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Abstract

Marine heatwaves (MHWs) have been recognized as a serious threat to marine life, yet, most studies so far have focused on

the surface only. Here, we investigate the vertical dimension and propagation of surface MHWs in the Eastern Pacific using

results from a high-resolution hindcast simulation (1979 to 2019), performed with the Regional Ocean Modeling System. We

detect MHWs using a seasonally varying percentile threshold on a fixed baseline and track their vertical propagation across

the upper 500 m. We find that nearly a third ( 29 %) of the MHWs extend beyond the surface mixed layer depth (MLD).

On average, these deep-reaching MHWs (dMHWs) extend to 110 m below the MLD and last five times longer than MHWs

that are confined to the mixed layer (184 vs. 36 days). The dMHWs can cause stronger temperature anomalies at depth than

at the surface (maximum intensity of 5.0°C vs. 1.9°C). This general subsurface MHW intensification even holds when scaling

the temperatures with the respective local variability. A clustering of dMHWs reveals that 41 % of them are block-like, i.e.,

continually remain in contact with the sea surface, 24 % propagate downward, 20 % propagate upward, while 15 % appear at

the surface multiple times. Although the water column MHW duration, intensity and severity are only moderately correlated

with their corresponding surface-based MHW characteristics, dMHWs have the potential to be detected from the surface. Our

study can help to augment the remote sensing-based monitoring of upper ocean exposure to MHWs.

1



manuscript submitted to JGR: Oceans

On the vertical structure and propagation of marine1

heatwaves in the Eastern Pacific2
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Key Points:7

• About a third of marine heatwaves (MHW) in the Eastern Pacific extend below8

the mixed layer. 10 % of MHWs extend on average deeper than 150m.9

• 59 % of deep-reaching MHWs (dMHWs) are partly invisible at the surface, as they10

either deepen, shoal or exhibit multi-surfacing behaviour.11

• As initial tests indicate that the surface-based detection of dMHWs seems feasi-12

ble, dMHWs might be detectable using remote sensing data.13
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Abstract14

Marine heatwaves (MHWs) have been recognized as a serious threat to marine life, yet,15

most studies so far have focused on the surface only. Here, we investigate the vertical16

dimension and propagation of surface MHWs in the Eastern Pacific using results from17

a high-resolution hindcast simulation (1979 to 2019), performed with the Regional Ocean18

Modeling System. We detect MHWs using a seasonally varying percentile threshold on19

a fixed baseline and track their vertical propagation across the upper 500 m. We find that20

nearly a third (∼ 29 %) of the MHWs extend beyond the surface mixed layer depth (MLD).21

On average, these deep-reaching MHWs (dMHWs) extend to 110 m below the MLD and22

last five times longer than MHWs that are confined to the mixed layer (184 vs. 36 days).23

The dMHWs can cause stronger temperature anomalies at depth than at the surface (max-24

imum intensity of 5.0 °C vs. 1.9 °C). This general subsurface MHW intensification even25

holds when scaling the temperatures with the respective local variability. A clustering26

of dMHWs reveals that 41 % of them are block-like, i.e., continually remain in contact27

with the sea surface, 24 % propagate downward, 20 % propagate upward, while 15 % ap-28

pear at the surface multiple times. Although the water column MHW duration, inten-29

sity and severity are only moderately correlated with their corresponding surface-based30

MHW characteristics, dMHWs have the potential to be detected from the surface. Our31

study can help to augment the remote sensing-based monitoring of upper ocean expo-32

sure to MHWs.33

Plain Language Summary34

Periods of extremely warm water temperatures, referred to as marine heatwaves35

(MHWs), pose a serious threat to marine life. While many studies have analyzed MHW36

properties at the sea surface, little is known about their subsurface nature. We here use37

a new approach to define MHWs throughout the water column and study the vertical38

structure and propagation behaviour of MHWs in the Eastern Pacific based on a high-39

resolution numerical hindcast simulation (1979 to 2019). We find that nearly a third of40

MHWs that are discernible at the sea surface reach below the layer of well-mixed wa-41

ters near the sea surface, the so-called mixed layer. These deep-reaching MHWs last on42

average longer than mixed layer confined MHWs (184 vs. 36 days) and are marked by43

larger temperature threshold exceedances (maximum intensity of 5.0 °C vs. 1.9 °C). We44

furthermore identify four distinct vertical propagation patterns associated with the deep-45

reaching MHWs: 41 % continually affect the sea surface, 24 % propagate downwards, 20 %46

propagate upward, while 15 % appear at the surface multiple times. Overall, these anal-47

yses show that MHWs can affect the water column to a larger degree than diagnosed based48

on the sea surface only.49

1 Introduction50

The observed warming of the global ocean has increased already markedly the fre-51

quency, duration, and intensity of marine heatwaves (MHWs) (Oliver et al., 2018), com-52

monly defined as prolonged periods of unusually high temperatures (IPCC SROCC, 2022).53

MHWs affect marine organisms and ecosystems profoundly (Wernberg et al., 2013; Cav-54

ole et al., 2016; Smale et al., 2019; Sen Gupta et al., 2020), as well as the economies de-55

pending on services provided by these systems (Cheung et al., 2021). Further ocean warm-56

ing will increase the key impact metrics of MHW manifold (Frölicher et al., 2018), thus57

increasing the threats to the future health of the oceans. It is thus not surprising that58

the study of MHW has experienced a rapid surge in attention by the scientific commu-59

nity, policymakers, and the public (Collins et al., 2019).60

So far, most MHW studies have focused on the surface only. This is largely a con-61

sequence of the easy accessibility of high resolution satellite sea surface temperature (SST)62

data, while no corresponding observation-based product is available to study subsurface63
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extremes (Oliver et al., 2021). But even model-based studies have rarely analyzed MHWs64

beyond the surface (e.g. Amaya et al., 2023), such that the vertical structure of surface65

MHWs has remained largely elusive (Gruber et al., 2021). Gaining more insights into66

the vertical extent and structure of MHWs is crucial to better assess the MHW drivers67

and the mechanisms sustaining them (Oliver et al., 2021). A look beyond the surface is68

also critically important to assess and understand the impacts of MHWs on upper ocean69

ecosystems. The vertical MHW structure can be particularly relevant for animals at higher70

trophic levels whose vertical habitats extend beyond the mixed layer (ML) or euphotic71

zone and which often perform diurnal vertical migration (Steinberg & Landry, 2017; Bianchi72

& Mislan, 2016). Deep extending MHWs may limit organisms in their ability to use ver-73

tical migration as a strategy to avoid the impact of extremely high surface ocean tem-74

peratures.75

While a basin scale assessment of the depth structure of MHWs has not been con-76

ducted to date, a few studies have analyzed the vertical extent of individual events and77

linked them to different drivers. For example, Elzahaby and Schaeffer (2019) analyzed78

vertical temperature anomaly profiles from Argo floats during surface MHWs off East-79

ern Australia. The authors identify and link upper ocean MHWs (shallower than 150 m80

depth) to physical driving processes at the ocean surface, while associating deep-reaching81

MHWs (deeper than 800 m) to warm core eddies. Similarly, Scannell et al. (2020) and82

Johnson et al. (2022) used Argo float data to investigate the vertical extent and prop-83

agation of the Northeast Pacific Blob heatwave, i.e., the strong surface MHW in the North-84

eastern Pacific that lasted for multiple years (2013-2016) Bond et al. (2015); Di Lorenzo85

and Mantua (2016) and was likely even a compound extreme (Gruber et al., 2021). Scannell86

et al. (2020) demonstrated that the heat anomalies from this event were lingering for years87

at depth affected ecosystems for much longer periods than diagnosed from the surface88

only (see also (Jackson et al., 2018; Freeland & Ross, 2019; Holser et al., 2022). Due to89

the wide spacing (O of 100 km) of the Argo float profiles and their 10 day repeat cycle,90

these authors had to average the data considerably in time and space, thereby losing much91

detail. The low temporal resolution was overcome in the studies by Schaeffer and Roughan92

(2017) and Hu et al. (2021) by using high-frequency mooring time series throughout the93

upper ocean off Eastern Australia and in the western tropical Pacific, respectively to demon-94

strate that MHWs can reach well below the ML in conjunction with downwelling winds95

and wind-driven mixing. But the single point nature of the mooring data and the very96

limited number of mooring sites strongly limits this approach.97

Results from ocean models can overcome these observational limitations, but the98

number of studies having investigated the vertical structure and propagation of MHWs99

is rather small. Notable exceptions are the studies of Ryan et al. (2021) and Großelindemann100

et al. (2022) who used regional models to elucidate the depth structure of MHWs off West-101

ern Australia and on the Northwest Atlantic Shelf, respectively. They highlighted the102

important role of thermocline depth variability and (eddy driven) current anomalies in103

driving deep-reaching MHWs.104

Extending the study of MHWs beyond the surface poses some challenges. For ex-105

ample, the classical “Eulerian” perspective on MHWs is not well suited to track any ver-106

tical propagation behaviour, as it identifies and groups adjacent days of extremely warm107

temperatures solely in the temporal dimension (Gruber et al., 2021). A few studies have108

therefore extended the definition of marine extremes by grouping extreme states in time109

and space (Di Biagio et al., 2020; Desmet et al., 2022). We adopt here a so far unexplored110

one-dimensional water column perspective to study the vertical propagation of MHWs111

that affect the sea surface (Scannell et al., 2020). In this perspective, extremes are de-112

fined by grouping adjacent extreme states in the temporal and vertical dimension, which113

allows extremes to have a vertical extent and to propagate vertically while staying fixed114

at one horizontal location. This perspective permits to elucidate how deep MHWs reach115

and for how long they affect the upper ocean water column at a particular horizontal116
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location. Furthermore, the ability to track the vertical propagation of MHWs allows us117

to assess whether the vertical propagation of the extreme signal, as found by Scannell118

et al. (2020) during the Blob, is a common behaviour of MHWs. This view can be in-119

structive to better understand the biological impacts of MHWs, particularly regarding120

resident species that are exposed to extreme temperatures across many depth levels and121

species that perform diurnal vertical migration (DVM, e.g., Bianchi and Mislan (2016)).122

In this study we aim to increase our understanding of the vertical structure of MHWs123

and thus learn more about their driving mechanisms (Holbrook et al., 2019; Sen Gupta124

et al., 2020; Vogt et al., 2022). The Eastern Pacific (EP) is used as a pilot region since125

it harboured some of the strongest MHWs in the last decades, including the Blob MHW126

from 2013 to 2016 (Di Lorenzo & Mantua, 2016), the “Blob2.0” MHW in 2019 (Amaya127

et al., 2020) and many MHWs associated with El Niño conditions (Holbrook et al., 2019).128

We hence analyze the vertical structure of MHWs in a hindcast simulation of the EP.129

First, we want to understand how deep MHWs extend into the ocean interior below the130

ML. Our second goal is to understand how the subsurface structure of MHWs influences131

their general characteristics, that are commonly studied from the satellite perspective132

at the sea surface only. In this context, we aim to understand how representative surface-133

derived MHW characteristics such as duration or intensity are for MHWs that occupy134

the water column beyond the surface ML depth (MLD). Finally, our here introduced method-135

ology to define MHWs in the water column further allows us to study the vertical prop-136

agation behaviour of MHWs across the EP basin.137

2 Data and Methods138

2.1 Model hindcast139

We used the UCLA-ETH version of the Regional Ocean Modeling System (ROMS,140

Marchesiello et al. (2003); Shchepetkin and McWilliams (2005)) to perform the model141

hindcast. We employed a telescopic model grid focused on the tropical Southeast Pacific,142

but covering the entire Pacific basin (Fig. 1a). In this grid, the resolution is finest along143

the Peruvian coast (∼4 km) and decreases towards the western Pacific, with the coars-144

est resolution of ∼40 km occurring south of Australia (Fig. S1). This model setup, the145

initialization, and much of the simulation protocols follows the work of Köhn et al. (2022).146

The most important change is that we have improved the numerical representation of147

advection in the model by using an isoneutral advection scheme, and by employing a 3rd148

order WENO advection scheme in the horizontal direction and a 5th order scheme for149

the vertical dimension (Liu et al., 1994; Shu, 1998)). We also updated the atmospheric150

forcing from ERA interim (Dee et al., 2011) to ERA5 (Hersbach et al., 2020). For fur-151

ther details the reader is referred to Köhn et al. (2022). Here we provide a summary of152

the simulation protocol.153

After a 20-year model spin-up from World Ocean Atlas 2018 (Boyer et al., 2018),154

we performed a hindcast simulation from 1979 to 2019 forced with ERA5 reanalysis data155

(Hersbach et al., 2020), to which we applied the Drakkar Forcing Set (DFS5.2) correc-156

tion (Dussin et al., 2016) for the incoming shortwave and outgoing longwave radiation157

(following Desmet et al. (2022)). The model spin-up was undertaken with a normal-year158

forcing (Large & Yeager, 2004), as described in Köhn et al. (2022). Along the open bound-159

aries in the Southern Ocean, we use SODA3.4.2 reanalysis (Carton et al., 2018) as time-160

varying boundary conditions. We integrated the model from 1979 onward with a timestep161

of 10 min and wrote out daily averages of the state variables across all depths. This yielded162

over the 1979 to 2019 period a total of 14 975 days of model output. We then regridded163

the model data from the bathymetry following vertical coordinate (i.e., s-levels, Song and164

Haidvogel (1994)) to 37 fixed depth levels (i.e., z-levels) in the upper 500 m, while main-165

taining the increasing resolution towards the surface (Fig. S2 in the Supplementary In-166

formation).167
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Figure 1. a) Model grid with SST averaged over full model hindcast. Grey lines show every

20th grid point of the native model grid. b) Taylor Diagram of model SST, MLD and SSH based

on monthly climatologies computed over the entire hindcast and compared to monthly observa-

tional climatologies interpolated onto the ROMS grid. The data feeding into the Taylor Diagrams

is limited to the focus region of the study, i.e., the Eastern Pacific east of 160°W and north of

20°S, delimited by the green lines in panel a.

To reduce the data size, we subsequently downsampled the model output by av-168

eraging the regridded data to 3x3 horizontal grid boxes. This way we reduced the out-169

put’s nominal horizontal resolution, i.e., to ∼12 km off Peru, but maintained the tele-170

scopic grid structure (Fig. 1a). We limited all following analyses to the downsampled171

data in the upper 500 m of the water column. From the regridded and downsampled model172

output, we calculated the MLD using the density threshold criterion of Holte et al. (2017),173

that is a density change relative to the surface density value corresponding to a temper-174

ature change of 0.2 °C.175

We limit the study domain to the EP region east of 160°W and north of 20°S (Fig.176

1a) where simulated local SST biases are mostly smaller than 0.5 °C (Fig. S3a). In this177

area monthly climatologies of the modeled temperature, MLD and sea surface height (SSH)178

fields (calculated from 1979 to 2019) distribution (Fig. 1b) show a high spatio-temporal179

correlation and comparable standard deviations with observed monthly climatologies (Fig.180

1b). A more in-depth evaluation of model biases, variability and trends can be found in181

Section 3 and in the Supplementary Information. These analyses reveal overall a high182

fidelity of the model in capturing the mean state of the Pacific and its main pattern of183

variability, giving us high confidence in the robustness of the results generated by this184

model (Fig. 1b).185

2.2 Detecting MHWs across the upper ocean186

In order to study the vertical dimension of MHWs, we take a vertical one-dimensional187

perspective to identify MHW events across the upper 500 m. In this water column per-188

spective, extreme temperatures are grouped in time and in depth to MHWs that can hence189

propagate vertically throughout the upper water column. We limit our analyses to those190

MHWs that were in contact with the surface at least once in their lifetime, and among191

those we mostly focus on the deep-reaching MHWs that extend below the MLD. In the192

following, we explain the individual steps, starting from the detection of extreme tem-193
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peratures (Sec. 2.2.1) over the joining of individual extreme cells to form MHW events194

(Sec. 2.2.2), to the definition of the key metrics (Sec. 2.3).195

2.2.1 Detecting extreme temperatures196

From the daily hindcast temperature data, we calculated at each horizontal and197

vertical grid point the seasonally varying MHW threshold temperature Tthresh based on198

the local temperature time series following the methodology of Hobday et al. (2016) with-199

out de-trending the temperature data. To this end, we calculated the 90th percentile thresh-200

old based on the 30-year reference period 1982 to 2011. We then detected extreme tem-201

peratures (T ) by requiring T > Tthresh for each grid point and day. We obtain a four-202

dimensional Boolean array B spanning across all 14 975 hindcast days (daily output from203

1979 to 2019), 37 depth levels and 335× 232 downsampled horizontal grid points.204

To discard short extreme “heat spikes”, we applied morphological operations to the205

Boolean array B, consisting of a binary closing followed by a binary opening in the tem-206

poral dimension (see also Scannell et al. (2021)). Both operations were executed with207

a 5-day box-kernel. This temporal filtering of B ensures a minimum MHW duration of208

5 days (congruent with previously defined minimum MHW durations, Hobday et al. (2016))209

and guarantees that MHWs are at least 5 days apart from each other. Temporally iso-210

lated extreme spikes that last shorter than 5 consecutive days were thus removed (set211

to False), while extremes that are separated by less than 5 non-extreme days were merged.212

2.2.2 Defining MHWs in the water column213

We then grouped all extreme grid cells that are adjacent to each other in both time214

and depth to form a coherent MHW in the water column (Fig. 2b). In order to be ad-215

jacent, extreme grid cells had to share either a corner or an edge. In this one-dimensional216

water column detection, MHWs have a vertical extent and can grow, shrink and move217

vertically over time. This differs fundamentally from the usual (Eulerian) perspective,218

where extreme grid cells are only grouped in time at a given depth. We additionally iden-219

tify MHWs using this classical approach at the sea surface (surface-only detection) and220

refer to them hereafter as “surface-only MHWs” (Fig. 2a). It is important to note that221

in our study here, all MHWs (and surface-only MHWs) are fixed to one horizontal lo-222

cation and cannot propagate laterally, as we do not connect adjacent extreme grid cells223

horizontally.224

In the final step, we excluded all MHWs that never touch the sea surface, i.e., that225

do not contain any extreme surface grid cells. This excluded about 78 % of the detected226

one-dimensional MHWs in the upper 500 m water column (total MHW count 6 339 969)227

and 67 % of all extreme temperature grid cells. By retaining only the MHWs that can228

be identified at the sea surface, we can relate our results to the many previous studies229

that focused on MHWs at the sea surface (Oliver et al., 2018). We further separated the230

retained MHWs into a subset that remains within the ML (referred to as surface MHWs,231

sMHWs) and those MHWs that reach deeper into the ocean interior, referred to as deep-232

reaching MHWs (dMHWs, Fig. 3). In order to be classified as a dMHW, while exclud-233

ing MHWs that move only shortly and slightly beneath the MLD (see Sec. 2.1), we re-234

quired the MHWs to extend on average below a threshold defined by the instantaneous235

MLD plus its climatological standard deviation, which is seasonally varying and calcu-236

lated over the 1982 to 2011 period (see dashed blue line in Fig. 2). These dMHWs are237

the main focus of our study.238

2.3 MHW characteristics239

To characterize the MHWs, a set of properties was calculated for each event (Tab.240

1 and Fig. 2). The introduction of the vertical dimension allows for the definition of many241
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Figure 2. Detecting MHWs by aggregating extreme grid cells in two different ways. Panel

a shows the classical surface-only detection (Eulerian perspective), while panel b) shows the

one-dimensional water column detection of MHWs. Each box indicates a grid point in the time

(panel a) and time-depth (panel b) dimension, i.e. the event grid. Colored boxes indicate extreme

conditions (yellow to brown colors indicating increasing intensity), while white boxes indicate

non-extreme conditions. Temperatures are expressed in a variability scaled form (T, see Sec. 2.3),

with T > 1 indicating the presence of extreme temperatures. Panel a shows two individual sur-

face MHWs, while panel b shows one single coherent and vertically propagating MHW. The solid

and dashed blue line indicate the instantaneous MLD and the instantaneous MLD plus the cli-

matological MLD standard deviation, respectively. The green line marks the upper boundary of

the MHW. At the bottom of panel b the definition of the “vertical propagation” and the “prop-

agation flexure” metrics are visualized, based on the upper MHW boundary, i.e., the green line.

Grey text boxes contain labels and MHW characteristics as listed in Table 1. Text boxes outlined

in orange highlight MHW metrics that are used in the clustering of deep-reaching MHWs.

Figure 3. Overview of MHW definitions and distinctions based on the water column detection

of MHWs. In a first step, MHWs are distinguished on the basis of their attained mean depth,

especially with regard to the mixed layer depth. The deep reaching MHWs (dMHWs), i.e., those

extending significantly below the mixed layer, are further split up into four different clusters

based on their vertical propagation behaviour.
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more characteristics than in the classical surface-only perspective (e.g. Hobday et al.,242

2016), which can be grouped into two classes: a) additional surface characteristics and243

b) column characteristics (Tab. 1).244

MHW surface

characteristics

Units MHW column

characteristics

Units

surface start day date column start day date

surface end day date column end day date

surface duration (sD) days column duration (cD) days

surface intensity (sI or sI)† °C or - column intensity (cI or cI)† °C or -

surf. severity (sS =sImean×sD) °C×days col. severity (cS =cImean×cD) days

number of interruptions - depth below surface/MLD† m

max. interruption duration days vertical propagation‡ m day−1

max. consec. days at surf. days propagation flexure‡‡ m2 day−2

mean fraction in ML -

start delay at surface∗ days

early ending at surface∗∗ days

Table 1. Overview over characteristics for the MHWs defined across the water column as

shown in Figure 2b. For metrics marked by a † the mean and maximum across each event is

calculated. ‡Vertical propagation is calculated as linear regression slope through upper MHW

boundary. ‡‡Propagation flexure is calculated as coefficient of the squared term in quadratic fit

through upper MHW boundary. ∗Start delay at surface is calculated as surface start day minus

column start day. ∗∗Early ending at surface is calculated as column end day minus surface end

day.

For the MHW characteristics at the sea surface, we mostly used the same extreme
event characteristics as Hobday et al. (2016): start and end days, duration (sD), mean
and maximum intensity (sImean & sImax), as well as severity (sS =sImean×sD). For the
calculation of these surface characteristics, we only considered the extreme surface grid
boxes within a water column-spanning MHW. For instance, for the surface duration we
summed the number of days the MHW affects the sea surface (Fig. 2b). In addition to
expressing intensities in absolute temperature exceedances above the threshold (I in °C),
we calculated variability scaled MHW intensities (I, unitless). The variability scaled in-
tensity I is diagnosed on the basis of the unitless temperature index T, which corresponds
to the continuous form of the MHW categories introduced by Hobday et al. (2018). We
therefore computed T following Sen Gupta et al. (2020) as:

T =
T − Tclim

Tthresh − Tclim
, (1)

where, Tclim is the climatological temperature and Tthresh is the seasonally varying 90th245

percentile threshold temperature. T > 1 thus indicates that the instantaneous temper-246

ature T is larger than Tthresh. Expressing temperatures during MHWs using the vari-247

ability scaled T allows for an unbiased comparison of MHW intensities across different248

locations, as threshold exceedances are generally proportional to the underlying variance249

of the temperature time series (Oliver et al., 2021). We calculated Imean/max and Imean/max250

as the mean or maximum of absolute threshold exceedances and T values throughout each251

event, respectively. Additional surface characteristics are the number of interruptions252

at the surface (while being connected in the subsurface), the maximum duration of a sur-253

face interruption and the maximum number of consecutive extreme days at the surface.254

–8–
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Column characteristics describe how MHWs extend through the water column and255

how they move vertically with time (Fig. 2, Tab. 1). We defined the column duration256

(cD) as the total number of days that a MHW affects the water column, regardless of257

its vertical position. We calculated the temporal mean and maximum MHW depth rel-258

ative to the surface (δsurf.mean, δsurf.max ) and relative to the MLD (δMLD
mean, δMLD

max ). We therefore259

defined the instantaneous MHW depth to be the depth of the lowest extreme grid cell260

below the surface and below the MLD, respectively. We characterized the vertical prop-261

agation of a MHW as the slope of a linear function fitted to the temporal evolution of262

the depth of the upper MHW boundary (Fig. 2). The focus on the upper MHW bound-263

ary thereby relates the vertical MHW propagation directly to the sea surface. We fur-264

ther described temporal changes in the vertical propagation behaviour of the MHW with265

the coefficient of the second order term in a quadratic function fitted to the MHW’s up-266

per boundary (i.e., the flexure, Fig. 2). We further estimated for each day of the MHW,267

what fraction of the vertical MHW extent is located in the surface ML and calculated268

the temporal mean fraction over the full column duration. Based on the surface and col-269

umn characteristics of MHWs, we further derived secondary characteristics such as the270

MHW’s start delay or its early ending at the surface. The mean column intensity (cImean)271

was computed by averaging all T values from all grid cells of an individual MHW. The272

maximum intensity (cImax) was taken to be the maximum T value at any grid point through-273

out the MHW, regardless of its depth. The column severity (cS) was calculated as the274

product of the mean column intensity (cImean) and the column duration (cS =c Imean×275

cD).276

To jointly characterize all MHWs occurring at one horizontal location, we computed277

“composite” statistics of the respective characteristic across all locally occurring MHWs.278

These composite statistics are either a composite mean (denoted by an overbar X), a279

composite maximum (denoted by a tilde X̃) or a composite minimum (denoted by a hat280

X̂).281

2.4 Evaluation of modeled temperature extremes282

Given the absence of observational constraints for evaluating MHWs in the sub-283

surface at the basin scale, we are limited to the comparison of the model simulated sur-284

face MHWs with observations. In order to construct an observation-based set of surface285

MHWs that is directly comparable to the simulated set, we applied the same method-286

ology as outlined in Section 2.2.1-2.2.2 to the daily satellite observations of SST from287

the AVHRR OISSTv2 dataset (Reynolds et al., 2007). This dataset is provided at 0.25°288

resolution and covers the period from 1982 to 2019.289

In the tropical Pacific, we nonetheless compared simulated temperature time se-290

ries to observed temperature time series during the extreme warming event of the 1997291

to 1998 El Niño (see Supplementary Information). We therefore used temperature data292

from five moorings from the TAO/TRITON mooring array in the tropical Pacific between293

155°W and 95°W (McPhaden et al., 2010). This permits us to extend the evaluation of294

the model to depth, with El Niño-related variability being a strong constraint given its295

strong impact on subsurface MHWs.296

2.5 Clustering of deep-reaching MHWs297

In order to group the dMHWs according to their vertical propagation behaviour,298

we used a k-means clustering algorithm (Pedregosa et al., 2011). As we are particularly299

interested in the vertical propagation behaviour of dMHWs, making them partially in-300

visible at the ocean surface, we performed the clustering on MHW characteristics that301

reflect the temporal evolution of the upper MHW boundary (see Table 1 and the Sup-302

plementary Information for more detail on the clustering procedure).303
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These characteristics consist of a subset of the characteristics introduced in Table304

1 and Figure 2, as well as their combinations, namely: a) the ratio of surface to column305

duration, b) the ratio of surface start delay to the column duration, c) the ratio of sur-306

face early ending to the column duration, d) the vertical propagation, e) the vertical prop-307

agation flexure, f) the ratio between the duration of the longest interruption at the sur-308

face and the column duration. Hence, the chosen characteristics focus on the upper bound-309

ary of each identified MHW and how it relates to the sea surface. Between all charac-310

teristics the rank correlations are generally below (above) 0.6 (−0.6) (Fig. S11). In or-311

der to eliminate collinearity between individual clustering features (Dormann et al., 2013),312

we performed a principal component analysis on the six characteristics, whereby each313

of them was scaled across all events. We identified only the first three principal compo-314

nents (PCs) to have eigenvalues above 1, which together explain 77.5 % of the variance315

in MHW dynamics (Fig. S12). The fourth PC still explains 14.4 % of the variance, but316

its eigenvalue is below 1. We hence continued to only use the standardized first three PCs317

as clustering features (Kaiser’s rule, Kaiser (1960)). To find the optimal number of clus-318

ters, we performed the k-means clustering on the first three PCs with varying numbers319

of clusters, ranging from two to 19. Using the Calinski-Harabasz score (Caliński & Harabasz,320

1974), the Davies-Bouldin score (Davies & Bouldin, 1979) and the Elbow method (i.e.,321

the within-cluster sum of squared distances), we identified the optimal number of clus-322

ters to be four (Fig. S13). For the final analysis, we thus clustered the first three PCs323

using four clusters.324

2.6 Sensitivity analyses325

To test the sensitivity of the detected MHWs and their characteristics to our method-326

ological choices, we conducted the following sensitivity analyses: We test for a) the ef-327

fect of the chosen vertical resolution (37 vs. 19 z-levels in the upper 500 m), b) the ef-328

fect of horizontal coarsening during downsampling (averaging 3x3 vs. 5x5 grid boxes),329

c) the effect of the horizontal downsampling methodology (meanpooling vs. maxpool-330

ing), d) the effect of the employed MHW temperature threshold percentile (90th vs. 95th),331

e) the effect of the employed threshold reference period (1982 to 2011 vs. 1990 to 2019),332

f) the effect of the temporal filtering of the Boolean array B (5 day kernel vs. no filter-333

ing) and g) the effect of the analysis period (1979 to 2019 vs. 1982 to 2019). In each sen-334

sitivity case, we solely altered the respective methodological choice, while keeping all other335

choices as in the reference case, which is used throughout the main manuscript. For a336

better overview, the different choices are summarized in Figure S18. We find that our337

results are generally robust with regards to the methodological choices and only differ338

in expected manners between sensitivity cases (see Supplementary Information).339

We further tested the robustness of the MHW clustering with respect to the omis-340

sion of 10 % to 99 % of detected MHWs and to the omission of individual MHW char-341

acteristics feeding into the principal component analysis. We therefore assess the degree342

of agreement in cluster labeling between the standard case and each sensitivity case, us-343

ing Cohen’s Kappa coefficient (κ, Cohen (1960), see Section 3.3 of Supplementary In-344

formation). κ = 1 indicates perfect agreement, while κ = 0 suggests agreement based345

on random labeling. We find that the clustering consistently produces the four clusters346

even under the omission of 99 % of the detected MHWs (κ > 0.97, Fig. S21a). The clus-347

tering is also robust to the elimination of individual MHW characteristics (Fig. S21b).348

In most cases, κ > 0.7. Only for the omission of the “start delay” and the “early end”349

at the surface (relative to the MHW column duration, see Tab. 1), κ drops to around350

0.61 to 0.67, indicating the important role of these characteristics in the clustering pro-351

cedure. Applying the clustering methodology outlined in Section 2.5 to the detected MHWs352

in the other MHW detection sensitivity cases (Fig. S18), further produces structurally353

similar clusters (not shown). Together, these results indicate that the clustering into four354

different vertical propagation behaviours is robust with respect to our methodological355

choices and the underlying data.356
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Figure 4. Comparison between simulated and observed MHW (surface-only detection, Fig.

2a) occurrences, durations and maximum intensities. The top row shows the results for simulated

MHWs, the bottom row for MHWs detected in the OISSTv2 dataset (Reynolds et al., 2007).

Panels a) and b) shows the number of MHWs per year. Panels c) and d) show the composite

mean MHW duration. Panels e) and f) show the composite maximum MHW duration. Panels

g) and h) shows the composite maximum of maximum MHW intensities (expressed in absolute

terms, that is in °C).

3 Model evaluation357

We find that the model captures the spatial structure of the number of surface-only358

MHW (Fig. 2a) occurrences per year relatively well (Pearson’s correlation of rP = 0.51),359

but underestimates the average number of surface-only MHWs per year (n) with an av-360

erage value across the EP study area (spatial average denoted by 〈. . . 〉) of 〈n〉Mod. =361

1.35±0.38 vs. 〈n〉Obs. = 2.25±0.60 events per year. In contrast, the model has a ten-362

dency to overestimate the composite mean surface-only MHW duration D in the EP study363

area (〈D〉Mod. = 30.3±7.4 vs. 〈D〉Obs. = 23.4±5.5 days). This overestimation is most364

prominent in the central tropical Pacific. However, the model reproduces the compos-365

ite maximum duration well (〈D̃〉Mod. = 208.5± 78.5 vs. 〈D̃〉Obs. = 233.8± 89.3 days)366

and also reproduces the spatial distribution with the longest events generally occurring367

in the tropical EP. The modeled composite maximum of the event maximum intensities368

agree well with observations with 〈Ĩmax〉Mod. = 2.16 ± 0.87°C vs. 〈Ĩmax〉Obs. = 2.48 ±369

0.75°C. The composite intensity maxima spatially correlate with rP = 0.71 between370

model and observations and are highest in the tropical EP (locally exceeding 4 °C).371

These evaluation results give us confidence that the model reproduces the observed372

extreme temperature variability at the ocean surface relatively well. The underestima-373

tion of the number and overestimation of duration of surface-only MHWs is a common374

deficiency of ocean models and is commonly attributed to unresolved variability as well375

as potential interpolation artefacts in the high-resolution observational SST data sets376

(Frölicher et al., 2018; Pilo et al., 2019; Gruber et al., 2021). An evaluation of extreme377
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Figure 5. 2D histograms of MHW mean depth vs. MHW column duration. The colored

squares show the binned number of occurrences of the respective MHWs. Panel a) shows the

mean depth below the surface (δsurf.mean) on the y-axis, while panel b) shows the mean depth below

the MLD (δMLD
mean). The solid lines show the distribution of MHWs only with respect to depth

(using the same 20 m depth bins as in the 2D histogram). The orange line shows the occurrence

distribution as a probability distribution function (PDF) in % of all events. The red line shows

the summed occurrence distribution from the surface downwards, that is as a cumulative distri-

bution function (CDF). The black horizontal lines indicate the reference depth in each case (i.e.,

the sea surface and MLD). The top right of each panel shows the Pearson correlation between the

respective MHW characteristics.

warming events in the subsurface is challenging, due to the lack of observational high378

resolution data at the basin scale. Nevertheless, the simulated subsurface temperature379

evolution during the 2013 to 2016 Blob and the 1997 El Niño match with observations380

in the respective EP locations (see Sec. 4.3 and Fig. S10). We thus deem the model sim-381

ulation suitable to extend the view on surface MHWs into the ocean interior. For fur-382

ther evaluation, e.g., of model temperature biases, trends and differences in simulated383

and observed temperature variability, the reader is referred to the Supplementary Infor-384

mation.385

4 Results386

Over the 41 years of simulation (1979 to 2019) we detect a total of 1 400 170 (one-387

dimensional) MHWs with at least one surface expression in the study area of the EP.388

A surface-only detection would find 27 % more events, i.e., 1 773 029, since it would count389

a resurfacing event as two separate events, while our one-dimensional perspective counts390

it as one (as depicted in the example sketches in Fig. 2).391

4.1 Vertical extent of MHWs392

The majority of the MHWs are quite shallow, with 50 % reaching a mean depth393

of 36 m or less (δsurf.mean, Fig. 5a). 90 % of MHWs are on average confined to the upper 150 m394

and less than 1 % reach a depth of 450 m or more below the surface. However, given that395

extreme conditions at the surface usually tend to extend to the MLD, it is more insight-396

ful to analyze the MHW mean depth relative to the MLD (δMLD
mean) (Fig. 5b). Indeed, we397

find that only 13 % of all MHWs are confined to waters shallower than the MLD, with398

this fraction likely associated with conditions where the active mixing is substantially399
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Figure 6. Mapped depth characteristics of dMHWs, that is MHWs that reach on average

deeper than one (seasonally varying) climatological MLD standard deviation below the instanta-

neous MLD. a) Map of local fraction of dMHWs; b) same as a) but weighted with the respective

MHW surface durations (weighted fraction can be interpreted as likelihood that a randomly cho-

sen extreme surface temperature is part of a dMHW); c) composite mean average depth below

the MLD of all dMHWs. In all panels, the dashed black line indicates the Equator.

shallower than the MLD. Including these events, a total of 71.5 % of all MHWs are on400

average confined to the ML. In this classification as ML-confined MHWs (abbreviated401

as sMHWs), we pardon short or low-amplitude excursions of the MHW below the MLD,402

by allowing them to reach on average less than one (seasonally varying) standard devi-403

ation of MLD (on average about 10 m) below the varying MLD itself (see Fig. 2b). Thus,404

as they do not substantially leave the ML, we find that 71.5 % of all MHWs are funda-405

mentally accountable for by MHW analyses based on mixed layer or sea surface temper-406

ature data. The remaining 28.5 % of MHWs reach on average one MLD standard devi-407

ation or more beneath the MLD. In the following we will classify those MHWs as deep-408

reaching MHWs (abbreviated as dMHWs). About a third of those dMHWs (11 % of all409

MHWs) fall into the mean depth range from 10 m to 30 m below the MLD. The remain-410

ing two thirds (18 % of all MHWs) extend on average by more than 30 m on average be-411

low the MLD. The dMHWs are of particular interest to us, since they are partially de-412

coupled from the surface.413

We find a general link between the MHW mean depth and the event column du-414

ration (rP ≈ −0.6), with longer events tending to reach deeper below the surface and415

the MLD (Fig. 5). MHWs lasting shorter than cD = 10 days are mostly limited to the416

upper 100 m and ML, while longer lasting events often reach below the ML. For exam-417

ple, 35 % of events that last between cD = 100 and 125 days, have a mean depth of more418

than 110 m below the surface.419

The deep-reaching MHWs occur primarily in the eastern tropical Pacific and along420

a coastal strip extending northward from Southern California up to Alaska, with regions421

where 40 % of all MHWs are dMHWs (Fig. 6a). In contrast, in the Subtropics, only 10 %422

to 30 % of the MHWs are deep-reaching. When we take into consideration that dMHWs423

tend to last longer (see Fig. 5), i.e., when we weight each MHW by its surface duration,424

the regional pattern of the dMHW becomes even more pronounced (Fig. 6b). With this425

weighting, in most of the tropical EP more than 80 % of all extremely warm tempera-426

tures at the sea surface are associated with dMHWs and in the subpolar North Pacific427
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Figure 7. Comparison between deep-reaching (dMHW, upper row) and surface MHW

(sMHW, lower row) occurrences, durations and intensities. Panels a) and b) shows the num-

ber of events per year. Panels c) and d) illustrate the composite mean event duration. Panels e)

and f) illustrate the composite maximum event duration. Panels g) and h) show the composite

maximum of the maximum intensity recorded for each event (in terms of T).

this fraction exceeds 70 % (Fig. 6b). This contrasts with the subtropical gyres, where428

the weighted probabilities are less than 30 %.429

Averaged across the EP, we find that dMHWs reach on average 110 m below the430

MLD (〈δMLD
mean〉, Fig 6c). However, there are coherent regional differences. The dMHWs431

tend to reach deepest along the West Coasts of the Americas, especially in the Califor-432

nia Current System, and in the low-latitude EP, in particular along ∼10° latitude on both433

hemispheres. In these regions, the dMHWs extend, on average, substantially deeper than434

160 m below the MLD, i.e., δMLD
mean < −160 m (Fig 6c). However, along the Equator, where435

we see a high occurrence of dMHWs, these dMHWs do not reach particularly deep on436

average, but only to around δMLD
mean ≈ −120 m. In the subtropical gyres, the few MHWs437

that qualify as dMHWs, reach generally around 40 m to 80 m below the MLD. The dMHWs438

also remain relatively shallow in the Alaska gyre, with depth of typically less than 50 m439

below the MLD.440

4.2 Core characteristics of deep-reaching MHWs441

Averaged across the EP study area, we find 〈n〉 = 0.26 ± 0.15 dMHWs per year442

compared to 0.8± 0.27 sMHWs per year, i.e., deep-reaching MHW occur about three443

times less often than sMHWs, consistent with the ratio of their total counts (Fig. 7a,b).444

The highest number of dMHWs per year are found in the eastern tropical North Pacific445

and along the North American coast (up to 0.8 dMHWs per year, cf. Fig. 6a). While446

occurring much less often than sMHWs, dMHWs last five times longer, with a mean dMHW447

column duration of 〈cD〉 = 184 ± 82 days compared to 〈cD〉 = 36 ± 17 days for the448
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Figure 8. Mean profiles of MHW related temperature anomalies across depth. Left panel

shows absolute temperature anomalies relative to the extreme threshold (i.e., absolute inten-

sities), while right panel shows variability scaled temperature anomalies (i.e., in terms of the

variability scaled temperature T). Mean profiles are calculated by averaging the (scaled) tem-

perature anomalies across all extreme grid cells associated with MHWs throughout the hindcast.

(Red) orange lines show the (grid cell size weighted) mean profile averaged over all extreme grid

cells. The black (grey) lines show the 25th/75th (10th/90th, 99th) percentile levels for each depth.

sMHWs. The dMHWs tend to last especially long in the tropical Pacific and the sub-449

polar North Pacific, where the composite mean column durations (cD) often exceed 250450

days (Fig. 7c,d). The longest dMHWs are found in the subpolar North Pacific, with com-451

posite maximum column durations (c̃D) of more than 3 years, which exceed the max-452

imum sMHW duration in the same region by over 2 years (Fig. 7e,f). These extremely453

long dMHWs are associated with the Blob heatwave event in the subpolar NP (see dis-454

cussions below). The maximum column intensities of dMHWs are substantially higher455

than of sMHWs (〈cImax〉 = 5.0 °C vs. 〈cImax〉 = 1.9 °C). The maximum dMHW in-456

tensities scaled with the background variability locally exceed cImax ≥ 10 in the trop-457

ical EP, with marked bands of extremely high intensities along the Equator and along458

∼10°N (Fig. 7g). These extremely high intensities occur below the ML, as the same re-459

gions do not stand out when analyzing the intensities of sMHWs (Fig. 7h, Fig. 4). In460

the subtropical and subpolar regions, the maximum dMHW column intensities are only461

slightly higher than the maximum sMHW intensities (generally less than 2 T units dif-462

ference).463

The MHWs tend to intensify in the subsurface. Aggregated across all MHWs (dMHWs464

and sMHWs) we find the strongest temperature threshold exceedances at around ∼100 m465

depth (Fig. 8a). Below 175 m, temperature anomalies (in absolute terms) drop on av-466

erage below the surface anomaly amplitudes and decrease steadily down to 500 m. How-467

ever, expressing the temperature anomalies in terms of the variability scaled T (Fig. 8b)468

shows that MHWs tend to be subsurface intensified throughout most of upper 500 m of469

the water column, with T values of around 1.5, which is slightly higher than the aver-470

age surface intensities (T ≈ 1.4).471

In summary, incorporating the depth dimension in the MHW definition and allow-472

ing MHWs to propagate vertically reveals a set of intense, and long lasting MHWs that473
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Figure 9. The Blob in the hindcast simulation. Maps in panel a) show snapshots of the vari-

ability scaled temperature T taken in March of the years 2012 to 2019 at the surface (upper row)

and at 200 m depth (lower row). Panels b) and c) show time-depth sections of the temperature

anomaly relative to the climatology (panel b) and the corresponding T (panel c) at 145°W, 44°N
(indicated by the cross in the maps of panel a). White (dashed) lines in panels b) and c) indicate

the MLD (200 m depth).

extend well below the ML. Especially in the subpolar North Pacific and the tropical east-474

ern Pacifc, the difference of MHW durations and intensities between the sMHWs and475

dMHWs is striking. These results highlight that MHWs can be extremely intense and476

long-lasting in the subsurface, while being invisible or inconspicuous at the ocean sur-477

face.478

4.3 The Blob as prime example of a long-lasting, deep-reaching MHW479

Given the rich literature on the long-lasting Blob in the Northeast Pacific (Bond480

et al., 2015; Freeland & Ross, 2019; Gruber et al., 2021), our finding above that this event481

was also associated with extremely long-lasting subsurface MHWs exceeding 1000 days482

(Fig. 7e) warrants a more detailed investigation. This permits us also to illustrate our483

one-dimensional water column concept with a concrete and well studied example. Our484

approach is aided by the fact that our simulated Blob reproduces the observed vertical485

propagation behaviour rather well (Scannell et al., 2020) (cf. Fig. 9b and their Fig. 4b).486

This is illustrated by the time series from 145°W and 44°N, that is the grid point clos-487

est to the study location of Scannell et al. (2020) (Fig. 9b) and also the grid location where488

we found one of the longest dMHWs. This MHW starts at the sea surface in early 2015.489

The associated positive temperature anomaly, which is initially strongest at the sea sur-490

face, moves subsequently downward below the ML, where it lingers at around 200 m depth491

well into 2018, that is for over three years. At 200 m depth, the associated coherent MHW492

signal appears to slowly move eastward between 2013 and 2019 (lower panels in Fig. 9a).493

While the subsurface temperature anomalies are generally weaker than those at the sea494
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surface (∼0.5 °C vs. >1.1 °C), the intensities in terms of the variability scaled temper-495

ature T show much higher values at around 200 m depth (T > 4 vs. T ≈ 2), owing to496

the generally reduced temperature variability in the subsurface. This reduces the denom-497

inator in the definition of T, leading to higher values of T (Eq. 1). Hence, the simula-498

tion shows a subsurface intensification of the MHW, relative to the local variability.499

4.4 Linking the vertical MHW structure to surface characteristics500

As most observations of MHWs are restricted to the sea surface, the question arises501

to which degree the water column MHW characteristics can be inferred from their sur-502

face characteristics. To study this link, we associate each detected surface-only MHW503

with its corresponding one-dimensional MHW in the water column. By definition, each504

water column detected MHW comprises the extreme grid cells of at least one surface-505

only MHW. In this context, multiple surface-only MHWs may be associated with the506

same water column MHW.507

Individual characteristics of surface-only MHWs such as duration, maximum in-508

tensity or severity are only moderately correlated with the same characteristics for one-509

dimensional MHWs in the water column (Fig. S22). Thus, a direct estimate of individ-510

ual MHW characteristics based on surface-only MHW properties is challenging. Yet, the511

comparison between dMHW and sMHW characteristics shows that dMHWs show dif-512

ferent characteristics than the ML-confined sMHWs (Fig. 7). Thus, through the use of513

a logistic regression model, we might be able to identify those characteristics that allow514

us to state, with a certain probability whether a surface detected MHW is a deep-reaching515

one. To this end, we first link the surface-only MHW characteristics (duration, maxi-516

mum intensity and severity) to the vertical characteristics of the associated one-dimensional517

MHW in a binary form (i.e., 1 if the associated MHW is a dMHW, 0 if the associated518

MHW is a sMHW) and then fit a logistic regression model to the respective data pairs519

across all detected surface-only MHWs (Fig. 10).520

As expected from sMHWs generally being much shorter than dMHWs (see Section521

4.2), we find that short surface-only MHWs are more likely to be associated with sMHWs522

than with dMHWs (Fig. 10a), while surface-only MHWs that last longer than 49 days523

are more likely to be associated with dMHWs. If we used this simple (uni-variate) lo-524

gistic regression model across the entire EP, 68 % of predicted dMHWs are true positives,525

while 32 % of surface-only MHWs are mistakenly predicted to be dMHWs. If we fit such526

a model regionally, i.e., just for the California Current System or the equatorial EP, the527

uni-variate logistic regression model could already predict 72 % (76 %) of all events cor-528

rectly (Fig. S23).529

An even better prediction is possible if severity (D×Imean) was used as single vari-530

ate predictor (Fig. 10c). In this case MHWs detected at the surface with a severity (S =531

Imean ×D) of 71 days have a more than 50 % probability of being a dMHW. This re-532

gression then permits to detect dMHW correctly 70 % of the times. Again, a regional-533

ization of the logistic model further enhances this fraction to 74 % (77 %) for the Cal-534

ifornia Current System (Equatorial Pacific, Fig. S23). In contrast, maximum intensity535

(Imax) as predictor variable yields only true dMHW predictions in 59 % of all cases, with536

Imean = 1.17 °C as critical distinction value (Fig. 10b). sMHWs, i.e., MHWs that are537

confined to the surface ML, are correctly predicted with a similar skill as dMHWs. Us-538

ing any of the three surface-only MHW characteristics, sMHWs are correctly predicted539

in approximately two thirds of all cases.540

These uni-variate logistic regression models suggest that surface-only MHW char-541

acteristics have a good potential to detect the presence/absence of a deep-reaching MHW,542

especially if prior knowledge about the spatial distribution of the deep-reaching MHW543

is taken into account. Future studies are required to explore this link in more detail and544

build more complex, multivariate statistical models that could also include other dynam-545
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Figure 10. Linking surface-only detected MHW properties to the depth extent of the associ-

ated water column MHWs. Panels a, b and c show logistic regressions between the surface-only

detected MHW characteristics (duration, maximum intensity and severity, respectively) and the

associated binary distinction between sMHW and dMHW. Each panel contains a histogram of

the shallow (blue) and deep-reaching (orange) MHWs. Thin histogram lines indicate in both

cases the histogram of the totality of MHWs. Thick black line shows the logistic regression based

on the linear logit function f(x). Red text indicates locations where probabilities of the logis-

tic regression correspond to 0.5. In the middle of each panel, a confusion matrix shows for the

statistical model fit which fraction of predicted sMHWs (dMHWs) are true sMHWs (dMHWs)

(columns sum to 1).
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Figure 11. Vertical propagation clusters for all dMHWs. The image panels show the struc-

ture of the four different cluster types using heatmaps calculated based on all MHWs of the

respective cluster normalized in depth and time. Below, statistics calculated based on the MHW

characteristics for each cluster is shown. These statistics include the mean, 10th, 90th and 50th

percentile (median). For comparison, the rightmost panel and statistics column show the ana-

loguous results obtained for the sMHWs, which are not part of the four other clusters.

ical variables, such as sea surface height or wind speed. Such models could furthermore546

explore the surface-based prediction of specific dMHW characteristics, such as their in-547

tensity or duration.548

4.5 Vertical propagation behaviour of deep-reaching MHWs549

The example of the North Pacific Blob (Sec. 4.3) shows that the extreme signal as-550

sociated with dMHWs can undergo a vertical propagation throughout the MHW life-551

time. To better understand this vertical propagation behaviour and to distinguish be-552

tween different vertical propagation patterns, we cluster all dMHWs as described in Sec-553

tion 2.5. We identify four clusters of dMHWs (Fig. 11), that can be described by their554

overall time-depth structure as: a) block-like events, b) deepening events, c) shoaling events,555

d) multi-surfacing events. While the clusters are well separated, the diversity of event556

characteristics within each cluster is large (see statistics and violin plots in Fig 11, S14,557

S15, S17).558

The block-like cluster, making up 41.3 % of all dMHWs, is characterized by rela-559

tively shallow events (cluster averages denoted by [...]) of [δsurf.mean] = −125 m, [δMLD
mean] =560

−91 m but also by events that are relatively long-lasting [cD] = 142 days. Through-561

out their lifetime, these events are quasi-permanently visible at the ocean surface, with562

the cluster average surface to column duration ratio being relatively high, i.e. [sD/cD] =563

0.80. In contrast, the deepening events, which make up 23.5 % of dMHWs, affect the sur-564

face only during 32 % of their average column duration of [cD] = 116 days ([sD/cD] =565

0.32). These events exhibit on average a downward propagation of −1.00 m day−1 and566

reach on average down to [δsurf.mean] = −156 m ([δMLD
mean] = −111 m). Shoaling events (20.3 %567

of all dMHWs) show an average upward propagation of 1.22m day−1 and also affect the568
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Figure 12. Spatial distribution of the contribution of the different MHW clusters to dMHWs,

i.e. MHWs that reach on average more than one climatological MLD standard deviation below

the instantaneous MLD. The fields are smoothed with a 3×3 Gaussian kernel. The unsmoothed

four panels add up to 100 % of all dMHWs.

surface ocean only during 32 % of their [cD] = 113 days lifespan. On average, shoal-569

ing events reach down to [δsurf.mean] = −177 m and substantially below the MLD ([δMLD
mean] =570

−138 m). The multi-surfacing cluster contains 14.9 % of all dMHWs. These events are571

the longest-lasting ([cD] = 191 days) and reach on average 169 m below the surface (127 m572

below the MLD). They affect the sea surface on average during 44 % of their lifetime.573

In summary, we find that nearly two thirds of the dMHWs (∼ 59 %) show a behaviour574

that is not block-like, i.e., that are located for a substantial part of their lifetime purely575

below the sea surface and are thus not visible in any surface-only based detection algo-576

rithm.577

The different clusters show distinct spatial distributions (Fig. 12). The block-like578

dMHWs occur throughout the EP and in particular in the regions of the dMHW hotspots579

(see Fig. 7a). Deepening MHWs hardly occur in the tropical EP, but make up around580

a third of dMHWs in the subtropical and subpolar EP (Fig. 12). In contrast, shoaling581

MHWs are mostly present at low latitudes between 10°N and 10°S. Multi-surfacing MHWs582

mainly occur in the tropical EP, but also account for more than 20 % of dMHWs in many583

regions of the subtropical and subpolar North Pacific. These identified regional differ-584

ences in the occurrence of the different vertical propagation patterns of dMHWs indi-585

cate that different drivers are at play in their generation.586

5 Discussion587

In this study, we analyzed the vertical structure and propagation behaviour of MHWs588

that affect the sea surface, by extending the classical MHW definition (e.g. Hobday et589

al. (2016)) to incorporate the vertical dimension and by thus furnishing MHWs with a590

vertical extent. As a proving ground, we applied this methodology to output from a model591

hindcast simulation in the EP (1979 to 2019). But we consider the findings and insights592

gained here to be of relevance also in other regions of the world’s oceans.593

5.1 The vertical structure and propagation of MHWs594

Our findings show that while the majority of MHWs detected at the ocean surface595

are limited to the ML (Fig. 5,7a,b), about one third (∼ 29 %) of these reach on aver-596

age more than one climatological MLD standard deviation below the MLD. Thus, one597

out of three times the additional buoyancy and increased water column stratification as-598

sociated with a surface MHW, which hinders the downward mixing of the temperature599
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anomaly signal below the ML (Oliver et al., 2021), can be overcome. When the MHW600

signal is below and partially decoupled from the ML, the resulting deep-reaching MHWs601

also tend to last longer. This matches the findings of Elzahaby and Schaeffer (2019), who602

also found an increase in MHW durations with increasing penetration depths in the Tas-603

man Sea.604

Our results show that MHWs reaching below the ML occur mostly in the eastern605

tropical (North) Pacific as well as along the American west coast (Fig. 6a,b). So far, no606

analysis of MHW depths exists across the full EP to compare with our findings shown607

in Fig. 6. Yet, regional observations and analyses of MHWs appear to support our re-608

sults. For instance, tropical EP MHWs are often driven by El Niño events (Holbrook et609

al., 2019). Since El Niño events go along with a strong thermocline warming (e.g., En-610

field, 2001), it is reasonable that the here detected MHWs show a propensity to reach611

below the ML. This is further corroborated by the results of Hu et al. (2021), who find612

in mooring array data that MHWs in the thermocline of the equatorial Western Pacific613

often occur in conjunction with surface MHWs. Similary, the increased proportion of dMHWs614

along the American coastline is perhaps associated with coastally trapped planetary waves615

that lead to local warming and downwelling conditions (Frischknecht et al., 2015; Wei616

et al., 2021). Lastly, the here detected deep extent of the North Pacific Blob down to ∼617

400 m (Fig. 9) agrees with the previously documented vertical extent of strong subsur-618

face warm anomalies (Freeland & Ross, 2019; Scannell et al., 2020).619

Next to revealing the MHW depth, our here employed methodology allows us to620

analyse the subsurface characteristics of MHWs. We find that deeper-extending MHWs621

tend to last longer and to show higher maximum intensities (Fig. 5, 7, 8, 11). Compared622

to the ML-confined sMHWs, the dMHWs last substantially longer (∆〈cD〉 = 148 days)623

and show stronger intensities (∆〈cImax〉 = 3.1 °C, Fig. 7). As an example of a dMHW,624

we find that the extremely long subsurface Blob persistence described by Scannell et al.625

(2020) was unique in the EP. Nowhere else do we identify such long dMHW durations626

of over 3 years (Fig. 7e, 9), which are furthermore substantially longer than the max-627

imum surface-only MHW durations of less than one year in the same region (Fig. 4e).628

In the tropical EP, the difference between the maximum surface-only MHW and dMHW629

duration is less pronounced, but still around 200 days (comparing Fig. 4f and Fig. 7e).630

There, maximum dMHW column durations of around 500 days are at the upper bound631

of time scales associated with El Niño events (Okumura & Deser, 2010), which are known632

to be the main driver of MHWs in this region (Holbrook et al., 2019). These examples633

demonstrate that surface-only descriptions of MHWs can dramatically underestimate634

for how long and with which intensity the upper ocean water column is subject to ex-635

treme conditions.636

The surface-only perspective on MHWs cannot per se distinguish whether the as-637

sociated extreme signal is confined to the ML or whether it extends also below the ML.638

The here chosen approach to define MHWs in the water column appears as a useful tool639

to study this link. Based on simple uni-variate logistic regression models, we find that640

the characteristics of surface-only MHWs carry some predictive capacity with regards641

to the vertical extent of the associated (water column) MHW. For instance, a prediction642

of a dMHW, using surface-only MHW severity as predictor, is correct in 70 % of all cases.643

These results encourage further studies to explore the link between surface-only MHW644

characteristics and the vertical structure of the associated MHW. Such links can be used645

to predict the vertical structure of MHWs that are detected with remote sensing data646

of sea surface temperature. Additional predictor variables that are available from remote647

sensing at high spatio-temporal resolution, such as sea surface height, salinity or heat648

and momentum fluxes might support the development of (multivariate) statistical mod-649

els (Su et al., 2018) that predict the vertical extent of MHWs when detected at the sea650

surface. Such statistical models could furthermore be improved by a better dynamical651

understanding of the MHW drivers. The coherent spatial patterns in the dMHWs oc-652
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Figure 13. Summary of different vertical propagation patterns and their potential driving

processes. Colors are associated with clusters as color-coded in Fig. 11, i.e. block-like, deepening,

shoaling and multi-surfacing from left to right.

currence likelihood, as well as the mean depth of those dMHWs (Sec. 4.1, Fig. 6) sug-653

gest that similar driving mechanisms lead to such deep reaching MHWs. For instance,654

the deep reaching dMHWs along 10°N, which reach on average ∼ 200 m below the ML655

(Fig. 6c), and which spatially coincide with the very high intensities of dMHWs (Fig.656

7g), are in the alleyway of the westward propagating anticyclonic Tehuantepec eddies657

(Palacios & Bograd, 2005), which are associated with strong positive temperature anoma-658

lies mainly in the thermocline (Purkiani et al., 2022). Hence, the identification of (an-659

ticyclonic) mesoscale eddies might further support correct predictions of deep reaching660

MHWs (Elzahaby & Schaeffer, 2019). Eventually, the established statistical relationships661

need to be put to test using observational data, i.e., using high-resolution (satellite-derived)662

sea surface records of MHWs and associated temperature measurements across the wa-663

ter column.664

Lastly, the fact that MHWs can affect the water column much longer than diag-665

nosed at the sea surface (see examples given above), highlights the important role of ver-666

tical propagation of the MHW signal (Scannell et al., 2020). Using the water column def-667

inition of MHWs, we find four clusters with distinct vertical propagation behaviour for668

the dMHWs (Sec. 4.5). While block-like events remain quasi-permanently at the sea sur-669

face, the other three identified dMHW types (∼59 % of dMHWs, ∼17 % of all MHWs)670

affect the sea surface on average only 32 % to 44 % of their lifetime (Fig. 11). Hence, for671

17 % of all MHWs, up to two thirds of the MHW duration can be missed when relying672

solely on surface-only MHW characteristics.673

5.2 Potential drivers shaping the different vertical MHW structures674

While a full driver analysis of the different vertical MHW structures goes beyond675

the scope of this study, we briefly discuss how the different propagation patterns in the676

extreme signal could be generated. Figure 13 provides therefore a non-exhaustive overview677

of potential driving mechanisms.678

MHWs driven by atmospheric heat fluxes can lead to dMHWs, if the heat anomaly679

is transferred below the MLD. This can either occur through downward mixing (Fig. 13a)680

or through the detrainment process associated with variability in the MLD (Fig. 13d,681
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Scannell et al. (2020)). In this process, anomalous warm water detrains from a deep (win-682

ter) ML and is incorporated into the thermocline during the (seasonal) shoaling of the683

MLD (Alexander & Deser, 1995). Thus, the MHW signal lingers in the thermocline, while684

temperatures can return to normal levels in the ML above, forming a deepening MHW.685

The finding that deepening MHWs occur primarily in spring/early summer (not shown)686

and only in the subtropical and subpolar EP, where the MLD undergoes a marked sea-687

sonal cycle (Fig. 12b), points towards a potential role of this detrainment process. In688

the opposite sense, a thermocline extreme warm anomaly could be entrained into the ML689

during the (fall time) MLD deepening, leading to a shoaling MHW (Fig. 13g), an infer-690

ence also supported by these events occurring predominantly in late summer/fall (not691

shown). A combination of springtime MHW detrainment out of the ML and fall time692

MHW re-entrainment into the ML would describe a full re-emergence cycle (and qual-693

ify as a multi-surfacing MHW, Fig. 13j), which has long been noted for its role in affect-694

ing wintertime ML temperatures of the Northeast Pacific (Namias & Born, 1970; Alexan-695

der & Deser, 1995). Hence, in extra-tropical regions the seasonal variability in MLD and696

the associated detrainment (and (re-)entrainment) processes, are potential drivers be-697

hind vertically propagating MHWs.698

MHWs driven by lateral advection are not necessarily restricted to the ML, but699

can span across the water column (Elzahaby & Schaeffer, 2019; Oliver et al., 2021; Großelin-700

demann et al., 2022). Hence, depending on the vertical nature of the lateral cross-gradient701

temperature advection, the local MHW signal can start simultaneously across the wa-702

ter column (Fig. 13c) or initiate at the surface or at depth (Fig. 13f and i, respectively).703

Downward isotherm displacement associated with adiabatic heaving during the passage704

of a warm core eddy can similarly lead to deep reaching MHWs, that likely qualify as705

block-like MHWs (Fig. 13b). The dynamic (sub-surface) equatorial current system (Kessler,706

2006) and the trajectories of warm-core eddies are thus potential hotspots for advection707

driven MHWs with different vertical propagation signatures.708

The presence of subsurface MHW signals might furthermore precondition the for-709

mation of a MHW in the ML above, by reducing the downward mixing of any excess heat710

introduced into the ML. Depending on whether the MHW extends only once or multi-711

ple times in the ML, the overall MHW could take on a shoaling pattern (Fig. 13h) or712

a multi-surfacing pattern (Fig. 13k). A potential region, where this process plays a role713

is the equatorial Pacific, where we find elevated occurrences of shoaling events (Fig. 12c).714

In the tropical EP, where MHWs are tightly connected to El Niño events (Holbrook et715

al., 2019), we discern a shoaling behaviour of the warm anomaly signal which initiates716

in the subsurface during the 1997 to 1998 El Niño event (Fig. S10). Further support-717

ing the role of initial subsurface warming in driving shoaling events, Vogt et al. (2022)718

find an important contribution of reduced vertical mixing of heat during the onset phase719

of MHWs in the tropical EP.720

5.3 Biological implications721

The here presented extended view on MHWs provides new insights into the haz-722

ard MHWs represent to marine life. While we find that the majority of MHWs repre-723

sent an elevated heat stress purely in the ML, 29 % of MHWs can directly impact or-724

ganisms in the thermocline below. The pronounced and deep reaching MHWs can ad-725

versely impact species’ fitness due to limited nutrient/food availability or increased metabolic726

demands (Smith et al., 2023). This effect could be aggravated by lowered oxygen avail-727

ability, causing even a compound extreme event (Gruber et al., 2021). At the same time,728

the anomalous deep warming of temperature stratified water columns can open thermal729

windows for vertically migrating marine species that are otherwise limited in their range730

by cold subsurface temperatures (Seibel & Birk, 2022), creating potential winners. But731

to fully evaluate the exposure of marine organisms to such extremes, it is important to732

also consider the (active and passive) displacement of the organisms through their up-733
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per ocean habitat (Hofmann Elizondo & Vogt, 2022). For instance, the (diurnal) ver-734

tical migration performed by planktonic and nektonic species strongly influences at which735

times and depths the organisms are exposed to extreme conditions.736

Considering the vertical extent of MHWs also has implications for the MHW driven737

displacement of species. Based on sea surface temperature data only, Jacox et al. (2020)738

estimated that organisms exposed to MHWs need to horizontally move tens to thousands739

of km, in order to recover the original climatological conditions. This surface confined740

view on species displacement neglects the possibility of vertical displacements. In response741

to MHW conditions at the sea surface, organisms could transiently shift their vertical742

position to cooler subsurface waters, under the condition that the other habitat-forming743

biotic and abiotic factors such as oxygen concentrations, food availability, light, etc. are744

favourable (Reygondeau et al., 2013; Wishner et al., 2013; Seibel & Birk, 2022). In this745

context, the vertical MHW extent as well as other (biogeochemical) extremes in the wa-746

ter column (Pörtner & Farrell, 2008; Bednaršek et al., 2018; Gruber et al., 2021; Burger747

et al., 2022; Köhn et al., 2022) can influence the feasibility of this vertical displacement.748

5.4 Caveats749

In this study, we analyze vertical structures and propagation behaviours of MHWs,750

using output from a hindcast simulation performed with the regional ocean model ROMS.751

Similar to other models (e.g., Pilo et al. (2019)), our simulation shows biases in the du-752

ration and frequency of surface-only MHWs (Sec. 3, Fig. 4), despite the model’s gen-753

eral skill to reproduce the observed temperature field (Fig. 1b, Supplementary Informa-754

tion). Beyond the sea surface, our evaluation of simulated temperature extremes is re-755

stricted to individual MHWs, such as the Blob (Fig. 9) and the 1997 to 1998 El Niño756

event (Fig. S10), due to scarce high resolution observational data. The realistic repro-757

duction of the subsurface structure of these MHWs gives us confidence in the model’s758

skill in reproducing the subsurface extreme temperature variability.759

The purely one-dimensional approach to define MHWs does not capture the full760

three-dimensional evolution of MHWs over time. As such, we here analyze MHWs in-761

dependently from one another, even if they occur in horizontally neighbouring locations.762

Furthermore, next to moving vertically through the water column, MHW signals can move763

(be advected) horizontally. Depending on the nature of the lateral movement, the lat-764

eral displacement of the MHW signals might rectify locally as vertically propagating MHWs765

(see Fig. 13f,i, Sec. 5.2). Similarly, a lateral movement of the extreme signal in the sea-766

sonally developing thermocline might lead to the break-up of a re-emergence cycle into767

a local deepening MHW and a shoaling MHW downstream. As such, Tak et al. (2021)768

found that the combination of the re-emergence phenomenon and lateral advection can769

affect sea surface MHW statistics downstream of the North Pacific subtropical mode wa-770

ter formation site. To additionally account for the lateral coherence and movements of771

MHWs, a full three-dimensional quasi-Lagrangian tracking of extremes would be required772

(Desmet et al., 2022).773

Lastly, it is important to note, that the propagation of the statistical MHW sig-774

nal is not necessarily bound to the movement of a particular water mass, but can move775

and connect with ease across isopycnals. Hence, extreme conditions that occur simul-776

taneously in the ML and below due to different drivers, can appear as one coherent MHW777

(e.g. as in Fig. 13e). An analysis of heat fluxes during the MHWs, could shed more light778

on the mechanisms driving the vertical structure and propagation of MHWs.779

6 Conclusion780

As the commonly used surface-only perspective on MHWs has so far not addressed781

the vertical structure of MHWs, we here extended the classical MHW definition (e.g. Hobday782
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et al. (2016)) to incorporate the vertical dimension. This new perspective furnishes MHWs783

with a vertical extent and furthermore allows for the study of the vertical propagation784

behaviour of MHWs. We explored this new approach to study the vertical structure of785

MHWs by using daily output from a high-resolution numerical hindcast simulation (1979-786

2019) in the Eastern Pacific.787

We find that one third of the MHWs extend below the ML and are partially (up788

to two thirds of their lifetime) undetectable at the sea surface. On average, the dMHWs789

(deep-reaching MHWs) last five times longer than their ML-confined counterparts (sMHWs)790

and are subsurface intensified, likely due to spatial displacements of sharp temperature791

gradients within the thermocline. Initial tests further show that the characteristics of792

MHWs diagnosed at the sea surface carry predictive skill regarding the presence/absence793

of a deep-reaching MHW. These results suggest that there is potential for the detection794

of deep-reaching MHWs from remote sensing. Nevertheless, model-derived relationships795

between MHW surface characteristics and the subsurface MHW structure need to be put796

to test with observations, by matching (satellite-derived) sea surface temperatures with797

subsurface hydrographic data, for instance from Argo floats (Su et al., 2018).798

The here used approach to define MHWs allowed for an explicit one-dimensional799

tracking of the MHW signal. We find a variety in different vertical propagation behaviours.800

While the ML-confined sMHWs and block-like dMHWs generally dominate, we find a801

substantial fraction of dMHWs that shows a net upward or downward propagation or802

even a multi-surfacing behaviour. The existence of shoaling and multi-surfacing MHWs803

suggests, that studying subsurface warm anomalies can help to anticipate the develop-804

ment of surface MHWs, particularly in the tropical EP. However, further analyses will805

be needed in order to understand under what conditions MHW signals can move between806

the surface ML and the ocean interior.807
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1. Model data description and evaluation

1.1. Vertical regridding of model output

To account for the bathymetry following native model grid, we perform vertical regrid-

ding before calculating horizontal averages when horizontally coarsening/downsampling

the model output (Sec. 2.1 of main text). We therefore regrid the model output from the

bathymetry following s-level coordinates to z-levels, that is fixed depth levels, within the

upper 500 m. We thereby choose the the z-levels to closely follow the vertical spacing in

the maximally stretched s-level coordinate system. We therefore let the z-levels closely

follow the s-levels at a location of the deepest model bathymetry, which is set to 6500 m

(Fig. S2). This leads to 37 z-levels with a 5 m resolution in the upper 100 m and a grad-

ual increases to a 50 m resolution below 350 m. By fitting the z-levels to the maximally

stretched s-level coordinates, the regridding to z-levels does not add additional interme-

diate depth levels. Vertical temperature profiles from locations where the ocean bottom

is shallower than 6500 m have a higher resolution in s-levels than in z-levels in the upper

500 m.

To test for the sensitivity of our results regarding the vertical resolution, we additionally

coarsen the vertical z-level grid, by using only every second z-level for the MHW analysis,

leading to 19 z-levels (Fig. S2, Section 2.6 of main text).
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1.2. Evaluation of the mean state

The hindcast mean sea surface temperature (SST, 1979-2019) has a small bias of

−0.02 °C compared to World Ocean Atlas 2018 (WOA2018, Boyer et al. (2018)) aver-

aged across the full study area (Fig. S3). In the equatorial Eastern Pacific (EP) and

Peruvian upwelling system, model SST values are locally up to 1.5 °C warmer than ob-

served. The temperature biases are stronger in the subsurface with pronounced regional

differences (Fig. S3). As such, at 200 m (400 m) depth, the tropical EP between 20°S and

20°N is on average too cold by 1.47 °C (0.99 °C), while the subpolar North Pacific north

of 30°N is too warm by 0.41 °C (1.17 °C). At 100 m, we find additional warm biases in the

eastern tropical North Pacific and the subtropical South Pacific with mean anomalies of

up to 1.5 °C. This warm bias is linked to a slightly too deep mixed layer (and thermocline)

in the subtropical gyres (∼10–30 m, Fig. S4a). Across the entire EP, the modeled mixed

layer depth (MLD) is on average 12.4 m deeper than observed (Holte et al., 2017). In

the subpolar NP, ROMS simulates a MLD that is 4.5 m too shallow. ROMS accurately

reproduces the sea surface height (SSH) field structure (spatial correlation of the temporal

mean SSH fields of 0.98 , Fig. S4b), indicating that the mean geostrophic currents are

well reproduced by the model.
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1.3. Evaluation of the temperature variability

We evaluate the variability of the SST anomalies, by analysing their amplitudes and

persistence in ROMS. The anomalies are thereby calculated relative to the seasonally

varying SST climatology calculated for the period 1982–2011 (Fig. S5). For the evaluation,

we compare the standard deviation and the autocorrelation e-decay time scale of the

daily SST anomalies and compare the results to observational OISSTv2 data (Reynolds

et al., 2007). The model reproduces the SST anomaly amplitudes reasonably well with

maximum standard deviations of up to 1.5 °C in the tropical EP (Fig. S5a,b). In the

Peruvian upwelling system the model overestimates the generally high standard deviation

by about 0.5 °C. The persistence of SST anomalies, or the time scale of SST anomaly

variability is also well reproduced by the model with generally longer e-decay times in

the tropical EP, the subtropical NP gyre and the subpolar NP (Fig. S5c,d). However,

the model has a tendency to overestimate the e-decay times, indicating longer persistence

of SST anomalies. This is in agreement with the detection of generally longer but fewer

marine heatwaves (MHWs, Sec. 3 of the main text, Oliver et al. (2021)).
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1.4. Evaluation of temperature trends

We calculate trends in simulated the temperature field at the surface, at 100 m, 200 m,

310 m and 400 m depth over the full hindcast period (1979-2019, Fig. S6).

We find a general simulated cooling trend of around −0.03 °C yr−1 throughout the trop-

ical EP across all depths (Fig. S6a-e). The cooling trend is most pronounced at 100 m

depth (up to −0.05 °C yr−1), that is in the strong thermocline of the tropical EP. This

cooling trend is stronger than comparable temperature trends calculated from the monthly

resolved EN4 data set from 1981–2019 (Good, Martin, and Rayner (2013), Fig. S6f-j).

The analysis of temperature time series shows that the calculation of long-term trends in

the tropical EP is influenced by interannual temperature variability (Fig. S7). For in-

stance, in the northern Humboldt Current System (location c indicated in Figure S6), the

occurrence of fewer strong El Niño related warming events after the year 2000 compared

to the preceding years, manifests in the diagnosis of a general cooling of the EP.

Below 200 m depth the model shows a pronounced cooling between 25°-40°N and 160°-

120°W, which is not found in the EN4 data set from 1981–2019 (Good et al. (2013), Fig.

S6c-e,h-j). The temperature time series within this region (chosen location a, Figure S6),

shows that this cooling trend is relatively independent from interannual variability, but

manifests mostly at the beginning of the hindcast with the strongest temperature decrease

in the first few years (Fig. S7a). This suggests some model adjustment occurring when

switching from the spin-up period to the beginning of the model hindcast. Such spurious

trends in the simulated temperature field have the potential to affect the detection of

extreme temperatures. We however limit the impact of this spurious model trend by

calculating the temperature thresholds based on the years 1982–2011 (Sec. 2.2.1 of main
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text) and thus by not taking the first three hindcast years into account. Nevertheless, as

the MHW detection is performed over the full analysis time period, the spurious model

drift leads locally to higher numbers of subsurface extreme temperatures at the beginning

of the hindcast (Fig. S8, Fig. S9). To assess the influence of the first few hindcast years

on the composite MHW characteristics, we conduct a sensitivity analysis and calculate

the MHW characteristics only for the time period 1982–2019 (case G in Section 4 on

sensitivities analyses). The results of the sensitivity analysis however suggest only limited

impacts on the statistics of the one-dimensional MHW properties (see Fig. S19).
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1.5. Evaluation of subsurface temperature extremes

Only few observations exist, documenting the structure and evolution of MHWs in

the subsurface. This complicates an evaluation of the model’s capability to realistically

simulate subsurface temperature extremes. As we study MHWs in the EP between 1979–

2019 we are able to compare our model results to the subsurface evolution of the “Blob”

as described by Scannell, Johnson, Thompson, Lyman, and Riser (2020) (see Sec. 4.3

of main text). Furthermore, we can make use of the TAO/TRITON mooring array in

the tropical Pacific (McPhaden et al., 2010), which has gathered temperature time series

at multiple locations within the upper 500–750 m of the water column. This type of

temperature time series have already been used to calculate MHW characteristics in the

western tropical Pacific (Hu et al., 2021).

Here we use the available temperature time series from five equatorial TAO/TRITON

moorings east of 155°W, to evaluate the models performance in reproducing the verti-

cal structure of temperature anomalies in the equatorial EP. As a test case we therefore

focus on the 1997–1998 El Niño event (Fig. S10), which was an intense and long last-

ing MHW in the tropical EP (Sen Gupta et al., 2020). For the hindcast simulation and

the TAO/TRITON array, we calculate temperature anomalies relative to the climatology,

which we calculate following Hobday et al. (2016). For the hindcast, the climatology is cal-

culated over the 1982–2011 period, as throughout the main study. For the TAO/TRITON

data, we use all available data to calculate the climatologies, as the mooring data gener-

ally covers varying time spans between 1980 and 2022, but generally amounts to available

data of around 20–25 years. In Figure S10, we show the temperature anomalies at all five

mooring locations from TAO/TRITON and for the corresponding horizontal grid point
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in the hindcast simulation. Despite some gaps in the observational data, a comparison

between model and observations is feasible. In the observations and the model simulation,

the strongest temperature anomalies during the 1997–1998 El Niño are generally found

in the subsurface within the upper 200 m (Fig. S10). The model is able to reproduce

the initial warming anomalies in the subsurface of the equatorial Pacific and shows an

upward migration of the warm anomalies that is similar to observations. Similarly, the

model reproduces how warm anomalies subside again first in the subsurface and turn to

cold anomalies with the onset of the subsequent La Niña. While the model slightly un-

derestimates the anomalous warming, especially towards the eastern mooring locations,

this comparison gives us confidence, that the model realistically reproduces subsurface

warming events in the equatorial Pacific.
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2. Clustering of MHWs

2.1. Clustering methodology

We cluster the MHWs using a k-means clustering algorithm (Pedregosa et al., 2011),

based on a set of their characteristics (see Sec. 2.5 of main text.). To eliminate collinearity

between the clustering features (Fig. S11), we perform a principal component analysis

(PCA). We find only the first three principal components (PCs) to have eigenvalues above

one, which together explain 77.5 % of the variance (Fig. S12). Following Kaiser’s rule

(Kaiser, 1960), we use the standardized first three PCs for the k-means clustering. We

find the optimal number of clusters to be 4 (Fig. S13). This number of clusters maximizes

the Calinski-Habarasz score (Caliński & Harabasz, 1974), minimizes the Davies-Bouldin

score (Davies & Bouldin, 1979) and marks a clear transition in the within-cluster sum of

squared distances (i.e., the Elbow method).

2.2. Clustering results

As described in the main text, we identify four different clusters of deep-reaching MHW

(dMHW) vertical propagation types: a) block-like, b) deepening, c) shoaling, and d) multi-

surfacing MHWs (Fig. 11 of main text). Despite the overall common shape for all ex-

tremes, the within-cluster variability of dMHWs is still substantial. Figure S14 shows 4

randomly selected MHW examples for each cluster. Figure S15 shows the clustering re-

sults for the MHW characteristics that were selected to be used in the principal component

analysis prior to clustering. Both figures highlight the high variability of MHW charac-

teristics within clusters. For comparison, Figure S15 shows the MHW characteristics for

the ML-confined MHWs (sMHWs), which were not considered for the clustering.
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Fig. S16 shows the clustering results, but for the principal components on which the

the clustering was finally performed.

Lastly, Fig. S17 shows the clustering results for secondary MHW characteristics, that

is characteristics that are not directly used for clustering, such as the simple column

duration, surface duration, the mean depth relative to the MLD, the mean depth relative

to the surface, and the mean fraction of the MHW being present in the mixed layer

(ML). Again for comparison, the ML-confined sMHW properties are also shown in Figure

S17. We find that the distinction between the different clusters is also reflected in these

secondary characteristics.
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3. Sensitivity Analyses

3.1. MHW characteristics for different MHW detection cases

As outlined in Section 2.6 of the main text, we test for the sensitivity of the detection

and characteristics of MHWs regarding seven different methodological choices (see Fig.

S18 for an overview). In each sensitivity case we solely alter one methodological choice,

while keeping all other choices as in the reference case, which is used throughout the main

manuscript.

Figure S19 shows mapped (composite) MHW characteristics for the reference case and

all seven sensitivity cases. All characteristics (number of surface-only MHWs per year,

number of all MHWs (dMHWs and sMHWs) per year, percentage of MHWs that are

dMHWs, mean dMHW duration, mean dMHW depth below the MLD, and the compos-

ite maximum of the maximum dMHW intensity) show only little variation between the

reference and sensitivity cases. The most striking difference occurs for the sensitivity case

D, with fewer, slightly shorter and slightly shallower MHWs than in the reference case

(Fig. S19e,m,C,L). However, this is to be expected, as the threshold for the extreme

temperature detection is elevated to the 95th percentile in this sensitivity case, leading to

substantially less (∼50 %) grid cells harboring extreme conditions.

3.2. Sensitivity of Boolean array B to morphological operations

Applying the morphological operations to smooth the Boolean array B, as outlined in

Section 2.2.1 of the main text, has the potential to affect the overall number of detected

extreme days. Figure S20 therefore compares the number of extreme days in the un-

smoothed and smoothed Boolean array B at different depth levels (surface, 50 m, 250 m

and 500 m depth). For the surface, we perform the same comparison also for the obser-
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vational SST data set. We find that in the upper ocean, the effect of the morphological

operations on the total number of MHW days is relatively weak. Below 250 m depth, the

tropical EP is however marked by local increases of up to more than 20 % in the total

number of extreme days (Fig. S20). This implies that the unsmoothed extreme signals

in the subsurface tropical EP are often interrupted by short non-extreme periods (shorter

than five days). The morphological operations fill these gaps. Still, sensitivity case F

(Fig. S18) shows only minor differences in the analyzed MHW characteristics between

the smoothed and unsmoothed case (Fig. S19).

3.3. Sensitivity of MHW clustering

We test the robustness of the MHW clusters which we obtained from the k-means

clustering described in Section 2.5 of the main text. We therefore analyze how sensitive

the clusters are with regards to a) an omission of 10–99 % of MHWs and b) the omission

of individual MHW characteristics feeding into the principal component anlysis prior to

clustering (Fig. S21). For each case we compare the cluster agreement for the labeled

MHWs between the standard case and the sensitivity case using Cohen’s Kappa coefficient

(κ, Cohen (1960)). κ = 1 indicates perfect agreement, while κ = 0 suggests agreement

based on random labeling.

As the MHW omission is random, we repeat each sensitivity case (10 % to 99 % of MHWs

omitted) ten times, to avoid accidental high agreement between the reference and the

respective sensitivity case. As we detect in total 1 400 170 MHWs, an omission of 99 % of

MHWs still leaves ∼14 000 MHWs for clustering. For all analyzed MHW omission cases we

find on average very high agreements between the cluster assignment for the reference and

sensitivity cases (κ ≥ 0.99), indicating high robustness of the clustering. The clustering
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consistently assigns the MHWs to the same clusters even under the omission of 99 % of

the detected MHWs.

The respective elimination of one of the six MHW characteristics that feed into the

principal component analysis, has a somewhat bigger impact on the cluster assignment

agreement. In most cases, κ > 0.7. Only for the omission of the “start delay at the

surface” and the “early end at the surface” (normalized with the MHW column duration,

see Fig. 2), κ drops to around 0.65, indicating the important role of these characteristics

in the clustering procedure. Nevertheless, as all sensitivity cases yield κ > 0.6, we deem

the results of the clustering to be also robust to the general choice of MHW characteristics.

4. Linking surface-only MHWs to their associated subsurface structure

Figure S22 shows two-dimensional histograms between surface-only MHW character-

istics and the corresponding characteristics diagnosed for the associated water column

MHWs. Overall, the surface-only MHW characteristics are only moderately correlated

with the corresponding characteristics of the MHWs in the water column. For instance,

the surface-only MHW duration is correlated with a Pearson (Spearman) correlation of

0.46 (0.63) with the associated MHW column duration (Fig. S22a). Correlations for the

severity are similar (Fig. S22c) and somewhat lower for the maximum intensity with

rPearson = 0.36 (rSpearman = 0.55, Fig. S22b). Hence, despite these weak to moderate

correlations, longer lasting, more intense and more severe surface-only MHWs are gen-

erally associated with longer lasting, more intense and more severe MHWs in the water

column, respectively. Yet, the two-dimensional histograms show that the longest last-

ing MHWs in the water column with durations of more than 1000 days are associated

with relatively short-lived surface-only MHWs (less than 100 days, Fig. S22a). Similarly,
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KÖHN ET AL.: VERTICAL STRUCTURE & PROPAGATION OF MHWS X - 15

the most intense and severe MHWs in the water column are associated with relatively

moderate surface-only MHWs. These results show the challenges in estimating individual

subsurface MHW characteristics based on the surface MHW signature.

In the main text (Section 4.4), we explore the possibility of identifying dMHWs based on

the properties of their associated surface-only MHWs. We therefore fit logistic regression

models between the binary distinction of the associated MHWs into sMHWs and dMHWs

and the associated surface-only MHW properties, such as duration, maximum intensity

and severity. Figure 10 of the main text shows the model fit and the predictive capacities

of the statistical models fitted for all detected MHWs in the EP. Figure S23 shows the

same analysis but for individual subregions of the EP. As such, we separate the EP into

eight different subregions by drawing separation lines along 5°S, 5°N, 23°N and 40°N. We

distinguish between open ocean regions and coastal regions by using the 700 km distance

from the coast isoline. Only in the equatorial Pacific and the subpolar North Pacific

(west of 135°W) we do not consider a separate coastal region (Fig. S23). We find that

individual regions show higher predictive capacity for the subsurface MHW structure than

across the entire EP (compare with Fig. 10 of the main text), indicated by the confusion

matrices. While all regions show correct dMHW predictions in around 60–75 %, highest

predictive capacity exists in the Equatorial Pacific. There, 77 % (76 %) of MHWs are

correctly predicted based on surface-only MHW severity (duration).
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Figure S1. Telescopic grid of the humpac15 Pacific basin setup. Panel a shows

the model grid dimension (outlined by black lines) and indicates the grid structure by

representing every 50thgrid point by the grey lines. The color shows the grid cell size

(∆x), with finest resolution off Peru and coarsest resolution off Australia. Panel b shows

the ratio of the model grid cell size and the first baroclinic Rossby radius of deformation

(LRo), calculated using a gravity wave speed of c = 2.4 m s−1. Values smaller (larger) than

1 indicate finer (coarser) model resolution than the deformation radius. Orange, green,

and magenta lines indicate value of 1 for c = 2.0, 2.4, and 3.0 m s−1, respectively.
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Figure S2. Vertical regridding of model output from terrain following coordinates

(s-levels) to fixed z-levels. Panel a shows the vertical levels as a function of depth. The

black line shows the model native vertical grid (s-levels) at a location of maximum water

depth, i.e. at a maximally stretched vertical grid. The blue and orange lines show the

“full” and “coarse” z-level grid, respectively. In the “full” grid, 37 z-levels are chosen to

closely follow the maximally stretched s-level depths. The “coarse” z-level grid takes only

every second z-level of the “full” grid, leading to 19 z-levels. The different vertical grids

are visualized in panel b.
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Figure S3. Mean temperature biases of the ROMS model hindcast (1979-2019) at a)

the surface, b) 100 m, c) 200 m and d) 400 m depth. Biases are calculated as ROMS minus

World Ocean Atlas 2018 (Boyer et al., 2018).

Figure S4. Model evaluation of the mixed layer depth (MLD) and sea surface height

(SSH). Panel a shows the hindcast averaged MLD in black contour lines as well as the

hindcast averaged MLD bias (MLD’) in color (compared to Holte et al. (2017). Panel b

compares the hindcast averaged model SSH to satellite altimetry observations (CMEMS,

2019).
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KÖHN ET AL.: VERTICAL STRUCTURE & PROPAGATION OF MHWS X - 21

Figure S5. Maps showing the standard deviation (upper) and the auto-correlation e-

decay time (lower) of the de-trended SST anomaly (SST’) field at the ocean surface. Left

panels show the metrics based on observations (OISSTv2 data, Reynolds et al. (2007)),

right panels for the ROMS hindcast. Temperature anomalies are calculated relative to the

daily climatology of sea surface temperatures calculated over the time period 1982-2011

following Hobday et al. (2016).
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Figure S6. Temperature trends in the ROMS hindcast. Upper row (panels a-e) shows

mapped temperature trends calculated over the full hindcast (1979–2019) at different

depth levels (surface, 100 m, 200 m, 310 m, 400 m depth). Lower row (panels f-j) shows

the same, but derived from the monthly EN4 data set between 1981 and 2019. Shown

depths are not identical as in ROMS, but chosen as close as possible. Letters a-d in all

panels indicate locations for which temperature time series are shown in Figure S7.
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Figure S7. Temperature time series from the daily ROMS hindcast (panel a, 1979-2019)

and the monthly EN4 data set (panel b, 1981-2019) at the four locations a-d indicated in

Figure S6. For both data sets the time series are shown at for five depths corresponding

to the depths shown in Figure S6.

Figure S8. Panels show where extreme temperatures are detected at each depth level

on the first day of the hindcast, i.e. Jan 1st, 1979.
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Figure S9. Time series of EP area fraction covered by a) all extreme grid cells, b)

extreme grid cells associated with MHWs with a surface imprint, c) extreme grid cells

associated with MHWs without a surface imprint (which are thus discarded in this study).
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Figure S10. Temperature anomalies relative to the climatology during the 1997 El

Niño event as simulated in the ROMS hindcast (top row) and as recorded with the

TAO/TRITON array (bottom row) at five different mooring locations along the equa-

tor east of 155°W. The panels are arranged by their geographical locations from west to

east. Temperature anomalies are calculated relative to the climatology following Hobday

et al. (2016). For the hindcast, the climatology is calculated over the 1982–2011 period

(as throughout the main study). For the TAO/TRITON data, we use all available data

to calculate the climatologies, as the mooring data generally covers only ∼20–25 years.
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Figure S11. Correlation matrix of primary features, showing rank correlations between

all MHW characteristics feeding into the principal component analysis.
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Figure S12. Results of the principal component analysis. Panel a) shows the eigenvalues

associated with each individual principal component (Scree plot). Panel b) shows the

explained variance by each principal component (PC).

Figure S13. Analysis of optimal number of clusters. Clustering is repeatedly per-

formed using 2–19 clusters. For each chosen number of clusters, the Calinski-Harabasz

score (panel a), the Davies-Bouldin score (panel b) and the within-cluster sum of squared

distances (Elbow method, panel c) is calculated.
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Figure S14. Four examples of the time-depth MHW structures for each cluster, i.e.,

block-like (first column), deepening (second column), shoaling (third column), and multi-

surfacing (fourth column) MHWs. Colored areas indicate extreme grid cells. Dashed

black line shows linear fit to the temporal evolution of the upper MHW boundary.
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Figure S15. Cluster results. Violinplots show the six MHW characteristics that were

used in the principal component analysis based on which the four different clusters were

identified (colorcoding/cluster numbering as in Figure 11). Black dots and white lines

indicate the median and the interquartile range of the distribution, respectively. For

comparison, the corresponding distribution and statistics for the mixed layer-confined

sMHWs is shown (denoted by X ), even though they are not considered in the clustering.
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Figure S16. Cluster results. Violinplots show the three clustered PCs (colorcod-

ing/cluster numbering as in Figure 11). Black dots and white lines indicate the median

and the interquartile range of the distribution, respectively.
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Figure S17. Cluster results. Violinplots show the clustering results for five further

MHW characteristics that were not used in the principal component analysis feeding into

the clustering (colorcoding/cluster numbering as in Figure 11). Black dots and white

lines indicate the median and the interquartile range of the distribution, respectively.

For comparison, the corresponding distribution and statistics for the mixed layer-confined

sMHWs is shown (denoted by X ), even though they are not considered in the clustering.
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Figure S18. The different sensitivity cases regarding the MHW detection. The top

row shows the reference case used throughout the main manuscript. In each sensitivity

case A-G, only one of the methodological choices outlined in 2.6 is altered (highlighted in

red).
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Figure S19. Composite MHW characteristics in different sensitivity cases (see Fig.

S18). For comparability, a minimum duration criterion is applied to case F, in which the

Boolean array B is not filtered using the morphological operations (see Sec. 2.2.1 of main

text). It requires that the MHWs have a surface duration of at least five days.
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Figure S20. Effect of morphological operations on the number of extreme days in sea

surface observations between 1982–2019 (top row, OISSTv2, (Reynolds et al., 2007)) and

below in the 1979–2019 ROMS hindcast (surface, 50 m, 250 m and 500 m depth). Left

(middle) column shows number of extremes days in smoothed (unsmoothed) Boolean

array B. Right column shows the relative difference (smoothed minus unsmoothed) in %.
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Figure S21. Sensitivity analysis of MHW clustering using Cohen’s Kappa coefficient.

In the upper panel, we test for the robustness of the clustering with respect to the omission

of 10 % to 99 % of omitted MHWs. In the lower panel, we test for the robustness of the

clusters with respect to the omission of individual MHW characteristics feeding into the

principal component analysis. In both panels we conduct for each case 10 sensitivity

clusters. We indicate the mean across all 10 cases by the bold black number and the

minimum and maximum value by the numbers below and above, respectively.
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Figure S22. Association between surface-only MHW characteristics and the associated

water column MHW characteristics. Panels a, b and c shows each a two-dimensional his-

togram for the duration (D), maximum intensity (Imax in °C) and severity (S = Imean×D

in days) for surface-only MHWs and their associated water column MHWs, respectively.

Each panel shows the 1:1 (dashed black) line as well as the Pearson and Spearman corre-

lation (r) between the surface-only and associated water column MHWs.
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Figure S23. Confusion matrices for regionalized logistic regression model based pre-

dictions of MHWs that are either deep-reaching (dMHWs) and ML-confined (sMHWs).

Purple, blue and orange matrices show correct/false predictions based on surface only

duration, maximum intensity and severity, respectively. Underlying map shows the dif-

ferent regions, demarcated by the black lines. Coastal boxes extend to 700 km offshore.

Latitudinal regional boundaries are at 5°S, 5°N, 23°N, and 40°N.
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