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Abstract

Stratospheric aerosol injection (SAI) has been proposed as a possible complementary solution to limit global warming and its

societal consequences. However, the climate impacts of such intervention remain unclear. Here, we introduce an explainable

artificial intelligence (XAI) framework to quantify how distinguishable an SAI climate might be from a pre-deployment climate.

A suite of neural networks is trained on Earth system model data to learn to distinguish between pre- and post-deployment

periods across a variety of climate variables. The network accuracy is analogous to the “climate distinguishability” between the

periods, and the corresponding distinctive patterns are identified using XAI methods to gain insights into the emerging signals

from SAI. For many variables, the two periods are less distinguishable under SAI than under a no-SAI scenario, suggesting that

the specific intervention modeled decelerates future climatic changes. Other climate variables for which the intervention has

negligible effect are also highlighted.
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Abstract 13 

Stratospheric aerosol injection (SAI) has been proposed as a possible complementary solution to 14 

limit global warming and its societal consequences. However, the climate impacts of such 15 

intervention remain unclear. Here, we introduce an explainable artificial intelligence (XAI) 16 

framework to quantify how distinguishable an SAI climate might be from a pre-deployment 17 

climate. A suite of neural networks is trained on Earth system model data to learn to distinguish 18 

between pre- and post-deployment periods across a variety of climate variables. The network 19 

accuracy is analogous to the “climate distinguishability” between the periods, and the 20 

corresponding distinctive patterns are identified using XAI methods to gain insights into the 21 

emerging signals from SAI. For many variables, the two periods are less distinguishable under 22 

SAI than under a no-SAI scenario, suggesting that the specific intervention modeled decelerates 23 

future climatic changes. Other climate variables for which the intervention has negligible effect 24 

are also highlighted. 25 

 26 
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Plain Language Summary 38 

We use Earth system model predictions for two scenarios of the future: one policy-relevant climate 39 

change scenario where global temperatures continue rising in the coming decades, and that same 40 

scenario but with humans intervening in the climate system to limit warming to 1.5ºC. We then 41 

train a machine to learn to classify annual maps of climate variables based on whether they 42 

originate from the period before or after the intervention. The more successful the machine is at 43 

this task, the more distinguishable the pre- and post-intervention periods are with respect to the 44 

variable analyzed. Our results show that for many climate variables, the two periods are less 45 

distinguishable under the climate intervention scenario than the no-intervention scenario. In those 46 

cases, the intervention ends up decelerating future climate change. However, we also show that 47 

there are important climate variables for which the intervention has a negligible effect.  48 

 49 

Key points 50 

• An explainable artificial intelligence framework is introduced to quantify the “climate 51 

distinguishability” under a climate intervention scenario. 52 

• The distinctive patterns between the pre- and post-intervention climates are not predefined 53 

but are learned directly from the data. 54 

• For the Earth system model simulations analyzed, stratospheric aerosol injection is shown 55 

to decelerate future changes for some climate variables, while it shows a negligible effect 56 

for others. 57 

 58 

  59 
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1. Introduction 60 

In order to limit the adverse impacts of global warming on weather, climate and society, various 61 

climate intervention strategies have been proposed as complementary to cutting CO2 emissions. 62 

The two main categories of such strategies are greenhouse gas removal and solar climate 63 

intervention (Herzog, 2001; Vaughan and Lenton, 2011; National Research Council, 2015; 64 

National Academies of Sciences, Engineering and Medicine, NASEM 2021; Xu et al., 2020). Solar 65 

climate intervention consists of technologies that aim to increase the reflection of the incoming 66 

solar radiation and cool down the planet. A particularly popular strategy of solar climate 67 

intervention is stratospheric aerosol injection (SAI), which involves the deliberate injection of tiny 68 

particles (i.e., aerosols) into the stratosphere to reflect incoming solar radiation (Crutzen, 2006; 69 

Robock et al., 2009; Niemeier and Tilmes, 2017; MacMartin et al., 2017; Tilmes et al., 2018; 2020; 70 

Richter et al., 2022). The natural analog of SAI is large volcanic eruptions (e.g., the Mount 71 

Pinatubo eruption in 1991), during which, tiny particles are expelled into the atmosphere, resulting 72 

in a temporary (for a handful of years) cooling of the planet (Robock and Mao, 1995; Parker et al., 73 

1996; Robock, 2000; Soden et al., 2002).  74 

Although SAI has been shown to be a relatively inexpensive and effective strategy to limit 75 

global warming (Smith and Wagner, 2018; Tilmes et al., 2018; 2020; MacMartin et al., 2018), 76 

large uncertainties remain as to how such intervention would affect the climate system beyond the 77 

global mean temperature. For example, the degree to which the intervened Earth system would 78 

exhibit a similar climate to the pre-deployment system, whether ongoing/future climatic changes 79 

apart from global warming would be decelerated or halted, and the likelihood that SAI would 80 

introduce new adverse impacts are all questions of great interest (Jones et al., 2018; MacMartin et 81 

al., 2019; Kravitz and MacMartin, 2020; NASEM, 2021). Here, we propose an explainable 82 

artificial intelligence (XAI) framework to gain insights into these questions. We consider model 83 

simulations from the Community Earth System Model 2 under two future scenarios (spanning the 84 
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years 2015-2069): an intermediate climate change scenario where global temperatures continue 85 

rising, and an identical climate change scenario except where SAI is deployed to limit warming to 86 

1.5ºC relative to the preindustrial era (Richter et al., 2022). We then focus on quantifying the 87 

“climate distinguishability” between the pre- and post-SAI worlds, by tasking an artificial neural 88 

network to distinguish between the two across a variety of climate variables. The more successful 89 

the network is at this task the more “distinguishable” the pre- and post-SAI worlds are in terms of 90 

their climate. 91 

Specifically, to quantify the climate distinguishability after SAI, we train a neural network 92 

to distinguish between maps of a variable of interest that originate from the SAI climate (i.e., the 93 

SAI climate is defined as the 2040-2059 climate under the SAI scenario; see blue box in Figure 94 

1a) vs maps that originate from the pre-deployment/reference climate (the reference climate is 95 

defined as the 2020-2039 climate under the intermediate climate change scenario; O’Neill et al., 96 

2017; see gray box in Figure 1a). Although the prediction itself is not useful in this setting (i.e., 97 

we already know which map originates from which set of simulations), the accuracy of the network 98 

informs us about the climate distinguishability between the two periods for the variable analyzed. 99 

In this way, we quantify the degree of climate distinguishability with a single number: the accuracy 100 

of the network. To put this number into context, we compare the network accuracy with its 101 

“baseline” value, i.e., the network accuracy in the case where there was no intervention. That is, 102 

we repeat the above prediction task but this time the network is trained to distinguish between the 103 

reference climate and the future SSP climate with no intervention taking place (i.e., the future SSP 104 

climate is defined as the 2040-2059 climate under the intermediate climate change scenario; see 105 

magenta box in Figure 1a). The network’s accuracy from this second task serves as a “baseline” 106 

value of climate distinguishability for the variable analyzed and is compared with the results from 107 

the first task to help assess the potential benefits (or risks) of deploying SAI.  108 
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We highlight that the main advantages of the proposed framework are that i) it provides a 109 

way to quantify with a single number the impact of an intervention on the reference climate, by 110 

assessing how much distinguishable the pre- and post-deployment climates would be, and ii) it is 111 

purely data-driven, thus, one does not need to predefine the form of change between the two 112 

compared climates. Instead, with our framework, we let the data tell us “the ways” that the two 113 

climates might be different. To gain insight into these distinctive patterns that make the two 114 

climates distinguishable, we use tools of explainable artificial intelligence (XAI). XAI tools aim 115 

to elucidate the decision-making process of deep learning models and have been increasingly 116 

applied in the geosciences in the recent years (see McGovern et al., 2019; Toms et al., 2020; 117 

Mamalakis et al., 2022a-c).  Based on the climate simulations analyzed, SAI is shown to decelerate 118 

future changes for some of the variables, while showing negligible effect for others, highlighting 119 

the diversity in the potential effects of such climate interventions. In section 2, we provide details 120 

about the data, the prediction task of our framework and methods used, and in section 3 we present 121 

our results. Section 4 discusses our conclusions and future research directions.  122 

2. Data and methodology 123 

2.1. Data 124 

We use data from an ensemble of Earth system model simulations: “Assessing Responses and 125 

Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection” 126 

(ARISE-SAI; publicly available at https://www.cesm.ucar.edu/community-projects/arise-sai; 127 

Richter et al., 2022). The ARISE-SAI experiment consists of two sets of parallel simulations 128 

performed with the Community Earth System Model 2, using the Whole Atmosphere Community 129 

Climate Model version 6 as its atmospheric component (CESM2(WACCM6); Gettelman, et al., 130 

2019; Danabasoglu, et al., 2020; Tilmes, et al., 2020; Richter et al., 2022):  i) 10 ensemble members 131 

from 2015 to 2069 under the Shared Socioeconomic Pathway 2-4.5 (SSP2-4.5; O’Neill et al., 132 

2017), which represents an intermediate climate change scenario; and  ii) 10 ensemble members 133 
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from 2035 to 2069 under an SAI deployment scenario. In the latter, SO2 is injected every day at 134 

roughly 21 km height at 180º longitude and 30ºS, 15ºS, 15ºN, and 30ºN using a “controller” 135 

algorithm (MacMartin et al., 2014; Kravitz et al., 2017). The SAI simulations aim to keep the 136 

global-mean surface air temperature near 1.5ºC above the preindustrial temperature. For more 137 

detailed information on the ARISE-SAI experiment, the reader is referred to Richter et al. (2022).  138 

We quantify climate distinguishability for a list of 21 climate variables that are provided 139 

in Table S1.  Prior to training the network, all variables are bi-linearly re-gridded to a 2.5° by 2.5° 140 

resolution from an approximate 1° by 1° resolution to reduce the dimensionality of the prediction 141 

task. Since this re-gridding is applied to the climate data of both scenarios, it is not expected to 142 

affect the conclusions about the impacts of SAI. 143 

2.2. Prediction task  144 

We define the CESM2(WACCM6) output over the period 2020-2039 under the SSP2-4.5 scenario 145 

as our reference climate, following the original study of ARISE-SAI (Richter et al., 2022). The 146 

reference climate represents the climatic conditions before a potential deployment of SAI. We then 147 

train a network to distinguish between the reference climate (see gray box in Figure 1a) and the 148 

climate under SAI over the period 2040-2059 (see blue box in Figure 1a). Specifically, given a 149 

randomly chosen map of a variable of interest as an input (e.g., a map of annual mean surface 150 

temperature or annual maximum precipitation, see Table S1), a fully connected network is tasked 151 

with estimating the probability that the map originated from the 2040-2059 SAI climate. A 152 

probability value less than 0.5 indicates that the map is predicted to belong to the reference climate, 153 

while a probability value greater than 0.5 indicates that the map is predicted to belong to the SAI 154 

climate; see Figure 1b. Framing the prediction task in this way requires the network to identify 155 

patterns that serve as robust and distinctive indicators to separate the pre- and post-deployment 156 

periods. The more successful the network is at this task, the more the two periods are “climatically 157 

distinguishable” under the SAI scenario. In contrast when the network is not successful (e.g., if it 158 
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performs similarly to a random chance-based model), the climatic conditions between the two 159 

periods are deemed indistinguishable with respect to the variable analyzed and based on the 160 

network used. We highlight here that the patterns used by the network could be of any form: local, 161 

global or any type of combination of patterns, pointing out to the generic nature of the suggested 162 

framework. 163 

To place climate distinguishability under SAI into context, we compare it to the climate 164 

distinguishability under the scenario of no intervention. We do this by we repeating the same 165 

approach, but by tasking the network to distinguish between the reference climate and the climate 166 

in the period 2040-2059 under the SSP2-4.5 scenario (see magenta box in Figure 1a). The 167 

comparison between the climate distinguishability with and without SAI gives insights into the 168 

potential of SAI to counter the impacts of climate change.  For instance, in the specific case of the 169 

ARISE-SAI simulations, it may be concluded that SAI reduces future climate change if the degree 170 

of climate distinguishability is significantly lower under the SAI scenario than under the SSP 171 

scenario. For details on the training approach and the architectures of the networks, please see 172 

Supplementary Text S1. 173 

2.3. Explainable AI method 174 

We use the local attribution method Deep SHAP (Lundberg and Lee, 2017) to explain the 175 

predictions of the network. We have chosen this method for two reasons: 1) it allows the user to 176 

define the baseline for which the attribution is derived (see Mamalakis et al., (2023) on the 177 

importance of baselines); and 2) it satisfies the completeness property (Sundararajan et al., 2017), 178 

which holds that the attributions add up to the difference between the network output at the current 179 

sample and the one at the baseline. For further details on the Deep SHAP algorithm, please see 180 

Supplementary Text S2. We note that we have also used the method Integrated Gradients 181 

(Sundararajan et al., 2017) to explain the network’s predictions, and the results were very similar 182 

to those based on Deep SHAP (not shown).  183 
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3. Results 184 

We start by presenting the results for the case of annual maximum daily precipitation in Figure 2. 185 

We first discuss the results for a future climate with no intervention. The global-mean annual 186 

maximum precipitation exhibits an increase throughout the century but with large ensemble spread 187 

(magenta lines, Figure 2a). The largest increases occur in the deep tropics, specifically over the 188 

tropical Pacific (Figure 2b; see also O’Gorman and Schneider, 2009; Kharin et al., 2013; Pfahl et 189 

al., 2017). The network can successfully distinguish between the reference climate and the SSP 190 

future climate 85% of the time, which is significant at a 0.01 level (Figure 2d). Moreover, the 191 

probability assigned by the network that a map corresponds to the future SSP climate increases 192 

linearly with the actual year of the map and maximizes in the out-of-sample years 2060-2069 193 

(Figure 2d). This suggests that there are robust signals of climate change that become more and 194 

more evident with time. It also suggests that the learned patterns generalize successfully, since the 195 

network is able to correctly classify the years 2060-2069, although those years were not used 196 

during training (see Supplementary Text S1). Based on the results from the XAI method Deep 197 

SHAP, the network mainly uses precipitation extremes over the tropical eastern Pacific (and to a 198 

lesser degree over the Southern Ocean and the tropical Atlantic) to make its predictions (Figure 199 

2f). Interestingly, the network does not use precipitation over the western Pacific or Australia, 200 

despite the fact that the corresponding ensemble mean difference between the two periods is of 201 

high magnitude (Figure 2b). This implies high internal variability of precipitation extremes over 202 

these regions, which does not make them robust indicators from a signal-to-noise perspective.  203 

Under the SAI scenario, the overall accuracy of the network is only 58% (Figure 2e), which 204 

is not statistically different from a random chance-based model (at a 0.01 significance level, a 205 

random chance-based model would perform with up to 69% accuracy, derived using a binomial 206 

distribution). The network-estimated probability that a map corresponds to the SAI climate is 207 

almost independent from the year of the map (Figure 2e), which indicates that there are no robust 208 
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long-term climate signals under SAI that the network could use for distinguishing from the 209 

reference climate. This is also suggested by the XAI results; note the incoherent and noisy 210 

attributions in Figure 2g. Generally, the results in Figure 2 indicate that although the 211 

CESM2(WACCM6) simulates a robust increase in future extreme daily precipitation under the 212 

SSP2-4.5 scenario, possible deployment of SAI could preserve the conditions of the reference (i.e., 213 

pre-deployment) climate. This could be an example of a potential positive SAI impact. 214 

Next, we consider the annual mean surface temperature over land (Figure 3). Under the 215 

SSP scenario, a clear increase in surface temperature is shown throughout the century that is 216 

evident globally (Figure 3a-b). Accordingly, the network accuracy in distinguishing between the 217 

reference and the future SSP climate is high, on the order of 93%. Many regions around the globe 218 

are highlighted by Deep SHAP as robust distinctive patterns; e.g., Mexico, southern South 219 

America, southern Africa, Indonesia, and southern Australia. Under the SAI scenario, although the 220 

global mean temperature is similar to the one under the reference climate, there are robust patterns 221 

of regional cooling that make the two climates highly distinguishable: 91% of the time (Figure 3e). 222 

Regional cooling happens mainly over southern South America, eastern Africa, eastern Australia, 223 

and Greenland (Figure 3c). These are the regions that the network uses to distinguish between the 224 

reference and the SAI climates (see Figure 3g). Overall, these results indicate that the 225 

CESM2(WACCM6) projects that a potential SAI deployment would lead to a less warm climate 226 

than SSP; however, the annual mean surface temperature over land in an SAI world would also be 227 

distinguishable from the reference climate. Importantly, the distinctive patterns in the two 228 

scenarios are quite different, with warming being the distinctive difference under the SSP scenario, 229 

while regional cooling patterns being the most robust distinctive patterns under SAI.  230 

We have repeated the same analysis as in Figures 2-3 for a list of 21 variables (see Table 231 

S1), and we summarize the results in Figure 4. For all variables, the network accuracy under the 232 

SSP scenario (magenta circles in Figure 4a) is statistically significant. This means that even under 233 
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the intermediate climate change scenario SSP2-4.5, the CESM2(WACCM6) projects that the Earth 234 

system would exhibit climatic conditions that are distinguishable from the reference climate in the 235 

coming decades. However, for the majority of variables examined here, SAI would lead to a less 236 

distinguishable climate than the SSP scenario, although (with a few exceptions) one that would 237 

also be distinguishable from the reference climate (note that the network accuracy (light blue 238 

circles) is higher than the random chance-based accuracy). In particular, SAI would decelerate 239 

many future greenhouse-gas driven climate changes, especially for surface temperature extremes, 240 

precipitation, drought occurrence, sea level pressure, and Arctic sea ice (see also Xu et al., 2020; 241 

Tye et al., 2022; Lee et al., 2020; 2023). It is important to note, however, that there are variables 242 

for which SAI is projected to have minimal impact relative to climate change. Examples include 243 

soil moisture, evapotranspiration, and ocean acidity.  244 

We next explore how distinctive patterns might be modified from SAI; note that the 245 

network accuracy alone does not provide this information. For example, as is shown in Figure 3, 246 

the climate distinguishability under the SSP and the SAI scenarios is very similar, but the 247 

corresponding distinctive patterns are different. To explore this further, the spatial correlation 248 

between the XAI heatmaps under the SSP and SAI scenarios are presented in Figure 4b. In most 249 

cases, the correlation is not statistically different from zero, which means that SAI is projected to 250 

introduce different distinctive patterns relative to those from the SSP scenario.  Exceptions are for 251 

cases where the correlation is high, such as for ocean acidity and ocean heat, which means that the 252 

anticipated SSP-driven distinctive patterns are projected to remain almost unchanged under SAI.  253 

The results in Figure 4 indicate the diverse impacts of SAI on different components of the 254 

climate system, which highlights the need for systematic and thorough investigations into the 255 

possible impacts of SAI on the Earth system beyond only the global-mean temperature response. 256 

Such research is needed for a well-informed policy making regarding potential deployment of 257 

climate intervention approaches (NASEM, 2021).  The framework introduced here allows for such 258 
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data-driven and generic investigations to uncover the ways in which an SAI climate would be 259 

different from a pre-deployment one.  260 

4. Conclusions 261 

In this study, a new framework was used that allows quantification (with a single number) 262 

of the degree of climate distinguishability between a reference climate and future climate states 263 

from both SAI and no-SAI worlds. The framework is based on the use of machine learning and 264 

leverages XAI tools to identify robust distinctive patterns under the intervention and the no-265 

intervention scenarios. The framework is purely data driven, nonlinear, nonlocal, and it accounts 266 

for underlying uncertainties in the data that may originate from internal stochastic variability or 267 

uncertainties in Earth system model physics. 268 

We applied this framework to data from ensembles of simulations that were developed to 269 

examine the potential impacts of stratospheric aerosol injection; namely, the ARISE-SAI project 270 

(Richter et al., 2022). In these simulations, SAI was shown to have diverse impacts on the 271 

simulated climate. These include minimizing changes due to greenhouse gas forcing in 272 

temperature and precipitation extremes, while having negligible effect on ocean acidification. 273 

Also, for the majority of variables examined here, the simulated deployment of SAI led to new 274 

patterns of change with respect to the reference climate that were different from the SSP patterns. 275 

This raises the possibility of SAI leading to new (and perhaps unwanted) changes in specific 276 

components of the Earth system or in certain regions of the world.    277 

We do note some potential limitations of the presented framework. One is the dependence 278 

of the results on the amount of data. Neural networks are known to be “data-thirsty” models 279 

(LeCun et al., 2015), so it is possible that certain patterns that were not identified as robust 280 

indicators during training could become robust with more data. However, the dependence on the 281 

amount of data is present in virtually all climate settings involving questions of signal-to-noise and 282 

statistical significance. Another limitation is the possible dependence of the results on the network 283 
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architecture. In order to address this issue here, we searched over many different architectures and 284 

combinations of hyperparameters before training the network, as described in Supplementary Text 285 

S1. That way, we let the data guide us as to what architecture we should use for each climate 286 

variable. Yet, we acknowledge that it is possible that some of these results depend on the adopted 287 

architectures.   288 

Our work highlights the need to further research the impacts of possible intervention 289 

approaches beyond just global mean temperatures, as has been done in other studies, examining 290 

ARISE-SAI data in particular (Keys et al., 2022; Labe et al., 2023; Hueholt et al., 2023). In doing 291 

so, we envision that the notion of “quantifiable climate distinguishability” will be a relevant and 292 

informative metric to assess impacts and to expand the design space of possible interventions (Lee 293 

et al., 2020), as illustrated by the presented results. Further investigation could include further 294 

assessing the climate distinguishability by considering multiple variables at the same time (i.e., the 295 

network input consists of many channels each of which refers to a different variable), to assess 296 

potential impacts on the dependence structure of different components of the Earth system and the 297 

occurrence of compound events. Future work could also focus on analyzing the output of more 298 

than one model and of more than one climate intervention strategy to establish a more holistic 299 

picture of the potential impacts of proposed climate intervention strategies.  300 

 301 

  302 
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 433 

Figure 1: Schematic of our framework to quantify SAI impacts using XAI. a) Assessing climate 434 

distinguishability between reference and future climates. Note that the pre-2040 period under an 435 

Probability that the 
input map originated 
from the SAI climate

Individual map of 
variable of interest

Cl
im

at
ic 

va
ria

bl
e 

of
 in

te
re

st

Neural Network

How distinguishable are 
these two climates?

a) Climate distinguishability between 
reference and future climates

b) Prediction setting to quantify climate distinguishability

2020                        2040                        2060     
Year

climate change 
scenario

stratospheric 
aerosol injection

Distinctive Patterns

XAI tools

Reference 
climate

SAI climate

… …

pr
es

en
t

S
A

I 
de

pl
oy

m
en

t

… …

…
 …

input layer

hidden layers
output 
layer

SSP climate



 21 

intermediate climate change scenario is used as the refence climate, in accordance to Richer et al (2022). 436 

b) Schematic of the prediction task to quantify climate distinguishability after SAI and the use of XAI to 437 

derive the distinctive patterns between the reference and SAI climates.   438 
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 439 

 440 

Figure 2. Results of our framework for annual maximum daily precipitation. a) Series of global-mean 441 

annual maximum precipitation (in mm/d) under the SSP2-4.5 scenario and the ARISE-SAI scenario. All 442 
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10 ensemble members and the ensemble mean are shown. b) Ensemble mean difference between the annual 443 

maximum precipitation in the 2040-2059 SSP2-4.5 climate and the reference climate. d) Network-generated 444 

probability that different annual maximum precipitation maps originated from the 2040-2059 SSP2-4.5 445 

climate. The actual year of each map is provided in the horizontal axis. The overall accuracy of the network 446 

is shown on the bottom right corner. f) Distinctive patterns that were used by the network to separate the 447 

reference climate from the 2040-2059 SSP2-4.5 climate, as estimated using the method Deep SHAP. The 448 

presented attributions correspond to the average attributions across the 2060-2069 network predictions and 449 

all testing members, using the years 2035-2044 as baseline. c,e,g) Same as (b,d,f), but the network is trained 450 

to separate the reference climate from the 2040-2059 ARISE-SAI climate. 451 

  452 
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 453 

 454 

Figure 3. Same as in Figure 2, but results are for the annual mean surface temperature over land. 455 
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 456 

Figure 4. a) Accuracy of the network in distinguishing between the reference climate and the future SSP 457 

2-4.5 climate (magenta) or the future ARISE-SAI climate (light blue), for all variables considered in the 458 

study (see Supplementary Table S1). Results from individual testing members (smaller circles) and the 459 

ensemble mean (bigger circles) are presented. The critical values for the 10% and 1% significance levels 460 

are derived using a binomial distribution. b) Correlation coefficient between attribution heatmaps that 461 

correspond to predicting in the two scenarios. Results from individual testing members (smaller circles) 462 

and the ensemble mean (bigger circles) are presented. 463 
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Abstract 13 

Stratospheric aerosol injection (SAI) has been proposed as a possible complementary solution to 14 

limit global warming and its societal consequences. However, the climate impacts of such 15 

intervention remain unclear. Here, we introduce an explainable artificial intelligence (XAI) 16 

framework to quantify how distinguishable an SAI climate might be from a pre-deployment 17 

climate. A suite of neural networks is trained on Earth system model data to learn to distinguish 18 

between pre- and post-deployment periods across a variety of climate variables. The network 19 

accuracy is analogous to the “climate distinguishability” between the periods, and the 20 

corresponding distinctive patterns are identified using XAI methods to gain insights into the 21 

emerging signals from SAI. For many variables, the two periods are less distinguishable under 22 

SAI than under a no-SAI scenario, suggesting that the specific intervention modeled decelerates 23 

future climatic changes. Other climate variables for which the intervention has negligible effect 24 

are also highlighted. 25 

 26 

 27 
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Plain Language Summary 38 

We use Earth system model predictions for two scenarios of the future: one policy-relevant climate 39 

change scenario where global temperatures continue rising in the coming decades, and that same 40 

scenario but with humans intervening in the climate system to limit warming to 1.5ºC. We then 41 

train a machine to learn to classify annual maps of climate variables based on whether they 42 

originate from the period before or after the intervention. The more successful the machine is at 43 

this task, the more distinguishable the pre- and post-intervention periods are with respect to the 44 

variable analyzed. Our results show that for many climate variables, the two periods are less 45 

distinguishable under the climate intervention scenario than the no-intervention scenario. In those 46 

cases, the intervention ends up decelerating future climate change. However, we also show that 47 

there are important climate variables for which the intervention has a negligible effect.  48 

 49 

Key points 50 

• An explainable artificial intelligence framework is introduced to quantify the “climate 51 

distinguishability” under a climate intervention scenario. 52 

• The distinctive patterns between the pre- and post-intervention climates are not predefined 53 

but are learned directly from the data. 54 

• For the Earth system model simulations analyzed, stratospheric aerosol injection is shown 55 

to decelerate future changes for some climate variables, while it shows a negligible effect 56 

for others. 57 

 58 

  59 
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1. Introduction 60 

In order to limit the adverse impacts of global warming on weather, climate and society, various 61 

climate intervention strategies have been proposed as complementary to cutting CO2 emissions. 62 

The two main categories of such strategies are greenhouse gas removal and solar climate 63 

intervention (Herzog, 2001; Vaughan and Lenton, 2011; National Research Council, 2015; 64 

National Academies of Sciences, Engineering and Medicine, NASEM 2021; Xu et al., 2020). Solar 65 

climate intervention consists of technologies that aim to increase the reflection of the incoming 66 

solar radiation and cool down the planet. A particularly popular strategy of solar climate 67 

intervention is stratospheric aerosol injection (SAI), which involves the deliberate injection of tiny 68 

particles (i.e., aerosols) into the stratosphere to reflect incoming solar radiation (Crutzen, 2006; 69 

Robock et al., 2009; Niemeier and Tilmes, 2017; MacMartin et al., 2017; Tilmes et al., 2018; 2020; 70 

Richter et al., 2022). The natural analog of SAI is large volcanic eruptions (e.g., the Mount 71 

Pinatubo eruption in 1991), during which, tiny particles are expelled into the atmosphere, resulting 72 

in a temporary (for a handful of years) cooling of the planet (Robock and Mao, 1995; Parker et al., 73 

1996; Robock, 2000; Soden et al., 2002).  74 

Although SAI has been shown to be a relatively inexpensive and effective strategy to limit 75 

global warming (Smith and Wagner, 2018; Tilmes et al., 2018; 2020; MacMartin et al., 2018), 76 

large uncertainties remain as to how such intervention would affect the climate system beyond the 77 

global mean temperature. For example, the degree to which the intervened Earth system would 78 

exhibit a similar climate to the pre-deployment system, whether ongoing/future climatic changes 79 

apart from global warming would be decelerated or halted, and the likelihood that SAI would 80 

introduce new adverse impacts are all questions of great interest (Jones et al., 2018; MacMartin et 81 

al., 2019; Kravitz and MacMartin, 2020; NASEM, 2021). Here, we propose an explainable 82 

artificial intelligence (XAI) framework to gain insights into these questions. We consider model 83 

simulations from the Community Earth System Model 2 under two future scenarios (spanning the 84 
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years 2015-2069): an intermediate climate change scenario where global temperatures continue 85 

rising, and an identical climate change scenario except where SAI is deployed to limit warming to 86 

1.5ºC relative to the preindustrial era (Richter et al., 2022). We then focus on quantifying the 87 

“climate distinguishability” between the pre- and post-SAI worlds, by tasking an artificial neural 88 

network to distinguish between the two across a variety of climate variables. The more successful 89 

the network is at this task the more “distinguishable” the pre- and post-SAI worlds are in terms of 90 

their climate. 91 

Specifically, to quantify the climate distinguishability after SAI, we train a neural network 92 

to distinguish between maps of a variable of interest that originate from the SAI climate (i.e., the 93 

SAI climate is defined as the 2040-2059 climate under the SAI scenario; see blue box in Figure 94 

1a) vs maps that originate from the pre-deployment/reference climate (the reference climate is 95 

defined as the 2020-2039 climate under the intermediate climate change scenario; O’Neill et al., 96 

2017; see gray box in Figure 1a). Although the prediction itself is not useful in this setting (i.e., 97 

we already know which map originates from which set of simulations), the accuracy of the network 98 

informs us about the climate distinguishability between the two periods for the variable analyzed. 99 

In this way, we quantify the degree of climate distinguishability with a single number: the accuracy 100 

of the network. To put this number into context, we compare the network accuracy with its 101 

“baseline” value, i.e., the network accuracy in the case where there was no intervention. That is, 102 

we repeat the above prediction task but this time the network is trained to distinguish between the 103 

reference climate and the future SSP climate with no intervention taking place (i.e., the future SSP 104 

climate is defined as the 2040-2059 climate under the intermediate climate change scenario; see 105 

magenta box in Figure 1a). The network’s accuracy from this second task serves as a “baseline” 106 

value of climate distinguishability for the variable analyzed and is compared with the results from 107 

the first task to help assess the potential benefits (or risks) of deploying SAI.  108 



 6 

We highlight that the main advantages of the proposed framework are that i) it provides a 109 

way to quantify with a single number the impact of an intervention on the reference climate, by 110 

assessing how much distinguishable the pre- and post-deployment climates would be, and ii) it is 111 

purely data-driven, thus, one does not need to predefine the form of change between the two 112 

compared climates. Instead, with our framework, we let the data tell us “the ways” that the two 113 

climates might be different. To gain insight into these distinctive patterns that make the two 114 

climates distinguishable, we use tools of explainable artificial intelligence (XAI). XAI tools aim 115 

to elucidate the decision-making process of deep learning models and have been increasingly 116 

applied in the geosciences in the recent years (see McGovern et al., 2019; Toms et al., 2020; 117 

Mamalakis et al., 2022a-c).  Based on the climate simulations analyzed, SAI is shown to decelerate 118 

future changes for some of the variables, while showing negligible effect for others, highlighting 119 

the diversity in the potential effects of such climate interventions. In section 2, we provide details 120 

about the data, the prediction task of our framework and methods used, and in section 3 we present 121 

our results. Section 4 discusses our conclusions and future research directions.  122 

2. Data and methodology 123 

2.1. Data 124 

We use data from an ensemble of Earth system model simulations: “Assessing Responses and 125 

Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection” 126 

(ARISE-SAI; publicly available at https://www.cesm.ucar.edu/community-projects/arise-sai; 127 

Richter et al., 2022). The ARISE-SAI experiment consists of two sets of parallel simulations 128 

performed with the Community Earth System Model 2, using the Whole Atmosphere Community 129 

Climate Model version 6 as its atmospheric component (CESM2(WACCM6); Gettelman, et al., 130 

2019; Danabasoglu, et al., 2020; Tilmes, et al., 2020; Richter et al., 2022):  i) 10 ensemble members 131 

from 2015 to 2069 under the Shared Socioeconomic Pathway 2-4.5 (SSP2-4.5; O’Neill et al., 132 

2017), which represents an intermediate climate change scenario; and  ii) 10 ensemble members 133 
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from 2035 to 2069 under an SAI deployment scenario. In the latter, SO2 is injected every day at 134 

roughly 21 km height at 180º longitude and 30ºS, 15ºS, 15ºN, and 30ºN using a “controller” 135 

algorithm (MacMartin et al., 2014; Kravitz et al., 2017). The SAI simulations aim to keep the 136 

global-mean surface air temperature near 1.5ºC above the preindustrial temperature. For more 137 

detailed information on the ARISE-SAI experiment, the reader is referred to Richter et al. (2022).  138 

We quantify climate distinguishability for a list of 21 climate variables that are provided 139 

in Table S1.  Prior to training the network, all variables are bi-linearly re-gridded to a 2.5° by 2.5° 140 

resolution from an approximate 1° by 1° resolution to reduce the dimensionality of the prediction 141 

task. Since this re-gridding is applied to the climate data of both scenarios, it is not expected to 142 

affect the conclusions about the impacts of SAI. 143 

2.2. Prediction task  144 

We define the CESM2(WACCM6) output over the period 2020-2039 under the SSP2-4.5 scenario 145 

as our reference climate, following the original study of ARISE-SAI (Richter et al., 2022). The 146 

reference climate represents the climatic conditions before a potential deployment of SAI. We then 147 

train a network to distinguish between the reference climate (see gray box in Figure 1a) and the 148 

climate under SAI over the period 2040-2059 (see blue box in Figure 1a). Specifically, given a 149 

randomly chosen map of a variable of interest as an input (e.g., a map of annual mean surface 150 

temperature or annual maximum precipitation, see Table S1), a fully connected network is tasked 151 

with estimating the probability that the map originated from the 2040-2059 SAI climate. A 152 

probability value less than 0.5 indicates that the map is predicted to belong to the reference climate, 153 

while a probability value greater than 0.5 indicates that the map is predicted to belong to the SAI 154 

climate; see Figure 1b. Framing the prediction task in this way requires the network to identify 155 

patterns that serve as robust and distinctive indicators to separate the pre- and post-deployment 156 

periods. The more successful the network is at this task, the more the two periods are “climatically 157 

distinguishable” under the SAI scenario. In contrast when the network is not successful (e.g., if it 158 
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performs similarly to a random chance-based model), the climatic conditions between the two 159 

periods are deemed indistinguishable with respect to the variable analyzed and based on the 160 

network used. We highlight here that the patterns used by the network could be of any form: local, 161 

global or any type of combination of patterns, pointing out to the generic nature of the suggested 162 

framework. 163 

To place climate distinguishability under SAI into context, we compare it to the climate 164 

distinguishability under the scenario of no intervention. We do this by we repeating the same 165 

approach, but by tasking the network to distinguish between the reference climate and the climate 166 

in the period 2040-2059 under the SSP2-4.5 scenario (see magenta box in Figure 1a). The 167 

comparison between the climate distinguishability with and without SAI gives insights into the 168 

potential of SAI to counter the impacts of climate change.  For instance, in the specific case of the 169 

ARISE-SAI simulations, it may be concluded that SAI reduces future climate change if the degree 170 

of climate distinguishability is significantly lower under the SAI scenario than under the SSP 171 

scenario. For details on the training approach and the architectures of the networks, please see 172 

Supplementary Text S1. 173 

2.3. Explainable AI method 174 

We use the local attribution method Deep SHAP (Lundberg and Lee, 2017) to explain the 175 

predictions of the network. We have chosen this method for two reasons: 1) it allows the user to 176 

define the baseline for which the attribution is derived (see Mamalakis et al., (2023) on the 177 

importance of baselines); and 2) it satisfies the completeness property (Sundararajan et al., 2017), 178 

which holds that the attributions add up to the difference between the network output at the current 179 

sample and the one at the baseline. For further details on the Deep SHAP algorithm, please see 180 

Supplementary Text S2. We note that we have also used the method Integrated Gradients 181 

(Sundararajan et al., 2017) to explain the network’s predictions, and the results were very similar 182 

to those based on Deep SHAP (not shown).  183 
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3. Results 184 

We start by presenting the results for the case of annual maximum daily precipitation in Figure 2. 185 

We first discuss the results for a future climate with no intervention. The global-mean annual 186 

maximum precipitation exhibits an increase throughout the century but with large ensemble spread 187 

(magenta lines, Figure 2a). The largest increases occur in the deep tropics, specifically over the 188 

tropical Pacific (Figure 2b; see also O’Gorman and Schneider, 2009; Kharin et al., 2013; Pfahl et 189 

al., 2017). The network can successfully distinguish between the reference climate and the SSP 190 

future climate 85% of the time, which is significant at a 0.01 level (Figure 2d). Moreover, the 191 

probability assigned by the network that a map corresponds to the future SSP climate increases 192 

linearly with the actual year of the map and maximizes in the out-of-sample years 2060-2069 193 

(Figure 2d). This suggests that there are robust signals of climate change that become more and 194 

more evident with time. It also suggests that the learned patterns generalize successfully, since the 195 

network is able to correctly classify the years 2060-2069, although those years were not used 196 

during training (see Supplementary Text S1). Based on the results from the XAI method Deep 197 

SHAP, the network mainly uses precipitation extremes over the tropical eastern Pacific (and to a 198 

lesser degree over the Southern Ocean and the tropical Atlantic) to make its predictions (Figure 199 

2f). Interestingly, the network does not use precipitation over the western Pacific or Australia, 200 

despite the fact that the corresponding ensemble mean difference between the two periods is of 201 

high magnitude (Figure 2b). This implies high internal variability of precipitation extremes over 202 

these regions, which does not make them robust indicators from a signal-to-noise perspective.  203 

Under the SAI scenario, the overall accuracy of the network is only 58% (Figure 2e), which 204 

is not statistically different from a random chance-based model (at a 0.01 significance level, a 205 

random chance-based model would perform with up to 69% accuracy, derived using a binomial 206 

distribution). The network-estimated probability that a map corresponds to the SAI climate is 207 

almost independent from the year of the map (Figure 2e), which indicates that there are no robust 208 
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long-term climate signals under SAI that the network could use for distinguishing from the 209 

reference climate. This is also suggested by the XAI results; note the incoherent and noisy 210 

attributions in Figure 2g. Generally, the results in Figure 2 indicate that although the 211 

CESM2(WACCM6) simulates a robust increase in future extreme daily precipitation under the 212 

SSP2-4.5 scenario, possible deployment of SAI could preserve the conditions of the reference (i.e., 213 

pre-deployment) climate. This could be an example of a potential positive SAI impact. 214 

Next, we consider the annual mean surface temperature over land (Figure 3). Under the 215 

SSP scenario, a clear increase in surface temperature is shown throughout the century that is 216 

evident globally (Figure 3a-b). Accordingly, the network accuracy in distinguishing between the 217 

reference and the future SSP climate is high, on the order of 93%. Many regions around the globe 218 

are highlighted by Deep SHAP as robust distinctive patterns; e.g., Mexico, southern South 219 

America, southern Africa, Indonesia, and southern Australia. Under the SAI scenario, although the 220 

global mean temperature is similar to the one under the reference climate, there are robust patterns 221 

of regional cooling that make the two climates highly distinguishable: 91% of the time (Figure 3e). 222 

Regional cooling happens mainly over southern South America, eastern Africa, eastern Australia, 223 

and Greenland (Figure 3c). These are the regions that the network uses to distinguish between the 224 

reference and the SAI climates (see Figure 3g). Overall, these results indicate that the 225 

CESM2(WACCM6) projects that a potential SAI deployment would lead to a less warm climate 226 

than SSP; however, the annual mean surface temperature over land in an SAI world would also be 227 

distinguishable from the reference climate. Importantly, the distinctive patterns in the two 228 

scenarios are quite different, with warming being the distinctive difference under the SSP scenario, 229 

while regional cooling patterns being the most robust distinctive patterns under SAI.  230 

We have repeated the same analysis as in Figures 2-3 for a list of 21 variables (see Table 231 

S1), and we summarize the results in Figure 4. For all variables, the network accuracy under the 232 

SSP scenario (magenta circles in Figure 4a) is statistically significant. This means that even under 233 



 11 

the intermediate climate change scenario SSP2-4.5, the CESM2(WACCM6) projects that the Earth 234 

system would exhibit climatic conditions that are distinguishable from the reference climate in the 235 

coming decades. However, for the majority of variables examined here, SAI would lead to a less 236 

distinguishable climate than the SSP scenario, although (with a few exceptions) one that would 237 

also be distinguishable from the reference climate (note that the network accuracy (light blue 238 

circles) is higher than the random chance-based accuracy). In particular, SAI would decelerate 239 

many future greenhouse-gas driven climate changes, especially for surface temperature extremes, 240 

precipitation, drought occurrence, sea level pressure, and Arctic sea ice (see also Xu et al., 2020; 241 

Tye et al., 2022; Lee et al., 2020; 2023). It is important to note, however, that there are variables 242 

for which SAI is projected to have minimal impact relative to climate change. Examples include 243 

soil moisture, evapotranspiration, and ocean acidity.  244 

We next explore how distinctive patterns might be modified from SAI; note that the 245 

network accuracy alone does not provide this information. For example, as is shown in Figure 3, 246 

the climate distinguishability under the SSP and the SAI scenarios is very similar, but the 247 

corresponding distinctive patterns are different. To explore this further, the spatial correlation 248 

between the XAI heatmaps under the SSP and SAI scenarios are presented in Figure 4b. In most 249 

cases, the correlation is not statistically different from zero, which means that SAI is projected to 250 

introduce different distinctive patterns relative to those from the SSP scenario.  Exceptions are for 251 

cases where the correlation is high, such as for ocean acidity and ocean heat, which means that the 252 

anticipated SSP-driven distinctive patterns are projected to remain almost unchanged under SAI.  253 

The results in Figure 4 indicate the diverse impacts of SAI on different components of the 254 

climate system, which highlights the need for systematic and thorough investigations into the 255 

possible impacts of SAI on the Earth system beyond only the global-mean temperature response. 256 

Such research is needed for a well-informed policy making regarding potential deployment of 257 

climate intervention approaches (NASEM, 2021).  The framework introduced here allows for such 258 
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data-driven and generic investigations to uncover the ways in which an SAI climate would be 259 

different from a pre-deployment one.  260 

4. Conclusions 261 

In this study, a new framework was used that allows quantification (with a single number) 262 

of the degree of climate distinguishability between a reference climate and future climate states 263 

from both SAI and no-SAI worlds. The framework is based on the use of machine learning and 264 

leverages XAI tools to identify robust distinctive patterns under the intervention and the no-265 

intervention scenarios. The framework is purely data driven, nonlinear, nonlocal, and it accounts 266 

for underlying uncertainties in the data that may originate from internal stochastic variability or 267 

uncertainties in Earth system model physics. 268 

We applied this framework to data from ensembles of simulations that were developed to 269 

examine the potential impacts of stratospheric aerosol injection; namely, the ARISE-SAI project 270 

(Richter et al., 2022). In these simulations, SAI was shown to have diverse impacts on the 271 

simulated climate. These include minimizing changes due to greenhouse gas forcing in 272 

temperature and precipitation extremes, while having negligible effect on ocean acidification. 273 

Also, for the majority of variables examined here, the simulated deployment of SAI led to new 274 

patterns of change with respect to the reference climate that were different from the SSP patterns. 275 

This raises the possibility of SAI leading to new (and perhaps unwanted) changes in specific 276 

components of the Earth system or in certain regions of the world.    277 

We do note some potential limitations of the presented framework. One is the dependence 278 

of the results on the amount of data. Neural networks are known to be “data-thirsty” models 279 

(LeCun et al., 2015), so it is possible that certain patterns that were not identified as robust 280 

indicators during training could become robust with more data. However, the dependence on the 281 

amount of data is present in virtually all climate settings involving questions of signal-to-noise and 282 

statistical significance. Another limitation is the possible dependence of the results on the network 283 
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architecture. In order to address this issue here, we searched over many different architectures and 284 

combinations of hyperparameters before training the network, as described in Supplementary Text 285 

S1. That way, we let the data guide us as to what architecture we should use for each climate 286 

variable. Yet, we acknowledge that it is possible that some of these results depend on the adopted 287 

architectures.   288 

Our work highlights the need to further research the impacts of possible intervention 289 

approaches beyond just global mean temperatures, as has been done in other studies, examining 290 

ARISE-SAI data in particular (Keys et al., 2022; Labe et al., 2023; Hueholt et al., 2023). In doing 291 

so, we envision that the notion of “quantifiable climate distinguishability” will be a relevant and 292 

informative metric to assess impacts and to expand the design space of possible interventions (Lee 293 

et al., 2020), as illustrated by the presented results. Further investigation could include further 294 

assessing the climate distinguishability by considering multiple variables at the same time (i.e., the 295 

network input consists of many channels each of which refers to a different variable), to assess 296 

potential impacts on the dependence structure of different components of the Earth system and the 297 

occurrence of compound events. Future work could also focus on analyzing the output of more 298 

than one model and of more than one climate intervention strategy to establish a more holistic 299 

picture of the potential impacts of proposed climate intervention strategies.  300 

 301 

  302 
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 433 

Figure 1: Schematic of our framework to quantify SAI impacts using XAI. a) Assessing climate 434 

distinguishability between reference and future climates. Note that the pre-2040 period under an 435 
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intermediate climate change scenario is used as the refence climate, in accordance to Richer et al (2022). 436 

b) Schematic of the prediction task to quantify climate distinguishability after SAI and the use of XAI to 437 

derive the distinctive patterns between the reference and SAI climates.   438 
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 439 

 440 

Figure 2. Results of our framework for annual maximum daily precipitation. a) Series of global-mean 441 

annual maximum precipitation (in mm/d) under the SSP2-4.5 scenario and the ARISE-SAI scenario. All 442 
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10 ensemble members and the ensemble mean are shown. b) Ensemble mean difference between the annual 443 

maximum precipitation in the 2040-2059 SSP2-4.5 climate and the reference climate. d) Network-generated 444 

probability that different annual maximum precipitation maps originated from the 2040-2059 SSP2-4.5 445 

climate. The actual year of each map is provided in the horizontal axis. The overall accuracy of the network 446 

is shown on the bottom right corner. f) Distinctive patterns that were used by the network to separate the 447 

reference climate from the 2040-2059 SSP2-4.5 climate, as estimated using the method Deep SHAP. The 448 

presented attributions correspond to the average attributions across the 2060-2069 network predictions and 449 

all testing members, using the years 2035-2044 as baseline. c,e,g) Same as (b,d,f), but the network is trained 450 

to separate the reference climate from the 2040-2059 ARISE-SAI climate. 451 

  452 
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 453 

 454 

Figure 3. Same as in Figure 2, but results are for the annual mean surface temperature over land. 455 
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 456 

Figure 4. a) Accuracy of the network in distinguishing between the reference climate and the future SSP 457 

2-4.5 climate (magenta) or the future ARISE-SAI climate (light blue), for all variables considered in the 458 

study (see Supplementary Table S1). Results from individual testing members (smaller circles) and the 459 

ensemble mean (bigger circles) are presented. The critical values for the 10% and 1% significance levels 460 

are derived using a binomial distribution. b) Correlation coefficient between attribution heatmaps that 461 

correspond to predicting in the two scenarios. Results from individual testing members (smaller circles) 462 

and the ensemble mean (bigger circles) are presented. 463 
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Introduction 

In this document, supporting information for the manuscript entitled Quantifying “climate 
distinguishability” after stratospheric aerosol injection using explainable artificial 
intelligence is provided. Specifically, Text S1 discusses the details of the training approach 
of our neural networks and the strategy of how we determine the corresponding 
architectures (i.e., the choices of hyperparameter values). Text S2 provides details on the 
algorithm of Deep SHAP, which is used to gain insights on the decision-making process 
of our networks. Moreover, in Table S1 we present a list of all the variables used in our 
study, together with the corresponding temporal scales and domains of focus.  
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Text S1: Network training and architectures 
 

For each of the two considered tasks (i.e., distinguishability under the SAI or under 
the SSP scenario) and for each variable of interest, we train a fully-connected neural 
network using a cross-validation approach: we use 8 simulation members out of the 10 that 
are available for training (i.e., to estimate the network’s parameters), 1 member for 
validation (to estimate the network’s hyperparameters; see below) and the remaining 1 
member for testing (to assess performance and interpret the predictions). We repeat the 
above 10 times, each time using a different member as the testing one and different 
validation and training members accordingly. The presented results in the main text and 
the conclusions are based only on the testing results. We use the 40-year period 2020-2059 
for our training and validation, whereas for testing, we additionally use the “out-of-sample” 
years 2060-2069 from the testing member to assess the generalizability of the distinctive 
patterns learned by the network.  

Regarding the architecture of the network, for each task, for each variable, and for 
each iteration in the cross-validation sequence, we search across many combinations of 
hyperparameters. Specifically, we consider the following hyperparameters and 
corresponding search spaces: learning rate: [0.00001, 0.0001, 0.001, 0.01]; dropout 
probability in the input layer: [0.1, 0.25, 0.5, 0.75]; number of hidden layers: [0, 1, 2, 4]; 
number of neurons per hidden layer: [3, 5, 10, 25]. We quantify the validation loss (after 
50 epochs of training) for each of the combinations of hyperparameters and we choose the 
one with the lowest loss. We then train the network using the chosen architecture for 10,000 
epochs and using an early stopping approach with a patience parameter equal to 30 and a 
batch size equal to 32. We use ReLU activation functions for all hidden layers. The output 
layer consists of a single neuron with a sigmoid activation function.  

The same training approach as described above is used for both tasks and for all 
variables. Thus, the difference in the network’s performance across different cases signifies 
the diversity of SAI impacts and the degree to which distinctive patterns exist in the data 
or not. Indeed, in some cases the network performs with almost 100% classification 
accuracy, while in other cases, it performs no better than random chance, as we show in 
section 3 of the main text.  
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Text S2: Deep SHAP 
 
Deep SHAP is an attribution method that aims to identify the relative contribution of each 
of the input variables (features) to a specific model output (local attribution method). It is 
based on the use of Shapley values (Shapley, 1953) and is specifically designed for neural 
networks (Lundberg and Lee, 2017). The Shapley values originate from the field of 
cooperative game theory and represent the average expected marginal contribution of each 
player in a cooperative game, after all possible combinations of players have been 
considered (Shapley, 1953). Regarding the importance of Shapley values to explainable 
artificial intelligence, it can be shown (Lundberg and Lee, 2017) that across all additive 
feature attribution methods (a general class of attribution methods that unifies many 
popular methods like Layer-wise Relevance Propagation, Bach et al., 2015, DeepLIFT, 
Shrikumar et al., 2016, etc.), the only method that satisfies all desired properties of local 
accuracy, missingness and consistency (see Lundberg and Lee, 2017, for details on these 
properties) emerges when the feature attributions 𝜑! are equal to the Shapley values:  
 

𝜑! = #
|𝑆|! (|𝑀| − |𝑆| − 1)!

|𝑀|
,𝑓"∪{!}.𝑥"∪{!}0 − 𝑓"(𝑥")1

"⊆'\{!}

	  

 
where 𝑀 is the set of all input features, 𝑀\{𝑖} is the set 𝑀, but with the feature 𝑥! being 
withheld, |𝑀| represents the number of features in 𝑀, and the expression 𝑓"∪{!}.𝑥"∪{!}0 −
𝑓"(𝑥") represents the net contribution (effect) of the feature 𝑥! to the outcome of the model 
𝑓, which is calculated as the difference between the model outcome when the feature 𝑥! is 
present and when it is withheld. Thus, the Shapley value 𝜑! is the (weighted) average 
contribution of the feature 𝑥! across all possible subsets 𝑆 ⊆ 𝑀\{𝑖}. Due to computational 
constraints, Deep SHAP approximates the contribution of each feature in the input to the 
network’s prediction by computing the Shapley values for small components of the 
network and propagating them backwards until the input layer is reached and the input 
attributions are computed. For more details on Deep SHAP, the reader is referred to the 
original study by Lundberg and Lee (2017). 
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Supplementary Table S1. List of variables used in our study together with their 
corresponding temporal scales and domains of focus. 
 

 
 
  

VARIABLE TEMPORAL FOCUS DOMAIN OF FOCUS 

surface temperature annual mean global 
surface temperature annual mean global land 
surface temperature annual max global 
surface temperature annual max global land 
surface temperature annual 5-day max global land 

precipitation annual mean global 
precipitation annual mean global land 
precipitation annual max global 
precipitation annual max global land 
precipitation annual 5-day max global land 

drought duration  
(precipitation based) annual max global land 

drought intensity  
(precipitation based) annual max global land 

sea level pressure hemispheric winter mean latitudes 30-70 in each 
hemisphere 

soil moisture  
(top ~50 cm of soil) annual mean global land 

evapotranspiration annual mean global land 
active layer thickness Jun-Nov mean latitudes 10N-90N 

snow depth annual mean global land 
sea ice extent Jun-Nov mean latitudes 50N-90N 

ocean heat content  
(top ~400 m) annual mean global ocean 

sea surface temperature annual 5-day max latitudes 55S-55N; ocean 
ocean PH annual mean global ocean 
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