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Abstract

In hydrological research, data assimilation (DA) is widely used to fuse the information contained in process-based models and

observational data to reduce simulation uncertainty. However, many popular DA methods are limited by low computational

efficiency or their reliance on the Gaussian assumption. To address these limitations, we propose a novel DA method called

DA(DL), which leverages the capabilities of deep learning (DL) to model non-linear relationships and recognize complex patterns.

DA(DL) first generates a large volume of training data from the prior ensemble, and then trains a DL model to update the

system knowledge (e.g., model parameters in this study) from multiple predictors. For highly non-linear models, an iterative

form of DA(DL) can be implemented. Additionally, strategies of data augmentation and local updating are proposed to

enhance DA(DL) for problems involving small ensemble size and the equifinality issue, respectively. In two hydrological DA

cases involving Gaussian and non-Gaussian distributions, DA(DL) shows promising performance compared to two ensemble

smoother (ES) methods, i.e., ES(K) and ES(DL), which respectively apply the Kalman- and DL-based updates. Potential

improvements to DA(DL) can be made by designing better DL model architectures, imposing physical constraints to the

training of the DL model, and further updating other important variables like model states, forcings and error terms.
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Abstract18

In hydrological research, data assimilation (DA) is widely used to fuse the information con-19

tained in process-based models and observational data to reduce simulation uncertainty.20

However, many popular DA methods are limited by low computational efficiency or their21

reliance on the Gaussian assumption. To address these limitations, we propose a novel DA22

method called DA(DL), which leverages the capabilities of deep learning (DL) to model non-23

linear relationships and recognize complex patterns. DA(DL) first generates a large volume24

of training data from the prior ensemble, and then trains a DL model to update the system25

knowledge (e.g., model parameters in this study) from multiple predictors. For highly non-26

linear models, an iterative form of DA(DL) can be implemented. Additionally, strategies27

of data augmentation and local updating are proposed to enhance DA(DL) for problems28

involving small ensemble size and the equifinality issue, respectively. In two hydrological29

DA cases involving Gaussian and non-Gaussian distributions, DA(DL) shows promising per-30

formance compared to two ensemble smoother (ES) methods, i.e., ES(K) and ES(DL), which31

respectively apply the Kalman- and DL-based updates. Potential improvements to DA(DL)32

can be made by designing better DL model architectures, imposing physical constraints to33

the training of the DL model, and further updating other important variables like model34

states, forcings and error terms.35

1 Introduction36

Effective prediction of hydrological systems generally requires two sources of informa-37

tion. The first source is the mathematical model (e.g., analytical, numerical or data-driven)38

that embodies our understanding of the hydrological process (Clark et al., 2015; Peel &39

Blöschl, 2011; Spieler et al., 2020). The second source is the observational data obtained40

at different spatial/temporal scales using various techniques (Etter et al., 2020; Slater &41

Binley, 2021; F. Zheng et al., 2018). Due to insufficient knowledge of the system dynamics42

and related parameters, the model may not adequately represent the hydrological reality,43

although it can provide spatially and temporally continuous predictions (Liu & Gupta, 2007;44

Vrugt et al., 2008). On the other hand, the observational data are more consistent with45

the system behavior (despite some discrepancies due to measurement errors), but are usu-46

ally sparse in time and/or space and may lack the ability to explain and extrapolate. In47

general, either source of information is incomplete and should not be used alone to support48

hypothesis testing and decision-making.49

To synergize scientific knowledge (i.e., model) with observations (i.e., data), two differ-50

ent strategies can be implemented. The first strategy uses the data to constrain the model51

in order to obtain more reliable spatial/temporal simulations and predictions of the hydro-52

logical system. This can be achieved by applying data assimilation (DA) to extract infor-53

mation from the observations and update the model state (Evensen, 2009), structural errors54

(Evensen, 2019; Smith et al., 2008), parameters (Chen & Zhang, 2006), and initial/boundary55

conditions (Dechant & Moradkhani, 2011), among others. The second strategy, on the other56

hand, utilizes scientific knowledge to improve data-driven prediction approaches (e.g., ma-57

chine learning) to make them more explainable and extrapolative. This strategy has gained58

popularity in recent years across various research fields (Karpatne et al., 2022). Some suc-59

cessful applications include process-guided DL for lake temperature prediction (Read et al.,60

2019) and physics-informed neural networks for both forward and inverse problems (Q. He61

et al., 2020; Karniadakis et al., 2021). Our focus here is on the first strategy of hydrolog-62

ical DA. The second strategy is beyond the scope of the present work, interested readers63

can refer to a recent book on knowledge-guided machine learning edited by Karpatne et al.64

(2022).65

In hydrological predictions, simulation uncertainties are inevitable and typically treated66

as random variables. DA can be viewed from the Bayesian perspective to quantify these67

uncertainties. The background knowledge is first represented by a prior distribution and68

–2–



manuscript submitted to Water Resources Research

then updated to posterior probability by assimilating the information contained in the ob-69

servational data (Carrassi et al., 2018; Law et al., 2015; Reich & Cotter, 2015). Compared70

to the prior distribution, the posterior is usually less uncertain and better reflects the un-71

derlying data-generating process. The quality of a DA approach is affected by two factors:72

(1) how informative are the data? and (2) how effective is the DA algorithm at extracting73

the information contained in the data? Under a limited budget, it is essential to make ra-74

tional decisions about when, where, and what kind of data to collect. This can be achieved75

through Bayesian experimental design (Tarakanov & Elsheikh, 2020; Thibaut et al., 2022;76

J. Zhang et al., 2015) or data-worth analysis (Dausman et al., 2010; Wang et al., 2018; Xue77

et al., 2014). To handle nonlinear and non-Gaussian observation/system models, Markov78

chain Monte Carlo (MCMC) or particle filter (PF) methods can be used as the suitable DA79

methods to approximate the posterior, even when its exact form is unknown (Moradkhani80

et al., 2005; Shi et al., 2023; Vrugt, 2016). However, MCMC and PF can become computa-81

tionally expensive when dealing with complex problems due to the curse of dimensionality,82

despite recent advances in improving their simulation efficiency (Pan et al., 2022; Pulido &83

van Leeuwen, 2019; Reuschen et al., 2021; J. Zhang, Vrugt, et al., 2020). Nevertheless, high-84

dimensional DA problems can be efficiently implemented if the models are approximately85

Gaussian. The ensemble Kalman filter (EnKF) is one such DA algorithm that has been86

extensively used in hydrological science (Evensen, 2009). EnKF is a Monte Carlo approach87

to the Kalman filter for sequential DA. It represents the system state distribution using an88

ensemble of state vectors and computes the mean and covariance matrix from this ensem-89

ble. When the ensemble size of EnKF is small, its robustness can be improved by artificially90

increasing the spread of the forecast ensemble through inflation (Bauser et al., 2018) or91

by considering the spatial decay of correlations through localization (Anderson, 2012). For92

efficiency and simplicity, all available data can be assimilated in a single global update using93

the ensemble smoother (ES; van Leeuwen & Evensen, 1996), a popular variant of EnKF. To94

deal with strongly non-linear models, iteration can be introduced to EnKF and ES, result-95

ing in the iterative EnKF (Gu & Oliver, 2007; Lorentzen & Naevdal, 2011) and ES (Chen96

& Oliver, 2012; Emerick & Reynolds, 2013). Despite their popularity in various research97

fields, the performance of EnKF and its variants may still deteriorate when dealing with98

non-Gaussian problems. Currently, developing DA methods that are both general (i.e., suit-99

able for non-linear, high-dimensional and non-Gaussian problems) and efficient (i.e., without100

requiring a massive amount of model runs) is an important need in hydrological science.101

Essentially, EnKF and its variants work by updating the state from the innovation vec-102

tor (i.e., the difference between perturbed observation and model prediction). The Kalman103

gain matrix, based on the first two statistical moments, defines a linear mapping from the104

innovation vector to the update vector (i.e., the difference between the updated state and105

the prior state). Thus, these Kalman-based DA methods are restricted by the Gaussian as-106

sumption. To relieve this constraint and formulate a more general DA method, we proposed107

to use deep learning (DL) to construct a non-linear mapping to replace the Kalman gain108

matrix (J. Zhang, Zheng, et al., 2020). A high volume of training data are generated from109

the prior ensemble to train the DL model and possible non-Gaussian patterns in the data110

can be automatically recognized. This new method, called ES(DL), has shown promising111

performance in subsurface characterization problems involving high-dimensional and non-112

Gaussian variables. Latter, Man et al. (2022) applied ES(DL) to characterize vapor intrusion113

sites. Xiao et al. (2023) used the DL-based DA method to update future state of geological114

CO2 plumes from historical data. Godoy et al. (2022) adopted random forest instead of115

DL to construct a non-linear mapping to improve EnKF in the estimation of heterogeneous116

conductivity field. Wang and Yan (2022) introduced multi-fidelity simulation to further117

improve the efficiency of ES(DL) for fast DA of subsurface flow problems.118

Despite the improved performance of the DL-based DA method over its Kalman-based119

counterpart, there is still room for further enhancement. In this paper, we introduce a novel120

DA method called DA(DL) based on DL. Unlike ES(DL), which only uses the innovation vector121

as the predictor, DA(DL) inputs the prior parameters, model outputs and the innovation122
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vector simultaneously as predictors of the DL model. This allows DA(DL) to utilize more123

information and achieve better updating results than ES(DL), as demonstrated later in this124

work. When running the system model takes a long time, only a small ensemble size is125

usually affordable. To ensure the robustness of DA(DL) in this situation, we will introduce126

a simple but effective data argumentation method. In addition, to address the issue of127

equifinality commonly encountered in hydrological research, we will introduce the local128

updating approach developed in our previous work (J. Zhang et al., 2018) to DA(DL).129

The rest of this paper is organized as follows. Section 2 presents the theory and im-130

plementation details of the new DA(DL) method. Then, two hydrological cases are used to131

demonstrate the performance of DA(DL). Finally, conclusions and discussions are provided132

in the last section.133

2 Methods134

In this work, the hydrological system of concern is described as135

ỹ = H(m∗,U) + ε, (1)136

where ỹ signifies a vector of observational data obtained at different times and locations that137

summarize the responses of the hydrological system H to external forcings U, m∗ denotes138

the unknown parameters, and ε represents the measurement errors. When a simulator of139

the hydrological process is available, the data can be modeled as140

ỹ = F
(
m∗, Ũ, ψ̃0

)
+ E, (2)141

where ψ̃0 signifies the initial states, and E represents additive errors originated from obser-142

vational and modeling processes. In hydrological DA, the observational data can either be143

assimilated sequentially in a filtering problem or used in a batch update with a smoother.144

Moreover, DA can target not only model parameters but also model state, external forcings,145

and model errors. In this work, we focus on the parameter estimation problem. Adopting146

a Bayesian formalism, posterior distribution of the model parameters can be derived as147

p(m|ỹ) =
p(m)p(ỹ|m)

p(ỹ)
, (3)148

where p(m) and p(m|ỹ) are the prior and posterior distribution of model parameters, re-149

spectively, p(ỹ|m) demotes the likelihood function, and p(ỹ) =
∫
p(ỹ|m)p(m)dm is the150

evidence. For complex hydrological system that involves non-linear processes, analytical151

form of p(m|ỹ) is not available, and Monte Carlo method can be used to provide an ap-152

proximate estimate.153

EnKF and its variants (e.g., ES) use an ensemble of parameters or states to represent154

uncertainties. From p(m), Ne random samples can be drawn to form the prior parameter155

ensemble, M0 =
{
m0

1, ...,m
0
Ne

}
. Through running F(·), the ensemble of prior state can be156

obtained, i.e., Y0 =
{
y0
1, ...,y

0
Ne

}
. The Kalman formula can be used to update each sample157

in M0 in the following way:158

m1
i = m0

i + C0
MY

(
C0

YY + R
)−1(

ỹ + εi − y0
i

)
, (4)159

where i = 1, ..., Ne, M
1 =

{
m1

1, ...,m
1
Ne

}
is the updated parameter ensemble, C0

MY is the the160

cross-covariance between M0 and Y0, C0
YY is the auto-covariance of Y0, R is the covariance161

of measurement errors, and εi is a random realization of measurement errors. Equation (4)162

describes an update from the innovation vector, ∆yi = ỹ + εi − y0
i , to the update vector,163

∆mi = m1
i −m0

i :164

∆mi =MK(∆yi), (5)165

whereMK(·) is a mapping defined by the Kalman gain matrix, K = C0
MY(C0

YY+R)−1. It is166

clear that this mapping is linear and depends on the Gaussian assumption. As shown in our167
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previous work (J. Zhang, Zheng, et al., 2020), this Kalman-based DA method, called ES(K)168

for convenience, cannot obtain reliable results in hydrological DA that involves non-Gaussian169

distributions.170

To address this issue, we formulated a non-linear mapping with DL. From M0 and171

Y0, we can randomly select two samples without repetition and calculate the differences to172

obtain
{

∆mij = m0
i −m0

j ,∆yij = y0
i + εij − y0

j

}
, i = 1, .., Ne − 1, i < j ≤ Ne. The number173

of combinations is Ne(Ne − 1)/2. By feeding these training data to a properly designed DL174

model, we can obtain a non-linear mapping175

∆mi =MDL(∆yi), (6)176

and recognize complex patterns like non-Gaussian distribution contained in the data. This177

DL-based method, known as ES(DL), performs similarly as ES(K) under the Gaussian condi-178

tion. However, in non-Gaussian cases, ES(DL) can produce more reliable results (J. Zhang,179

Zheng, et al., 2020).180

Nevertheless, in ES(DL), the starting points of ∆m and ∆y, i.e., m0 and y0, are not181

utilized in both training and inference of the DL model, leaving room for potential improve-182

ment. For a DL model, if more relevant predictors can be treated as the inputs, the target183

should be better identified. Based on this idea, we propose in this work a more powerful184

DA method than ES(DL), which is called DA(DL). This new method constructs a non-linear185

mapping with three predictors, i.e.,186

∆mi =MDL

(
∆yi,m

0
i ,y

0
i

)
, (7)187

and each sample in the updated ensemble can be obtained as, m1
i = ∆mi+m0

i , i = 1, ..., Ne.188

This allows DA(DL) to transcend the limitations of ES and become more versatile and189

adaptable. In addition to the choice of predictors, the structure of the DL model also190

significantly impacts the assimilation result. As the design space of a DL model is infinite, it191

is impossible to identify the optimal architecture. After comparing popular DL models such192

as DenseNet (Huang et al., 2017), ResNet (K. He et al., 2016) and U-Net (Ronneberger et193

al., 2015) in multiple problems that involve both Gaussian and non-Gaussian distributions,194

it is found that models with a specific encoder-decoder architecture can generally produce195

satisfying results for both ES(DL) and DA(DL). The encoder-decoder architecture consists of196

two sub-networks: an encoder that compresses the input into a smaller spatial representation197

with more channels, and a decoder that expands the spatial dimensions while reducing the198

number of channels.199

In highly non-linear DA problems, one single update using ES(K), ES(DL), or DA(DL)200

may not be sufficient. In this situation, it is suggested to assimilate the observational data201

multiple times (Emerick & Reynolds, 2013). To guarantee that the updating results are202

reasonable, random realizations of measurement errors generated in iteration t should be203

inflated by a factor of βt, where t = 1, ..., Niter, Niter is the number of iterations, and204 ∑Niter

t=1 1/β2
t = 1. Then the updating schemes of ES(K), ES(DL) and DA(DL) become205

mt
i = mt−1

i + Ct−1
MY

(
Ct−1

YY + β2
tR
)−1(

ỹ + βtεi − yt−1
i

)
, (8)206

mt
i = mt−1

i +MDL

(
ỹ + βtεi − yt−1

i

)
, (9)207

mt
i = mt−1

i +MDL

(
ỹ + βtεi − yt−1

i ,mt−1
i ,yt−1

i

)
, (10)208

respectively. Finally, we use MNiter =
{
mNiter

1 , ...,mNiter

Ne

}
to approximate the posterior209

distribution of model parameters.210

In many situations, evaluating the system model F(·) can be computationally intensive.211

As a result, a small ensemble size Ne is often used. Even though the number of training data212

fed to the DL model, i.e., Ne(Ne−1)/2, is much larger than Ne, it may still not be enough for213

training a data-hungry DL model. To address this issue, a simple yet effective data argumen-214

tation method is proposed. In the tth iteration, t = 1, ..., Niter, when using
{
mt−1

i ,yt−1
i

}
215
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Figure 1. Posterior samples of model parameters obtained by (a) ES(K), (b) ES(DL), (c) DA(DL),

and (d) DA(DL) with local update, respectively.

and
{
mt−1

j ,yt−1
j

}
to generate the training datum,

{
∆yij ,m

t−1
j ,yt−1

j → ∆mij

}
, we can216

produce M ≥ 1 similar copies by adding different random realizations of measurement er-217

rors to ∆yij , i.e.,
{

∆yij,1,m
t−1
j ,yt−1

j → ∆mij

}
, ...,

{
∆yij,M ,m

t−1
j ,yt

j → ∆mij

}
. Finally,218

a training data set with M∗Ne(Ne − 1)/2 samples can be obtained. This way of expand-219

ing the training data set can reduce over-fitting and make the DL model more generalized.220

Performance of this data augmentation method will be demonstrated in Section 3.1.221

In hydrological simulations, one major challenge for many DA methods is the equifi-222

nality issue, where multiple parameter sets with significantly different values can produce223

equally good performance. From the Bayesian perspective, it means that the posterior distri-224

bution of model parameters is multi-modal. To improve the performance of DA(DL) in multi-225

modal DA problems, the local updating approach proposed in our previous work (J. Zhang226

et al., 2018) can be introduced. The idea behind the local updating approach is straight-227

forward: although globally the distribution is multi-modal, locally it is still approximately228

single-modal. Based on this idea, the local ensemble of mt−1
i (i = 1, ..., Ne, t = 1, ..., Niter)229

can be obtained based on the following measure:230

J(m) = J1(m)/Jmax
1 + J2(m)/Jmax

2 , (11)231

where J1(m) =
[
F(m) − ỹ

]T
R−1

[
F(m) − ỹ

]
, J2(m) =

(
m −mt−1

i

)T
C−1MM

(
m −mt−1

i

)
,232

CMM is the auto-covariance matrix of model parameters, Jmax
1 and Jmax

2 are the maxi-233

mum values of J1(m) and J2(m), respectively. The local ensemble of mt−1
i is Mt−1

i,local =234 {
mt−1

i,1 , ...,m
t−1
i,Nl

}
, the samples in Mt−1 with the Nl = αNe(α ∈ (0, 1]) smallest J values.235

Using DA(DL), we can obtain the updated local ensemble, Mt
i,local, from which a random236

sample, mt
i, can be drawn as the updated sample of mt−1

i . For more details about the local237

updating approach and its application to ES(K), one can refer to (J. Zhang et al., 2018).238

When implementing DA(DL) with the local updating approach, the DL model should be239
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trained Ne times in each iteration. If each time the DL model is trained from scratch, it240

will require a lot of time and computational resources. To speed up this process, a transfer241

learning approach can be applied. From the entire prior ensemble, we first train a basic242

DL model. Then this trained model is updated with new data obtained from each local243

ensemble. This fine-tuning process is usually very easy and fast.244

To demonstrate the effectiveness of the local updating approach, we conduct a sim-245

ple test on a problem with a multi-modal posterior. The system model considered in this246

problem is described by y = m2
1 + m2

2, with both m1 and m2 following a uniform prior247

distribution of U(−2, 2). To infer the posterior distribution of m = {m1,m2}, we utilize a248

single observation of ỹ = 1, with error that follows a Gaussian distribution, ε ∼ N (0, 0.012).249

It is noteworthy that an infinite set of parameter combinations can accurately fit the ob-250

servation due to the problem’s nature, resulting in a posterior distribution that takes on a251

circular shape. Here, four DA methods with Ne = 300 and Niter = 2 are implemented, i.e.,252

ES(K), ES(DL), DA(DL), and DA(DL) with local update (α = 0.1). Both ES(DL) and DA(DL)253

employ a feedforward neural network (FNN) with one hidden layer that has 10 nodes. In254

DA(DL), we use {∆y, yt−1} as inputs to the FNN model instead of {∆y,mt−1, yt−1} due255

to differences in the dimensions of m and y. DL models are capable of merging predictors256

with different dimensions, which will be demonstrated in the succeeding section. As shown257

in Figures 1, introducing the local updating approach to DA(DL) enables this method to258

successfully identify the circle-like posterior. The average root-mean-square error (RMSE)259

between model simulations and ỹ is also evaluated, with values of 2.34, 2.15, 1.86 and 0.073260

for ES(K), ES(DL), DA(DL), and DA(DL) with local update, respectively.261

3 Case Studies262

3.1 The Non-Gaussian Condition263

In this section, we compare the performance of DA(DL) with ES(K) and ES(DL) in a non-264

Gaussian setting. For this purpose, we simulate transient groundwater flow in a confined,265

channelized aquifer. The domain size is 800 (L) × 800 (L), with impervious upper and266

lower boundaries, as well as two constant-head boundaries at the left (202 L) and right267

(198 L) sides. The initial hydraulic head is set to 198 (L) everywhere except for the left268

boundary, where it is prescribed. The system includes an injection well with a rate of 150269

(L3T−1) and a pumping well with a rate of -150 (L3T−1), which can enhance water flow270

within the domain. The channelized field comprises two materials with distinct hydraulic271

conductivities: K1 = 0.5 (LT−1) and K2 = 2.3 (LT−1). With the above settings, we can272

obtain transient hydraulic heads h(x, t) at different locations and times by solving273

Ss
∂h(x, t)

∂t
+∇ · q(x, t) = g(x, t) (12)274

with MODFLOW (Harbaugh et al., 2000), where Ss (L−1) represents specific storage, x275

(L) denotes location, t (T) is time, q(x, t) = −K(x)∇h(x, t) signifies the water flux, ∇ is276

the nabla operator, and g(x, t) (T−1) denotes the source or sink term. For this model, we277

uniformly divide the domain into 41×41 grids, set the simulation time to be 18 (T), and278

use Ss = 0.0001 (L−1).279

In this case, the spatial distribution of K is unknown and should be inferred from in-280

direct observations. As depicted in Figure 2(b), the reference field of K is non-Gaussian,281

making it challenging to be accurately estimated. To accomplish this, hydraulic head mea-282

surements are collected from 7×7 wells at t = {0.6, 1.2, ..., 6.0} (T) with errors that fit283

ε ∼ N (0, 0.012). For the three DA methods, a same set of prior parameter ensemble with284

Ne = 499 samples are generated with the direct sampling method proposed by Mariethoz285

et al. (2010). The training image featured in Figure 2(a) serves as the basis for generating286

these samples. As the level of non-linearity in this problem is relatively low, we only set up287

one iteration for each of the three DA methods.288
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Figure 2. (a) The training image used to generate random realizations of K field using the direct

sampling method; (b) The reference K field, injection well (the down triangle), pumping well (the

up triangle), and measurement locations (the circles).
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Figure 3. Architecture of the DL model used by DA(DL) in the non-Gaussian case. Here, the

part with blue arrows is the U-Net model used by ES(DL). Output size of each layer is indicated

by height×width×channels. Conv and ConvT mean 2-D convolution layer and transposed 2-D

convolution layer, respectively.
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Figure 3 depicts the use of a DL model by DA(DL) with three predictors, namely ∆y,289

m0, and y0, and one target, namely ∆m. Dimensions of the input variables ∆y and290

y0 are both 7×7×10, indicating the presence of 7×7 measurement wells and 10 sampling291

times. Dimensions of the input variable m0 and the target variable ∆m are both 41×41×1,292

representing 41×41 model grids. The DL model consists of the U-Net part (blue arrows)293

that inputs ∆y and the extra parts (brown arrows) that input m0 and y0. The U-Net part294

is composed of two pathways, an encoder path on the left and a decoder path on the right.295

For the input variable ∆y, we first utilize transposed 2-D convolution (ConvT) and 2-D296

convolution (Conv) to extend the spatial dimensions from 7×7 to 16×16 and simultaneously297

increase the channel number from 10 to 64. The non-linear activation function of rectified298

linear unit (ReLU) is used after ConvT and Conv. As feature maps move through the299

encoder path, spatial dimensions are progressively reduced while channel numbers increase,300

utilizing layer types such as Conv, ReLU, Max Pooling and Dropout (with 30% probability).301

This continues until the feature size reaches 2×2×512. The decoder path, on the other hand,302

expands the spatial dimensions and reduces the number of channels until the feature reaches303

a size of 16×16×64. For the purpose of producing finer-grained predictions, skip connections304

are employed in the U-Net structure to facilitate direct forwarding of feature maps from the305

encoder to the decoder pathway. To incorporate the information contained in m0 and y0,306

the extra parts with brown arrows transform each of these inputs into two output features307

with sizes of 8×8×64 and 2×2×256, which are concatenated with features in the encoder308

and decoder paths that have the same spatial dimensions, further improving the model’s309

performance. Here, ES(DL) only uses the U-Net part, i.e., the input ∆y “flows” through the310

blue arrows to the target ∆m. For both ES(DL) and DA(DL), we train the DL models using311

the Adam optimizer with a constant learning rate of 0.001. During the training process, we312

implement mini-batches containing 512 samples over the course of 50 epochs. Furthermore,313

we incorporate a gradient threshold method that clips any gradient values that exceed a314

threshold of 10, preventing potential instability. To mitigate the risk of over-fitting, we315

include an L2 regularization factor of 0.0002 for the weights to the loss function.316

As shown in Figures 4(a-c), all the three DA methods can capture the non-Gaussian317

feature in the spatial distribution of K to varying degrees. However, ES(K) fails to reproduce318

the connectivity feature of the reference K field, as seen in Figure 2b. As the subsurface319

media consist of only two distinct materials with values of K1 = 0.5 and K2 = 2.3, the320

histogram of an estimated K field should display bi-modality. Nonetheless, ES(K) is unable321

to identify this bi-modality, as illustrated in Figure 4(d). These results confirm that the322

Kalman-based update method ES(K) is inadequate in solving non-Gaussian DA problems.323

By introducing a non-linear updating scheme with DL, ES(DL) can better estimate324

the spatial distribution of K (Figure 4b) over its Kalman counterpart, and the bi-modality325

feature can be identified (Figure 4e). Additionally, the standard deviation (std) field as326

shown in Figure 4(h) also reveals the connectivity feature of K, with larger std values at the327

interface of the two materials. When we use three predictors {∆y,m0,y0} in DA(DL) to328

infer the update vector ∆m, significant improvement in overall performance can be achieved329

compared to ES(DL): the estimated mean field shows a clearer connectivity feature (Figure330

4c), the bi-modality distribution is better identified (Figure 4f), and the std field has smaller331

values (Figure 4i). To conduct more comprehensive comparisons, we perform eight repetitive332

runs for each of the three DA methods. As shown in Figure 5, DA(DL) generally provides a333

more accurate estimation of both the K field and a better data-match. The average RMSE334

values between model simulations and measurements calculated from the updated ensembles335

are 1.44, 1.02, and 0.89 for ES(K), ES(DL), and DA(DL), respectively. The average RMSE336

values between the estimated and reference K fields for the three methods are 0.69, 0.66,337

and 0.51, respectively. These results suggest that DA(DL) is superior to both ES(K) and338

ES(DL) in solving non-Gaussian DA problems.339

When a simulator requires significant computational resources, only a limited number of340

model simulations can be afforded. In this situation, we propose using the data augmentation341
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Figure 4. (a-c) Mean fields, (d-f) histograms of the mean fields, and (g-i) standard deviation

(std) fields of K estimated by ES(K) (left column), ES(DL) (middle column), and DA(DL) (right

column), respectively.
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Figure 5. Root-mean-square errors (RMSEs) (a) between model simulations and measurements

and (b) between estimated and reference K fields calculated from the updated ensembles obtained

by ES(K), ES(DL), and DA(DL), respectively. The RMSE values are sorted in ascending order. There

are eight repetition runs for each method.
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method as described in Section 2 in DA(DL). Specifically, we set Ne = 50 and M = 20 and342

evaluate the performance of ES(K), ES(DL), DA(DL) without data augmentation, and DA(DL)343

with data augmentation. Each method is implemented eight times without changing other344

settings. The four methods yield average RMSE values of 2.31, 3.02, 2.96, and 2.16 for345

the match of measurements, and average RMSE values of 1.25, 0.97, 0.96, and 0.83 for the346

match of reference K field, respectively. It is evident that a significant reduction in ensemble347

size results in degraded estimation outcomes for all the above DA methods. While ES(K)348

yields the worst estimation of K (RMSE: 1.25), its data-matching result (RMSE: 2.31) is still349

superior to ES(DL) (RMSE: 3.02) and DA(DL) without data augmentation (RMSE: 2.96),350

which are based on training data sets each with only 1,225 samples. Introducing the data351

augmentation method to DA(DL) can increase the number of training data points to 24,500,352

producing the optimal performance among the four DA methods. In practical applications,353

it is crucial to strike a balance between the choice of M and the computational resources354

needed for the simulation of system model and the training of the DL model.355

3.2 The Gaussian Condition356

In the previous section, we demonstrated that DA(DL) outperforms two ES methods357

that rely on the Kalman- and DL-based updates in estimating high-dimensional and non-358

Gaussian distributed parameters of a groundwater model. To further examine the effective-359

ness of DA(DL), we now focus on its performance under the Gaussian condition, where ES(K)360

is typically expected to excel. If DA(DL) can produce similar (or even better) outcomes to361

ES(K), it would confirm the versatility and practicality of DA(DL) as a reliable DA method.362

Specifically, we explore the joint estimation of contaminant source parameters and hetero-363

geneous conductivity (K) field in the subsurface media, for which the posterior distribution364

of these parameters is roughly multi-Gaussian.365

In this case, we simulate steady-state groundwater flow and contaminant transport in a366

2-D confined aquifer. The size of the domain is 20 (L) × 10 (L), with impervious upper and367

lower boundaries and constant-head boundaries at the left (12 L) and right (11 L) sides. The368

domain is discretized into 81×41 grids in the numerical model. The K field is heterogeneous369

and its logarithmic transformation (Y = logK) is Gaussian distributed. To characterize the370

spatial correlation of Y at any two locations {x1, y1} and {x2, y2}, we adopt the following371

function:372

CY(x1, y1;x2, y2) = σ2
Y exp

(
−|x1 − x2|

λx
− |y1 − y2|

λy

)
, (13)373

where σ2
Y represents variance of Y, λx and λy denote correlation lengths in the x and y374

direction, respectively. The steady-state hydraulic heads (h) and water velocity ( vi) within375

the domain can be determined by utilizing MODFLOW, which involves solving the following376

equations (Harbaugh et al., 2000):377

∂

∂xi

(
Ki

∂h

∂xi

)
= 0, (14)378

and379

vi = −Ki

θ

∂h

∂xi
, (15)380

where θ (-) represents the porosity of the subsurface media, and the subscript i denotes the381

coordinate axis (1 for the x direction and 2 for the y direction).382

The subsurface flow field contains a contaminant source with unknown location and383

release strengths that change over time. To determine the concentrations (C) at different384

times in the domain, we use MT3DMS (C. Zheng & Wang, 1999) to solve the following385

mass-balance equation:386

∂(θC)

∂t
=

∂

∂xi

(
θDij

∂C

∂xj

)
− ∂

∂xi
(θviC) + qaCs, (16)387
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Table 1. Prior distributions and reference values of the eight contaminant source parameters.

Parameter xs ys S1 S2 S3 S4 S5 S6

Prior distribution U(3, 5) U(4, 6) U(0, 8) U(0, 8) U(0, 8) U(0, 8) U(0, 8) U(0, 8)
Reference value 3.52 4.44 5.69 7.88 6.31 1.49 6.87 5.55

Figure 6. (a) The reference Y field and measurement well locations (white circles); (b-d) The

estimated mean fields of Y (averaged over five repetition runs) obtained by ES(K), ES(DL) and

DA(DL), respectively.

where t (T) represents time, qa (T−1) is volumetric flow rate per unit volume of the aquifer,388

Cs (ML−1) represents concentration of the source, and Dij denotes the hydrodynamic dis-389

persion coefficient with the following components:390

D11 =
1√

v21 + v22

(
αLv

2
1 + αTv

2
2

)
, (17)391

D22 =
1√

v21 + v22

(
αLv

2
2 + αTv

2
1

)
, (18)392

D12 = D21 =
1√

v21 + v22
(αL − αT) v1v2, (19)393

where αL and αT (L) represents the longitudinal and transverse dispersity, respectively. In394

this problem, we aim to identify the unknown conductivity field and contaminant source395

using measurements of hydraulic head and solute concentrations.396

To reduce the dimensionality of the problem, we utilize the Karhunen-Loève (KL)397

expansion (D. Zhang & Lu, 2004) to approximate the random field of Y as follows:398

Ỹ(x) = µY +

NKL∑
n=1

√
τnsn(x)ξn. (20)399

Here, Ỹ(x) represents the reconstructed value of Y at location x = {x, y}, where µY is400

the mean. The eigenvalues and eigenfunctions of the covariance defined by equation (13)401

are represented by τn and sn(x), respectively. The uncertainty in the field is represented402
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Figure 7. Architecture of the DL model used by DA(DL) in the Gaussian case. Here, the

part with blue arrows represents the U-Net model used by ES(DL). Size of each layer is indicated

by height×width×channels. Conv, ConvT and LN mean 2-D convolution layer, transposed 2-D

convolution layer, and layer-normalization layer, respectively.

by independent Gaussian random coefficients ξn ∼ N (0, 1), where n = 1, . . . , NKL. To403

retain 95% variance of the original field, 100 terms (NKL = 100) should be included:404 ∑100
n=1 τn/

∑∞
n=1 τn ≈ 0.95. The contaminant source is described by eight parameters: loca-405

tion {xs, ys} and six mass-loading rates Sk (MT−1) during time interval [k, k + 1] (T), where406

k = 1, . . . , 6. The prior distributions of the eight parameters are all uniform, with ranges407

listed in Table 1. In summary, there are 108 unknown parameters to be estimated, i.e.,408

{ξ1, . . . , ξ100, xs, ys, S1, . . . , S6}. Additional parameters are determined through geological409

surveys or experiments, including µY = 2, σ2
Y = 1, λx = 10 (L), λy = 5 (L), αL = 0.3 (L),410

αT = 0.03 (L), and θ = 0.25 (-), respectively. To infer the 108 unknown parameters, mea-411

surements of steady-state hydraulic head and contaminant concentrations at t = {4, 5, ..., 12}412

(T) are collected from 15 wells in the domain (represented by the circles in Figure 6a). Both413

types of measurement errors adhere to the Gaussian distribution, with εh ∼ N (0, 0.0052)414

and εc ∼ N (0, 0.0052).415

In this case, we utilize a DL model resembling the one used in the non-Gaussian prob-416

lem for DA(DL), as shown in Figure 7. For the ES(DL) method, we again use the U-Net part417

indicated by the blue arrows. We incorporate layer-normalization (LN) layers that normal-418

ize data across all channels for each sample independently, enabling efficient training and419

improved performance. The DL model is trained over a total of 600 epochs using the Adam420

optimizer with an initial learning rate of 0.006, which decreases to its 80% value every 15421

epochs. We set the mini-batch size to 3072, and the L2 regularization factor for the weights422

to the loss function is 0.0001.423

In this case, we once again compare ES(K), ES(DL), and DA(DL), with Niter = 5 and424

Ne = 500. For each DA method, we conduct five repetition runs, and average the outcomes425

to obtain the estimated mean Y fields as shown in Figure 6. All three methods are able to426

identify the major high- and low-value regions of the reference field (Figure 6a). However,427
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Figure 8. Posterior density curves of the eight contaminant source parameters estimated by

ES(K) (blue lines), ES(DL) (red lines) and DA(DL) (green lines), respectively. The reference values

are indicated by the black vertical lines. We conduct five repetition runs for each method to obtain

the above results.

since the measurements are taken from only 15 wells, which are primarily located in the428

central region of the flow domain, these DA methods tend to underestimate the high-value429

regions and overestimate the low-value regions (e.g. the high-value region in the lower430

bottom corner is not captured). Increasing the number and distribution of measurement431

wells can improve the precision of the Y field estimation. The mean RMSE values, calculated432

between the reference Y field and the updated ensembles (consisting of 2500 samples from the433

five repetitions), are 0.4830 (ES(K)), 0.5074 (ES(DL)), and 0.5072 (DA(DL)), with standard434

deviations of 0.0866, 0.1045 and 0.1167, respectively. In this case, ES(K) obtains slightly435

more accurate estimation of the Y field. Nonetheless, with better designed DL models and436

training options, ES(DL) and DA(DL) have the potential to deliver enhanced performances.437

Figure 8 presents a comparison of the posterior density curves for the eight contaminant438

source parameters, derived from 2500 updated samples of the five repetition runs, using the439

three DA methods. Although in a single run, each of the three DA methods may produce440

slightly biased estimates of the contaminant source parameters (results not shown), merging441

the updated ensembles of the five repetition runs yield consistent results across the three442

methods. The RMSE values between the measurement data and the updated ensembles for443

ES(K), ES(DL), and DA(DL) are 0.0574, 0.0574, and 0.0435, respectively. The corresponding444

standard deviations are 0.0335, 0.0719, and 0.0440, respectively. Although ES(K) and ES(DL)445

yield almost identical mean RMSE values, the results from ES(DL) exhibit greater variability.446

Overall, the DA(DL) method produces the best data-match.447

4 Conclusions and Discussion448

In this study, a novel DA method, i.e., DA(DL), is proposed to improve the simula-449

tion accuracy of complex hydrological systems involving non-linearity, high-dimensionality,450

–14–



manuscript submitted to Water Resources Research

and non-Gaussianity. Traditional DA methods, such as MCMC, may suffer from low com-451

putational efficiency, while others like EnKF and its variants are limited by the Gaussian452

assumption. DA(DL) takes advantage of DL to recognize complex patterns (including non-453

Gaussianity) and approximate non-linear relationships automatically from data. By employ-454

ing ensemble representation of model parameters, states or other related variables, DA(DL)455

quantifies and reduces the uncertainties inherent in the simulation process from prior knowl-456

edge and measurement data. DA(DL) builds non-linear mappings from multiple predictors457

to the target variable, which is the difference between updated and prior vector of concerned458

variables (model parameters in the present study). To train the DL model, a large volume459

of training data are generated from the prior ensemble. When the system model is CPU-460

demanding, it is preferable to use a small ensemble size, which may not be sufficient for the461

data-hungry DL model. In this condition, we propose a data argumentation method to en-462

hance the performance of DA(DL). In addition, we address the equifinality issue, which arises463

when different parameters or forcings can lead to the same outcomes in a complex dynamical464

system, by introducing a local updating approach proposed in our previous work (J. Zhang465

et al., 2018) to DA(DL). To evaluate the performance of DA(DL), we conduct numerical466

experiments involving Gaussian and non-Gaussian distributions and compare DA(DL) with467

two ES methods, one using the Kalman formula (Emerick & Reynolds, 2013) and the other468

using a DL-based update (J. Zhang, Zheng, et al., 2020). Our results demonstrate that469

DA(DL) outperforms its counterparts, especially in the non-Gaussian condition.470

Despite the promising results achieved by DA(DL) in this study, there are still several471

issues that are not well addressed. Firstly, it is difficult or even impossible to design the472

optimal DL model structure and related training options for a specific problem. During the473

development of DA(DL), dozens of DL model structures have been tested, and only a few of474

them can yield satisfactory outcomes. Although the DL models used in this study enable475

DA(DL) to produce good results, especially in the non-Gaussian case, the current settings are476

suboptimal. For example, in the Gaussian case, DA(DL) still requires the same number of477

iterations as ES(K), despite the fact that the mapping defined by DA(DL) is non-linear. It is478

important to further improve and standardize the implementation of DA(DL). Secondly, as479

the updating made by DA(DL) relies on statistical learning from data, there is no assurance of480

physical consistency of the DA outcomes. To address this limitation, incorporating physical481

constraints into the training of DL model via knowledge-guided machine learning (Karpatne482

et al., 2022) would be a promising approach. This can help decrease the need of huge483

training data and enhance the reliability and stability of the inference results. Thirdly,484

this study only addresses the updating of model parameters form measurement data using485

DA(DL). However, there is potential to expand the scope of DA(DL) in future research by486

incorporating other crucial variables such as model states, forcings and error terms. Doing so487

would provide a more comprehensive understanding of simulation uncertainties, ultimately488

leading to more informed model enhancements and predictions.489
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