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Abstract

Forest fires darken snow albedo and degrade forest structure altering snowpack energy balance, peak snow volume and snowmelt

timing for up to 15 years following burn. To date, three-dimensional volumetric estimates of postfire effects on snow hydrology

over the course of postfire recovery have not been quantified at the watershed scale. Here we present an improved parameteriza-

tion of recovery of forest fire effects on snow hydrology. Using a spatially-distributed snow mass and energy balance model called

SnowModel, we estimate volumetric shifts in snow-water storage and snowmelt timing across a chrono-sequence of eight burned

forests occurring between 2000 and 2019. One to three years following fire, postfire effects reduced peak snow-water storage

by 8.42% on average (sd = 9.38%) and advanced snow disappearance date by 34 days on average (sd = 7 days). Magnitudes

of snow disappearance date advances tended to decline over recovery relative to the losses observed immediately following fire.

Postfire reductions in peak snow-water equivalent (SWE) tended to decrease immediately following fire, and generally recovered

over 15 years postfire, but then increased again 4 to 9 years later. Postfire reductions on peak SWE summed over the 15-year

postfire recovery period were up to eighteen times greater than the losses incurred in the first winter following fire alone. Beyond

15 years following fire, postfire effects on snow persisted due to the postfire shift from forest to open meadow.
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Abstract 18 

Forest fires darken snow albedo and degrade forest structure altering snowpack energy balance, 19 

peak snow volume and snowmelt timing for up to 15 years following burn. To date, three-20 

dimensional volumetric estimates of postfire effects on snow hydrology over the course of 21 

postfire recovery have not been quantified at the watershed scale. Here we present an improved 22 

parameterization of recovery of forest fire effects on snow hydrology. Using a spatially-23 

distributed snow mass and energy balance model called SnowModel, we estimate volumetric 24 

shifts in snow-water storage and snowmelt timing across a chrono-sequence of eight burned 25 

forests occurring between 2000 and 2019. One to three years following fire, postfire effects 26 

reduced peak snow-water storage by 8.42% on average (sd = 9.38%) and advanced snow 27 

disappearance date by 34 days on average (sd = 7 days). Magnitudes of snow disappearance date 28 

advances tended to decline over recovery relative to the losses observed immediately following 29 

fire. Postfire reductions in peak snow-water equivalent (SWE) tended to decrease immediately 30 

following fire, and generally recovered over 15 years postfire, but then increased again 4 to 9 31 

years later. Postfire reductions on peak SWE summed over the 15-year postfire recovery period 32 

were up to eighteen times greater than the losses incurred in the first winter following fire alone. 33 

Beyond 15 years following fire, postfire effects on snow persisted due to the postfire shift from 34 

forest to open meadow. 35 

Plain Language Summary 36 

Forest fires in snowy regions burn away the forest canopy and drop burned woody debris onto 37 

the snow below. The degradation of forest cover allows more sunlight to reach the snowpack and 38 

the introduction of black carbon and burned woody debris onto snowpack darkens snow causing 39 

it to absorb more sunlight energy. These two processes cause snow to melt earlier and disappear 40 

sooner for up to 15 years following fire. We improved the ability of a snow-water model to 41 

simulate immediate postfire effects on snow and the recovery of these effects over 15 years 42 

following fire. We then quantified forest fire effects on snow volume and snow disappearance 43 

date across eight forest fires occurring over a 20-year period in the Triple Divide region of 44 

western Wyoming. We found that, in the winter immediately following fire, snow volume 45 

decreased and snow disappeared 4-5 weeks sooner. When we summed postfire effects on snow 46 

we found that postfire effects caused a 4.5% reduction in total snowpack over 15 years following 47 

fire. Earlier snowmelt drives earlier peak streamflow, earlier drying of soils in spring, and leaves 48 

surrounding forests drier for longer periods of time thereby increasing the likelihood of 49 

summertime drought and future wildfire. 50 

1 Introduction 51 

The American West stores approximately 50-70% of its water in snowpack with flora, fauna, and 52 

human populations relying on the slow and steady melting of this snow as a source of water in 53 

the drier periods of late spring and summer (Li et al., 2017). Warming due to climate change has 54 

reduced snow-water storage threatening annual water supply to downstream areas (Luce et al., 55 

2013; Mote et al., 2018; Wieder et al., 2022). Due to declining snowpacks, it is predicted that 56 

spring surface water inputs will occur earlier and, without the buffering capacity provided by 57 

snow, will occur less reliably and more episodically (Barnett et al., 2005; Hale et al., 2022; 58 

Wieder et al., 2022). 59 

Forest fires in the western United States occur predominately in the densely forested seasonal 60 

snow zone where as much as 50% of western snow falls (Gleason et al., 2013). The frequency, 61 
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severity, and extent of forest fire in the West has been increasing due to rising air temperatures 62 

and subsequent effects on seasonal snowpack and summertime soil moisture (Westerling, 2016). 63 

Forest fire in the seasonal snow zone modifies forest structure and introduces black carbon onto 64 

snow, altering the snowpack energy balance and snow ablation (Gleason et al., 2019). Canopy 65 

removal by wildfire reduces shading, subjecting greater surface areas of snow to increased solar 66 

shortwave radiative inputs and increasing wind-driven sublimation losses (Ueyama et al., 2014). 67 

Canopy removal also reduces longwave radiative inputs from vegetation, but in continental 68 

snowpack these reductions can often be counteracted by the additional inputs of solar radiative 69 

forcing due to reduced shading and increased wind ablative losses (Lundquist et al., 2013; 70 

Musselman et al., 2008; Varhola et al., 2010). In continental regions, where temperatures are 71 

colder and longwave radiative inputs from vegetation are reduced, additional solar radiative 72 

inputs from reductions in shading tend to outweigh the losses in longwave radiative inputs from 73 

forest structure degradation and result in a net increase in shortwave radiative forcing on 74 

snowpack (Lundquist et al., 2013; Musselman et al., 2008; Varhola et al., 2010). Forest fire 75 

deposition of black carbon and burned woody debris onto snowpack darkens snow albedo, 76 

enhancing shortwave radiative forcing on snowpack from the more open postfire forest structure, 77 

the rate of snow metamorphism and, subsequently, the rate of snow albedo decay following fresh 78 

snowfall (Gleason et al., 2013, 2019; Gleason & Nolin, 2016). Together, forest fires impact snow 79 

hydrology through direct and indirect reductions in snow albedo and forest structure degradation, 80 

resulting in increased postfire radiative forcing on snow, altered snowpack energy balance, 81 

decreased peak snow water equivalent (SWE), and earlier snow disappearance date (SDD) for at 82 

least 10-15 years following fire (Gersh et al., 2022; Gleason et al., 2019; Smoot & Gleason, 83 

2021; Stevens, 2017).  84 

The difficulty in quantifying postfire impacts on snow over large temporal and spatial scales 85 

using in-situ measurements make remotely sensed measurements a valuable tool in monitoring 86 

snow properties in remote regions over broad spatial scales. Gersh et al. (2022) utilized remote 87 

sensing derived estimates of landscape snow albedo from the National Aeronautics and Space 88 

Administration’s (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) 89 

instrument’s landscape snow albedo product (MOD10A1) to analyze trends in the long-term 90 

recovery of snow albedo following forest fire in the Triple Divide Region of Wyoming (Gersh et 91 

al., 2022). Results showed that landscape snow albedo steadily recovered back to an unburned 92 

open meadow state over the course of 15 years, with much of the recovery occurring in the first 93 

10 years following the initial burn (Gersh et al., 2022). However, assessment of fine-scale snow 94 

albedo trends using MODIS data are limited by coarse resolutions and the presence of 95 

obstructions such as clouds or canopy. MODIS-MOD10A1 data are provided at a coarse spatial 96 

resolution of 500m and are not able to measure snow albedo values through clouds or other 97 

obstructions such as canopy cover (Armitage et al., 2013; Hall & Riggs, 2007; Riggs et al., 98 

2017). Measurements of snow albedo can be influenced by fine scale landcover variability 99 

resulting in mixed pixels that do not accurately represent the albedo in a given grid cell (e.g., 100 

patchy snow cover can artificially reduce albedo measurements) (Campagnolo et al., 2016; 101 

Cescatti et al., 2012) and variability in cloud cover can result in long periods where little to no 102 

data can be retrieved from a particular study region (Armitage et al., 2013; Hall & Riggs, 2007; 103 

Riggs et al., 2017). The limited spatial extent of in-situ measurements and coarse resolution of 104 

remotely sensed measurements make process-based snow evolution models that incorporate such 105 

data an important tool in quantifying the long-term effects of forest fire on snow at a watershed 106 

scale. 107 
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To quantify the watershed-scale forest fire effects on snow-water storage and snowmelt, we used 108 

a spatially-distributed snow evolution model called SnowModel. SnowModel is a process-based 109 

model that uses first-order physics to simulate snow accumulation; blowing-snow redistribution 110 

and sublimation; snow-density evolution; and snowpack melt over spatially varying topography 111 

and landcover grids driven by temporally varying meteorological forcing fields (Liston et al., 112 

2007; Liston & Elder, 2006a, 2006b). SnowModel was used in this study because of its basis in 113 

first-order physics, ready customizability, and extensive validation in forested, montane seasonal 114 

snowpack similar to our study region (Hiemstra et al., 2006; Liston et al., 2007, 2008; Liston & 115 

Elder, 2006a, 2006b; Sexstone et al., 2018). SnowModel utilizes four sub-models in a hierarchal 116 

modeling structure: MicroMet, EnBal, SnowPack-ML, and SnowTran-3D. MicroMet spatially 117 

interpolates meteorological forcing data from met stations observations and/or modeled 118 

reanalysis met outputs of air temperature, precipitation, wind speed, wind direction, air pressure, 119 

and relative humidity (Liston & Elder, 2006a). Using a spatially weighted Barne’s interpolation 120 

method, MicroMet produces a meteorological forcing field for every cell in the simulation for 121 

every time step (Liston & Elder, 2006b). MicroMet also estimates incoming shortwave and 122 

longwave radiation inputs in each cell using solar calculations based on the latitude of the study 123 

region and parametrizations of cloudiness (Liston & Elder, 2006a).  EnBal utilizes the outputs of 124 

MicroMet and physics-based mass energy balance equations to calculate the snow mass and 125 

energy balance of the snowpack within every cell at every time step of the simulation and, 126 

critical to our application, is where modeling of forest-snow interactions are handled (Liston & 127 

Hall, 1995). SnowTran-3D is a three-dimensional model that incorporates the wind-flowing 128 

forcing field from MicroMet and topographical and vegetation inputs to compute redistribution 129 

of snow due to wind and loss of snow by saltation and wind-induced sublimation (Liston et al., 130 

2007). SnowPack-ML computes snow-density through temperature- and compaction-based 131 

snow-density evolution (Liston & Elder, 2006b).   SnowPack-ML can be run using a single layer 132 

or up to 12 distinct layers and simulates cold content, permeability, and liquid water release from 133 

the snowpack within each cell for every time step (Liston & Elder, 2006b).   134 

To date, research has shown that forest fires in the seasonal snow zone alter snow-water storage 135 

and snowmelt  for at least 10-15 winters following ignition (Gleason et al., 2013, 2019; Smoot & 136 

Gleason, 2021). However, these studies have focused on point based or broad scale estimations, 137 

and no studies have quantified the watershed-scale postfire effects on snow hydrology at a fine 138 

spatial resolution and over the decades-long postfire recovery period using a physically based 139 

snow evolution model. Here, we modeled and quantified postfire impacts on snow-water storage 140 

and snowmelt metrics, including peak SWE, total snow volume, and SDD, over a 141 

chronosequence of eight forest fires occurring in the Triple Divide region of northwestern 142 

Wyoming. by incorporating a postfire effect on snow albedo and forest structure and recovery 143 

parameterization into SnowModel.  144 

Our postfire effect on snow albedo decay and forest structure and recovery model utilized a 145 

parameterization of postfire effects on snow albedo and snow albedo decay from Gleason and 146 

Nolin (2016) and a postfire forest structure degradation and snow albedo recovery model 147 

informed by long-term trends in MODIS-derived landscape snow albedo (LSA) from Gersh et al. 148 

(2022).  The parameterization of postfire effects on snow albedo and snow albedo decay was 149 

drawn from a study by Gleason and Nolin (2016) which derived empirical snow albedo decay 150 

functions from broadband snow albedo measurements taken in adjacent burned and unburned 151 

forested sites in the Shadow Lake burn region (ignition date: 2011) in the Oregon Cascades up to 152 

3 years following fire. The parameterizations from this study characterized snow albedo decay as 153 
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an exponential function of days since snowfall for both burned and unburned forested sites and 154 

for both positive net energy balance periods (accumulation) and negative net energy balance 155 

periods (ablation) respectively for a total of four snow albedo decay functions (Gleason & Nolin, 156 

2016). The long-term (1-15 years postfire) snow albedo recovery trends were informed by Gersh 157 

et al. (2022) which characterized postfire snow albedo recovery over years since fire in a chrono-158 

sequence of eight burns occurring in the Triple Divide region of Wyoming between 2000 and 159 

2018, the same burns modeled in this study. The study by Gersh et al. (2022) utilized MODIS-160 

MOD10A1 estimates of landscape snow albedo (LSA) within the eight burn regions for up to 15 161 

years following fire and determined, through Tukey analysis, that LSA values within the burn 162 

regions shifted to LSA values similar to that of nearby open regions over the course of 15 years 163 

following fire. The findings of these two studies provided the basis for our improved postfire 164 

snow albedo decay and recovery parameterization. 165 

By incorporating postfire effects on snow albedo and forest structure and the associated recovery 166 

into a mechanistic model, we evaluated postfire effects on snow-water storage and snowmelt 167 

immediately following fire and over the course of a 15-year recovery period both within each 168 

forest fire perimeter and at the watershed scale. Understanding and quantifying how postfire 169 

effects on snow albedo and forest structure affect snow hydrology over many years following 170 

fire is vital as snowpacks continue to warm and forest fires increase in occurrence and extent 171 

across the West. The modeling approach and findings discussed here will help to improve 172 

understanding of the broad scale and lasting implications of forest fire effects on snow-water 173 

storage and snowmelt timing in headwaters critical for spring and summertime water supply. 174 

2 Materials and Methods 175 

2.1 Study Region 176 

We evaluated the recovery of postfire effects on snow albedo and forest structure, and the 177 

associated effects on snow hydrology across a chronosequence of eight forest fires in the 178 

seasonal snow zone of Western Wyoming which burned between 2000 and 2018. The study area 179 

covers the Triple Divide region of three major river basins of the western US, including the 180 

Colorado, Columbia, and Missouri Rivers, and was determined by calculating a minimum 181 

bounding rectangle around the chronosequence of the forest fire perimeters. Forest fire 182 

perimeters were defined using the Monitoring Trends in Burn Severity (MTBS) burn perimeters 183 

data (Finco et al., 2012) plus a 2 km buffer determined within ArcGIS (Figure 1). The study 184 

domain has an average elevation of 2503m (sd = 320m) with a minimum and maximum 185 

elevation of 1727m and 3596m respectively (Danielson & Gesch, 2010). Between 2000 and 186 

2020, the average cold season (December to March) air temperature was  -7.7°C (sd = 5.5 °C) 187 

and the region received an average precipitation of 3.0 mm (sd = 4.94 mm) (NOAA, 2021; Saha 188 

et al., 2011; USDA-NRCS, 2020; Western Regional Climate Center, 2021). The study region is 189 

largely forested, consisting of 60% forested land and 40% unforested land (35% shrub, 190 

grassland, and agricultural, 0.006% urban, and 4% bare rock) based on Copernicus Global 191 
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Landcover data (Buchhorn et al., 2020). The forested land is pine-dominated, of which the most 192 

common species are Lodgepole Pine (Pinus contorta) and Whitebark Pine (Pinus albicaulis).  193 

The study area includes the Triple Divide headwaters of three major river basins in the western 194 

US, widening the hydrological implications of forest fire effects on snow hydrology within this 195 

Figure 1: A map of the study region and modeling domain. The map includes Monitoring Trends in Burn 

Severity fire boundaries of the eight fires that occurred in the study region over the modeling time period 

along with their ignition date, incident type, and total burn area. The location and type of meteorological 

stations that the in-situ meteorological forcing data was drawn from are shown and the boundaries of the 

HUC-8 sub-basins and their names are also displayed. 
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area. Further, the study area has a history of frequent forest fire and has experienced a rapid 196 

increase in the extent, severity, duration, and occurrence of forest fire in the seasonal snow zone 197 

over the last decade. The combination of these two features along with the area receiving 60-198 

80% of its annual precipitation as snow (Serreze et al., 1999) makes investigation of postfire 199 

effects on snow hydrology critical to preserving snow-water resources within this region and for 200 

understanding postfire effects on snow throughout the West. 201 

2.2 SnowModel Input Data Retrieval 202 

SnowModel requires three major inputs: meteorological forcing data, a topographic elevation 203 

raster, and a landcover classification raster. Meteorological forcing data was retrieved from both 204 

automated weather stations and modeled reanalysis data. In-situ meteorological forcing data 205 

from automated weather stations were retrieved from the United States Department of 206 

Agriculture (USDA) National Resources Conservation Service’s (NRCS) automated Snow 207 

Telemetry (SNOTEL) network (USDA-NRCS, 2020) via the National Weather and Climate 208 

Center (NWCC) data retrieval tool (https://wcc.sc.egov.usda.gov/reportGenerator). SNOTEL 209 

data were supplemented with additional in-situ weather data from the Western Regional Climate 210 

Center’s (WRCS) Remote Automated Weather Station (RAWS) network (Western Regional 211 

Climate Center, 2021), and the National Oceanic and Atmospheric Administration’s (NOAA) 212 

Climate Data Online (CDO) network (NOAA, 2021) to capture a wider range of weather 213 

variability over elevation (Table 1). Hourly measurements of air temperature, precipitation, wind 214 

speed, wind direction, and relative humidity were retrieved from each of these stations and daily 215 

average values of each metric were calculated for use in SnowModel. In addition, daily SWE 216 

values were retrieved from the nine SNOTEL stations for SWE assimilation and later calibration 217 

of SnowModel. 218 

The in-situ meteorological data were supplemented with data from Climate Forecast System 219 

version 2 (CFSv2) modeled reanalysis meteorological data from the NOAA National Centers for 220 

Environmental Prediction (NCEP) (Saha et al., 2011). CFSv2 pixels were converted into 221 

“virtual” weather stations using R’s (R Core Team, 2021) “spatial” package ( v7.3-12; Venables 222 

& Ripley, 2002), where the coordinates of each “station” was taken as the centroid of the pixel 223 

and elevation was taken as a product of geopotential height at surface. This process effectively 224 

Table 1: List of meteorological stations used as the meteorological forcing data input or as validation data in 

SnowModel. Relevant metadata is provided including station type, data source, station ID number (* = validation 

station only), elevation in meters, easting and northing coordinates (CRS: NAD83 UTM12N), and date of the start 

of record.  
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produced an ordered grid of weather stations across the study region. Daily values of 225 

temperature, precipitation, wind speed, and wind direction were averaged from measurements 226 

CFSv2 captures each day, and relative humidity was computed using daily averaged specific 227 

humidity value, daily average temperature, and the Clausius-Clapeyron relation (Brown, 1951).  228 

Digital elevation maps (DEMs) and landcover classifications were retrieved using Google Earth 229 

Engine (Gorelick et al., 2017), a cloud-based and free-to-use GIS software. A DEM of the region 230 

was retrieved from the Global Multi-resolution Terrain Elevation Dataset (GMTED) 2010 231 

(Danielson & Gesch, 2010). GMTED is a product of NASAs Shuttle Radar Topography Mission 232 

(SRTM), which generated a digital elevation model of elevation data at a resolution of 1 arc-233 

second. Landcover data was retrieved from the Copernicus Global Land Cover 2015-2019 234 

dataset which classifies 23 different classes of landcover data at a 100m resolution (Buchhorn et 235 

al., 2020). Landcover data was reclassified to match the land classes recognized by SnowModel. 236 

Both raster layers were clipped to the study region, used at their native resolutions of 100m, and 237 

converted to ASCII using R’s (R Core Team, 2021) “spatial” package  ( v7.3-12; Venables & 238 

Ripley, 2002). 239 

2.3 SnowModel Calibration 240 

SnowModel was calibrated by running the base model iteratively using different sets of 241 

parameters for gap fraction, snow fraction calculations, number of snowpack layers and 242 

snowpack layer width, and scalars applied to air temperature and precipitation forcing data. 243 

Following each run, modeled SWE values were compared with the time-series of observed SWE 244 

values obtained from the SNOTEL stations within the study region. For calibration purposes, 245 

four of the nine SNOTEL stations were excluded from the meteorological inputs to use as a 246 

validation-only set. Modeled values of SWE at the observation locations were extracted by 247 

locating the cell containing each SNOTEL station and the associated observed SWE measured 248 

by the SNOTEL station for that time step. Modeled SWE depth (SWED) was then compared to 249 

the observed SNOTEL measurements using root-squared error, normalized squared error, R-250 

squared, and percent bias (Moriasi et al., 2007). Pixel values were extracted using the “spatial” 251 

package  (v7.3-12; Venables & Ripley, 2002) within R (R Core Team, 2021) and the 252 

performance statistics were calculated using the “HydroGOF” package ( v0.4-0; Mauricio 253 

Zambrano-Bigiarini, 2020). Following 21 calibration runs, ideal parameters were found that met 254 

the performance thresholds outlined by Moraisi et al (2007) (Table 2). The best calibration was 255 

found using the default parameters of SnowModel, but with the modeled precipitation inputs 256 

increased by 18.5%, an amount consistent with previous research from Yuan et al (2011) that 257 

found that CFSv2 modeled reanalysis data can underestimate precipitation results by up to 20%. 258 

After calibration, SnowModel overestimated SWE by 11.40% across all stations, a level of 259 

overestimation acceptable given the performance thresholds determined by Moriasi et al (2007) 260 

(|PBIAS| < 15%) (Table 2). 261 

2.4 Model Descriptions 262 

To quantify spatially and temporally distributed forest fire effects on snow hydrology, we used 263 

the improved postfire recovery of snow albedo and forest structure modeled over a 264 

chronosequence of burned forests in the Triple Divide region of western Wyoming. We 265 

developed three models to quantify how postfire effects on snow albedo, snow albedo decay, and 266 
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forest structure degradations alter snow volume and snowmelt timing over the decades-long 267 

postfire recovery period. These  models included a base model, an improved postfire snow 268 

albedo recovery model, and a combined postfire snow albedo and forest structure recovery 269 

model.  270 

2.4.1 Base model 271 

The base model used the default, calibrated SnowModel parameters to compare against the 272 

results of the postfire forest structure and postfire snow albedo recovery models, but 273 

supplemented with the unburned forest snow albedo decay parameterizations from Gleason & 274 

Nolin (2016). The based model snow albedo decay parameterization applied time-varying 275 

exponential decay of snow albedo over days since snowfall differentially to unburned forests and 276 

open meadows during snow accumulation and snow melt periods. The base model included a 277 

snow albedo decay function but represented a simulation of the study region for 20 years with no 278 

postfire effects incorporated.  279 

2.4.2 Postfire forest structure model 280 

The postfire forest structure model consisted of the base model with the addition of time-varying 281 

postfire forest structure degradation parameterizations that simulated the degradation of forest 282 

structure over 15 years following fire towards that of an open meadow (Equation 3 below), but 283 

with no postfire effects on snow albedo or snow albedo decay included. The postfire forest 284 

structure model allowed for compartmentalization of postfire effects on snow hydrology due to 285 

forest structure changes versus postfire effects on snow hydrology due to postfire effects on 286 

snow albedo and snow albedo decay. The postfire forest structure model simulated only the 287 

postfire effects of forest structure degradation over 15 years without postfire effects on snow 288 

albedo. 289 

2.4.3 Postfire snow albedo recovery model 290 

The postfire snow albedo recovery model consisted of both an improved version of the time-291 

decay of snow albedo parameterizations from Gleason & Nolin (2016) (Equations 1 and 2 292 

below) as well as the forest structure degradation parameterizations from the postfire forest 293 

structure model (Equation 3). In short, this model simulated the postfire effects on snow albedo, 294 

Table 2: Table showing the final performance statistics of SnowModel following pre-parameterization calibrations. 

The four statistics (described in the Preliminary Results section) are shown for each of the nine SNOTEL stations 

within the study region and the overall performance statistics are shown on the last row. The performance thresholds 

used for this study are also shown for each of the four statistics. 

 



manuscript submitted to Water Resources Research 

 

snow albedo decay, and forest structure and recovered these parameters to that of an open 295 

meadow over the course of 15 years following fire. 296 

2.4.4 Parameterizations of postfire recovery of snow albedo and forest structure 297 

Five sets of snow albedo minima and maxima, snow albedo decay functions, and forest structure 298 

parameters were computed by calculating five equally spaced values between those of an 299 

immediate postburn forest and an unburned open meadow. Snow albedo minimum and 300 

maximum and snow albedo decay curves for both a burned forest and an unburned open meadow 301 

were drawn from Gleason & Nolin (2016), while forest structure was parameterized using 302 

SnowModel’s snow-holding depth values for scattered conifer forests and open meadows as the 303 

immediate postfire state and post-recovery state, respectively. The snow-holding depth is used in 304 

SnowModel to calculate the snow holding capacity of vegetation within each grid cell. The snow 305 

depth of a cell must exceed this value before snow can reach the ground and become available 306 

for wind redistribution and be subjected to wind ablation effects and canopy-modified solar 307 

forcing. In order to represent the postfire snow albedo recovery, our parameterization includes 308 

five recovery stages each representing 3 years of recovery in five unique snow albedo recovery 309 

stages over the 15 year postfire recovery period (Figure 2). The 3-year recovery stages postfire 310 

snow albedo functions and forest structure parameters were applied to each burned forest by 311 

assigning custom burned forest classes using spatially distributed annual landcover rasters.  312 

The improved postfire snow albedo and forest structure recovery parameterization solves for 313 

daily mean snow albedo using a time-varying exponential decay coefficient, where the minimum 314 

and maximum snow albedo values, and the degree of decay are modified to recover over fifteen 315 

years by the  five recovery periods following forest fire. The parameterization resets snow albedo 316 

values following a fresh snowfall event (>5cm), and then exponentially decays over days 317 

following snowfall using recovery stage specific coefficients. Maximum snow albedo (αsnow,max) 318 

represents the snow albedo of fresh snowfall in a burned forest as calculated by Gleason & Nolin 319 

(2016). Maximum snow albedo postfire recovery rate (Δαsnow,max) is defined as the difference 320 

between αsnow,max and the snow albedo of fresh snowfall in an unburned open meadow divided by 321 

five (the number of three-year recovery periods in 15 years of postfire recovery). The fresh 322 

snowfall recovery rate is scaled by the number of 3-year recovery periods since forest fire (p) 323 

and added to αsnow,max to produce the snow albedo of fresh snowfall in a recovering forest fire 324 

(Equation 1).  325 

𝛼𝑠𝑛𝑜𝑤 = 𝛼𝑠𝑛𝑜𝑤,𝑚𝑎𝑥 + (𝑝 ∗ ∆𝛼𝑠𝑛𝑜𝑤,𝑚𝑎𝑥)   (1) 326 
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Unburned forests exponentially-decay as a function of daily time steps per the calculations 327 

Figure 2: A conceptual model of the postfire snow albedo recovery (A) and postfire forest recovery 

(B) models. 
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defined in Gleason & Nolin (2016). In burned forests, snow albedo decayed using an exponential 328 

decay coefficient that was adjusted to account for postfire recovery periods over 15 years 329 

following forest fire (Equation 2). Snow albedo in days following fresh snowfall (αsnow
n+1) is 330 

calculated in the same way as Gleason & Nolin (2016) and Equation 1 except the minimum snow 331 

albedo of a burned forest (αsnow,min) and the exponential snow albedo decay rate (Ka) are adjusted 332 

by the minimum snow albedo recovery rate (Δαsnow,min) and the snow albedo decay recovery rate 333 

(ΔKa), respectively, with each rate scaled by the current recovery period (p). 334 

(𝛼𝑠𝑛𝑜𝑤)𝑛+1 = (𝛼𝑠𝑛𝑜𝑤,𝑚𝑖𝑛 + ∆𝛼𝑠𝑛𝑜𝑤,𝑚𝑖𝑛 ∗ 𝑝)335 

+ ((𝛼𝑠𝑛𝑜𝑤)𝑛 − (𝛼𝑠𝑛𝑜𝑤,𝑚𝑖𝑛 + ∆𝛼𝑠𝑛𝑜𝑤,𝑚𝑖𝑛 ∗ 𝑝)
[(−𝐾𝛼+ ∆𝐾𝛼∗𝑝)∗𝑑𝑡]

    (2) 336 

To represent the postfire “recovery” of landcover change from burned forest to an open meadow 337 

following fire, the burned forest class snow-holding depths were adjusted by the landcover 338 

recovery rate (ΔSHD) from a scattered conifer forest to a sparse open meadow scaled by the 339 

postfire recovery period (p) using the default values for the endmembers of those landcover 340 

classes included in SnowModel (Equation 3). 341 

𝑆𝐻𝐷𝑏𝑢𝑟𝑛 = 𝑆𝐻𝐷𝑓𝑜𝑟𝑒𝑠𝑡 − (∆𝑆𝐻𝐷 ∗ 𝑝)    (3) 342 

2.5 Analysis of Model Results 343 

2.5.1 Postfire effects on snow-water storage and snow disappearance date 344 

Postfire effects on snow hydrology was evaluated by differencing results from the base model 345 

from the results of the postfire snow albedo and forest structure recovery models. Spatially and 346 

temporally integrated forest fire effects on snow-water storage were evaluated by differencing 347 

peak SWE raster for each year in the 20 year modeling period. Peak SWE rasters were created by 348 

determining the maximum SWE for each grid cell for each water year, and differenced from the 349 

base model minus the postfire models, then averaged for burned forest in the chronosequence for 350 

each recovery period following fire. Volumetric changes in peak SWE for each burned forest 351 

were calculated by multiplying the peak SWE differences by the spatial resolution (100 m2), 352 

summing the volumetric differences of each grid cell within each burn region, and then 353 

averaging the total volumetric change in peak SWE. 354 

Postfire effects on snow disappearance date (SDD) were quantified by determining the day of 355 

year of snow disappearance for each grid cell for each water year and differencing the postfire 356 

snow albedo or forest structure recovery model results from the base model results. SDD was 357 

defined as the first day following peak SWE in which a grid cell reached zero SWE depth for 358 

each year. Base model annual SDDs were then differenced from the postfire snow albedo 359 

recovery model SDDs and the SDD differences were averaged over the first year postfire, each 360 

three-year bin following fire, and 16+ years postfire according to the ignition date of each fire. 361 

2.5.2 Postfire effects on snow hydrology over space, time, and recovery 362 

Spatially and temporally integrated and differenced postfire effects snow hydrology metrics were 363 

evaluated monthly including, March 1st  to represent accumulation, April 1st to represent the start 364 

of ablation, and May 1st to represent ablation to produce three change in SWE rasters for each 365 
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date and each year for each fire. The differenced rasters were then averaged in three-year bins for 366 

every three years following fire effectively producing a period-averaged March 1st, April 1st, and 367 

May 1st differenced raster for each three-year postfire recovery period. The average proportional 368 

change in SWE and 95% confidence interval were also calculated for each raster. Daily SWE 369 

depth plots were created for each burn over the recovery period to highlight differences in how 370 

snow accumulates and melts in forests affected by forest fire over recovery. For each burn, SWE 371 

depth values in each pixel were averaged for each daily time-step for all three models. These 372 

values were then averaged over period to produce period-averaged SWE for each day of the 373 

water year for each recovery period. All calculations were computed using base R (R Core 374 

Team, 2021)  and the “spatial” package  (v7.3-12; Venables & Ripley, 2002). These analyses 375 

were performed on all modeled forest fires, but only the results of the Roosevelt forest fire 376 

(Ignition Date: 2018) and Green Knoll forest fire (Ignition Date: 2001) were included here as 377 

examples illustrating immediate and long-term postfire effects on snow, respectively. 378 

2.5.3 Postfire effects on snow hydrology at the watershed scale 379 

Watershed scale impacts of postfire effects and recovery on ablation season (May) SWE were 380 

investigated within the Lower Granite Creek Hydrologic Unit Code 12 (HUC12) subbasin. We 381 

chose to focus on the ablation season for two reasons: 1) postfire effects on snow hydrology were 382 

most pronounced following peak SWE and 2) estimations of SWE reductions due to postfire 383 

effects would likely be most applicable to watershed managers during the melt season when 384 

snowpack is melting off. A United States Geological Survey (USGS) delineation of the 385 

watershed was extracted using the Living Atlas tool in ArcGIS (Esri Inc., 2022) and exported 386 

into R (U.S. Geological Survey National Geospatial Program, 2022). Annual changes in ablation 387 

SWE due to postfire effects were quantified by calculating the average proportional and 388 

volumetric difference in SWE within the watershed between both models. Total SWE difference 389 

over 20 years between both models was calculated by summing the differences in ablation SWE 390 

and converting to volume. Corresponding annual ablation SWE depth rasters from the base 391 

model and postfire snow albedo recovery model were differenced, clipped with the watershed 392 

delineation file, and plotted using the “spatial” package ( v7.3-12; Venables & Ripley, 2002) in 393 

R (R Core Team, 2021). 394 

2.5.4 Significance testing 395 

We tested for statistically significant differences between the base model and postfire snow 396 

albedo recovery model using the extracted values of peak SWE, SDD, seasonal SWE (March, 397 

April, and May), and watershed SWE. Differences between the base model and postfire snow 398 

albedo recovery model results were tested for statistical significance using a two-sided, two-399 

sample Welch t-test using an alpha value of 0.05. All results were analyzed for statistical 400 

significance on a subset of paired random samples of 20% of the grid cells within each burn 401 

region from the base model and postfire snow albedo and forest structure recovery model rasters 402 

and running the t-test using base functions within R (R Core Team, 2021).  403 

2.5.5 Model validation 404 

Modeled SWE outputs from the base model and postfire snow albedo recovery model were 405 

validated using field measurements of SWE taken from six of the modeled burns (Horsethief 406 
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Canyon, Bull, Boulder, Cliff Creek, Lava Mountain, and Roosevelt) during February and March 407 

of 2019 (Figure 1). Prior to validation, the field data were preprocessed using R (R Core Team, 408 

2021). Originally, the 114 SWE measurements were collected inside and outside the burn so we 409 

first subset the measurements based on measurements that fell within the MTBS burn boundaries 410 

of each of the six fires. At each site within the burns, one to three replicates of SWE 411 

measurements were taken and, due to the close proximity of the replicates and the modeling 412 

resolution of 100 m2, replicates were averaged as they always fell within the same modeled 413 

pixel. Average measured values were then matched with corresponding modeled SWE results 414 

from the base model and postfire snow albedo recovery model using their geographic 415 

coordinates and date of collection and the average percentage difference between the values were 416 

computed for each fire. An an overall average percentage difference was calculated by 417 

computing average percentage difference between all observed measurements and the associated 418 

base model SWE and postfire snow albedo recovery model SWE. 419 

3 Results 420 

3.1. Summary 421 

Postfire reductions in snow albedo and forest structure degradation decreased snow-water 422 

storage and advanced snow disappearance date persistently for up to 15 winters following 423 

ignition across all modeled forest fires (Table 3). Immediately following fire, snow volume 424 

increased slightly during the accumulation period (March 1st), but increased solar forcing from 425 

postfire canopy loss and postfire reductions in snow albedo drove earlier melt onset, leading to 426 

profound reductions in April and May snow volume (Figure 4). Earlier melt onset resulted in 427 

reduced peak snow water volume and earlier SDDs immediately following fire and throughout 428 

the 15-year postfire recovery period (Figure 4) with reductions in peak SWE increasing in 429 

magnitude 4 to 9 years later (Table 3). Burned forests modeled beyond postfire recovery (>15 430 

years postfire) still showed lasting changes in peak SWE and SDD 16+ years following fire 431 

(Figure 4; Table 3). At the watershed scale, postfire effects and recovery of three burns modeled 432 

in the Lower Granite Creek sub-basin caused net reductions in May 1st SWE in all but one year, 433 

with the greatest net reductions in May 1st SWE occurring 3 to 5 years following each burn 434 

(Figure 6). 435 

3.2. Immediate postfire effects on snow volume and snow disappearance date 436 

In the winter immediately following fire, postfire effects decreased peak SWE (-8.42%, sd = 437 

9.38%; p < 0.001) and advanced SDD by about 5 weeks (34 days, sd = 7 days; p < 0.001) on 438 

average across all modeled burns (Table 3). Peak SWE shifts one-year postfire varied greatly 439 

across burned forests (range of -1.43% to -23.65%) despite their close proximity to one another 440 

and identical postfire parameterizations. 441 

The Roosevelt forest fire provides an example of postfire effects on snow in the winter 442 

immediately following fire. Changes in peak SWE and snow disappearance date in the Roosevelt 443 

forest fire were consistent with the changes observed across all modeled forest fires one to three 444 

years postfire (peak SWE = - 9.34%; p < 0.001) and thus the forest fire serves as a good example 445 

of both postfire effects on snow in the years immediately following fire and contemporary trends 446 

in Western forest fire  regimes (Table 3). Over the two winters following the Roosevelt forest 447 
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fire (2019 and 2020), average March 1st SWE increased (6.93 ± 1.21%, p = 0.017) driven 448 

primarily by the more open postfire forest canopy (Figure 3a) with postfire snow albedo 449 

reductions causing a minimal  net increase in solar shortwave inputs (Figure 5a). Average April 450 

1st SWE in the postfire snow albedo recovery model was not significantly different than in the 451 

base model, indicating that the increase in March 1st SWE observed earlier was lost, primarily 452 

due to earlier melt onset from postfire effects on snow albedo (Figure 3b and Figure 5a). 453 

Following April 1st, melt onset began in earnest in the postfire snow albedo recovery model 454 

while snow continued to accumulate until mid to late April in the base model and postfire forest 455 

structure model (Figure 3d), an indication that earlier melt onset was primarily driven by postfire 456 

effects on snow albedo. By May 1st, average snowpack volume within the Roosevelt burned 457 

forest had decreased significantly (-45.76 ± 27.41%, p < 0.001) in the postfire snow albedo 458 

recovery model as a result of the earlier melt onset and decreased average peak SWE (Figure 3c). 459 

Earlier melt onset and decreased average peak SWE in the Roosevelt burn then culminated in a 460 

Burn Immediate Peak 

SWE Loss (<1 YPF)

Period 1       

(1-3 YPF)

Period 2       

(4-6 YPF)

Period 3       

(7-9 YPF)

Period 4       

(10-12 YPF)

Period 5       

(13-15 YPF)

Post-Rec. 

(16+ YPF)

Total Peak SWE 

Change (1-15 
Boulder -7.87%*** -7.64%***/ 

4.00%

-5.31%***/ 

3.03%

-5.42%***/ 

3.54%

-1.06%***/ 

7.05%

-2.65%*/ 

2.73%

+1.93%***/ 

3.16%

-4.13%***

Green Knoll -16.93%*** -11.93%***/ 

4.05%

-14.93%***/ 

4.43%

-7.10%***/ 

8.28%

-6.67%**/ 

3.92%

-6.05%***/ 

5.46%

-2.51%***/ 

4.12%

-8.09%***

Purdy -6.28%*** -3.52%***/ 

9.69%

+0.30%***/ 

11.50%

-2.03%***/ 

6.28%

+0.99%***/ 

5.20%

+4.48%***/ 

7.80%

-0.65%

Bull -1.43% -9.23%***/ 

5.73%

-5.99%***/ 

1.93%

-6.97%***/ 

3.36%

-0.08%/ 

6.32%

-6.26%***

Horsethief 

Canyon

-23.65%*** -14.85%***/ 

4.73%

-10.97%*/ 

5.28%

-6.30%*/ 

2.79%

-10.57%***

Lava Mountain -7.50%*** -6.14%***/ 

3.73%

+5.34***/ 

9.16%

-3.60%***

Cliff Creek -9.11%*** -6.96%*/ 

6.39%

-4.27***/ 

11.12%

-6.12%***

Roosevelt -9.34%*** -6.85%***/ 

7.47%

-6.54%***

Avg. Peak SWE 

Change (%)
8.42%***/    

9.38%

-6.81%***/ 

11.23%

-3.14%***/ 

13.43%

-3.90%***/ 

8.71%

-0.92%***/ 

9.37%

+0.86%***/ 

9.82%

-0.30%***/ 

4.29%

-4.46%***/ 

11.43%
Avg. Peak SWE 

Change (m³)
-4.34M***/ 

5.03M

-8.13M***/ 

7.49M

-1.78M***/ 

1.77M

-2.27M***/ 

1.19M

-0.16M***/ 

1.31M

+0.64M***/ 

2.95M

-0.09M***/ 

0.34M

-10.96M***/ 

7.02M
Avg. SDD Shift 

(days)
-34 days***/              

7 days

-31 days***/ 

9 days

-27 days***/ 

13 days

-22 days***/ 

8 days

-17 days***/ 

6 days

-8 days***/ 

6 days

-5 days***/ 

6 days

Table 3: Calculations of the differences in volumetric SWE (Snow-Water Equivalent) (<1 year postfire, total, and 

per period) and differences in snow disappearance date (SDD) between the base model and postfire albedo model. 

Nearly all modeled fires showed average reductions in peak SWE and advances in SDD relative to the base model in 

every recovery period following fire. Reductions in peak SWE summed over up to 15 years of recovery were 2 to 18 

times greater than the peak SWE losses occurring immediately following fire. In the two burns modeled for the 

entire 15-year postfire recovery period, peak SWE losses were 7 to 18 times greater than the peak SWE losses 1 year 

postfire. Over postfire recovery, the greatest losses in peak SWE often did not occur immediately following fire, but 

instead 4-9 years later. The greatest shifts in SDD tended to occur immediately following fire and then decreased 

over 15 years following fire with slight fluctuations in this trend. Cells are colored in severity of the change for each 

burn, with red indicating more severe losses and blue indicating relative gains. The ignition year, total burn area, 

average elevation, and altitudinal variability for each burn region are included above. Asterisks are also shown on all 

SWE metrics denoting the level of significant difference between the base model and postfire albedo model (blank: 

not significantly different, *: p < 0.05, **: 0.001 < p < 0.01; ***: p < 0.001). 
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29-day earlier average snow disappearance 461 

date (sd = 5 days; p < 0.001) over the full 462 

data record for the Roosevelt Fire of two 463 

years following fire (Table 3).  464 

3.3. Recovery of postfire effects on snow 465 

volume and snow disappearance date  466 

Postfire effects on snow albedo and forest 467 

structure steadily recovered over 15 years 468 

following fire, yet subsequent changes in 469 

peak SWE and SDD did not follow the 470 

same trend. Average postfire reductions in 471 

peak SWE tended to decrease in magnitude 472 

from 1 to 6 years postfire (-6.81% to -473 

3.14%; p < 0.001) but increased in 474 

magnitude 4 to 9 years postfire, with this 475 

increase occurring in most fires 7 to 9 years 476 

postfire (-3.14% to -3.90%; p < 0.001) 477 

(Table 3). Across all burns, peak SWE 478 

reductions were also most variable in this 479 

same period (4-6 YPF: sd = 13.43%). 480 

Despite identical parameterizations across 481 

each burn and averaging over across time 482 

and climatology, changes in snow 483 

hydrology were still highly variable 4-6 484 

years postfire and suggesting that diversity 485 

in landscape and elevation was responsible 486 

for much of the variability in postfire snow 487 

hydrology.  488 

The Green Knoll forest fire provides an 489 

example of the long-term recovery of 490 

postfire effects on snow. In the Green 491 

Knoll forest fire, the greatest reductions in 492 

peak SWE over postfire recovery did not 493 

occur immediately following fire, but 494 

instead 4-6 years postfire (-14.93%, sd = 495 

4.43%, p < 0.001) (Table 3). Over 15 years 496 

of postfire recovery, postfire effects on 497 

snow albedo and forest structure in the 498 

Green Knoll burn caused small increases 499 

and decreases in accumulation season SWE 500 

1 to 15 years postfire (range: -1.60% ± 501 

5.75% to +7.13% ± 12.93%, p < 0.001; 502 

Figure 4a). Accumulation period SWE 503 

(March 1st SWE) averaged over period was 504 

Figure 3: Change in snow-water equivalent (SWE) depth 

between the base model and postfire snow albedo recovery 

model in Roosevelt forest fire (Ignition Year: 2018). Postfire 

effects caused small increases in average March 1st SWE (a), 

no significant difference in average April 1st SWE (b), and 

large reductions in average May 1st SWE (c) across the burn 

region. Prior to April 1st, the average SWE of the postfire 

forest and postfire albedo model was greater than the base 

model (d).  
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similar between the postfire snow albedo recovery model and postfire forest structure model for 505 

all recovery years, indicating that accumulation patterns over recovery were likely driven by 506 

postfire effects on forest structure and that postfire effects on snow albedo play a smaller role in 507 

affecting snow accumulation during this period (Figure 4d). Average reductions in SWE in the 508 

postfire snow albedo recovery model began to manifest during April and May of each winter 1 to 509 

15 years following fire. Start of ablation SWE (April 1st SWE) decreased in the postfire snow 510 

albedo recovery model relative to the base model across the 16+ year recovery period (range: -511 

29.12% ± 71.64% to -7.85% ± 23.01%) with significant reductions occurring 1-6 years postfire 512 

and 10-12 years postfire (p < 0.001) (Figure 4b). Snowmelt period SWE (May 1st SWE) 513 

profoundly decreased in the postfire snow albedo recovery model across the recovery period (1 514 

to 15 years postfire) (range: -76.63% ± 26.47% to -17.05% ± 73.76%), with significant average 515 

Figure 4: The change in snow-water equivalent depth (SWE) depth between the base model and postfire snow 

albedo recovery model in the Green Knoll fire (Ignition Year: 2001). Over 15 years of postfire recovery, postfire 

effects caused slight changes in SWE during March 1st (a), but then caused modest reductions in April 1st SWE (b), 

followed by profound reductions in May 1st (c). Postfire changes in SWE tended to reduce in magnitude over each 

successive recovery period, but, critically, post-recovery reductions in SWE were still present 16+ years following 

fire (d).  

.  
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reductions occurring in all years except 7-9 years postfire (p < 0.001) (Figure 4c). SWE 516 

reductions present in April and May reflect the postfire shift to earlier melt onset which tended to 517 

occur prior to April 1st for all years 1-15 years postfire (Figure 4d). Average SWE in the postfire 518 

snow albedo recovery model began to diverge from the postfire forest structure model during 519 

peak SWE (April 1), (1 to 12 years postfire), with the postfire forest structure model continuing 520 

to accumulate snow beyond April 1st (Figure 4d). Alterations in the snowpack energy balance 521 

during this period were dominated by additional shortwave solar inputs (Table A2-A3; Figure 5). 522 

Additional shortwave radiative forcing due to postfire degradation of forest canopy accounted for 523 

the majority of added inputs relative to postfire effects on snow albedo (54.0-18.9% vs. 29.2-524 

0.00%) (Figure A1-2; Figure 5).  525 

Snow disappearance date advanced by a month immediately following fire and earlier snow 526 

disappearance persisted across all postfire recovery years (1-15 years postfire) in the postfire 527 

snow albedo-forest model, with the greatest advances in SDD occurring 1-3 years postfire (-31 528 

days, sd = 9 days; p < 0.001) (Table 3). Even after 15 years following fire SDD remained 5 days 529 

earlier in the postfire snow albedo and forest recovery models than the base model, due to the 530 

postfire landcover recovering from burned forest to open meadow after 15 years following fire. 531 

Advances in SDD decreased over the 15 year postfire recovery period evaluated, with slower 532 

recovery between 1 to 12 years postfire (14 days over 12 years) and rapid recovery 12 to 15 533 

years postfire (9 days over 3 years) (Table 3).  534 

In total, postfire effects on peak SWE summed over 15 years of postfire recovery and averaged 535 

across all burns amounted to a total reduction in snow volume of 10.96M m3 (sd = 7.02M m3; p 536 

< 0.001) or 4.46% reduction (sd = 11.43%; p < 0.001), double the loss in snow volume 537 

Figure 5: Difference between base model and postfire albedo model net components of the snowpack energy 

balance averaged over 3-year bins since burn. The progressively more open postfire canopy allowed for increased 

solar shortwave incident on the snow surface over years since fire, but increasing snow albedo over years since fire 

drive the increases in internal snowpack energy and associated changes in snowpack volume. The difference in net 

shortwave inputs between models decreases over years since fire showing that postfire effects on snow albedo drive 

changes in peak snowpack volume over 15 years postfire and beyond.  
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immediately in the 1st year postfire (4.85M m3/8.42%; sd = 5.03 m3/9.38%; p < 0.001/p < 0.001) 538 

(Table 3). In the post-recovery period (16+ years postfire), peak SWE still was reduced in the 539 

Green Knoll burn region (-2.51%, sd = 4.12%; p < 0.001) (Table 3). Post-recovery, accumulation 540 

period (March 1st) SWE increased by +1.40% (p < 0.001) on average (Figure 4a), while peak 541 

SWE and snowmelt period (April and May) SWE was still reduced  due to the post recovery 542 

shift in snow albedo and forest parameterizations to open meadow (April: -7.60%, p < 0.001; 543 

May: -13.50%, p < 0.001) (Figure 4b-c). During this period, recovery of changes in the 544 

snowpack energy balance were primarily attributed to changes in net shortwave energy (Figure 545 

5f; Table A3) and these changes in net shortwave energy were primarily driven by increases in 546 

outgoing shortwave (Figure A1f). Thus, the recovery of peak SWE was primarily driven by the 547 

recovery of snow albedo occurring from the transition of postfire forest to an unburned open 548 

meadow rather than due to changes in forest canopy degradation over the same transition (Figure 549 

A1f; Figure 5f).  550 

3.4. Effects of postfire impacts and recovery at the watershed scale 551 

Integrating forest fire effects on snow albedo and forest structure recovery across the subbasin 552 

showed long-lasting and persistent reductions in snow-water storage at the watershed scale 553 

particularly in the ablation period (May). Here, we focus on postfire effects on snow hydrology 554 

during the ablation period as 1) postfire effects on snow albedo and forest structure caused the 555 

greatest reductions in snow water storage at the watershed scale in the ablation period and 2) 556 

estimations of postfire effects on snowmelt timing and volume during ablation have greater 557 

applicability to watershed hydrology and watershed management  . Three of the modeled forest 558 

fires (Boulder, Bull, and Roosevelt) occurred entirely or partially within the Lower Granite 559 

Creek (LGC) subbasin. The Boulder forest fire was the earliest occurring burn (2000) and took 560 

place entirely within the LGC subbasin (15 km2; 13.05% of the watershed area), while the Bull 561 

and Roosevelt fires occurred partially within the LGC subbasin (burning 12 km2 [10.48%] and 23 562 

km2 [19.81%] of the basin, respectively) (Figure 6). In combination, all three fires burned 563 

43.37% of the watershed area over the 20-year modeling period (50.45 km2) (Figure 6).  564 

Forest fires in the LGC subbasin largely caused annual losses in ablation season snow volume 565 

over 20 years (average 6.30 ± 6.95% loss in May 1st SWE) with the greatest proportional losses 566 

in SWE occurring during 2015 and 2019 (-9.50 ± 68.0% and -14.58 ± 76.1%; p < 0.001) (Figure 567 

6). During 2015, postfire effects from both the Boulder and Bull forest fires impacted snow 568 

volumes within the LGC subbasin (both burns occurred <15 years prior) and, combined, caused a 569 

9.50 ± 68.80% reduction in May 1st SWE (p < 0.001). During 2019, postfire impacts from the 570 

Cliff Creek burn (occurring 3 years prior) caused a 14.58% reduction in May 1st SWE in 571 

combination with the postfire recovery effects from the Bull forest fire (occurring 9 years prior) 572 

(Figure 6; 2012 and 2019). Forest fires relatively late in their postfire recovery continued to 573 

cause losses and enhanced immediate losses from more recent burns. Repeated burns within the 574 

LGC subbasin and the associated postfire impacts on snow and forest structure resulted in a total 575 
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reduction of 5.85% in May 1st SWE over the 20-year modeling period, a total volume of >94M 576 

m3 of additional snowmelt by May 1st (Figure 6). 577 

3.5 Model Validation 578 

Based on our validation of the modeled results using in-situ SWE measurements collected from 579 

within several of the burn regions, we overestimated SWE in both the base model (+40.22 ± 580 

38.88%) and postfire snow albedo recovery model (+41.61 ± 46.29%) and both models were 581 

relatively close in accuracy (<1.5% difference). Both the base model and postfire snow albedo 582 

recovery model overestimated SWE in the individual fires and, again, showed similar levels of 583 

accuracy between one another (Table 4). 584 

4 Discussion 585 

Improved modeling of forest fires effects on snow albedo and forest structure incorporating 586 

postfire recovery allowed for volumetric watershed scale estimates of postfire reductions in  587 

Figure 6: Watershed scale impacts of postfire effects and recovery in the Lower Granite Creek (LGC) subbasin 

during the ablation period (May 1st) for every year in the simulation. Postfire effects on snow albedo and forest 

structure caused net reductions in average May 1st SWE within the LGC subbasin in all but one year between 2000 

and 2020, indicating that postfire effects on snow and forest structure cause lasting reductions in watershed-scale 

ablation season SWE for many years following fire. Further, the greatest losses in May 1st SWE did not occur 

immediately following each burn, but instead 3 to 5 years afterwards. 
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snow-water storage and snow persistence. Peak snow-water storage decreased by ~4.5% and 588 

snow disappearance date advanced by over a week for at least 15 years following fire (Table 3). 589 

Sustained shifts in snow-water storage and snow-off date have the capacity to advance the timing 590 

of peak streamflow (Wieder et al., 2022), reduce spring and summertime soil moisture (Harpold, 591 

2016; Westerling, 2016), extend growing seasons, and increase risk of future forest fire for many 592 

years beyond ignition (Abatzoglou & Kolden, 2013; Westerling, 2016). Our estimates discussed 593 

here highlight the importance of incorporating postfire effects on snow hydrology and can help 594 

to inform management of threatened water resources and forest fire mitigation in burned 595 

montane watersheds similar to our study region. 596 

4.2. Immediate postfire effects on snow hydrology 597 

Immediately following fire, postfire effects reduce snow-water storage by >8% and advance 598 

snow disappearance date by as much as 34 days (Table 3). These changes are primarily due to 599 

earlier melt onset from darkened postfire snow albedo (Figure A2; Figure 5) and become evident 600 

at or beyond the timing of peak snow-water storage (Figure 3c-d). Although increases in snow 601 

accumulation in March due to postfire forest structure degradation buffer later reductions in 602 

snow-water storage, these increases are ultimately overcome by profound reductions in snow-603 

water storage between April and May (Figure 3d). Most of the reductions in snow-water storage 604 

due to postfire effects occur later in the snow season immediately following fire as insolation 605 

increases, temperatures warm, and postfire effects from darkened snow albedo become more 606 

pronounced (Figure 3c-d). Further, our estimates indicate that snowpack in burned forests 607 

disappears about one month earlier on average in the year immediately following fire (-34 days, 608 

sd = 7 days) and that this earlier disappearance is related to the advanced timing of snowmelt 609 

onset. Estimates of snow-water storage in burned montane forested watersheds made around the 610 

time of historical peak snow-water storage may not be adequate for accurate hydrological 611 

forecasting of snow-water reserves available later in the year as our estimates show the most 612 

profound postfire effects on snow-water storage occur later in the snow season. 613 

4.3. Recovery of postfire effects on snow hydrology  614 

Snow-water storage in burned forests largely shrank on average for the entire 15 year postfire 615 

recovery period (Table 3). Earlier melt onset advanced snow disappearance dates occurred in all 616 

modeled burns over all recovery periods (-31 to -8 days) and even post-recovery (16+ years 617 

Fire Base Model   Postfire Snow Albedo Model n 

  Avg. % Error (%) SD (%) Avg. % Error (%) SD (%)   

Horsethief Canyon +61.06 - +58.64 - 1 

Bull +24.67 16.62 +23.03 16.9 16 

Boulder +40.71 11.02 +41.22 11.15 9 

Cliff Creek +40.4 13.47 +41.17 9.765 13 

Lava Mountain +48.89 12.04 +46.18 15.13 8 

Roosevelt +59.79 13.42 +67.89 11.96 13 

Overall +40.22 19.44 +41.61 23.15 60 

Table 4: Results of the model validation using field measurements of SWE collected from six of the burns 

between February and March of 2019. Percent error between the base/postfire albedo model were calculated 

against the field observations and the standard deviation was included when n > 1. Instances where the postfire 

snow albedo model performed better than the base model are in bold. 
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postfire: -5 days). Reductions in snow-water storage and earlier snow disappearance have been 618 

shown to drive decreases in minimum stream flows (Godsey et al., 2014; Hallema et al., 2018), 619 

lengthened growing seasons and the likelihood of spring and summertime water stress (Harpold, 620 

2016; Westerling, 2016), and the occurrence, severity and extent of early season forest fire 621 

(Abatzoglou & Kolden, 2013; Westerling, 2016). 622 

Although advances in snow disappearance dates and reductions in peak snow-water storage 623 

decreased on average over years since fire (Table 3), snowpack within burned forests showed 624 

widely varying responses in snow disappearance date timing (6 days ≤ sd(ΔSDD) ≤ 13 days) and 625 

peak snow-water storage reductions (8.71% ≤ sd(ΔSWE) ≤ 11.12%) over postfire recovery. 626 

These results highlight the difficulty in predicting the degree to which snow-water storage will 627 

be affected in burned watersheds over many years following fire, despite uniform 628 

parameterizations across each forest fire and a narrow scope of landscape and climate variability 629 

contained within the study region. Regions in the western United States rely on predictable 630 

spring runoff afforded by ample snow-water storage. Such variability in postfire snow hydrology 631 

responses within our relatively narrow scope of study compound with spatial and climactic 632 

variability across the western United States and increasing interannual variability in runoff 633 

timing due to the effects of climate change on snow-water storage and snowmelt timing (Li et al., 634 

2017; Wieder et al., 2022). 635 

Over the 15 years of postfire recovery, snow albedo and forest structure recovered from that of a 636 

recently burned forest towards an unburned open meadow as observed in Gersh et al (2022). Our 637 

parameterizations improved upon those of Gleason and Nolin (2016) by extending the 638 

parameterization of postfire snow hydrology immediately following fire to the recovery of snow 639 

albedo and forest structure over 15 years following fire. The results covered here provide 640 

evidence that snowpack in burned forests still exhibits reductions in peak snow-water storage (-641 

0.30%, sd = 4.29%) and earlier snow disappearance date (-5 days, sd = 6 days) 16 years postfire 642 

and beyond (Table 3).  Future parameterizations need to be extended to capture the full postfire 643 

recovery through regeneration to prefire conditions or other altered postfire states in order to 644 

calculate estimates of the complete effect of forest fire on snow hydrology. 645 

4.4. Postfire effects on snow hydrology at the watershed scale 646 

Watershed scale postfire effects reduced snow water storage and advanced snowmelt timing 647 

during the snowmelt period (May) across the 20 year modeling period (Figure 6). Postfire effects 648 

on snow albedo and forest structure from the Boulder, Bull and Cliff Creek fires caused annual 649 

reductions in May 1st snow volume within the Lower Granite Creek subbasin in all but one year 650 

(2011) of the 20-year modeling period (Figure 6). Trends in the recovery of postfire effects on 651 

May 1st SWE held at the watershed scale, with the greatest reductions in snow volume due to 652 

postfire effects occurring 3 to 5 years following each forest fire, rather than in the year 653 

immediately following each burn. Earlier snowmelt onset and peak snow-water storage caused 654 

by these forest fires led to earlier average annual snowmelt of 5.9M m3 ± 6.5M m3 per year and, 655 

over 20 years, resulted in a total of >94M m3 of added early snowmelt than would occur in no-656 

burn conditions. As a frame of reference, the USGS stream gauge at the outlet of the Lower 657 

Granite Creek sub-basin (USGS 13019438) measured an annual average streamflow volume of 658 

29M m3 per year between 1982 and 1993 (USGS, 2022). However, it is likely these calculations 659 

are underestimating the full extent of postfire effects on snow albedo and forest structure over 660 
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postfire recovery. Reductions in May 1st SWE were still visible as late as 2020 in the Boulder 661 

burn region, 4 years following the end of the postfire recovery period and postfire effects from 662 

the Bull (Ignition Date: 2010) and Cliff Creek fire (Ignition Date: 2016) were not captured over 663 

the extent of the full 15-year postfire recovery period (Figure 6).  664 

As forest fires across the western United States become more frequent and extensive, how forest 665 

fire affects snow-water resources at the watershed scale and over many years following fire 666 

becomes an increasingly critical question. Multiple studies have demonstrated that reductions in 667 

peak snow volume can alter summer low flows (Godsey et al., 2014; Jenicek et al., 2018), 668 

especially in cold and dry continental snow zones (Hammond et al., 2018), and that annual river 669 

flow can be altered in watersheds burned for as little as 19% of their area (Hallema et al., 2018). 670 

The changes in peak snow-water storage due to postfire effects on snow hydrology modeled here 671 

have the capacity to alter resulting annual streamflow runoff (Godsey et al., 2014). Our findings 672 

provide the first three-dimensional, spatially-distributed, time varying, process-based estimates 673 

of postfire effects on snow hydrology and recovery over many years following fire and provide a 674 

basis for future estimates of associated effects on the timing and volume of spring streamflow. 675 

4.5. Model validation 676 

Both the base model and postfire albedo model overestimated SWE (+40.22%, sd =  19.44% vs. 677 

+41.61%, sd = 23.20%) in the individual fires and showed similar levels of accuracy between 678 

one another (Table 4). However, the field validation data for each burn were collected within 679 

close proximity to one another over the course of ~5 weeks in a single year while the modeled 680 

results span multiple decades and thousands of square kilometers, calculated in grids of 100 m2. 681 

Although the model tended to overestimate SWE at the field validation sites, the model showed 682 

good agreement with 20 years of continuous data from SNOTEL sites spatially-distributed across 683 

the study region (Table 2) lending support for the estimates of postfire effects on snow over the 684 

broad spatial and time scales investigated in this study.  685 

4.6. Uncertainties in modeling postfire effects on snow albedo and forest structure 686 

We employed a postfire snow albedo and snow albedo decay parameterization developed in the 687 

Oregon Cascades to model postfire effects on snow hydrology in the Rocky Mountains 688 

introducing key uncertainties in how postfire effects on snow hydrology might differ between 689 

these two disparate snow climates and the associated influence on our results. However, research 690 

by Gleason & Nolin (2016) was the only published parameterization of postfire effects on snow 691 

albedo and snow albedo decay at the time of publication and thus it is uncertain how postfire 692 

effects on snow albedo might differ across these two snow climates. In addition, our 693 

parameterization of postfire forest structure modeled recovery in a simplified, linear fashion 694 

while previous work investigating postfire effects on forest structure in similar regions shows 695 

that delayed tree mortality can occur at an exponentially decaying rate following fire (Angers et 696 

al., 2011; Brown & DeByle, 1987) and can depend on many factors such as seed supply, distance 697 

to sources, and pre- and postfire climate (Stevens-Rumann & Morgan, 2019). The modeling 698 

capabilities of forest structure dynamics in the current iteration of SnowModel are limited, but 699 
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future expansions of SnowModel will allow for more precise estimates of postfire effects on 700 

forest structure and recovery and the resulting effects on snow hydrology.  701 

5 Conclusions 702 

Forest fire darkens snow albedo and degrades forest structure, increasing radiative forcing on 703 

snow for years following fire, and carrying with it the capacity to significantly alter snow 704 

evolution and, by extension, water supply over multi-decadal time scales. This study assessed the 705 

long-term water supply impacts of postfire effects on snow hydrology by incorporating an 706 

improved postfire snow albedo and forest structure recovery parameterization in a snow mass 707 

and energy balance model and estimating postfire effects on snow albedo and forest structure and 708 

recovery on peak SWE, SDD, and SWE volume reductions.  709 

Immediately following forest fire, snowpack storage increased by up to 6.93% in early winter, 710 

but decreased by 8.43% during spring and up to 87.97% by May with earlier melt onset and 30+ 711 

day advanced snow disappearance.  Following a 15 year postfire recovery period, burned forests 712 

still exhibited reduced peak snow-water storage  of 0.30% and a 5 day earlier snow 713 

disappearance date due to the shift from forest to open meadow. Forest fires effects within the 714 

burned perimeter integrated over 15 years following fire amounted to an average 4.5% reduction 715 

on snow-water storage.  716 

Watershed scale forest fire effects on snow-water storage and snowmelt are persistent for 717 

decades following fire. The results of this study show that forest fire has immediate, profound, 718 

and lasting effects on snow hydrology and water supply that last decades beyond the initial burn 719 

event and have hydrological implications beyond the forest fire perimeter. Quantification of 720 

changes in snow volume and snow melt on the snow-mass energy- balance using process-based 721 

snow models provide information critical to our understanding of the long-term impacts of an 722 

increasingly severe fire regime on the quantity and timing of freshwater originating from 723 

springtime snowmelt. 724 
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Appendix A: Snowpack Energy Balance and Significance Testing 918 

Supporting plots and tables for postfire snowpack energy balance and supporting significance 919 

values for figures and tables included in the body of the text.  920 

Figure A1: Difference between base model and postfire albedo model net components of the snowpack energy 

balance averaged over 3-year bins since burn for the Green Knoll forest fire only. 

Figure A2: Difference between base model and postfire albedo model net components of the snowpack energy 

balance averaged over 3-year bins since burn over all modeled forest fires. 
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 922 

  923 

Table A1: Numerical results of significance testing performed on all modeled SWE results. For each 

result, 100 random pixels between the base model and postfire albedo model were selected and a two-

sided Welch Two-Sample t-test was performed with an alpha value of 0.05. 
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Table A2: Net shortwave radiative forcing (netSW) on snowpack averaged across all forest fires for the base model, 

the postfire forest recovery model (Forest) and postfire snow albedo recovery model (Albedo) and the change in 

netSW attributable to postfire degradation of forest structure (ΔnSWforest) or postfire effects on snow albedo 

(ΔnSWalbedo). 

 
 

Accumulation (net LW) Ablation (net LW)

Base Model Forest + Albedo Model Base Model Forest + Albedo Model

Period Mean 

(W/m²)

SD 

(W/m²)

Mean 

(W/m²)

SD 

(W/m²)

Diff (F&A - B) 

(W/m²)

Mean 

(W/m²)

SD 

(W/m²)

Mean 

(W/m²)

SD 

(W/m²)

Diff (F&A - B) 

(W/m²)

1 581 19.4 587.0 18.5 6.00 603 11.8 608 11.5 5.00

2 586 12 591 11.1 5.00 595 15.9 599 15 4.00

3 577 16.2 581 15.7 4.00 592 12.4 596 12 4.00

4 582 17.7 584 17.50 2.00 601 13.5 604 13.2 3.00

5 578 17.8 579 18.2 1.00 598 17.2 600 17.3 2.00

Post-rec. 606.0 15.4 606 15.3 0.00 624 12.1 624 12 0.00

Table A3: Net longwave radiative forcing on snowpack across all forest fires for both the base model (Base) and 

postfire snow albedo recovery model (Forest + Albedo) and the difference between the two models (Diff). 

Base Model Forest Model Albedo Model

Period

Mean 

(W/m²)

Mean 

(W/m²)

Mean   

(W/m²)

ΔnSWforest 

(W/m²)

ΔnSWalbedo 

(W/m²)

ΔnSWforest 

(%)

ΔnSWalbedo 

(%)

1 20.6 ± 2.76 43.2 ± 6.06 61.0 ± 9.16 22.6 17.8 52.3

%

29.2

%2 24.1 ± 2.77 43.7 ± 5.49 59.1 ± 7.45 19.6 15.4 44.9

%

26.1

%3 26.2 ± 2.79 41.5 ± 4.76 52.9 ± 6.17 15.3 11.4 36.9

%

21.6

%4 23.8 ± 2.74 35.2 ± 4.31 41.8 ± 5.20 11.4 6.60 32.4

%

15.8

%5 26.2 ± 3.53 35.8 ± 5.14 39.6 ± 5.87 9.60 3.80 26.8

%

9.60

%Post-rec. 24.1 ± 2.79 29.7 ± 3.74 29.7 ± 3.74 5.60 0.00 18.9

%

0.00

%

Base Model Forest Model Albedo Model

Period

Mean 

(W/m²)

Mean 

(W/m²)

Mean   

(W/m²)

ΔnSWforest 

(W/m²)

ΔnSWalbedo 

(W/m²)

ΔnSWforest 

(%)

ΔnSWalbedo 

(%)

1 31.6 ± 5.05 68.7 ± 12.5 96.3 ± 17.3 37.1 27.6 54.0

%

28.7

%2 33.4 ± 5.11 63.7 ± 10.6 85.1 ± 14.9 30.3 21.4 47.6

%

25.1

%3 37.5 ± 4.80 61.3 ± 8.79 78.9 ± 11.7 23.8 17.6 38.8

%

22.3

%4 34.1 ± 4.20 53.1 ± 7.33 62.6 ± 8.48 19.0 9.50 35.8

%

15.2

%5 38.4 ± 5.92 54.6 ± 9.35 60.3 ± 10.3 16.2 5.70 29.7

%

9.45

%Post-rec. 37.8 ± 5.11 48.0 ± 6.86 48.1 ± 6.92 10.2 0.10 21.3

%

0.21

%

Accumulation (net SW)

Ablation (net SW)

Attribution (absolute) Atribution (proportional)

Attribution (absolute) Atribution (proportional)
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