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Background: Data-Consistent Inversion

Stochastic Inverse Problem (SIP)

When model parameters possess aleatoric uncertainties, e.g. due to naturally occurring variabil-
ity in system inputs, then a Stochastic Inverse Problem can be formulated.

• λ ∈ Λ ⊂ Rn - parameter(s) of interest

• Q(λ) : Rn → Rm - parameter to observable Quantity of Interest (QoI) Map

• d ∈ D := Q(Λ) ⊂ Rm - observable(s)

• Probability measure spaces PΛ := (Λ,BΛ, µΛ) and PD := (D,BD, µD), with associated
densities πΛ and πD

Definition. Given an observed probability measure PobsD , the Stochastic Inverse Problem (SIP)
is to determine a pullback probability measure PΛ which is data-consistent in the sense that

PΛ(Q−1(E)) = PobsD (E),∀E ⊂ D

Density Based Solution and Diagnostic

Solution given by a form of Bayes’s rule that incorporates the push-forward of the initial πinΛ
through the QoI map, which we indicate as π

pred
D

π
up
Λ (λ) = πinΛ (λ)r(Q(λ)), r(Q(λ)) =

πobsD (Q(λ))

π
pred
D (Q(λ))

Predictability Assumption: ∃ C > 0 such that πobsD (q) ≤ Cπ
pred
D (q) for a.e. q ∈ D.

Note that predictability assumption satisfied implies:
∫
Λ π

up
Λ (λ) dµΛ = 1, so

1 =

∫
Λ
πinΛ (λ)r(Q(λ)) dµΛ =

∫
Λ
r(Q(λ)) dP in

Λ = E(r(Q(λ)))

Diagnostic for Verifying Predictability Assumption: Sample mean of r(Q(λ)) ≈ 1 (up to finite
sampling errors or errors in approximating π

pred
D ).

Maximal Updated Density (MUD) Points

Parameter Identification Problem

While the SIP framework was formulated to deal with aleatoric uncertainty, we show that the
framework can also be used to treat problems regarding epistemic uncertainty.

Definition. Given, finite amount of data d on a QoI map obtained for a fixed, but unknown, param-
eter λ†, populated with random noise ξ, d = Q(λ†) + ξ, the Paremeter Identification Problem
(PIP) is to estimate λ†.

The Maximal Updated Density (MUD) point can be used to solve the PIP.

λMUD := argmaxπ
up
Λ (λ). (1)

A Simple Example - MUD vs Bayesian Maximum a Posterior (MAP) Points

• Λ = [−1, 1], Q(λ) = λ5 → D = [−1, 1], πinΛ = π
prior
Λ = U([−1, 1])

• Observed singular value d = 0.25, with Gaussian error → πobsD = πlikeD = N(0.25, 0.12)

• π
pred
Λ - Gaussian kernel density estimator on N = 1000 samples of πinΛ pushed through Q.

Fig. 1: Comparing Bayesian and Stochastic Inversion. Note how the push-forward of the updated distribution matches the observed

distribution (dotted black lines) for the Stochastic Inversion framework - hence why the stochastic inversion solution is often referred to as

the Data Consistent Solution

Data-Constructed Maps

The QPCA Map

The main problem with using the SIP framework to solve PIPs is data-assimilation - how do we incorporate
new data to solve the PIP and reduce uncertainty (i.e. variance) in our parameter estimate? We propose the
usage of Data-Constructed QoI Maps to functionally assimilate data and reduce variance as more data is
collected. Assume we have:

• Mj devices collecting data over space and time, each taking Nj measurements.

• Arbitrary ordering of these n =
∑m

j=1Nj data points {zi}ni=1 - di equals the ith measurement datum,
Mk,i = M(λk; zi) is the ith measurement for the kth simulated sample.

We can define a matrix X ∈ Rs×n of Z-scored residuals for a sample set of s samples component-wise as

Xk,i =
Mk,i − di

σi
.

Letting p(ℓ) be the ℓth principle component of X, we define QPCA component-wise as

(QPCA)ℓ(λk) =

n∑
i=1

p
(ℓ)
i

M(λk; zi)− di
σi

, 1 ≤ ℓ ≤ n,

Properties of QPCA Map

• Ordering of measurements in X is irrelevant, since PCA does not depend on column order.

• It can be shown that for the QPCA map the observed distribution πobsD is always a stationary N(0, 1)
distribution no matter how many data-points collected.

• We only take up to the first m components that capture a user-specified percentage of variance in the
original data set X. We expect the number of components, m, to be equal to the dimension of our
parameter space, p, however if data is not sensitive to all parameters present in our inverse problem, this
may not be the case. In these examples, we turn to the diagnostic E(r) as an important measure of the
quality of the updated density and thus the reliability of λMUD.

ADCIRC Problem Set-Up

Shinnecock Inlet Simulated Extreme Event

• Used well known test mesh based on the Shinnecock Inlet on the Outer Barrier of Long Island, NY, USA.

• External forcing using tides, constant air pressure of 1013 millibars, and winds computed from a 0.25◦

hourly CFSv2 10-m wind fields for a period of 16 days (29 December 2017 - 31 January 2018).

• Winds are modified for the purposes of the numerical experiment to simulate a more extreme (Category
4) event, with winds scaled radially down to zero from the point of interest.

• Modified ADCIRC to include a parameterized form of the Garratt wind drag law, with a slope (λ1) and a
cut-off (λ2) parameter:

Cd = min
[
10−3(.75 + λ1u), λ2

]
• Constructed a "true" signal by collected water elevation data at an artificial recording station and popu-

lating each measurement with i.i.d. N(0, σ2) noise, using σ = 0.05.

• Goal: Estimate wind drag parameter values that produced the "true" signal.

Fig. 2: (left) Shinnecock Inlet Mesh containing 5780 triangular elements. Contours show value of wind multiplier applied to scale winds up artificially near

the inlet, tapering them off to zero at the boundaries.(Right) Bathymetry of inlet.

Results: Estimating Wind Drag Coefficients in ADCIRC

Solving the PIP

• Assume that the uncertain parameters (λ1, λ2) lie within ±50% of commonly used default
values of (0.067, 0.0025) → Λ = [0.0335, 0.1105]× [0.00125, 0.00375] ⊂ R2.

• 1000 samples are generated from a uniform distribution over Λ and pushed through our
forward model, ADCIRC, recording data at 3 hour intervals for each sample.

• Three different time windows of data are used to construct QPCA - One with low winds (T1),
one with high winds (T2), and one with both (T3).

• Used diagnostic E(r) to compare using one (E(r1)) vs. two (E(r2)) principal components.

Fig. 3: Water elevations (left axis) for “observed" data (black triangles) and simulated data (faded red lines) along with wind forcing (right

axis, blue line). Time windows of data used are indicated in the vertical dashed (T1), dotted (T2), and dashed-dotted (T3) green lines.

Fig. 4: Solution plots for each parameter containing updated distributions (dotted black line) and mud estimates (dotted green line)for

each time window. (Top) T1 estimates λ1 well. (Middle) T2 estimate λ2 well using 1 component. (Bottom) T3 estimates both parameters

well using 2 (dotted black line) principal components instead of 1 (dashed black line).

Conclusions
• QPCA map can effectively estimate both parameters provided the data used in the map

exhibit sensitivity to those parameters.

• The diagnostic E(r) gives us a specific metric to determine the quality of recon-
structed distributions for each parameter.
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