only available data sources.256

4.1 The scattering coefficients257

In order to visualize the continuous seismograms and introduce the concept of scattering258

coefficients, we depict the first- and second-order coefficient time series of the east channel259

of station SV 13 in Figure 4a and b. We choose station SV13 since it is located directly260

above the cataloged seismic-volcanic activity (Figure 3). The first-order scattering coefficient261

time series resembles a spectrogram with spectral coefficients based on Fourier analysis262

(Figure 4a). The second-order scattering coefficient time series appear as multiples of the263

first-order scattering coefficients due to the application of the second-order wavelet transform264

to the first-order scalogram (Figure 4b).265

4.2 The tremor catalog266

The authors of Journeau et al. (2022) used the network’s spectral covariance matrix267

(Seydoux et al., 2016) to detect and locate the coherent signals in a continuously moving268

time window and built a catalog of volcanic tremors including locations of their sources. We269

want to emphasize here that the catalog is a valuable source of information in validating the270

results of our work, however, it does not hold the ground truth, either. Figure 4c depicts the271

time-depth evolution of the catalog, showing periods of shallow and deep activity. Before272

December 2015, the tremors are mainly located in the deeper part of the Klyuchevskoy273

plumbing system with periods of increased tremor activity in August in September. The274

whole plumbing system becomes active after 4 December 2015 with shallow and deep tremor275

sources. After a short absence of tremors, they restart in March 2016 and last until the end276

of the cataloged time period. All scattering coefficient amplitudes are elevated during the277

presence of tremors (Figure 4a, b, and c).278

4.3 Lava discharge rate time series and daily activity level279

We also use the time-averaged lava discharge rate (TADR) time series of Coppola et al.280

(2021) , indicating the timing and strength of the eruption. The TADR data is estimated281

from infrared satellite data, assuming that the radiated energy of a lava body is linearly cor-282

related to the bulk erupted volume. In the first half of April 2016, an eruption unfolded at283

the Klyuchevskoy volcano, indicated by TADR values above 0.1m3 s−1 and lasted through-284

out the remaining recording time of the KISS experiment (Figure 4d). However, the exact285

starting time is not known. The scattering coefficients depict the largest amplitudes during286

the first half of April 2016 and show elevated amplitudes for the remaining recording time.287

Moreover, the Kamchatka Branch of the Russian Geophysical Survey (KBGS) determines288

the daily activity level for the Klyuchevskoy volcano based on detected seismic activity com-289

bined with visual and satellite observations, when available. The orange color in Figure 4d290

corresponds to an ongoing eruption.291
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Figure 3. Map of Klyuchevskoy Volcano Group (KVG) with the seismic stations (SV13,

IR18, IR12, SV7, OR18, and ESO) considered in this study, shown with white triangles. The

orange triangle shows the location of the Klyuchevskoy volcano. Averaged spatial density of the

tremor source location according to Journeau et al. (2022) is shown with a colormap. Black circles

and purple crosses indicate hypocenters of individual detections of tremors and deep long-period

earthquakes (DLP), respectively.
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Figure 4. Time series of SV13 scattering coefficients and other data sources (a) Time

series of first-order scattering coefficients of the east channel of SV13. (b) Time series of second-

order scattering coefficients of the east channel of SV13. The y-axis represents the center frequency

of the first-order wavelets f1 and the center frequency of the second-order wavelets f2 lies between

two f1 values (details in section 3.1). However, due to reasons of clarity, we do not label them on

the y axis. (c) Localized tremors from Journeau et al. (2022) as a function of calendar time and

depth. (d) TADR time series from Coppola et al. (2021) as black dots and the daily activity level

from the KBGS as color-coded dots. Green corresponds to low volcanic activity, yellow corresponds

to medium volcanic activity, orange corresponds to ongoing eruption, and red corresponds to an

explosion on 7 July 2016.
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5 Exploratory data analysis with Independent component analysis (ICA)292

and seismogram atlases293

5.1 Hierarchical ICA with increasing number of components294

The complete scattering coefficient matrix of station SV13, including the east, north295

and vertical channels, is the input for the ICA model. We apply ICA models with four (M4),296

12 (M12), and 50 (M50) independent sources to explore the impact of dimensionality. M4297

reaches an explained variance score of 94%,M12 reaches an explained variance score of 98%298

and M50 reaches an explained variance score of 99.6%. Figure 5 shows the smoothed time299

history of the independent sources (features) of each model. The features show negative and300

positive values of arbitrary units centered around zero due to the centering and whitening of301

the scattering coefficient matrix. We sort the features according to their maximum absolute302

amplitude appearance in time, helping the visualization of any time-dependent processes.303

The features of the three models show very different time series and in the following,304

we want to use the models to understand better the underlying seismic data. First of all,305

we provide a qualitative comparison between the features of the three models. While there306

is no single feature matching between M4 and M50 (Figure 5b and d), we can find similar307

features between M4 and M12 such as feature 2 in both models (Figure 5b and c). M50 is308

very different from the other two models, since its features appear more sparse, i.e. they309

are mostly centered around zero except for a short duration. Moreover, it is striking that if310

one feature shows large amplitudes in a negative or positive direction (saturated blue and311

red colors), almost every other feature is centered around zero. These characteristics ofM50312

together with the sorting of the features result in a color-saturated diagonal line in the time-313

feature space (Figure 5d). It appears that each data point in this 50-dimensional feature314

space is located at the center of 49 dimensions. In contrast, the data points represented by315

the features of M4 and M12 do have non-zero values for more than one dimension. The M50316

model indicates that the seismic time series witness an ever-changing seismic wavefield with317

new signal characteristics throughout the recording time. The comparison with the tremor318

count per day and the lava discharge rate in Figure 5a reveals interesting relation between319

the features and known state changes. For instance, feature 2 of M4 and M12 models320

shows positive values mainly during the tremor activity in August and September 2015,321

suggesting signal characteristics different from the later tremor periods. The reactivation of322

the plumbing system at 4 December 2015 is characterized by a rapid succession of features323

in the M50 model, indicating rapid pattern changes in the seismograms. In contrast, the324

eruption period starting in April 2016 is characterized by M50 features showing constant325

amplitudes for longer time periods (feature 40 to 50 in Figure 5d). This suggests more stable326

signal patterns lasting for longer time periods compared to the reactivation of the plumbing327

system in early December. Overall, we find correlations between feature changes – indicating328

signal pattern changes in the seismograms – and state changes of the Klyuchevskoy volcano.329

Moreover, we see that the number of components has an effect on the retrieved features,330

showing different time histories. The different ICA realization can be seen as a hierarchical331

ICA, where a model with a larger number of components – such as M50 – can account for332

smaller differences in the signal characteristics.333

5.2 Interpreting M4 Features with The Mixing Matrix334

To understand better what the features represent, we recall the equation of ICA (see335

Equation 7 and 8). The whitened and centered scattering coefficient matrix X is estimated336

as the sum of rank-1 matrices, resulting from the outer product of a feature (rows in S)337

with the corresponding columns in the mixing matrix A. Hence, the columns of A reveal338

how each feature contributes to the estimation of X. The visualization of the columns339

of A and its outer product with the corresponding feature can help to understand better340

the underlying signal characteristic of each feature. In (Steinmann, Seydoux, & Campillo,341

2022), we used this method to reveal the changing signal patterns due to the freezing and342
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Figure 5. Hierarchical ICA for station SV13. (a) The grey histogram describes the daily

number of localized tremors based on Journeau et al. (2022) and the colored circles indicate the daily

activity level of the Klyuchevskoy volcano, where green represents low activity, yellow represents

medium activity, orange represents an ongoing eruption, and red represents an explosion on 7 July

2016. The black dots correspond to the time-averaged lava discharge rate (TADR) from Coppola et

al. (2021). By applying multiple ICA models to the SV13 scattering coefficient matrix, we retrieve

time histories of the independent sources (features), describing signal patterns in the seismogram.

(b) shows the features of the 4-component model M4, (c) shows the features of the 12-component

model M12, (d) shows the features of the 50-component model M50. Note that the features were

sorted with respect to their absolute maximum value in time for better visualization.
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thawing of the near subsurface. In Figure 6, we reorganize and visualize the mixing weights343

of the M4 model according to the center frequencies of the first- and second-order wavelets.344

We can use the shown mixing weights to attribute signal characteristics to the features of345

M4 in Figure 5b. For example, feature 3 in Figure 5b shows a general correlation with346

the occurrence of tremors. The corresponding mixing weights show mainly negative ampli-347

tudes peaking at f1 =2Hz in all components and for both first- and second-order scattering348

coefficients (Figure 6). Figure 7b, c, and d show the reconstructed first-order scattering349

coefficients, resulting from the outer product of feature 3 with its mixing weights. We disre-350

gard the second-order scattering coefficients for visualization purposes, however, we want to351

emphasize that they contain important signal information. We also add the mean over the352

scattering coefficients, which we subtracted before the ICA during the whitening process.353

The reconstruction makes clear that the tremor periods are characterized by a broadband354

amplitude increase peaking around 2Hz (Figure 7b, c, and d). Note that both the mix-355

ing weights (source 3 in Figure 6) and the feature amplitudes during tremor-active periods356

(source 3 in Figure 5b) are negative, resulting in positive amplitudes of the reconstructed357

scattering coefficients due to the matrix multiplication (Figure 7b, c, and d). This example358

shows the ambiguity of the sign attached to the sources: any change of sign in feature 3359

can be equalized with a change of sign of the corresponding column vector of the mixing360

matrix, resulting in the same rank-1 matrix. The reconstruction shows that feature 3 ofM4,361

correlating with general tremor occurrence, relates to broadband amplitude changes. We do362

not need machine learning approaches to observe a correlation between a broadband ampli-363

tude increase and tremor occurrence, however, we want to show that the features represent364

meaningful patterns.365

A more interesting example is feature 2, which correlates only with the tremor sequences366

in August and September (feature 2 in Figure 5b). The corresponding mixing weights367

show positive and negative amplitudes depending on the frequencies f1 and f2 and the368

channel (source 2 in Figure 6). Similar to before, we can visualize the first-order scattering369

coefficients of the obtained rank-1 matrix by the outer product of the mixing weights with370

feature 2 (Figure 7e, f, and g). We see a clear anti-correlation for scattering coefficients371

below and above 1Hz for the east channel (Figure 7e): an amplitude increase above 1Hz372

occurs together with an amplitude decrease below 1Hz (e.g. the tremor-dominated time373

periods in August and September). Similarly, an amplitude increase below 1Hz occurs374

together with an amplitude decrease above 1Hz (e.g. October to December 2015). This375

anti-correlation can be already observed by the negative and positive weights of the mixing376

matrix (source 2, Figure 6). Weights with the same sign indicate the scattering coefficients377

which correlate with the corresponding independent source. The observed anti-correlation378

is nothing physical and this rank-1 matrix reflects only a part of the data without taking379

into account the other independent sources. Nonetheless, Figure 7e, f and g suggest that the380

deep tremor activity in August and September is different from the other tremor episodes381

mainly due to different patterns at the east channel around 1Hz.382

The reconstruction can indicate the underlying pattern changes in the seismogram and383

seems to be useful for ICA models with a low number of components. However, this becomes384

unfeasible for ICA models with a large number of components such as for M50.385

5.3 Comparing M50 models of multiple seismic stations386

The M50 model of station SV13 (Figure 5d) pictures a seismic time series with many387

pattern changes , indicating an ever-changing seismic wavefield. This seems surprising and388

it might be a particular characteristic of the data recorded close to the active Klyuchevskoy389

volcano. By retrieving M50 models from different stations with an increasing distance to390

the volcano, we can verify this assumption. The considered stations – named SV13, IR12,391

IR18, SV7, OR18 and ESO in Figure 3 – are located between 5 and 122 km away from the392

active volcano. Figure 8 shows the corresponding M50 models, revealing a diagonal line in393

the time feature space degrading with increasing distance to the volcano. This confirms394
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Figure 6. Mixing weights for the M4 model for its four sources at station SV13. The matrix

multiplication of the mixing weights with the M4 features in Figure 5b estimates the scattering

coefficient matrix (see equation 7). For visualization purposes, we reshaped the mixing matrix to

display the weights related to the first-order coefficients in the left column, and the weights related

to the second-order coefficients are split into three different subplots according to the seismometer’s

component.

our assumption that the large amount of pattern changes, represented by the diagonal395

line in the time-feature space, are only recorded in direct proximity to the active volcano.396

The activation of the whole plumbing system in December and the eruption period are397

characterized by dominant features even for stations further away such as SV7 and OR18.398

However, the large number of features makes it cumbersome to understand the pattern399

changes and relate it to physical processes in the volcano. Manifold learning techniques400

such as UMAP might help to overcome this issue by capturing more information on fewer401

dimensions.402

5.4 Seismogram Atlases of individual stations403

We obtain seismogram atlases for the 6 station with UMAP and color-code the data404

points with their corresponding calendar time, highlighting the temporal evolution of the405

seismic time series (Figure 9). The seismogram atlases share the same hyperparameters:406

the minimum distance is set to 0.5 and the number of neighbors to 50. We tested different407

hyperparameters for the data of station SV13 (see Figure 10). The atlases depict different408

cluster shapes and distances with regard to the hyperparameters, emphasizing the trade-off409

between local and global structures in the atlas. However, all the examples confirm the410

smooth time gradient and little to no overlap of different time periods. We opted for a411

minimum distance of 0.5 and 50 neighboring points, a decision primarily guided by visual412

assessment, much like the process commonly used in many other dimensionality reduction413

techniques. The chosen parameters seem to be a good choice for preserving local and global414

structures without resulting in too many disjoint clusters, as observed with 10 neighboring415

points. The seismogram atlases of SV13, IR18, and IR12 picture a variety of shapes with416

many linear and curved structures, where data points with different colors hardly overlap417

(Figure 9a-c). Many data points with a similar color seem to be located close to each418

other, which gives rise to a smooth color gradient across the atlas. Therefore, neighboring419

data points in the atlas are likely neighboring data points in time, suggesting smooth and420

slow signal changes. However, there are also isolated or disconnected structures, indicating421

more sudden signal changes from time to time, especially for stations IR12 and IR18. The422

atlases of the data recorded at SV7, OR18, and ESO look different: there are less linear or423

curved structures and different colors overlap more often (Figure 9e-f). The two-dimensional424

seismogram atlases confirm our interpretation of the 50-dimensional ICA models: close to425
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Figure 7. Reconstructed first-order scattering coefficients based on the outer product

of a M4 feature with its mixing weights for station SV13. Subfigure a shows the localized tremors,

subfigures b, c and d show the reconstruction of the first-order coefficients of the east, north and

vertical channel, based on feature 3 (Figure 5b). Subfigures e, f and g show the reconstruction of

the first-order coefficients of the east, north and vertical channel, based on feature 2 (Figure 5b).
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Figure 8. By applying a 50-component ICA model to the scattering coefficient matrices, we

retrieve M50 features for the continuous seismograms recorded at station SV13 (a), IR18 (b),

IR12 (c), SV7 (d), OR18 (e) and ESO (f). Each feature represents a signal pattern, which

dominates when the color is saturated. The results are ordered according to the distance to the

active Klyuchevskoy volcano mentioned in the title of the subfigures. Subfigure (g) shows the

number of localized tremors per day as a grey histogram, the time-averaged lava discharge rate

(TADR) from Coppola et al. (2021) as black dots and the daily activity level from the KBGS

as color-coded dots. Green corresponds to low volcanic activity, yellow corresponds to medium

volcanic activity, orange corresponds to ongoing eruption, and red corresponds to an explosion on

7 July 2016.
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Figure 9. By applying the manifold learning technique UMAP to the scattering coefficient

matrices, we obtain individual seismogram atlases for the continuous seismograms recorded at

station SV13 (a), IR18 (b), IR12 (c), SV7 (d), OR18 (e) and ESO (f). Each data point in the

two-dimensional representation corresponds to 20min three-component seismograms and the color-

code reflects the calendar starting time of the 20min window. The distance in the atlas reflects

the similarity of the three-component seismograms. The subfigures are ordered according to the

distance to the active Klyuchevskoy volcano mentioned in their titles.

the active volcano, the seismograms witness many pattern changes, which are not visible by426

stations further away.427

5.5 Connecting the seismogram atlas to known physical processes428

In order to provide a meaningful interpretation, we color-code the data points in the429

atlas with other physical parameters such as the TADR and the depth of the located tremors.430

Since the TADR time series are sampled irregularly, we interpolate the TADR data linearly,431

matching a TADR value with a data point in the atlas. We do that for the station closest432

to the volcano - SV13 - and for the station furthest from the volcano - ESO (see Figure 11a433

and b). For station SV13, we can clearly identify the eruption activity (TADR > 0.1m3 s−1)434

in the eastern area with multiple linear and cluster structures. For station ESO, we can435

only identify areas of strong eruption activity (TADR > 1m3 s−1) with no linear or curved436

structures, which would indicate continuous pattern changes in the seismograms. Figure 11c437

and d show the atlases color-coded with deep and shallow tremors. For station SV13, we438

can identify areas with either dominating deep or shallow tremor activity (areas with mainly439

blue or orange color in Figure 11c) and we can identify areas with a mix of deep and shallow440

activity. Moreover, the tremor signals cover a large part of the atlas and only a small part441

does not correspond to tremor signals (grey data points). For station ESO, deep and shallow442

tremor activity is nowhere separated, indicating that ESO is too far to sense fine tremor443

signal variations.444
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Figure 10. Seismogram atlases obtained with changing UMAP hyperparameters for the data

recorded at SV13. Each data point in the two-dimensional representation corresponds to 20min

three-component seismograms and the color-code reflects the calendar starting time of the 20min

window. The results shown in Figure 9a correspond to min dist = 0.5 and n neighbors = 50.

6 Discussion445

The seismogram atlases and the ICA features reveal a permanently evolving seismic446

wavefield with many pattern changes in the vicinity of the active Klyuchevskoy volcano.447

This suggests that the continuous seismograms from close stations contain relevant infor-448

mation about the dynamic processes occurring in the volcano plumbing system. We found449

particularly interesting the difference between the atlases obtained for stations located in450

the close vicinity of the active Klyuchevskoy volcano and those from distant stations. The451

latter look like “diffuse” clouds of points without distinctive structures. The former contain452

many well-defined “lineaments”. We hypothesize that these “lineaments” in the seismogram453

atlases of nearby stations are associated with dynamic processes occurring within the vol-454

cano plumbing system. During such periods of “dynamic activity” the system evolution is455

characterized by certain “continuity” that is reflected in the “continuity of the seismogram456

atlas “lineaments”.457

In order to quantify this continuity, we use two parameters. We start with computing458

all vectors (steps) connecting two atlas points consecutive in time. Then, we compute459

the amplitudes of these steps. Small steps correspond to a more continuous atlas evolution.460

Therefore, we average the step amplitudes over N consecutive points and call this parameter461

as “seismogram atlas continuity”. Then we evaluate if consecutive steps follow a preferential462

direction. For this, we compute an Euclidean distance between points separated by N steps463

and compare it with the sum of amplitudes of these N steps. If all steps are perfectly464

aligned in the same direction these two quantities are perfectly equal. If the directions of465

steps are random, the distance between the first and last points is much smaller than the466

sum of step amplitudes. We compute the ratio between these two quantities and call it467

“seismogram atlas gradient continuity”. Its value maximizes at 1 for a perfectly straight468

atlas “lineament”.469
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Figure 11. Seismogram atlases color-coded with interpolated time-averaged lava discharge rate

(TADR) and localized tremors for two stations. Seismogram atlas with interpolated TADR for

station SV13 in (a) and ESO in (b), highlighting areas in the atlas with strong eruptive activity.

Seismogram atlas with shallow and deep tremors for station SV13 in c and ESO ind, highlighting

areas with rather shallow or deep volcanic activity. We color-coded a data point with tremor

activity in case they matched in time. Deep and shallow tremors are separated at 10 km depth.
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Figure 12. The seismogram atlas with example spectrograms of tremor signals from

the period between August 2015 and February 2016. The upper image shows the SV13

seismogram atlas . Data points matching in time with localized tremors are black and data points

with weak or unknown signals are grey. Each data point represents 20min of three-component

seismograms and for some data points (marked with the colored arrows) we visualized the east-

component spectrograms with their calendar data on the top of the subfigure. The color-coding of

the arrows matches the color-coding of the spectrogram’s frame and the arrows point towards the

next data point in time.
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Figure 13. The seismogram atlas with example spectrograms of tremor signals from

the period between February 2016 and July 2016. The upper image shows the SV13

seismogram atlas . Data points matching in time with localized tremors are black and data points

with weak or unknown signals are grey. Each data point represents 20min of three-component

seismograms and for some data points (marked with the colored arrows) we visualized the east-

component spectrograms with their calendar data on the top of the subfigure. The color-coding of

the arrows matches the color-coding of the spectrogram’s frame and the arrows point towards the

next data point in time.
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6.1 Interpretation of the SV13 seismogram atlas470

Our data analysis showed that station SV13, the closest station to the active Klyuchevskoy471

volcano, witnesses many pattern changes and we have seen correlations with other data472

sources such as the event catalogs and the TADR time series. In the following, we try to473

synthesize all data sources to identify meaningful areas within the SV13 seismogram at-474

las. Moreover, we visualize the spectrograms of some data points, showing characteristic475

examples of various atlas areas (Figure 12 and 13). In both Figures, we connect the data476

points in the atlas to known cataloged signals from Journeau et al. (2022). The example477

spectrograms focus on tremor active periods and we connect the different data points with478

arrows, highlighting the temporal evolution of the tremor signals.479

The SV13 seismogram atlas shows an interesting data landscape of continuous and480

isolated linear and curved structures with temporal smooth gradients, correlating with the481

occurrence of tremors (Figure 11c). The time series of atlas continuity and atlas gradient482

continuity for the three stations in the vicinity of the active volcano are depicted in Fig-483

ure 14a, b, and c. As a comparison, Figure 14d shows the daily count of shallow tremors in484

blue (above 10 km depth) and deep tremors in red (below 10 km depth), highlighting time485

periods of deep or shallow activity. Figure 15 provides an interpretation with the same486

labels for the SV13 seismogram atlas by connecting certain time periods to volcanic activ-487

ity. The interpretations of both Figures are based on the temporal evolution depicted in488

Figure 9a, the catalog association with example spectrograms shown in Figure 12 and 13,489

the TADR and tremor depth association in Figure 11a and c, and the movie S1, highlight-490

ing the temporal evolution of the atlas. We also used information from the daily reports491

of the Kamchatka Branch of the Russian Geophysical Survey available at their web site492

(in Russian): http://www.emsd.ru/˜ssl/monitoring/main.htm and publications about the493

Klyuchevskoy activity in 2015-2016 (O. A. Girina et al., 2019; O. Girina et al., 2023).494

From August to the end of September 2015, tremor activity occurs mainly at deeper495

depth (marked with a blue 1 in Figure 14d). The same time period corresponds to a496

connected point cloud with multiple linear and curved structures in the atlas (marked with497

a blue 1 in Figure 15). The spectrograms in that area picture narrow-banded continuous498

tremor signals centered around 1Hz, which is different from the other tremor signals (blue499

framed spectrograms in Figure 12). This confirms our interpretation of the reconstructed500

scattering coefficients in Figure 7, indicating a signal difference around 1Hz between the501

early deep tremor period and the tremors after the reactivation in December 2015. In the502

following we relate the pattern evolution of the continuous seismograms with distinct phases503

of the Klyuchevskoy volcano.504

At the end of September 2015, the deep tremor activity decreases and only a few505

isolated days denote tremor activity. Since there is no strong seismic activity in this time506

period (marked with a grey 2 in Figure 14d), we can assume that it is mainly dominated507

by weak seismo-volcanic signals and ambient seismic noise. For the same time period, the508

atlas depicts a grey point cloud below the deep tremor activity (marked with a grey 2 in509

Figure 15). Interestingly, this time period is placed close to the deep tremor activity with510

overlapping structures. In fact, the grey linear structures reaching into the blue area are511

related to the deep tremor activity in October and November (see movie S1).512

The reactivation of the whole plumbing system starts at 4 December 2015 and is char-513

acterized by a jump in the atlas from the seismic noise area to a linear structure in the514

northern area (marked by a blue 3 in Figure 15), suggesting a sudden pattern change in515

the seismograms. A high continuity value on all three stations reflects the temporal-spatial516

disconnection in the seismogram atlas (blue 3 in Figure 14a, b, and c). After that date the517

atlas depicts a complex trajectory where we can identify shallow and deep tremor phases518

(marked with 4, 5, and 6 in Figure 15 and Figure 14), indicating an ever-changing seismic519

wavefield with continuous pattern changes. In the same time period, the spectrograms in520

Figure 12 indicate a transition from pure continuous signals to continuous signals with im-521
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pulses. The tremor catalog in Figure 14d indicates a deceasing tremor activity in February522

2016, marked by neon-green 6 and grey 7.523

From the deep reactivation in December 2015 until the quiet period in February 2016,524

the atlas depicts a continuous trajectory, ending close to the area of low seismo-volcanic525

activity in October/November 2015 (Figure 15). The purple-framed spectrograms of Fig-526

ure 12 confirm the gradual decrease of continuous signals, which are characteristic of volcanic527

tremors. It is interesting to note that the linear trajectory in the atlas continues, even after528

the catalog does not show any tremor detections (see movie S1). This suggests continuing529

and not cataloged weak tremor activity. Since station SV13 is located close to the center of530

tremor activity, it is very likely that this station records weak tremor activity, which does531

not generate a coherent signal across an array of stations. It is also interesting that the532

data points of the quiet period in February/March 2016 (marked with a grey 7) do barely533

mix with the data points of the October/November 2015 period (marked with a grey 2),534

indicating a different type of ambient seismic noise or different weak seismo-volcanic signals.535

We can exclude the oceanic mircoseisms or large-scale meteorological phenomena for this536

behavior, since the center frequencies of the first-order wavelets do not cover frequencies537

below 0.78Hz. Other studies have shown that the signal properties of the ambient seismic538

noise can change due to volcanic activity (Glynn & Konstantinou, 2016; Ichihara et al.,539

2023).540

Towards the end of the quiet period, the data points move away from the noise area541

towards an area where we have mainly pre-eruptive shallow tremors (yellow 9 in Figure 15542

and movie S1), indicating slowly emerging and not cataloged tremor signals. This slow543

transition is interrupted by a deep reactivation starting at 17 March 2016, depicted by544

a jump in the atlas to the curved purple structure marked with an 8. In fact, the deep545

reactivation is characterized by a spatial-temporal disconnection in the atlas for the three546

stations close to the volcano, suggesting a sudden pattern change on the three stations similar547

to the 4 December 2015 reactivation (Figure 14). The deep reactivation is characterized by548

pure broadband continuous signals compared to the times before and after (blue-framed549

spectrograms in Figure 13). After the sudden pattern changes, the SV13 atlas indicates a550

more continuous pattern change until the start of the eruption (yellow 9 and magenta 10 in551

Figure 15). The spectrograms of the same time period show a continuous transition from552

repeating impulsive signals to more continuous tremor signals (orange-framed spectrograms553

in Figure 13). After the eruption started on April 4, 2016 (O. A. Girina et al., 2019; O. Girina554

et al., 2023), the spectrograms show mainly continuous tremor signals (green- and red-555

framed spectrograms in Figure 13) The April/May 2016 co-eruptive tremor period is located556

on the far left in the atlas and a neighboring linear structure characterizes a period of shallow557

tremor activity with an increase in the lava discharge rate occurring at the end of May 2016.558

After this event, the co-eruptive tremor signals build a point cloud with no linear structures559

(light-pink 14 in Figure 15), indicating no continuous pattern evolution for a longer time.560

This behavior is very different from the previous tremor-dominated periods, characterized561

by mainly linear or curved structures and continuous or sudden pattern changes. During562

that time in June 2016, most tremor sources are at a shallow depth (Figure 14d). The563

significant increase of the atlas continuity and gradient continuity seen at all three station564

at the beginning of July 2016 (Figure 14) marks reactivation prior to the strong explosion565

that took place on July 7, 2016 at the crater of the active Klyuchevskoy volcano. On this566

date, an ash column reached 10 km in altitude according to KBGS and the ash cloud traveled567

more than 400 km (O. A. Girina et al., 2019). The atlas denotes a jump back to the eruption568

area around 4 July 2016, indicating a reactivation prior to the explosion (red-yellow 15 in569

Figure 15).570

The seismogram atlas of station SV13 shows that the seismograms follow a complex571

signal evolution with many pattern changes due to volcanic activity and a changing plumbing572

system. The atlas shows no overlap of the various tremor periods, indicating changing573

tremor signal patterns throughout the recording time. We see both smooth and sudden574
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transitions between different activities, reflecting smooth and sudden regime transitions575

of the volcanic system. The interpretation shows that UMAP preserves global and local576

structures. Globally, we can identify seismograms with continuous signal characteristics in577

the outer circle of the atlas and seismograms with impulsive characteristics in an area inside578

the circle. Locally, we can identify certain periods of volcanic activity such as shallow or579

deep tremor activity, and see continuous or sudden changes between these different periods.580

In some areas we have continuous transitions between continuous and impulsive signals,581

indicating seismograms containing both types of signal characteristics. Journeau et al.582

(2022) observed a similar signal separation and transition within the variables space obtained583

from the network’s covariance matrix. In our case, the second-order scattering coefficients584

contain information about impulsive and continuous signal characteristics and, therefore,585

the separation of seismograms according to these characteristics is reasonable. Our findings586

show that the majority of the recording time is dominated by tremor signals. This agrees587

with the findings of Makus et al. (2023) where their reference correlation function for the588

same dataset is dominated by tremor activity.589

7 Conclusion590

With data-driven features and seismogram atlases, we have analyzed the signal con-591

tent of continuous seismograms recorded during the KISS experiment close to the active592

Klyuchevskoy volcano. A scattering network transformed the continuous seismograms into593

a stable data representation (scattering coefficient matrix) for exploratory data analysis.594

With an ICA, we extracted features describing data-driven signal characteristics of the seis-595

mogram. These features have shown a continuously evolving seismogram with many pattern596

changes, in particular for stations a few kilometers away from the active Klyuchevskoy vol-597

cano. A larger number of features was necessary to observe this behavior. Simultaneously,598

the large number made it cumbersome to understand this behavior and relate it to vol-599

canic activity. Therefore, we utilized a non-linear dimensionality reduction technique called600

UMAP to create a two-dimensional representation of the scattering coefficient matrix, which601

we call a seismogram atlas. In the seismogram atlas, we find various structures with closeby602

data points representing similar seismograms and distant data points representing dissim-603

ilar seismograms. The atlases offer a visual tool to analyze long seismic time series and604

they confirmed our observation of an ever-changing wavefield. We were able to relate cer-605

tain atlas areas, representing similar signal characteristics, to different volcanic activities606

and changes in the volcanic plumbing system. While the seismic wavefield seems to change607

throughout the recording time, the atlas helped us to identify sudden and continuous pat-608

tern changes. Deep reactivations are characterized by sudden pattern changes and tremor609

depth changes are mainly characterized by continuous pattern changes. We also want to610

emphasize that each tremor period seems to have its own signal characteristics, resulting in611

distinct structures in the seismogram atlas.612
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Figure 14. Time series of the atlas continuity and atlas gradient continuity of the three stations

SV13 (a), IR18 (b), and IR12 (c). The continuity has been averaged over consecutive steps

(1.74 days). The gradient continuity has been averaged over 500 steps (3.47 days). Signal RMS

amplitudes (averaged over 250 steps and normalized) are shown with light gray areas, for reference.

Subfigure d shows the tremor count per day. Deep (below 10 km) and shallow (above 10 km)

tremors are shown with blue and red shaded areas, respectively. The black continuous line shows

the difference between the deep and shallow tremor counts. Colored numbers indicate different

events and episodes of the activity of the Klychevskoy volcano-plumbing system. The vertical

dashed lines correspond to specific events and the horizontal numbered bars correspond to specific

time periods in the interpreted SV13 atlas in Figure 15.
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Figure 15. Synthesis of the results: interpreted seismogram atlas of SV13 with identification of

volcanic activity and its relation to the plumbing system of the Klyuchevskoy volcano.
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Holtzman, B. K., Paté, A., Paisley, J., Waldhauser, F., & Repetto, D. (2018). Machine717

learning reveals cyclic changes in seismic source spectra in geysers geothermal field.718

Science advances, 4 (5), eaao2929.719

Hotovec, A. J., Prejean, S. G., Vidale, J. E., & Gomberg, J. (2013). Strongly gliding720

harmonic tremor during the 2009 eruption of redoubt volcano. Journal of Volcanology721

and Geothermal Research, 259 , 89–99.722

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science &723

Engineering , 9 (3), 90–95. doi: 10.1109/MCSE.2007.55724

Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and appli-725

cations. Neural networks, 13 (4-5), 411–430.726

Hyvärinen, A., Ramkumar, P., Parkkonen, L., & Hari, R. (2010). Independent component727

analysis of short-time fourier transforms for spontaneous eeg/meg analysis. NeuroIm-728

age, 49 (1), 257–271.729

Ichihara, M., Ohminato, T., Konstantinou, K. I., Yamakawa, K., Watanabe, A., & Takeo, M.730

(2023). Seismic background level (sbl) growth can reveal slowly developing long-term731

eruption precursors. Scientific reports, 13 (1), 5954.732

–30–



manuscript submitted to Solid Earth

Jenkins, W. F., Gerstoft, P., Bianco, M. J., & Bromirski, P. D. (2021). Unsupervised733

deep clustering of seismic data: Monitoring the ross ice shelf, antarctica. Journal of734

Geophysical Research: Solid Earth, e2021JB021716.735

Journeau, C., Shapiro, N. M., Seydoux, L., Soubestre, J., Ferrazzini, V., & Peltier,736

A. (2020). Detection, classification, and location of seismovolcanic signals with737

multicomponent seismic data: Example from the piton de la fournaise volcano738
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Shapiro, N. M., Sens-Schönfelder, C., Lühr, B. G., Weber, M., Abkadyrov, I., Gordeev,824

E. I., . . . Saltykov, V. A. (2017). Understanding kamchatka’s extraordinary: Volcano825

cluster. EOS: Transactions, American Geophysical Union, 98 (7), 12–17. doi: 10.1029/826

2017EO071351827
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