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Abstract

In this study, we examine the accuracy of global geospace simulations by analyzing the relationship between the solar wind and

its propagation parameters and the errors in auroral electrojet index AU and AL, ring current index SYM-H and the cross-polar

cap potential (CPCP) in simulations. We show that generally the error distributions are wider for higher level of solar wind

driving. Our results also show that the observing solar wind monitor distance from the Sun-Earth line and the phase front

normal angle produce only minor effects on the error distributions, however, for oblique angles (<0.4) of the phase front normal

there are noticable effects on the error distributions. Furthermore, we show that the results hold true also when using two

magnetometer station recordings, one at subauroral and the other at auroral latitudes, which speak to the similarity of the error

sources in local and global activity measures. These results are important elements in assessing the accuracy of the timing and

magnitude of space weather events recorded on ground.
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Key Points:5

• The phase front normal used to propagate the solar wind contributes to the error6

variance of the geomagnetic indices.7

• The simulation produces a larger error variance during stronger solar wind driv-8

ing than those arising from the solar wind propagation method.9

• Simulation output confidence is best for phase front normals smaller than > 0.4.10
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Abstract11

In this study, we examine the accuracy of global geospace simulations by analyz-12

ing the relationship between the solar wind and its propagation parameters and the er-13

rors in auroral electrojet index AU and AL, ring current index SYM-H and the cross-polar14

cap potential (CPCP) in simulations. We show that generally the error distributions are15

wider for higher level of solar wind driving. Our results also show that the observing so-16

lar wind monitor distance from the Sun-Earth line and the phase front normal angle pro-17

duce only minor effects on the error distributions, however, for oblique angles (¡0.4) of18

the phase front normal there are noticable effects on the error distributions. Furthermore,19

we show that the results hold true also when using two magnetometer station recordings,20

one at subauroral and the other at auroral latitudes, which speak to the similarity of the21

error sources in local and global activity measures. These results are important elements22

in assessing the accuracy of the timing and magnitude of space weather events recorded23

on ground.24

Plain Language Summary25

We investigate the accuracy of solar wind data that is predicted on arrival to the26

Earth. We do this by comparing geomagnetic storm indices in our simulations to the ob-27

served indices. We show that the strength of the solar wind gives us a wider difference28

in the index in question than the parameters used to predict the solar wind at Earth. We29

show that for oblique angles in the magnetic field configuration there are effects on this30

difference, but not a noticable one if the solar wind observing spacecraft is far off the Sun-31

Earth axis.32

1 Introduction33

Global simulations of Geospace are numerous. They are used to answer science ques-34

tions and for operational use in order to forecast geomagnetic indices. Typically, these35

simulations use data from satellites that orbit at the first Lagrange point (L1) and prop-36

agated to somewhere closer to the bow-shock nose (BSN). This is to avoid running a physics37

based simulation that run from L1 to the BSN. L1 to BSN propagation time delays meth-38

ods see operational use for space weather forecasting (Cash et al., 2018).39

Magnetohydrodynamic (MHD) simulations of Geospace has its limitations. Gen-40

erally, these models use ideal MHD (Lyon et al., 2004; Janhunen et al., 2012; Gombosi41

et al., 2021). Which approximates the solar wind and magnetosphere plasma as a single-42

fluid, without any viscosity or dissipative terms in its governing equations. These sim-43

ulations are also limited to the resolution in which it was run. A certain numerical scheme44

must be employed to solve these governing equations and depending on the choice can45

be diffusive or dispersive. Solving these equations can cause magnetic monopoles to arise46

simply due to discretization. These simulations, especially in the case of this study, are47

highly coupled with other models with their own limitations. Coupling models is nec-48

essary to resolve different regimes in space weather, this is because different parts of the49

global system has differing time scales . These approximations, limitations, and numer-50

ical issues can lead to errors when compared to observations.51

This is not to say that observations are perfect either, there are measurement un-52

certainties with any kind of instrument. Fundamentally, measurements have systematic53

errors and random errors. Instruments also have their own accuracy, precision and range.54

These errors and uncertainties if used as an input to a model can be forward-propagated55

to the output of the model.56

This leads us to errors in the output of models as compared to observations. Er-57

rors in data input and model limitations can lead to errors in the output. Thus, it is im-58
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portant to validate models with observations with some confidence interval. We may imag-59

ine a measurement from a model or observation to be a probability distribution function60

and study its properties.61

Solar wind propagation has several sophisticated methods to determine the time62

delays of the solar wind observation. They use methods to determine the Phase Front63

Normal (PFN) plane of the solar wind during the observation and calculating the time64

shift along this normal. These methods have been extensively validated and studied and65

they include Minimum Variance Analysis (MVA) (Sonnerup & Scheible, 1998), the cross-66

product technique (Horbury et al., 2001), and a combination of the two (Weimer & King,67

2008).68

Investigations have been done on the past studying solar wind propagation meth-69

ods with global simulations (A. Pulkkinen & Rastätter, 2009). As well as solar wind prop-70

agation from the L1 monitor towards an auroral response in R0 currents (Milan et al.,71

2022). This study will take a look at how those methods affect our prediction of geomag-72

netic indices.73

With the increase of computing power comes capabilities to apply statistical meth-74

ods to our global simulations.75

2 Methodology76

2.1 The SWMF Geospace Model77

The SWMF Geospace configuration (Tóth et al., 2012) consists of three coupled78

models describing the different regimes in the global magnetosphere-ionosophere system (Gombosi79

et al., 2021).80

The Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATSRUS) code (Powell81

et al., 1993) solves the ideal magnetohydrodynamic equations in the solar wind and mag-82

netosphere regions. The grid volumes are variable in the code, it uses Adaptive Mesh83

Refinement (AMR) to refine the grid size. The highest resolution used for the simula-84

tions analyzed in this study was set to 1/8 Earth radii (RE), which is mostly used in the85

inner magnetosphere and close to the magnetospheric boundaries. The simulation box86

covers the region around the Earth with the x-axis spanning from -224 RE in the mag-87

netotail to 32 RE in the sunward direction, and the y and z-axes span from −128RE to88

128RE in Geocentric Solar Magnetospheric coordinates.89

The Rice Convection Model (RCM) is an inner-magnetosphere model primarily used90

to model the ring current (Wolf, 1983). RCM solves bounce-averaged drift kinetic equa-91

tions for the particle populations on a polar grid (Toffoletto et al., 2003). RCM is two-92

way coupled between BATSRUS and the ionosphere. The coupling happens every 10 sec-93

onds, where BATSRUS supplies the currents for RCM and RCM in turn returns elec-94

tric fields for the BATSRUS inner boundary.95

The Ridley Ionosphere Model (RIM) is a potential solver for the ionosphere that96

solves the Poisson equation on a spherical grid (Ridley et al., 2004). It is coupled with97

RCM and the BATSRUS and uses an empirical conductance model to find the electric98

field in the ionosphere. The coupling of BATSRUS with RIM happens every 5 seconds99

where BATSRUS supplies field-aligned currents (FAC). The FACs enable RIM to solve100

the electric potential using the conductance model.101

2.2 Simulation Runs102

Using the Space Weather Modeling Framework (SWMF) in the Geospace config-103

uration, we ran the same 123 storms introduced in a previous study (Al Shidi et al., 2022).104
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The storms were selected based on having a minimum peak of stronger than -50 nT dur-105

ing its evolution. Each storm run is 54 hours in total which includes 6 hours before the106

storm onset time and 48 hours thereafter.107

2.3 Simulation Inputs108

The storms were simulated with SWMF Geospace model using the OMNI solar wind109

and interplanetary magnetic field (IMF) observations (N. Papitashvili et al., 2014) as in-110

put at the simulation Sunward (upstream) boundary. The observations that come from111

a collection of spacecraft, most of them located at or near the first Lagrangian point L1,112

are propagated to the nose of the magnetospheric bow shock (BSN) to represent the so-113

lar wind and IMF parameters encountered by the Earth’s magnetosphere.114

In this study, we use the IMF components in GSM coordinates (Bx, By, Bz), the
solar wind speed (V ) and density (n) to get the solar wind dynamic pressure (p), solar
wind electric field (Ey = −V Bz) and an empirical solar wind – magnetosphere cou-
pling function (Newell et al., 2007)

dΦ

dt
= α

[
v2BT sin4

(
θ

2

)]2/3
(1)

where θ = tan−1(By/Bz) is the IMF clock angle and BT = (B2
y +B2

z)
1/2 is the trans-115

verse component of the magnetic field perpendicular to the Sun-Earth line. The normal-116

izing factor α ∼ 103 provides conversion to units of Wb/s, which allows interpreta-117

tion of the parameter as the rate of magnetic flux conversion at the dayside magnetopause118

(Newell et al., 2007).119

The propagation time is determined using the solar wind speed, distance to the ob-120

serving spacecraft, and by finding a phase front normal (PFN) that describes the orien-121

tation of the front that is approaching the Earth (see Figure 1). The PFN can be found122

using several methods and OMNI employs a combination (King & Papitashvili, 2023)123

of some of the techniques mentioned in Section 1.124

The solar wind front detected at time t at an upstream spacecraft (at location rspacecraft)
reaches the bow shock nose at time t+∆t. The transit time ∆t can be calculated by
advecting the phase front normal plane using the equation

∆tarrival =
(rBSN − rspacecraft) · n̂

V · n̂
, (2)

where rBSN is the location of bow shock nose, V is the solar wind velocity observed at125

L1, and n̂ is the shock phase front normal derived from the solar wind observations at126

the spacecraft location (see Figure 1 demonstrating the principle of the PFN advection).127

Errors of this method will arise as well from errors in the solar wind speed, positioning128

accuracy of the spacecraft, as the evaluation of the PFN orientation.129

2.4 Simulation Outputs130

Each storm simulation was configured to output geomagnetic indices including SYM-
H, AL, AU, and the Northern hemisphere polar cap index PCN, which can be used to
derive an estimate for the Cross-Polar Cap Potential (CPCP) (Ridley et al., 2004) in the
form

CPCP = 29.28− 3.31 sin(T + 1.49) + 17.81PCI, (3)

where the time of year is specified as T = 2π(NMONTH/12) with numbering of months131

starting from zero (Jan = 0).132

To examine the errors in the local geomagnetic field prediction, the simulation out-133

put comprises magnetic field perturbations ∆B at over a hundred ground magnetome-134

ter station locations perturbations at 1-minute cadence (Al Shidi & Pulkkinen, 2022).135
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Figure 1. A diagram (not to scale) showing a simplified version of how solar wind parameters

are propagated from L1. The Earth is shown in blue at the origin of the GSE coordinate system,

with the bowshock engulfing the magnetosphere oriented by the direction of the solar wind flow

velocity V (blue arrow). The spacecraft situated upstream (black cross) observes a phase front

plane (dashed red line; phase front normal n̂ is shown with the red arrow) The distance r from

the bow shock to the spacecraft has GSE components (∆x) and (∆y). The distance of the front

plane from the bow shock along the solar wind flow direction is marked with a red x. The propa-

gation time from the front plane to the bow shock is then determined by the distance of x to the

bow shock and the solar wind speed.

2.5 Error Analysis136

The observations and simulation outputs are compiled to time series vectors yj,observed
and yj,model, where yj is the value of the geomagnetic index j (j = SYM-H, AU, AL, CPCP).
The simulation prediction error at time ti is then defined as

ϵj(ti) = yj,model(ti)− yj,observed(ti). (4)

The error vectors thus created are used to derive probability distributions for the errors137

under different solar wind driving conditions defined as vectors zk,observed(ti) at the bow138

shock nose (k = Ey, dΦ/dt, PFN, or the transverse distance from the Sun-Earth line |x̂×139

r|, ∆t), where r = rspacecraft − rBSN .140

3 Results and Analysis141

This study focuses on the magnitude of the errors in the simulation output as com-142

pared to the observations for given solar wind input. We note that the solar wind driver143

parameters used here are not independent, but reflect different characteristics of the in-144

coming solar wind: The intensity of the driving (Ey, dΦ/dt), and timing and/or other145

errors associated with measurements away from the Sun-Earth line and (PFN, y · r)146

and from the bow shock nose (∆t).147

3.1 Univariate Analysis148

In this section, we examine the probability distributions of the errors for each of149

the driver parameters. Figures 2, and 3 show the error probability distributions as func-150

tions of the driver parameters for each of the activity measures yj . The error distribu-151

tions are computed for 10 ranges of the driver parameter values, and the figures show152

the errors normalized for each bin. The error distributions were discretized into 50 bins.153

Normalization of each driver parameter bin means that the figures do not give the ab-154
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solute value of the error, but rather a distribution of the error magnitudes within that155

particular range of the driver parameter.156

3.1.1 Global Geomagnetic Indices157

The four panels in Figure 2 show the errors in the activity indices CPCP, SYM-H,158

AL, and AU as function of the intensity of the solar wind electric field V Bz (top row)159

and the Newell coupling parameter (bottom row). The errors are mostly centered around160

zero. The errors in the polar cap potential increase slightly both for strong driving (strongly161

negative V Bz) and for strong electric field in a closed magnetosphere configuration (strongly162

positive V Bz). The SYM-H, AL, and AU index errors have widest distributions for strong163

driving, with SYM-H and AU centered around zero, but the AL errors strongly biased164

toward negative error (model underestimating the observed AL) typical of the Geospace165

results (T. I. Pulkkinen et al., 2022). These results are independent of the form of the166

solar wind coupling function, as can be seen by comparing the top and bottom rows for167

each of the indices.168

Figure 2. From left to right: Binned probability distribution of errors in CPCP, SYM-H,

AL and AU as function of the (top) solar wind electric field and (bottom) the Newell coupling

function at the bow shock nose. The driver parameters were binned into 10 bins, and the errors

into 50 bins.

Examination of the errors of the global indices as a function of PFN (Figure 3) shows169

less dependence on the phase front orientation than on the solar wind driver function170

magnitude: The variance and the medians are relatively similar for angles perpendicu-171

lar and oblique to the sun-earth line (smaller and larger n̂ · x̂, respectively).172

The errors in the geomagnetic indices given the transverse distance of the space-173

craft to the BSN show a mostly consistent variance throughout however there is a not-174

icable change in the medians for each given distance. This shows that the error is depen-175

dent to the location of the spacecraft but its uncertainty (which could arise from mea-176

surement errors) stays the same.177

Lastly, we examine the effect of the time shift from the spacecraft to the bow shock178

nose. Noting that most of the OMNI observations come from spacecraft at or near L1,179

the higher values of ∆t imply slower solar wind and the low values imply high solar wind180
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speed, or, referring to Figure 1, higher values of ∆t imply close to perpendicular PFN181

angles and smaller propagation times imply more oblique PFN orientatiton. The errors182

for all parameters are slightly larger for low time shifts (high solar wind speed, oblique183

fronts) but especially the polar cap potential and the AU index show very little differ-184

ence across the range of values in ∆t.185

Figure 3. From left to right: Binned conditional probability distribution of errors in CPCP,

SYM-H, AL and AU as function of the (top) the PFN projection to the x axis (x̂ · n̂), (middle) the

transverse distance from the Sun-Earth line (|x̂ × r|), and (bottom) time shift to the bow shock

nose ∆t. The driver parameters were binned into 10 bins, and the errors into 50 bins.

To further examine the role of the solar wind parameters, we downsample the in-186

puts to a particular value and show the median error and the interquartile ranges as func-187

tion of the downsampled distance from the sun-Earth line, the PFN, the solar wind elec-188

tric field, and the solar wind dynamic pressure (see Figure 4). For the solar wind elec-189

tric field, dynamic pressure, and the off-axis distance of the BSN to the spacecraft, the190

subsampling is done by selecting values larger than the value in question. For the PFN191

the subsampling is done by selecting values smaller than the value in question. These192

selections are consistent with the assumptions that lower level of solar wind driving (small193

Ey and p), large PFN n̂ · x̂, and small distance from the Sun-Earth line |x̂× r| would194

minimize the errors – consistent with our conclusions above.195

The dynamic pressure shows a clear bias in the medians, with the median error de-196

creasing (increasing) for SYM-H (CPCP) for increasing solar wind dynamic pressure. This197

indicates that the model tends to overestimate the magnitudes of the SYM-H and CPCP198

for large solar wind pressure values. While the inter-quartile range (IQR) does not much199

change for SYM-H, it does increase toward higher pressures for the polar cap potential.200
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For the AL and AU indices, the error distributions get wider for stronger level of201

driving, and the AL index shows an increasing underestimation of the index values for202

higher levels of driving. Similar relationship is not found for the flow pressure, which would203

indicate that the underestimation is dependent on the IMF Bz component rather than204

the solar wind speed (which is a component of the dynamic pressure).205

As the PFN n̂ · x̂ decreases and the phase fronts become increasingly oblique, the206

SYM-H distributions get narrower, but at the same time the median errors become more207

positive, indicating underestimation of the index magnitude. While the IQRs of all pa-208

rameters decrease slightly for more oblique angles, the other parameters show only slight209

variations in the median values. The IQR does increase for PFN projection values smaller210

than 0.2. Since variations in the median and IQR can be seen for values less than 0.4,211

we can say that we can have more confidence in the geomagnetic indices outputs when212

the values are greater than 0.4.213

The off-axis distance of the spacecraft from the BSN seems to matter for relatively214

large values, once larger than about 80 RE , changes can be seen in the median and IQR215

of the errors, where the IQR is show an increase in distances larger than 90 RE .216

3.1.2 Local Magnetometer Recordings217

In this subsection, we examine the role of each of the driver parameters in gener-218

ating errors at individual magnetometer stations. We do that by selecting two represen-219

tative stations, Yellowknife, Canada (YKC) in the auroral latitudes recording both east-220

ward and westward ionospheric electrojets (Lyatsky et al., 2006), and Boulder, CO, USA221

(BOU), which is a mid-latitude station mostly reacting to the ring current and field-aligned222

currents coupling the magnetosphere and ionosphere (Dubyagin et al., 2014). The error223

vectors computed use the observed and simulated ground magnetic perturbations hor-224

izontal to the surface. The four panels in each row of Figure 5 shows the error probabil-225

ity distributions for each of the driver parameters for YKC at the top and BOU at the226

bottom panel. Note that due to the very different scales of the signals (the auroral zone227

magnetometers record variations in the 100s of nT, whereas the mid-latitude stations228

typically record variations of the order of 10s of nT), the horizontal scales are different229

for the two stations.230

The local recordings show similar dependence on the driver parameters than the231

global indices, although the error distributions in the transverse component are narrower232

than those of the global indices. Note, however, that for the solar wind driver functions,233

the horizontal components are not biased toward negative errors, being centered around234

zero error. Furthernore, BOU shows an increase also for strong driver in the closed mag-235

netosphere configuration (strongly positive V Bz). Neither station shows dependence on236

either the phase front normal or the transverse distance to the Sun-Earth line.237

3.2 Regression Analysis238

In order to study the relationship between the solar wind parameters and the sim-
ulation errors, we perform a linear regression analysis to find how the errors change with
the varying inputs. Essentially, a linear regression is a least-squares fit to a linear equa-
tion:

ϵj(t) = b0 +
∑
k

bkzk(t), (5)

where ϵj is the error associated with the global geomagnetic index j, b0 is the y-intercept,239

zk is the solar wind quantity k at time t, and bk is the slope or weight associated with240

the solar wind parameter k. We consider the four solar wind parameters introduced ear-241

lier, the solar wind electric field Ey and Ez, the solar wind dynamic pressure p, the PFN242

projection to the Sun-Earth line n̂·x̂, and the observing spacecraft transverse distance243
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Figure 4. Median errors (dark lines) and their inter-quartile ranges (lighter shading) by

selectively subsampling the solar wind paramters. From top to bottom, left to right: SYM-H,

CPCP, AL, and AU errors as function of the solar wind electric field Ey, the solar wind dynamic

pressure, the projection of the PFN on the Sun-Earth line, and the transverse (off-axis) distance

from the BSN to the spacecraft. For the solar wind electric field, dynamic pressure, and off-axis

distance, the subsampling is done by selecting values larger than to the value on the x-axis. For

the PFN, the subsampling is done by selecting values smaller than to the value on the x-axis.

from the Sun-Earth line |x̂×r|. As outputs, we consider the same global magnetospheric244

parameters as before, the SYM-H, the cross-polar cap potential CPCP, and the auroral245

electrojet indices AL and AU.246

To study how large an effect a given solar wind quantity k has on the errors, we
calculated Standardized Regression Coefficients (SRC) for each geomagnetic activity pa-
rameter j using the formulation

SRCjk =
σk

σj
bk, (6)

where σ is the standard deviation of the solar wind parameters k or activity index er-247

rors j. The SRC is a measure of how much of the variance in the errors can be attributed248

to the variance in the inputs. This allows us to make a relational inference between the249

solar wind inputs and activity index errors, and to directly compare across the param-250

–9–
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Figure 5. From left to right: Binned probability distribution of errors the horizontal magnetic

field at (top) YKC and (bottom) BOU as function of the solar wind Ey, the Newell coupling

function, the PFN projection to the x axis (x̂ · n̂), and the transverse distance from the Sun-Earth

line (|x̂× r|). The driver parameters were binned into 10 bins, and the errors into 50 bins.

eters as the SRC are unitless. Table 1 shows the SRCs found for each solar wind input251

and geomagnetic index error.252

Table 1. Table of the Standardized Regression Coefficients

Error |x̂× r| PFN n̂ · x̂ V By V Bz Pressure p

SYM-H 0.077 0.123 0.017 0.153 0.293
CPCP 0.018 0.105 0.095 0.109 0.071

AL 0.005 0.0179 0.312 0.294 0.098
AU 0.021 0.013 0.480 0.066 0.008

The SRC’s show that the variances in SYM-H are sensitive to the variances in the253

PFN and V Bz equally and doubly so for the solar wind pressure. The variances in CPCP254

are equally sensitive to PFN, V By, and V Bz but less so to the solar wind pressure. The255

variances in the AL errors are even more sensitive (triply so) to the solar wind electric256

field analogues V Bz and V By with an even less sensitive relationship to variances in the257

PFN. The less sensitive variance relationship to PFN can also be seen in AU error, but258

interestingly, AU is sensitive to variances in V By strongly and less so on V Bz.259

4 Discussion260

This study focuses on the analysis of the magnitude and probability distribution261

of errors between observations of geomagnetic indices and their predictions using the Space262

Weather Modeling Framework Geospace simulation. The errors can arise either from in-263

accuracies in the measurement (measurement errors), errors in the predicted magnitude264

with the correct driver profile (model error), or errors in timing of the arrival of the so-265

lar wind and IMF at the bow shock nose.266
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Further investigations into the cause of the errors would require better metadata267

for the observational inputs and outputs: Neither the geomagnetic indices nor the space-268

borne solar wind measurements and propagation times come with uncertainty estimates269

or error bars. Such parameters would be necessary to understand how the uncertainties270

propagate from the input to the output measurements, and would be valuable for un-271

certainty quantification and validation of space weather forecasts. Lacking these, Morley272

et al. (2018) attempted to quantify the uncertainty of measurement errors in the solar273

wind input by ensemble modeling with SWMF, and showed that using ensemble mod-274

eling can improve the mean error of SYM-H by a few nT.275

Our results show that the errors show only minor dependence on the geometric pa-276

rameters such as the phase front normal angle or the transverse distance from the Sun-277

Earth line of the observing spacecraft, while the widest distributions of the errors are278

obtained for large solar wind driving and high dynamic pressure. An earlier study by Ridley279

(2000) demonstrated that the uncertainty in timing between measurements at L1 with280

WIND and closer to the BSN with IMP 8 can be on average 7.5–8.5 minutes. However,281

their study was limited to the solar wind, and did not assess the impact of these timing282

errors on the errors in geomagnetic indices, which have their own intrinsic time scales283

as they respond to the variable solar wind driving. More recently, Milan et al. (2022) found284

that the correlation of peaks in the cusp R0 field-aligned currents observed by the AM-285

PERE satellites with IMF By deteriorates with larger transverse distance of the solar286

wind monitor from the Sun-Earth line. Furthermore, they find an average time lag of287

about 17 minutes between the solar wind front arrival at the bow shock nose and the re-288

sponse caused by the front in the ionosphere – irrespective of the location of the solar289

wind monitor, a physics based simulation is expected to have the same response time which290

makes the minute cadence comparison fair.291

A limitation of the regression analysis performed in Section 3.2 is the non-linear292

relationship between the solar wind inputs and the geomagnetic index errors. The value293

of the regression analysis is in its ability to address the relationship between the variances294

of both input and output simultaneously, characterized by the standardized regression295

coefficients.296

5 Conclusion297

The errors in the prediction of geomagnetic indices are dominated by the energy298

of the solar wind interacting with the magnetosphere, shown as increasing interquartile299

range of the errors for higher levels of solar wind driving (larger electric field, Newell cou-300

pling parameter, or solar wind dynamic pressure). Propagation methods used to prop-301

agate the solar wind from L1 to the BSN show less significant effects, however, smaller302

phase front normal angles with respect to the Sun-Earth line show slightly smaller un-303

certainties (smaller interquartile range) than larger angles. The transverse distance of304

the solar wind monitor from the Sun-Earth line shows little effect on the geomagnetic305

index error, although we note that timing errors in these cases might be dominant.306

6 Open Research307

The data used in this study is openly available in the Deep Blue Data repository308

(Al Shidi & Pulkkinen, 2022) and can be retrieved from: https://doi.org/10.7302/309

dkjd-1j05. The geomagnetic indices and solar wind data are aggregated in the OMNI310

dataset (N. E. Papitashvili & King, 2020) and can be found here: https://omniweb.gsfc311

.nasa.gov/ .312
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