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Abstract

Ambient air pollution is an increasing threat to society, with rising numbers of adverse outcomes and exposure inequalities across

the globe. Reducing uncertainty in health outcomes models and exposure disparity studies is therefore essential to develop

policies effective in protecting the most affected places and populations. This study uses the concept of information entropy to

study tradeoffs in mortality uncertainty reduction from increasing input data of air pollution versus health outcomes. We study

a case scenario for short-term mortality from fine particulate matter (PM2.5) in North Carolina for 2001-2016, employing a

case-crossover design with inputs from an individual-level mortality dataset and high-resolution gridded datasets of PM2.5 and

weather covariates. We find a significant association between mortality and PM2.5, and the information tradeoffs indicate that

in this case increasing information from mortality may reduce model uncertainty at a faster rate than increasing information

from air pollution. We also find that Non-Hispanic Black (NHB) residents tend to live in relatively more polluted census

tracts, and that the mean PM2.5 for NHB cases in the mortality model is significantly higher than that of Non-Hispanic White

(NHW) cases. The distinct distribution of PM2.5 for NHB cases results in a relatively higher information value, and therefore

faster uncertainty reduction, for new NHB cases introduced into the mortality model. This newfound influence of exposure

disparities in the rate of uncertainty reduction highlights the importance of minority representation in environmental research

as a quantitative advantage to produce more confident estimates of the true effects of environmental pollution.
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Abstract 26 

Ambient air pollution is an increasing threat to society, with rising numbers of adverse 27 

outcomes and exposure inequalities across the globe. Reducing uncertainty in health outcomes 28 

models and exposure disparity studies is therefore essential to develop policies effective in 29 

protecting the most affected places and populations. This study uses the concept of information 30 

entropy to study tradeoffs in mortality uncertainty reduction from increasing input data of air 31 

pollution versus health outcomes. We study a case scenario for short-term mortality from fine 32 

particulate matter (PM2.5) in North Carolina for 2001-2016, employing a case-crossover design 33 

with inputs from an individual-level mortality dataset and high-resolution gridded datasets of 34 

PM2.5 and weather covariates. We find a significant association between mortality and PM2.5, and 35 

the information tradeoffs indicate that in this case increasing information from mortality may 36 

reduce model uncertainty at a faster rate than increasing information from air pollution. We also 37 

find that Non-Hispanic Black (NHB) residents tend to live in relatively more polluted census 38 

tracts, and that the mean PM2.5 for NHB cases in the mortality model is significantly higher than 39 

that of Non-Hispanic White (NHW) cases. The distinct distribution of PM2.5 for NHB cases 40 

results in a relatively higher information value, and therefore faster uncertainty reduction, for 41 

new NHB cases introduced into the mortality model. This newfound influence of exposure 42 

disparities in the rate of uncertainty reduction highlights the importance of minority 43 

representation in environmental research as a quantitative advantage to produce more confident 44 

estimates of the true effects of environmental pollution.   45 



 3

1. Introduction 46 

Air pollution is an increasing threat to today’s society. Data from the Global Burden of 47 

Disease study ranked ambient pollution from PM2.5 as the 5th leading global mortality risk factor 48 

in 2015, causing 4.2 million deaths and 103.1 million disability-adjusted life years due to health 49 

impacts such as lung cancer, lower respiratory infection, chronic obstructive pulmonary disease, 50 

cerebrovascular disease, and ischemic heart disease (Cohen et al., 2017). A recent update for this 51 

study (Fuller et al., 2022) reports a rise in ambient pollution attributable deaths to 4.5 million in 52 

2019, a 7% increase since 2015 and a 66% increase since 2000, revealing that, despite increased 53 

awareness and attemtps at remediation of this problem, our efforts have so far been insufficient 54 

in protecting society from the harms of ambient pollution.  55 

The United States stands out as a successful case of continued efforts to curb air pollutant 56 

emissions. The Clean Air Act required in 1970 that the Environmental Protection Agency (EPA) 57 

set National Ambient Air Quality Standard (NAAQS) for “criteria pollutants” and establish a 58 

network of ambient pollution monitoring stations to assess compliance to these standards. The 59 

first NAAQS specifically for PM2.5 was issued in 1997 (once monitors were advanced enough to 60 

measure particles of this size), setting the standard for annual mean concentration at 15 μg/m3 61 

(EPA, 1997). However, subsequent findings of harmful health effects at air pollution 62 

concentrations that blend into background levels have prompted the continual lowering of 63 

NAAQS (McClellan, 2002). The standard for PM2.5 was lowered to 12 μg/m3 in 2012 (EPA, 64 

2013), and a proposal issued in January of 2023 is now currently underway to further lower the 65 

NAAQS to 9-10 μg/m3 (EPA, 2023). Although these nationwide measures have been effective in 66 

reducing overall levels of air pollution, they have not been as successful in curbing demographic 67 

and socioeconomic inequalities in relative exposure (Colmer et al., 2020; Liu et al., 2021). 68 
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Extensive research has found demographic and/or socioeconomic disparities in exposure 69 

to PM2.5 and other air pollutants across different regions of the world (Hajat et al., 2015). In the 70 

United States, multiple studies have found that people of color have been systematically exposed 71 

to higher levels of air pollution (Colmer et al., 2020; Liu et al., 2021; Tessum et al., 2021). These 72 

racial disparities are not only found across different income levels, urbanicity levels, and 73 

emission types (Liu et al., 2021; Tessum et al., 2021), but they have also persisted despite the 74 

nationwide decreasing trend in air pollution seen in the last four decades, with studies identifying 75 

that the relatively most polluted census tracts in present day are largely the same census tracts 76 

that were most polluted in the 80s and the 90s (Colmer et al., 2020; Liu et al., 2021).  77 

In light of this lack of progress in addressing both air pollution-related health outcomes at 78 

the global level and pollution exposure disparities at the national level, it is essential to develop 79 

policies that will effectively target the places and populations most affected by ambient air 80 

pollution. However, one of the multiple challenges to effective policy is the uncertainty affecting 81 

ambient pollution health impact assessments (HIAs) used to guide AQ standards from local and 82 

national (EPA, 2019; EU, 2008) to global (WHO, 2006) levels. These studies integrate multiple 83 

sources of information such as, among others, air pollution concentrations and related population 84 

exposure, physiological responses to pollution exposure, and their variation by individual-level 85 

factors (such as gender, age, body mass, race, etc.) as well as residential factors (such as 86 

proximity to water bodies or green spaces). Each of these sources of information involved in the 87 

air pollution HIA may introduce several different kinds of uncertainty into the final assessment 88 

model (Nethery & Dominici, 2019).  89 

Among the many possible sources of uncertainty in HIAs, this study focuses on 90 

uncertainty stemming from incomplete knowledge of the pollution and/or health impact 91 
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scenarios, caused by data scarcity in the input information. When there is a recognized scarcity 92 

in observational data precluding the full characterization of the pollution-exposure-effects 93 

scenario, action can be taken to augment the available input datasets to increase our knowledge 94 

of the problem and gain confidence in the results of the final assessment. Solutions to the 95 

problem of data scarcity have been indeed addressed extensively in both the air pollution and the 96 

epidemiology fields. 97 

Air pollution research has proposed different approaches to data assimilation for better 98 

risk characterization, mainly by supplementing ground observations from official monitoring 99 

stations (for example, those from the United States’ Environmental Protection Agency, EPA) 100 

with other sources of data, such as citizen-science observations (Bonas & Castruccio, 2021; Shen 101 

et al., 2021), satellite observations of atmospheric and aerosol properties (Van Donkelaar et al., 102 

2021; Van Donkelaar et al., 2015; Zani et al., 2020), chemical transport models, or CTMs (Giani, 103 

Anav, et al., 2020; Giani, Castruccio, et al., 2020), and/or dispersion models (Bates et al., 2018). 104 

In cases where ground-based pollution data is sparse, CTMs able to reproduce monitored 105 

pollutant concentrations have also been used to make robust assessments of the region’s 106 

pollution risks (Mead et al., 2018). Therefore, several studies have focused on localized 107 

downscaling of existing CTMs to achieve finer resolution in areas of interest (Tessum et al., 108 

2017) or in the implementation of higher-resolution CTMs for a more accurate representation of 109 

meteorological, chemical and aerosol properties (Crippa et al., 2019).  110 

Previous work has also focused on assessing epidemiological uncertainty. For example, 111 

meta-analyses of epidemiological studies combine multiple previous studies’ results for 112 

robustness (Atkinson et al., 2014; Pope et al., 2020). Another approach (Burnett et al., 2014) 113 

developed an integrated exposure-response model by combining epidemiological data from 114 
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multiple PM2.5 sources, such as ambient air pollution, active and second hand tobacco smoke, 115 

and household solid cooking fuel. A recent study (Coffman et al., 2020) derived distributions 116 

from existing epidemiological data to model uncertainty in the exposure-response curve at low 117 

levels of PM2.5, for which data is usually sparse. Other studies have performed disaggregation of 118 

exposure data with the goal of improving health effect estimation in future epidemiological 119 

studies (Beckx et al., 2009; Breen et al., 2020).  120 

Data scarcity in air pollution epidemiology studies also has environmental justice 121 

implications. Studies of air pollution epidemiology have been traditionally based on ambient air 122 

pollution monitoring data from the US Environmental Protection Agency (EPA), resulting in an 123 

urban bias in the assessment (Bell et al., 2004; Dominici et al., 2006) since the EPA prioritizes 124 

monitor placements in population-dense areas (Bravo et al., 2012; Miranda et al., 2011). Even 125 

within relatively-urbanized counties, minority populations have been found to live closer to 126 

sources of air pollution but further away from monitoring stations (Stuart et al., 2009). Recent 127 

research has therefore leveraged the use of satellite data, land use regression, and air quality 128 

models to expand and diversify the spatial area and thus, population, for which PM2.5 exposures 129 

and health effects can be estimated (Ha et al., 2014; Hyder et al., 2014; Kloog et al., 2012; Qian 130 

et al., 2019).  131 

Although the problem of data scarcity has been extensively studied as it relates to air 132 

pollution, epidemiology, and environmental justice, there remains a need for more 133 

interdisciplinary research linking the findings from all these fields under a single framework. We 134 

began addressing this need in a previous study (Alifa et al., 2022) where we adapted a 135 

methodology proposed in the hydrology field (De Barros & Rubin, 2008; De Barros et al., 2009) 136 

to create a novel framework that identifies the most efficient pathway to reduce uncertainty in 137 
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estimates of air pollution-associated health risks. The studies in hydrology (De Barros & Rubin, 138 

2008; De Barros et al., 2009) had explored the concept of uncertainty tradeoffs in the modeling 139 

of the health effects of groundwater contaminants combining the concept of information entropy 140 

with Bayesian inference methods; Our subsequent study (Alifa et al., 2022) adapted this 141 

framework for frequentist inference to study the effect of data increase on the reduction of air 142 

pollution mortality uncertainty, measured through the metric of information entropy, and 143 

visualize the tradeoffs in the resulting uncertainty of the mortality model depending on the kind 144 

of input data gained. The two cases presented in that study (Alifa et al., 2022), one with artificial 145 

data for PM2.5 and mortality data used in a long-term exposure model, and one with real time-146 

series data used in a short-term exposure model, demonstrated the applicability of the method for 147 

aiding stakeholders in choosing the most efficient pathway for HIA uncertainty reduction when 148 

limited resources (e.g. time, money, computational power) prevent them from investing in 149 

improvements for both pollution and health outcomes data.  150 

We now seek to explore this framework further by applying it to a more complex case 151 

scenario involving spatio-temporal data. We use a case-crossover model design (Jaakkola, 2003) 152 

to investigate the association of short-term PM2.5 exposure with mortality in North Carolina for 153 

the years 2001-2016, through the use of individual-level mortality data and high-resolution 154 

gridded datasets of PM2.5 and weather covariates. This study aims to not only illustrate the 155 

usefulness of our information entropy tradeoff methodology to generate more robust impact 156 

assessments, but also to gain new knowledge of the influence of socio-demographic inequalities 157 

in the dynamics of uncertainty reduction.  158 

The rest of the study is structured as follows: section 2 describes the datasets and 159 

methods used to study exposure disparities, pollution-mortality associations, and uncertainty 160 
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tradeoffs from changes in input information. Section 3 presents the study results, and section 4 161 

concludes with a discussion of the results’ implications and dialogue with recent literature.   162 

2. Methods 163 

2.1 Data  164 

Mortality data 165 

We use individual-level mortality data for North Carolina from 2001 to 2016. The data 166 

was obtained from the North Carolina State Center for Health Statistics, Vital statistics 167 

department. Our analysis utilizes each participant’s date of death, residential location, and 168 

race/ethnicity. We studied total mortality (all causes of death except external causes, 169 

International Classification of Diseases, ICD10, A00-R99). Other individual characteristics not 170 

analyzed in this work are also included in the mortality dataset, such as sex, age at death, 171 

education, and marital status. Additional analysis of the correlation of air pollution mortality 172 

with these individual-level variables, as well as that of residential and environmental variables, 173 

has been performed elsewhere (Son et al., 2020). 174 

Air pollution data 175 

We use daily gridded data from a 1km model of PM2.5 concentration (Di et al., 2021). 176 

This ensemble-based model utilizes machine learning algorithms and multiple variables from 177 

monitoring stations from the Environmental Protection Agency (EPA), satellite measurements, 178 

land use terms, chemical transport model output, and others, to predict daily PM2.5 for the entire 179 

United States. More details about model development and evaluation are available elsewhere (Di 180 

et al., 2019). The exposure assigned to each participant is based on the 1km gridcell that contains 181 

their residential location. 182 
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Weather data 183 

We include daily gridded data on mean temperature and dewpoint temperature as 184 

covariates in our mortality modeling. Inclusion of these covariates is common practice in air 185 

pollution-epidemiology studies (e.g., (Nhung et al., 2017; Son et al., 2020)) to control for 186 

weather-related mortality. These data are obtained on a 4×4km grid from the Parameter-elevation 187 

Regressions on Independent Slopes Model (PRISM), which combines ground-based 188 

measurement station data with a digital elevation model to create gridded climate products for 189 

the U.S. Additional details are available elsewhere (Daly et al., 2008; PRISM Climate Group, 190 

2004). Similarly to the air pollution data, each participant is assigned the weather data of the grid 191 

cell containing their residence.    192 

Census data 193 

We utilize US census data on race for the analysis of disparities in air pollution exposure. 194 

We chose the data for 2010 since this census year falls around the middle of the range of our 195 

analysis (2001-2016). A comparison with 2020 census data determined that although North 196 

Carolina’s population is increasing, the changes in racial composition and spatial distribution of 197 

the population are small enough for the results of our study to not be affected by the choice of 198 

census year.  199 

2.2 Exposure disparities 200 

The 2010 US census reports 21.2% of the population of North Carolina was NHB, 201 

making them the largest racial minority in the state. Therefore, we focus our study of PM2.5 202 

exposure disparities on the NHB population.  203 

We derive the average PM2.5 concentration between 2001 and 2016 for each census tract 204 

in the state and compare these to the tract’s %NHB using quantile regression (Koenker & Bassett 205 
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Jr, 1978; Koenker & Hallock, 2001). Quantile regression estimates the conditional quantile(s) of 206 

interest of the response variable (in this case, PM2.5) as a linear combination of the predictor 207 

variable (in this case, %NHB). We model the 10th, 25th, 50th, 75th, and 90th percentile PM2.5 using 208 

data from the 1405 census tracts in the state with NHB residents. Ordinary linear regression, in 209 

contrast, estimates the conditional mean of the response variable, only giving information about 210 

the relationship between air pollution levels and the percentage of NHB residents for the 211 

“average” census tract. Using quantile regression provides more comprehensive results, allowing 212 

us to study this relationship for the more and least polluted census tracts, as well as the median 213 

census tracts, thus exploring racial inequalities in exposure at different relative exposure levels.  214 

In addition to state-wide results, we also investigate exposure disparities for the two most 215 

populated counties in the state: Mecklenburg County (population 923,427 in the 2010 census, 216 

50.5% Non-Hispanic White (NHW) and 30.2% NHB) and Wake County (population 906,969 in 217 

the 2010 census, 62.2% NHW and 20.4% NHB). We report quantile regression results for each 218 

county, and we also compare the density function of the %NHB population in the least polluted 219 

census tracts in each county, determined as those with average PM2.5 in the 1st quartile, to density 220 

function of %NHB in the most polluted census tracts (those with average PM2.5 in the 4th 221 

quartile). This comparison of density functions provides an assessment of the differences in the 222 

racial distribution of the population between the most polluted and least polluted census tracts in 223 

the county.  224 

2.3 Mortality modeling 225 

We model the association between PM2.5 and short-term mortality with a case-crossover 226 

design. This model uses each individual as their own control, eliminating the need to control for 227 

individual-level characteristics and thus greatly reducing the number of necessary covariates for 228 
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good model specification. This low number of covariates presents an advantage for our goal of 229 

isolating the influence of increasing input data for a specific variable (in this study, either for 230 

PM2.5 or mortality) on the uncertainty reduction of the epidemiology model. For a different type 231 

of model requiring more individual-level controls, the epistemic uncertainty introduced by a high 232 

number of covariates could obscure the uncertainty reduction achieved by any single variable’s 233 

information gain. We select control days based on the same day of the week of the same month 234 

of the individual’s death. Each case day therefore has more than one control, and we allow for 235 

bi-directional sampling of controls (selection of control days both before and after the 236 

individual’s death) to control for bias from temporal trends in the pollution data (Navidi, 1998). 237 

Temperature and dewpoint temperature are also incorporated as covariates in the model.  238 

The choice to investigate the pollution-mortality association in the short-term is 239 

motivated by the type of health data available for this study. We use a dataset where cases have 240 

been selected based on health outcome (in this case, mortality), making the data suitable for a 241 

short-term study using a case-control design and further, for a case-crossover design since we do 242 

not have data on other individuals who did not experience the outcome of interest (Belbasis & 243 

Bellou, 2018; Jaakkola, 2003). Since air pollution has been widely recognized to have both 244 

short-term and long-term effects, the same information tradeoffs methodology presented here 245 

could be applied to a different epidemiology model in the presence of health data suitable for a 246 

long-term study. For example, a long-term study could be performed using a cohort design, 247 

where participants are selected based on their degree of exposure to air pollution and placed into 248 

the “exposed” or “unexposed” group, and then health outcomes for these groups are observed 249 

and compared over a specified period of time (Belbasis & Bellou, 2018). 250 
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The coefficients of the case-crossover model are fit using conditional logistic regression 251 

(Pampel, 2020). If we describe mortality 𝑌௜ as following a Bernoulli distribution (equation ( 1a )), 252 

where 𝑌௜ can be equal to 1 for the day of death or 0 for the control day(s), and the probability that 253 𝑌௜ = 1 is P, then we can model the logged-odds of P as a linear relationship between our 254 

predictors of interest (equation( 1b )): 255 Y୧~ Bernoulli (P); ( 1a ) ln ቀ ௉ଵି௉ቁ = 𝛼 + 𝛽𝑃𝑀ଶ.ହ + 𝛾𝑇௧ + 𝛿𝐷௧, ( 1b ) 

where 𝛼 is the intercept and β is the fitted coefficient describing the association of PM2.5 with 256 

mortality, also called exposure coefficient. We will focus on β for the study of uncertainty 257 

reduction in the case-crossover model (additional details are provided in section 2.4). The 258 

coefficients 𝛾 and 𝛿 describe the association of temperature (T) and dewpoint temperature (D), 259 

respectively. Solving for the odds by exponentiating equation ( 1b ) gives us the expression: 260 ௉ଵି௉ = 𝑒ఈ × 𝑒ఉ௉ெమ.ఱ × 𝑒ఊ் × 𝑒ఋ஽, ( 1 ) 

where each exponent term can be interpreted as the odds ratio (OR) for the association of each 261 

covariate with mortality. Our main interest lies in the second exponent on the right-hand side, 262 𝑒ఉ௉ெమ.ఱ. This term represents the OR for a PM2.5 increment of 1 μg/m3, which we will refer to as 263 

OR1. For consistency with common practice in reporting of epidemiology results, we will report 264 

the OR for a PM2.5 increment of 10 μg/m3 (OR10) which can be derived from OR1 as: 265 𝑂𝑅ଵ଴ =  𝑒ఉ×ଵ଴ = (𝑒ఉ)ଵ଴ = (𝑂𝑅ଵ)ଵ଴. ( 2 ) 

We initially examine the association of mortality with PM2.5 at multiple lags: lag0, lag1, 266 

and lag 2 (meaning the PM2.5 on the day of death, 1 day before death, and 2 days before death, 267 

respectively). We also analyze two cumulative lags: lag01 (the cumulative effect of lags 0 and 1) 268 

and lag02 (cumulative effect of lags 0, 1, and 2), by fitting mortality against the average of the 269 
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PM2.5 levels at the lags of interest. Then we perform stratified analysis to investigate differences 270 

in effects between the NHB and NHW populations at the aforementioned PM2.5 lags. Since this 271 

stratified analysis performs multiple tests on subsets of the same dataset, we adjust its results for 272 

multiplicity by using the Bonferroni correction (Chen et al., 2017; Hochberg & Tamhane, 1987). 273 

Based on the results of the full model and the stratified analysis, we will select a single lag of 274 

PM2.5 for further investigation of uncertainty tradeoffs. The temperature and dewpoint 275 

temperature covariates have the same lag as the PM2.5 in each model fit.  276 

2.4 Information change and uncertainty tradeoffs 277 

This study adopts the uncertainty tradeoffs methodology developed in (Alifa et al., 2022) 278 

for the study of a realistic case scenario through the use of spatio-temporal data on pollution, 279 

mortality, and demographics. We will study how fitting the case-crossover model described in 280 

2.3 with changing input information on mortality and air pollution (𝑌௜ and PM2.5 in equation ( 1 281 

)), respectively) affects the uncertainty of the pollution-mortality coefficient, β, in the model fit. 282 

We will also take advantage of the demographic information included in the mortality dataset to 283 

investigate racial differences in uncertainty reduction from improved health data.  284 

Uncertainty quantification of the mortality model 285 

We use the metric of information entropy to characterize the uncertainty of our estimate 286 

for the exposure coefficient, β෠. Since we can assume β෠ is a continuous random variable, its 287 

entropy can be defined as (Christakos, 2012): 288 

H(β෠) = − න f(β෠) ln(f(β෠)) dβ෠ஶ
ିஶ , ( 3 ) 

where f(β෠) is the probability density function (PDF) of the estimate. As more input information 289 

is acquired for the model in equation ( 1 )), the inference becomes more accurate such that β෠ → β 290 
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in probability, which results in a reduction of H(β෠). Our previous publication (Alifa et al., 2022) 291 

demonstrated several methods for deriving entropy both parametrically and non-parametrically. 292 

For this study, we derive H(β෠) parametrically from the standard error of the exposure coefficient, 293 σෝஒଶ , output from the conditional logistic regression fit. Assuming β෠ to be asymptotically normal, 294 

we use the closed form equation for the entropy of a normal distribution,    295 

H൫β෠൯ = 12 log(2πeσෝஒଶ). ( 4 ) 

Additionally, the relative entropy ∆𝐇ஒ෡ is a useful metric to compare the uncertainty of 296 

different information stages. We can define the vector ∆𝐇ஒ෡ as: 297 ∆𝐇ஒ෡ = 𝐇ஒ෡ − Hஒ෡,୰ୣ୤, ( 5 ) 

where 𝐇ஒ෡ is a vector containing H൫β෠൯ for different stages of information, and Hஒ,୰ୣ୤ is the 298 

entropy for the information stage selected as reference. For this study we order the elements of 299 𝐇ஒ෡ from those computed with least to most information, and select the stage with most 300 

information as our reference, resulting in a ∆𝐇ஒ෡ that decreases towards 0.  301 

Change in air pollution information 302 

We generate different stages of air pollution information by upscaling the original 1km 303 

PM2.5 model to two coarser resolutions, 6km and 12km. We then fit the model in equation ( 1 ) 304 

with the three different resolutions and compare H൫β෠൯ for the three cases. These different stages 305 

of information simulate a situation where stakeholders are currently operating with coarse-306 

resolution output such as that from the EPA’s Community Multiscale Air Quality Model 307 

(CMAQ, 12km resolution) or other similar gridded products, and want to explore the information 308 

benefits of downscaling their data to higher resolutions.   309 

Change in mortality information 310 
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To change the amount of input mortality information, we fit equation ( 1 ) with varying 311 

number of mortality records. This simulates a case where stakeholders are interested in 312 

investigating the benefit of augmenting the health outcomes dataset used for their assessment, 313 

due to known or suspected missing cases in said dataset. We will investigate the effect of racial 314 

bias in the missing data by comparing the uncertainty reduction when cases are missing only 315 

from the NHW population versus cases missing only from the NHB population. We choose these 316 

two subpopulations for comparison since in the 2010 US census the racial majority in North 317 

Carolina was NHW with 65.2% of the population, while the largest racial minority was NHB, 318 

conforming 21.2% of the population. Since NHB cases represented about 20% of the study 319 

population, this is the maximum number of missing cases we explore for both races. Therefore, 320 

we initially fit the model with ~80% of the total mortality data, where the ~20% of missing cases 321 

are either all NHW or NHB patients. Then we increase the number of patients and repeat the fit 322 

again with ~90% of data, and lastly with 100% data coverage. We select missing cases at random 323 

from the pool of participants of the race of interest, and repeat each model fit 100 times to obtain 324 

ensemble results from which we compute the mean and 95% CI of H൫β෠൯ at each information 325 

stage. 326 

Information yield curves 327 

Information yield curves (Alifa et al., 2022; De Barros & Rubin, 2008; De Barros et al., 328 

2009) are a graphical device designed to display the tradeoffs in uncertainty reduction between 329 

information gain in air pollution and health data. This tool plots together, in mirror image, the 330 

separate effects of information increase for each of these datasets on the uncertainty reduction of 331 β෠, enabling decision-makers to visualize the most efficient pathway to improve their assessment 332 

in their particular case scenario. In our previous study (Alifa et al., 2022) the changes in input 333 
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data were first associated with changes in uncertainty for separate pollution and health models 334 

which when brought together would propagate to the final mortality uncertainty. Therefore, the 335 

information yield curve compared the changes in entropy for the separate pollution and health 336 

models (in the x axis) to the final change in entropy of the pollution-mortality assessment (in the 337 

y axis). The nature of the datasets in this current study requires a modification of the previous 338 

method by associating the changes in information for the input datasets directly with the changes 339 

in the final uncertainty of the case-crossover model fit. This results in an x-axis of qualitative 340 

nature, since there is no common unit to compare increased number of mortality records to 341 

increased resolution of the PM2.5 grid. However, decision-makers taking advantage of this 342 

method in the future would be able to find a common metric for information increase from each 343 

dataset given their particular case scenario, such as cost of added data or time for data 344 

computation/procurement.  345 

3. Results 346 

3.1 Descriptive statistics 347 

The mortality model had input of a total of 1,065,699 cases with 3,621,521 controls (3.40 348 

controls per case). These cases contained more females than males (52.1% vs 47.9%), and the 349 

majority of deaths were from people older than 65 years old (75.4%). Most cases were Non-350 

Hispanic White (77.4%), while the second most cases were Non-Hispanic Black (20.4%). Table 351 

S1 shows the full demographics of the mortality data used in the model.  352 

The median of the PM2.5 in the model was 9.5 μg/m3, with lower bound (5th percentile) of 353 

3.8 μg/m3 and upper bound (95th percentile) of 21.5 μg/m3. These quantiles varied by less than 354 

0.1 μg/m3 when recomputed separately for case days and control days. The median temperature 355 
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was 15.7°C, with 5th and 95th percentiles of 0.7°C and 27.4°C, respectively. The median 356 

dewpoint temperature was 10.5°C and its 5th and 95th percentiles were -8.4°C and 21.9°C, 357 

respectively.  358 

3.2 Exposure disparities 359 

The quantile regression for the whole state shows a significant, positive correlation 360 

between average PM2.5 and percent NHB population across all the quantiles modeled (Figure 1, 361 

panel a). This indicates that more polluted census tracts tend to have a higher percentage of NHB 362 

population across the entire state, regardless of the relative exposure level. Localized results 363 

from Mecklenburg and Wake counties (Figure 1, panels b and c) show the same significant, 364 

positive association for most quantiles studied. Figure 2 also shows that in both these counties, 365 

the majority of the least-polluted census tracts (those ranked in quartile 1 using average PM2.5 as 366 

criteria) have a low percentage of NHB population, while the most polluted tracts (ranked in 367 

quartile 4) tend to have comparatively higher percentages of NHB residents.   368 
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Table 1 reports the odds ratios for a 10 μg/m3 increase in PM2.5 (OR10) and its 95% 388 

confidence intervals for the five different lags investigated. The significant associations observed 389 

were, in descending magnitude: for lag01, OR10 = 1.016 (95% CI 1.011–1.021); lag02, OR10 = 390 

1.016 (95% CI 1.010–1.022); lag0, OR10 = 1.013 (95% CI 1.009–1.018), and lag1, OR10 =1.012 391 

(95% CI 1.007–1.017). The association for lag2 was not statistically significant.  392 

Our results were very similar to those of a previous study that used the same model 393 

design and mortality data (Son et al., 2020), with minor (and statistically non-significant) 394 

differences attributable to differences in sources and averaging techniques for the pollution and 395 

temperature data (comparison can be found in Figure S1).  396 

Table 1. Odds Ratios and 95% confidence intervals for the association of PM2.5 with 397 

mortality at different lags. Non-significant results are colored in grey. 398 

Lag OR10 
Lag0 1.013 (1.009 - 1.018) 
Lag1 1.012 (1.007 - 1.017) 
Lag2 1.004 (0.999 -  1.008) 
Lag01 1.016 (1.011 - 1.021) 

Lag02 1.016 (1.010 - 1.022) 
 399 

We also fit the case crossover models separately for the NHW and NHB cases to 400 

investigate effect differences between these population groups. Table 2 shows the OR10 and the 401 

(multiplicity adjusted) 95% confidence interval for each lag and race. The association between 402 

PM2.5 and short-term mortality was significant in the NHW population for all lags except Lag2, 403 

the same lags where the association was also significant when the whole study population was 404 

represented (Table 1). This is a sensible result since the majority of the mortality cases studied 405 

come from the NHW population (77.4%). The results for the NHB population present wider 406 

confidence intervals, associated to the relatively lower number of cases that were used to fit the 407 
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model since only 20.4% of the study population is NHB, making the multiplicity-adjusted results 408 

for NHB not statistically significant. We will use the Lag1 model for subsequent analysis since it 409 

was the lag with the closest to significant association for NHB. 410 

Table 2. Odds Ratios and 95% confidence intervals for the association of PM2.5 with 411 

mortality at different lags. Non-significant results are colored in grey. 412 

Lag OR10 NHW OR10 NHB 
Lag0 1.015 (1.010 - 1.020) 1.006 (0.992 - 1.021) 
Lag1 1.013 (1.007 - 1.018) 1.010 (0.999 - 1.022) 
Lag2 1.005 (0.998 - 1.011) no effect 
Lag01 1.018 (1.012 - 1.024) 1.011 (0.998 - 1.025) 
Lag02 1.018 (1.011 - 1.025) 1.010 (0.994 - 1.026) 

 413 

3.4 Uncertainty tradeoffs from information changes  414 

To study uncertainty tradeoffs, we fit the model in equation ( 1 ) with varying input of 415 

either PM2.5 data or mortality data (Y୧), in order to compare each of these datasets’ influence in 416 

the final uncertainty of the case-crossover model, measured through the entropy of the exposure 417 

coefficient β, as explained in section 2.4.  418 

First, we isolate the influence of changing air pollution data on the case-crossover 419 

model’s uncertainty reduction. To achieve this, we fit the model with the full record of mortality 420 

data while varying PM2.5 data, by fitting the model three times with PM2.5 data of different 421 

resolutions (1km, 6km, and 12km). Figure 3 shows that fitting the model with finer resolution 422 

PM2.5 data results in lower uncertainty of β. Since the PM2.5 exposure is assigned based on each 423 

individual’s gridcell of residence, a coarser grid may result in more deaths that happened the 424 

same day falling within the same gridcell, causing multiple cases to have identical PM2.5 data. 425 

Although weather covariate data may still be different for each case (since these are always on 426 
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order to investigate the effect of racial bias in the uncertainty reduction dynamics of health data. 437 

Since NHB cases represented approximately 20% of the study population, this is the maximum 438 

number of missing cases we explore for both races. Therefore, we initially fit the model with 439 

~80% of data, and we then increase the number of cases to ~90% and finally to 100% data 440 

coverage. Figure 4 shows that while increasing the number of mortality cases reduces uncertainty 441 

in the model for both scenarios, the slope of uncertainty reduction is steeper when the new cases 442 

introduced are from the NHB population. The exposure disparities experienced by the NHB 443 

population shown in section 2.2 may be related to this difference, since differential exposure of a 444 

subpopulation may lead to a higher diversity of pollution data input in the model. This 445 

hypothesis is confirmed by the differences in the distribution of the mean of the Lag1 PM2.5 data 446 

associated with cases and controls from the NHB population versus that one associated to the 447 

NHW population (Figure 5). The 95% confidence intervals between both distributions do not 448 

cross, making the mean PM2.5 associated with NHB individuals statistically different from that of 449 

NHW individuals. At the lowest stage of information the model is fit with ~80% of the data, the 450 

majority of which comes from NHW individuals, so adding more data from NHW individuals 451 

will introduce samples from the PM2.5 distribution that is already known the most. In contrast, 452 

new data from NHB individuals introduces information from a distribution of PM2.5 that is 453 

different from the majority distribution, providing new information to the model and generating a 454 

faster uncertainty reduction. This result is not caused by the higher magnitude of the mean PM2.5 455 

for NHB shown in Figure 5, but by the fact that the NHB are a minority population with a 456 

statistically different PM2.5 exposure distribution from that of the NHW population. Therefore, 457 

uncertainty reduction should have been steeper with new NHB data even if this subpopulation 458 
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making purposes. If for a case scenario of interest, the target for mortality uncertainty reduction 475 

is ∆Hஒ෡ as indicated by the horizontal dashed lines, the change in the x axis required for the data 476 

in each side can be compared to find the most efficient pathway for uncertainty reduction. In the 477 

case below, increasing health data seems to reduce the uncertainty in the model more efficiently, 478 

since the same ∆Hஒ෡ can be achieved with a smaller change in x. However, the figure below 479 

presents a qualitative x-axis, as there is no common basis of comparison between increasing 480 

patient data and downscaling pollution model resolution. For a real-world scenario, stakeholders 481 

would be able to apply a common metric to these data improvements, such as cost or time, 482 

making the x-axis quantitative and potentially altering the decision-making outcomes presented 483 

here.  484 
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4. Discussion and conclusion 493 

The results of this study illustrate the usefulness of our information entropy tradeoff 494 

methodology to not only generate more robust impact assessments, but also to gain new 495 

knowledge about the role of data from minority populations in the dynamics of uncertainty 496 

reduction.  497 

We found associations between short-term PM2.5 exposure and mortality for years 2001-498 

2016 in North Carolina that were statistically significant and consistent with a previous study of 499 

the same mortality dataset (Son et al., 2020), despite the state’s relatively low and decreasing air 500 

pollution levels. North Carolina had a state-wide average PM2.5 concentration of 13.5 μg/m3 in 501 

2002, and state-wide decreases in concentrations resulted in the whole state presenting annual 502 

mean PM2.5 below the EPA’s standard of 12 μg/m3 by 2016 (Bravo et al., 2022). Despite this 503 

improving trend in pollution concentrations, our findings add to the mounting evidence that 504 

particulate matter has detectable health effects even at pollution levels formerly seen as safe, 505 

motivating ongoing updates of air quality guidelines such as the EPA’s proposal in January of 506 

2023 to reduce the PM2.5 standard to between 9 and 10 μg/m3.  507 

We also explored tradeoffs between data increases in air pollution or health outcomes in 508 

the uncertainty reduction of the case-crossover model used to investigate the pollution-mortality 509 

relationship. The information yield curve presented in Figure 6 compared the different 510 

uncertainty reduction effects of augmenting information in air pollution and health data. While 511 

both data types reduce uncertainty in the case-crossover model when information is increased, 512 

the effect of new data for mortality resulted in a steeper rate of uncertainty reduction. One 513 

qualification of this outcome is that information increase was done by different methods for each 514 

dataset, making the comparison of information change merely qualitative as there is no common 515 
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variable in the x-axis of the information yield curve. If this method were applied to a scenario 516 

where information increases are associated to costs, time, or, as done in our previous study (Alifa 517 

et al., 2022), pollution/health model uncertainties, the comparison could be done qualitatively 518 

and the decision-making outcomes of the information yield curve may change. The goal of this 519 

work is not to provide an absolute answer to the choice between investing in pollution versus 520 

health information, but to develop a framework applicable to any data set and environmental 521 

exposure scenario used in any epidemiological model.   522 

The positive relationship between average PM2.5 and %NHB population found at the 523 

census tract level through quantile regression is consistent with previous findings of disparities in 524 

exposure for the NHB population in both nationwide (Miranda et al., 2011; Tessum et al., 2021; 525 

Woo et al., 2019); and regional (Bravo et al., 2016; Servadio et al., 2019; Stuart et al., 2009) 526 

studies. Our study of Mecklenburg and Wake counties further illustrated the presence of this 527 

inequality for the most populated areas of the state, which experience relatively higher levels of 528 

air pollution. However, the state-wide positive association found with respect to all the 529 

concentration quantiles also reveals that exposure inequalities can be detected not only among 530 

counties such as Mecklenburg and Wake with high emissions (placed in the high PM2.5 531 

quartiles), but also among counties with lower emissions (those in the low PM2.5 quartiles), 532 

indicating that these racial inequalities may be independent from the relative difference in 533 

pollution levels between counties that have different emission types or levels of urbanicity, 534 

agreeing with recent nationwide findings (Liu et al., 2021; Tessum et al., 2021). These findings 535 

of exposure disparities are not reflected in the results of the stratified case crossover model, 536 

possibly due to the relatively low PM2.5 levels in the state that result in relatively small 537 

magnitude of exposure disparities.  538 
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A key finding of this paper is that disparities in PM2.5 exposure can affect model 539 

uncertainty reduction. If exposure from a certain minority subpopulation (in this case, the NHB 540 

population) is significantly different than that of the majority population, as shown in Figure 5, 541 

then data from this minority have relatively higher information value resulting in a faster rate of 542 

uncertainty reduction in the mortality model (Figure 4). The authors hypothesize that this result 543 

is transferrable to the study of any minority subpopulation (by race, income, residential location, 544 

etc.) that experiences a different exposure from the majority, implying that minority 545 

representation in environmental research benefits not only the minorities in question, but also the 546 

researchers and stakeholders performing the research. In a situation where there is a known or 547 

suspected environmental exposure difference between sub-populations, ensuring the 548 

representation of all groups in the data used for the environmental impact assessment will result 549 

in a wider sampling of the problem’s information space, providing the quantitative advantage of 550 

reduced uncertainty. Since minority groups have been found to be both over-exposed and at 551 

times under-monitored (Stuart et al., 2009), the application of this framework will also provide 552 

researchers with increased awareness of both exposure and information disparities by design, 553 

contributing to the ongoing work of environmental justice.  554 

There still remain multiple interesting opportunities for future expansion of the 555 

uncertainty reduction framework proposed in our first study (Alifa et al., 2022) and further 556 

expanded in this present work. One possible next step in future work is considering a case 557 

scenario where the assessment goes from an initial baseline of comparatively scarce pollution, 558 

epidemiology, or demographic information to subsequent stages of more information, via data 559 

augmentation methods such as assimilation, disaggregation, and/or downscaling. This work 560 

would require the integration of multiple datasets (e.g., by combing air pollution monitoring 561 
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station data, gridded CTM output, and area-based demographic and health outcomes data), 562 

introducing new kinds of epistemic uncertainties, such as those stemming from errors in 563 

pollution and exposure measurements, model specification, data aggregation, and extrapolation 564 

of exposure-response functions, among others (Nethery & Dominici, 2019). These uncertainties 565 

are different from the one addressed in our framework in that they increase monotonically with 566 

the increase of input data, having the potential to obscure any uncertainty reduction from 567 

information gain if the epistemic errors in the data are too high (Rao, 2005). For this reason, our 568 

work so far has taken advantage of full datasets and simulated information scarcity by modeling 569 

only subsets of this data, which has allowed us to explore the proposed framework without 570 

having to deal with the epistemic uncertainties introduced by data assimilation errors.  571 

The choice of North Carolina for this case study was prompted by the unique availability 572 

of high-resolution mortality data, but the relatively low PM2.5 levels in the state prevented us 573 

from incorporating true data assimilation into this project, since the noise introduced by multiple 574 

PM2.5 data sources would have been greater than the signal of the PM2.5 data itself. This 575 

limitation speaks to the wider issue of data scarcity in air pollution, health outcomes, and 576 

demographics for the regions of the world that are most in need of epidemiology and exposure 577 

disparities studies.  578 

The framework developed here could still be useful, however, for a case of interest where 579 

there is availability of pollution data only. As mentioned in the introduction, multiple methods to 580 

augment air pollution observations through assimilation of other datasets such as CTMs, satellite 581 

data, citizen-science observational networks have been devised in recent years. In a scenario 582 

where stakeholders want to augment their observational network but are unsure of which method 583 

to choose for the task, studying the information entropy tradeoffs between different data 584 
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assimilation methods may be an efficient way to inform a decision. Furthermore, if demographic 585 

data is also available (such as census data), stakeholders would be able to investigate how 586 

information increases from different air pollution sources have different effects in the uncertainty 587 

of the estimates of exposure inequalities between different subpopulations, and whether focusing 588 

on augmenting data in regions with high versus low concentrations of minority populations 589 

yields different effects in uncertainty reduction.  590 

As the scientific community continues efforts to improve characterization of 591 

environmental exposure effects for overlooked areas and populations around the world, the 592 

framework presented here gives researchers a new opportunity to elevate minority representation 593 

from a qualitative afternote in a study’s discussion section to a centerpiece of the study’s design, 594 

aiding a quantitatively more accurate analysis and producing confident estimates of the true 595 

effects of environmental pollution. 596 
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1km gridded air pollution data was obtained from NASA’s SEDAC  (Di et al., 2021) and can be 608 

downloaded here: https://sedac.ciesin.columbia.edu/data/set/aqdh-pm2-5-concentrations-609 

contiguous-us-1-km-2000-2016/data-download. The 4km gridded temperature and dewpoint 610 

temperature was obtained from the PRISM Climate Group at Oregon State University (PRISM 611 

Climate Group, 2004) and can be downloaded here: https://prism.oregonstate.edu/downloads/. 612 

The 2010 census data can be downloaded from the Census Bureau, https://data.census.gov/. All 613 

analyses were performed using R Statistical Software (v 4.2.3, R Core Team, 2023).  614 
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