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Abstract

Rock glaciers manifest the creep of mountain permafrost occurring in the past or at present. Their presence and dynamics are

indicators of permafrost distribution and changes in response to climate forcing. There is a complete lack of knowledge about

rock glaciers in the Western Kunlun Mountains, one of the driest mountain ranges in Asia, where extensive permafrost is rapidly

warming. In this study, we first mapped and quantified the kinematics of active rock glaciers based on satellite Interferometric

Synthetic Aperture Radar (InSAR) and Google Earth images. Then we trained DeepLabv3+, a deep learning network for

semantic image segmentation, to automate the mapping task. The well-trained model was applied for a region-wide, extensive

delineation of rock glaciers from Sentinel-2 images to map the landforms that were previously missed due to the limitations of

the InSAR-based identification. Finally, we mapped 413 rock glaciers across the Western Kunlun Mountains: 290 of them were

active rock glaciers mapped manually based on InSAR and 123 of them were newly identified and outlined by deep learning.

The rock glaciers are categorized by their spatial connection to the upslope geomorphic units. All the rock glaciers are located

at altitudes between 3,390 m and 5,540 m with an average size of 0.26 km2 and a mean slope angle of 17°. The median and

maximum surface downslope velocities of the active ones are 17±1 cm yr-1 and 127±6 cm yr-1, respectively. Characteristics of

the inventoried rock glaciers provided insights into permafrost distribution in the Western Kunlun Mountains.
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Key Points: 22 

• A combined use of deep learning over optical images and InSAR automates mapping 23 
rock glaciers at the regional scale 24 

• We compile the first rock glacier inventory in the Western Kunlun Mountains with 25 
kinematic and geomorphic information documented 26 

• Geomorphologic characteristics of rock glaciers provide insights on the glacial and 27 
periglacial processes and interactions in the Western Kunlun Mountains  28 
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Abstract 29 

Rock glaciers manifest the creep of mountain permafrost occurring in the past or at present. 30 
Their presence and dynamics are indicators of permafrost distribution and changes in response to 31 
climate forcing. There is a complete lack of knowledge about rock glaciers in the Western 32 
Kunlun Mountains, one of the driest mountain ranges in Asia, where extensive permafrost is 33 
rapidly warming. In this study, we first mapped and quantified the kinematics of active rock 34 
glaciers based on satellite Interferometric Synthetic Aperture Radar (InSAR) and Google Earth 35 
images. Then we trained DeepLabv3+, a deep learning network for semantic image 36 
segmentation, to automate the mapping task. The well-trained model was applied for a region-37 
wide, extensive delineation of rock glaciers from Sentinel-2 images to map the landforms that 38 
were previously missed due to the limitations of the InSAR-based identification. Finally, we 39 
mapped 413 rock glaciers across the Western Kunlun Mountains: 290 of them were active rock 40 
glaciers mapped manually based on InSAR and 123 of them were newly identified and outlined 41 
by deep learning. The rock glaciers are categorized by their spatial connection to the upslope 42 
geomorphic units. All the rock glaciers are located at altitudes between 3,390 m and 5,540 m 43 
with an average size of 0.26 km2 and a mean slope angle of 17°. The median and maximum 44 
surface downslope velocities of the active ones are 17±1 cm yr-1 and 127±6 cm yr-1, respectively. 45 
Characteristics of the inventoried rock glaciers provided insights into permafrost distribution in 46 
the Western Kunlun Mountains. 47 

Plain Language Summary 48 

Rock glaciers are debris-ice landforms and indicators of the status of perennially frozen ground, 49 
as known as permafrost, which is warming and thawing under climate change. The Western 50 
Kunlun Mountains is among the driest mountain ranges in Asia where permafrost has been 51 
changing over the past decades and the information of rock glaciers is completely lacking. In this 52 
paper, we developed an effective workflow for mapping rock glaciers in a semi-automated 53 
manner and characterized their geomorphology and kinematics. The compiled dataset allows 54 
further investigation on rock glaciers for multiple scientific motivations such as geohazard 55 
management, water resource assessment, and permafrost change monitoring. The documented 56 
characteristics provide insights into the permafrost distribution in the arid mountains. 57 

1 Introduction 58 

Rock glaciers are debris-ice landforms widely distributed in areas of mountain permafrost 59 
globally (Ballantyne 2018; Jones et al. 2018). Rock glaciers have drawn a lot of research interest 60 
since their first identification at the beginning of the 20th century (Capps 1910), because they 61 
serve as visible indicators for alpine permafrost which is defined by its underground temperature 62 
and has been warming and undergoing degradation (Barsch 1996; Biskaborn et al. 2019). 63 
Inventorying rock glaciers is therefore motivated by producing baseline knowledge for 64 
addressing various scientific questions associated with permafrost, such as indicating permafrost 65 
occurrence through the rock glacier distribution, characterizing permafrost changes in the 66 
warming climate, and assessing the future hydrological significance of rock glaciers (Jones et al. 67 
2018 and 2021). Several studies have revealed that multi-annual acceleration of rock glaciers is 68 
synchronous with the rise of air and ground temperatures (Haeberli et al. 2006; Delaloye et al. 69 
2010; Delaloye et al. 2013; Sorg et al. 2015; Marcer et al. 2021), and their short-term velocity 70 
variations are sensitive to the pore pressure in the shear horizon which is adjusted by the 71 
precipitation and snow melt conditions (Ikeda et al. 2008; Müller et al. 2016; Wirz et al. 2016; 72 
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Cicoira et al. 2019a; Cicoira et al. 2019b; Kenner et al. 2019). Rock glacier inventories are 73 
therefore valuable datasets for setting up monitoring systems of rock glacier kinematics, which 74 
indicate permafrost changes under climate influence and can be quantified continuously and 75 
remotely. Moreover, intact rock glaciers contain ground ice and contribute to the local 76 
hydrological systems in some catchments, such as the Andes, Himalayas, and Sierra Nevada 77 
(Azócar and Brenning 2010; Millar et al. 2013; Geiger et al. 2014; Jones et al. 2018; Schaffer et 78 
al. 2019; Jones et al. 2021). 79 

Numerous efforts have been put into inventorying rock glaciers in various mountain 80 
ranges worldwide in the past several decades, such as in Central Europe (Chueca 1992; Roer and 81 
Nyenhuis 2007; Scotti et al. 2013; Onaca et al. 2017), South America (Brenning 2005; Falaschi 82 
et al. 2014; Rangecroft et al. 2014; Villarroel et al. 2018), and North America (Ellis and Calkin 83 
1979; Janke 2007; Millar and Westfall 2008; Liu et al. 2013). Rock glaciers are abundant in 84 
mountainous western China where a vast area of alpine permafrost is underlying and undergoing 85 
accelerated degradation in response to the warming climate (Yang et al. 2010; Cheng et al. 2019; 86 
Yang et al. 2019; Yao et al. 2019; Zhao and Sheng 2019; Ni et al. 2020; Zhao et al. 2020; IPCC 87 
2021). However, few regional-scale inventories of rock glaciers have been compiled until 88 
recently (Schmid et al. 2015; Wang et al. 2017; Ran and Liu 2018), which hinders the 89 
application of using rock glaciers to indicate permafrost distribution. Such lack of knowledge is 90 
attributed to the following reasons: (1) rock glaciers in western China are mostly situated in 91 
remote and harsh environment where early in situ investigations are scarce and limited to case 92 
studies or small catchment-scale research (e.g., Cui 1985; Cui and Zhu 1988; Zhu et al. 1996; 93 
Harris et al. 1998); (2) mapping rock glaciers conventionally relies on manually detecting and 94 
outlining the landforms from optical images (Schmid et al. 2015), which is labor-intensive to 95 
apply to large permafrost region (e.g., Western Kunlun Mountains) following an exhaustive 96 
strategy; (3) contentious opinions of identifying rock glaciers exist due to the complexity of the 97 
landforms (Harris et al. 1998; Berthling 2011; Hu et al. 2021), which obscures the definition of 98 
rock glaciers in some previous research and makes it challenging to recognize the landforms. 99 

To address these problems, recent research progress in compiling rock glacier inventories 100 
includes (1) integrating InSAR techniques to facilitate active rock glacier identification and 101 
kinematics quantification (e.g., Liu et al. 2013; Barboux et al. 2014; Wang et al. 2017; Cai et al. 102 
2021; Reinosch et al. 2021; Zhang et al. 2021); (2) implementing Convolutional Neural 103 
Networks (CNN) to demonstrate the feasibility of automating rock glacier delineation (Robson et 104 
al. 2020) or to improve the consistency of existing rock glacier inventories (Erharter et al. 2022); 105 
and (3) establishing widely accepted inventorying guidelines by the international rock glacier 106 
research community (RGIK, 2022a, 2022b). 107 

Deep learning is the computer algorithm based on neural networks that are capable of 108 
learning representations of data and determining functions to project from inputs to output 109 
(LeCun et al. 2015). It has proved powerful in semantic segmentation by using a convolutional 110 
neural network to progressively extract visual features at different levels from input images 111 
(Mottaghi et al. 2014); and it is suitable for handling difficult mapping tasks as in the case of 112 
delineating rock glaciers. Marcer (2020) first proposed a convolutional neural network to detect 113 
rock glaciers from orthoimages and suggested further development of this methodology. Robson 114 
et al. (2020) developed a new methodology to detect rock glaciers semi-automatically by 115 
advanced image processing techniques including deep learning and object-based image analysis, 116 
yet their method was not used to compile new inventories. Erharter et al. (2022) developed a 117 
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framework based on U-Net architecture to support the refinement of existing rock glacier 118 
inventories. 119 

Here we combine the InSAR technique and a deep learning model 120 
(DeepLabv3+Xception71) to map rock glaciers across the Western Kunlun Mountains of China 121 
where knowledge of rock glaciers is completely lacking. Manual delineation of rock glaciers 122 
based on InSAR and high-resolution optical imagery in this study is guided by the baseline 123 
concepts proposed by the International Permafrost Association (IPA) Action Group on rock 124 
glaciers to ensure a standard high-quality dataset utilized to train the deep learning network, and 125 
thus, the final mapping results (RGIK, 2022a, 2022b). We adopted the deep learning method to 126 
improve the mapping efficiency by automating the identification and delineation tasks, and more 127 
importantly, to generate a more comprehensive geodatabase by overcoming the limitations of 128 
InSAR-based method, such as the coherence loss and the insensitivity to the movement 129 
perpendicular to the line-of-sight (Cai et al., 2021).  130 

This study aims to develop an automated approach to map rock glaciers on a regional 131 
scale in western China, i.e., the Western Kunlun Mountains. By producing the first automatically 132 
mapped inventory at the mountain-range scale, we demonstrate the effectiveness of using a deep-133 
learning-based method to delineate rock glaciers in a consistent manner across the vast study 134 
area. We provide essential attributes to the mapped landforms according to the inventorying 135 
guidelines. We also conduct statistical analyses to summarize the spatial distribution and 136 
geomorphologic characteristics of the mapped rock glaciers. The compiled inventory will 137 
provide baseline knowledge for conducting long-term studies of rock glaciers and permafrost in 138 
a changing climate. 139 

2 Study area 140 

The Western Kunlun Mountains is usually considered as part of the Eastern Pamir in 141 
previous research (e.g., Bolch et al. 2019a). It is situated in the northwest of Tibetan Plateau, 142 
extending ~800 km from the eastern margin of Pamir Plateau to the Keriya Pass of Kunlun 143 
Mountains, with a total study area of ~124,000 km2 (74–81.5°E, 35–39.5°N) (Figure 1). The 144 
elevation of the study region ranges between 3,000 m and 7,500 m. 145 

Across the vast study area, a cold desert climate (Köppen climate classification BWk) is 146 
dominant (Peel et al. 2007). Climatic conditions of the western part are revealed by the record of 147 
the nearest meteorological station in Tashikurgan (75.23°E, 37.77°N; 3090 m a.s.l.) during 148 
1957–2017: the mean annual air temperature (MAAT) and mean annual accumulated 149 
precipitation are 4.2°C and 51 mm, respectively (data source: China Meteorological 150 
Administration, http://data.cma.cn/). The study area has been warming at a rate of ~0.033°C/yr 151 
during the past six decades (Figure S1), similar to the average warming rate (0.031°C/yr) across 152 
the entire plateau (Zhang et al. 2020). In the eastern part, the MAAT is -6 °C and the annual 153 
precipitation is 103.3 mm, as reported by the Tianshuihai meteorological station (79.55°E, 154 
35.36°N; 4844 m a.s.l) from 2015 to 2018 (Zhao et al. 2021). 155 

The easternmost part of the study region is overlapped with the Western Kunlun 156 
permafrost survey area (78.8–81.4°E, 34.5–36.0°N; 4,200–6,100 m a.s.l.) established by the 157 
Cryosphere Research Station (CRS) on the Qinghai-Tibet Plateau, Chinese Academy of 158 
Sciences, where in situ observations are available to represent the state of permafrost in the 159 
Western Kunlun Mountains. Ice-rich permafrost is widely distributed in the survey area (Zhao 160 
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List of interferograms generated from ALOS-1 PALSAR data 180 

Path/frame Start-end dates Perpendicular baseline (m) 

515/700 20081213–20090128 300 

515/710 20081213–20090128 307 

516/700 20081114–20081230 -38 

516/710 20081114–20081230 -31 

517/700 20070829–20071014 364 

517/710 20070829–20071014 370 

518/710 20080317–20080502 652 

519/710 20080102–20080217 972 

519/720 20080102–20080217 337 

520/710 20080119–20080305 581 

520/720 20080119–20080305 587 

521/710 20080205–20080322 62 

521/720 20080205–20080322 71 

522/720 20070822–20071007 212 

523/720 20070608–20070724 288 

523/730 20070608–20070724 289 

524/730 20080210–20080327 115 

524/740 20070810–20070925 108 

524/750 20080210–20080327 130 

524/760 20080210–20080327 137 

525/770 20070712–20070827 292 

526/770 20070613–20070729 471 

3 Methodology 181 

The method we adopted consists of two parts and is detailed below. First, we mapped 182 
active rock glaciers manually from interferograms and Google Earth images. Second, we used 183 
the manually labelled images to train a deep learning network, i.e., DeepLabv3+, for mapping 184 
rock glaciers automatically from Sentinel-2 optical images. 185 
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3.1 Manual method: mapping active rock glaciers from interferograms and Google Earth 186 
images 187 

In this subsection, we first describe the strategy of delineating rock glaciers. Then we 188 
present the method for quantifying rock glacier kinematics by InSAR. Finally, we introduce how 189 
to determine the geomorphic attributes of the mapped landforms. 190 

3.1.1 Manual identification and delineation of rock glaciers 191 

We mapped active rock glaciers by combining two imagery sources: wrapped 192 
interferograms and Google Earth images (Figure 3). The displacement maps generated by InSAR 193 
allow us to easily recognize moving parts of the ground surface, meanwhile the high-resolution 194 
and multi-temporal Google Earth images provide geomorphic information to distinguish rock 195 
glaciers from the other active surface units, such as debris-covered glaciers, solifluction lobes, 196 
and slow-moving landslides. Visual identification was conducted based on the geomorphological 197 
criteria proposed by RGIK (2022a, 2022b) including the frontal and lateral margin morphology, 198 
and the surface ridge-and-furrow topography as an optional indicator. As much of our study area 199 
is occupied by glaciers at present (Kääb et al. 2015), one challenge is to distinguish rock glaciers 200 
from debris-covered glaciers. We used the updated GAMDAM glacier inventory to help 201 
recognize the surrounding glacier units (Sakai, 2019), then we referred to the indicative features 202 
such as the occurrence of ice cliffs, the presence of supraglacial channels, and the flow field 203 
coherence, as detailed in RGIK (2022b), for identifying the landforms as rock glaciers or debris-204 
covered glaciers. We then outlined the recognized landforms along their extended 205 
geomorphological footprints, i.e., the frontal and lateral margins are included within the 206 
boundaries. We followed the IPA guidelines because it provides practical and standardized 207 
baseline concepts for identifying and outlining rock glaciers from remote sensing images and 208 
readily applicable to producing consistent inventories over wide-extent regions. 209 

3.1.2 Kinematic quantification by InSAR 210 

In total, twenty-two interferograms generated from ALOS-1 PALSAR images covering 211 
the Western Kunlun Mountains were used for ground movement detection between 2007–2009 212 
(Table 1). The SAR images are in an ascending orbit. To maintain high interferometric 213 
coherence and reduce topographic error, we selected image pairs with a fixed temporal spans of 214 
46 days and perpendicular baselines smaller than 1,000 m. The topographic phase were 215 
estimated and removed by using a digital elevation model (DEM) produced by the Shuttle Radar 216 
Topography Mission (SRTM) with a spatial resolution of ~30 m over most of the study region. 217 
Multi-looking operation and adaptive Goldstein filter (8×8 pixels) were applied in the 218 
interferometric processing, which was implemented by the open-source software InSAR 219 
Scientific Computing Environment (ISCE) version 2.2.0 (available at https://github.com/isce-220 
framework/isce2). We then unwrapped the interferograms with the SNAPHU (Chen and Zebker 221 
2002) and selected one point located at the flat and stable ground close to each rock glacier to re-222 
reference the unwrapped phases measured within the boundary of each landform. By doing so, 223 
we managed to remove the long-wavelength orbital errors and the atmospheric artefacts 224 
including the water vapor delay and ionospheric effects, all of which can be assumed identical 225 
within the extent of a rock glacier (Hanssen 2001). 226 

We determined the surface downslope velocities of rock glaciers as their kinematic 227 
attributes. The surface velocities along the SAR satellite line-of-sight (LOS) direction were 228 
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derived from the unwrapped interferograms and then projected to the downslope direction of 229 
each landform (Hu et al. 2021). Associated uncertainties including the InSAR measurements and 230 
geometric parameters were quantified through error propagation (Hu et al. 2021). For each rock 231 
glacier, we calculated the velocities of all the pixels within the detected moving area(s), then we 232 
used the mean velocity of all the moving pixels to represent the overall kinematic status of the 233 
rock glacier unit, if the data fulfilled the following criteria: (1) after masking out the pixels with 234 
low coherence (< 0.3) (Wang et al. 2017), the remaining pixels account for more than 40% of the 235 
entire landform extent; (2) the relative errors of the spatial mean velocities are lower than 20%. 236 

3.1.3 Determination of geomorphic attributes 237 

Essential geomorphic attributes such as the elevation range, mean slope angle, and 238 
landform aspect were quantified using the SRTM DEM. Qualitative attributes including the 239 
spatial connection of the rock glacier to the upslope unit and the activity category were described 240 
and assigned to the dataset following the IPA guideline (RGIK, 2022a, 2022b). We primarily 241 
classified the mapped rock glaciers according to their spatial connection to the upslope unit 242 
because it could provide implications regarding the landform genesis. Figure 2 presents 243 
examples of rock glaciers that were classified by their upslope units into four categories. For 244 
instance, Figure 2b shows a glacier-connected rock glacier, the frontal and lateral margins of 245 
which are discernible from the Google Earth image, though the rooting zone is ambiguous. We 246 
separated the rock glacier from the upslope unit from surface features such as the occurrence of 247 
exposed ice and thermokarst ponds. As suggested by RGIK (2022b),a straight line was drawn 248 
for delimiting the upper boundary of the rock glacier when it is infeasible to discern the 249 
boundary based on geomorphological and textural characteristics with high confidence. In 250 
addition, as we used the outlines for training the deep learning model to map rock glaciers from 251 
optical images (detailed in Sect. 3.2), a conservative strategy for determining the upper boundary 252 
was adopted given the relatively low resolution of the Sentinel-2 images. Finally, we created the 253 
InSAR-based sub-dataset. The entire workflow is illustrated in Figure 3 with one example shown 254 
in Figure 4. 255 
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Figure 4. An example of identified active rock glacier (ID: wkl037). (a) shows the contrasting 270 
wrapped phases between the landform and surrounding background. The ALOS-1 PALSAR 271 
image pair generating the interferogram were acquired on 14/11/2008 and 30/12/2008. (b) is the 272 
corresponding Google Earth image presenting the geomorphic characteristics of the mapped 273 
active rock glacier. The white arrow indicates the direction of the movement, and the red dot 274 
marks the location of reference point used for phase correction. This rock glacier is debris-275 
mantled slope-connected. 276 

3.2 Automated method: mapping rock glaciers using deep learning 277 

Among the open-source deep learning architectures designed for semantic segmentation, 278 
we adopted the DeepLabv3+ with the backbone of Xception71 (termed as 279 
DeepLabv3+Xception71 hereafter) as the framework for us to develop the automatic mapping 280 
method (Chen et al. 2018) because of its outstanding performance demonstrated in the past 281 
PASCAL VOC tests (the benchmark dataset for assessing performance of semantic segmentation 282 
models, as detailed in Everingham et al. 2015) and recent research applications to cryospheric 283 
remote sensing (Huang et al. 2020; Huang et al. 2021; Zhang et al. 2021a). 284 

Development of the deep learning-based method for delineating rock glaciers can be 285 
divided into three major steps: (1) preparing input data, (2) training and validating deep learning 286 
network, and (3) inferring and post-processing results, as detailed below. Figure 5 illustrates the 287 
workflow and full details are provided below. 288 

3.2.1 Preparing input data 289 

The data preparation step aimed to produce a dataset of optical images and corresponding 290 
rock glacier label images, i.e., binary rasters that have pixel values as 0 or 1, with 1 indicating 291 
rock glaciers and 0 indicating the background, to feed into the convolutional neural network. The 292 
input optical images were cloud-free (cloud cover < 5%) Sentinel-2 Level-2A products (spatial 293 
resolution ~10 m) covering the Western Kunlun region acquired during July and August of 2019 294 
(Table S2). We pre-processed the images by extracting the visible red, green, and blue bands and 295 
converting to 8-bit, so that the satellite images were in the same format as the training datasets 296 
used for pre-training the DeepLabv3+ network we adopted (Chen et al. 2018). To generate the 297 
label images,  we used the manually identified rock glaciers in the format of ESRI Shapefiles 298 
created in the InSAR-based mapping process to label the Sentinel-2 images. We removed 118 299 
rock glacier samples from the manually outlined rock glaciers because they are unrecognizable 300 
due to cloud cover or relatively low resolution (10 m) of the Sentinel-2 images. In addition, we 301 
delineated 145 negative polygons, which are similar-looking landforms such as debris-covered 302 
glaciers identified by GAMDAM and solifluction slopes based on our image interpretation, and 303 
environments where no rock glaciers occur, e.g., water bodies and villages. These negative 304 
polygons were used to produce negative label images which constitute the input dataset along 305 
with the positive ones. More negative samples were included during the iterative training and 306 
validating process by adding the incorrectly inferred examples to the negative training dataset for 307 
the next experiment. We extracted the positive polygons with their surrounding background (a 308 
buffer size of 1,500 m) from the optical images to provide environmental information and 309 
cropped these sub-images into image patches of sizes no larger than 480x480 pixels (Huang et al. 310 
2018 and 2020). Finally, we split the whole dataset of input image patches by randomly selecting 311 



manuscript submitted to Journal of Geophysical Research: Earth Surface 

 

90% of the data as the training set (2,007 image patches) and the remaining 10% as the 312 
validation set (223 image patches). 313 

3.2.2 Training and validating deep learning network 314 

Then we trained the DeepLabv3+Xception71 network with the initial hyper-parameters 315 
(e.g., learning rate, learning rate decay, batch size, number of iterations) suggested by Chen et al. 316 
(2018) and evaluated the model performance on the training and validation datasets. The model 317 
we adopted was pre-trained using the ImageNet dataset and fine-tuned during our training and 318 
validation processes. The evaluation was conducted throughout the training process by 319 
monitoring the Intersection over Union (IoU) value, which is defined as: 320 

IoU=TP/(TP+FP+FN) 321 

where TP (true positive), FP (false positive), and FN (false negative) are pixel-based. The 322 
mean IoU, which is calculated by averaging the IoU of each class, is commonly adopted to 323 
indicate the accuracy of semantic segmentation models (Huang et al., 2020). IoU evaluates the 324 
degree of overlap between the ground truth polygons and the predicted polygons. Our network 325 
classified each pixel of the optical images into two classes, namely the rock glacier and the 326 
background. As the amounts of pixels in the two classes are imbalanced (the rock glacier class 327 
only occupies a small portion (~10%) of the image patches), we only used the IoU value of the 328 
rock glacier class to represent the model performance. We set 0.80 as the threshold: when the 329 
IoU value of a trained model was lower than it, we increased the size and diversity of the training 330 
dataset by performing image augmentation (e.g., blurring, rotation, flip) on the positive samples 331 
and including incorrectly inferred examples to the negative samples and conducted a new 332 
experiment until obtaining a model with target IoU value on the validation dataset and regarded 333 
the deep learning network had been well trained. The IoU threshold 0.80 was selected 334 
considering the validation mIoU (79.55%) of DeepLabV3+Xception71 on the Cityscapes 335 
validation dataset, as detailed in Chen et al. (2018). 336 

3.2.3 Inferring and post-processing results 337 

We applied the trained model to map rock glaciers from Sentinel-2 images covering the 338 
Western Kunlun Mountains. The input data occupied ~ 0.6% of the total mapping area. To refine 339 
the inference results, we excluded the predicted polygons smaller than 30000 m2 (~300 pixels) 340 
due to the limited spatial resolution of the Sentinel-2 images and the usual areal extent of rock 341 
glaciers (>0.01 km2). Then we inspected each automatically delineated landform and modified 342 
the boundaries when necessary. Examples are given in Sect. 4.1. Finally, we determined the 343 
same set of landform attributes as the InSAR-based sub-dataset (Sect 3.1) and compiled the 344 
outputs produced by the two methods into one inventory. 345 
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or debris-covered glaciers (G-RGs), and the debris-mantled slope-connected rock glaciers 387 
(DMS-RGs) are the second largest category, accounting for ~35% (143 in total) of the mapped 388 
landforms. There are 41 rock glaciers occurring at the glacier forefield (GF-RGs) and 27 389 
developing at the terminus of talus (T-RGs), taking up ~10% and ~7% of the total amount, 390 
respectively. 391 

All RGs are located at mean altitudes between 3,390 m and 5,540 m, with an average of 392 
4,623 m. The G-RGs have a similar mean altitude of 4,546 m. Both groups (namely all RGs and 393 
the G-RGs) of landforms show a norm distribution in altitude (Figure 7a, c). The DMS-RGs 394 
generally occur at a higher altitude (Figure 7b), the average of which is up to 4,889 m, whereas 395 
the GF-RGs and T-RGs are distributed at a lower elevation band (Figure 7d, e), whose average 396 
altitudes are 4,265 m and 4,332 m, respectively. 397 

The G-RGs are the largest with an average area of 0.40 km2 for individual landforms, 398 
followed by GF-RGs with a mean area of 0.38 km2. Both are much (~50%) larger than the mean 399 
area (0.26 km2) of all RGs. The DMS-RGs are the smallest (0.05 km2), covering ~7% of the total 400 
area occupied by all RGs in the study region. Uncertainty and variability of rock glacier 401 
boundaries can occur in inventorying practice (Brardinoni et al. 2019). In our results, as each 402 
boundary was manually examined according to the IPA guidelines, we estimated the range of 403 
uncertainty of rock glacier area within 10%. The mean surface slope of all RGs is 17º, which is 404 
similar to the mean slope (18º) of the T-RGs. The G-RGs and GF-RGs have relatively flat 405 
surfaces with mean slope angles of 14º and 15º, respectively, whereas the DMS-RGs develop a 406 
steeper average slope angle of 23º. Most (64%) of the mapped RGs occur on east-facing (0º–180º) 407 
slopes (Figure 8a) as the movement towards eastern direction is sensitive to the InSAR detection, 408 
though the AI-based sub-dataset may suffer less from this problem. Among different categories, 409 
the G-RGs and GF-RGs are more frequently located on northeastern-facing (0º–90º) slopes 410 
(Figure 8c, d), whereas the DMS-RGs and T-RGs mostly move towards southeastern directions 411 
(90º–180º) (Figure 8b, e). Finally, we briefly compared the attributes of rock glaciers between 412 
our inventory and other research focusing on the Qinghai-Tibet Plateau (Ran and Liu, 2018; 413 
Hassan et al. 2021; Reinosch et al. 2021; Zhang et al. 2022) and found similar characteristics 414 
among the existing studies (Table S3). 415 

Table 2 416 
Statistical summary of the geomorphic parameters of the mapped rock glaciers (All RGs), the 417 
debris-mantled slope-connected rock glaciers (DMS-RGs), the glacier-connected rock glaciers 418 
(G-RGs), the glacier forefield-connected rock glaciers (GF-RGs), and the talus-connected rock 419 
glaciers (T-RGs). Each column presents the mean values of the geomorphic parameter followed 420 
by the corresponding standard deviations in the brackets. 421 
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5.1 Potential and limitations of the InSAR-Deep learning combined method for mapping 475 
rock glaciers 476 

We used an InSAR-Deep learning combined approach to map rock glaciers across the 477 
Western Kunlun Mountains. The advantage of the combined methodology is twofold: the 478 
InSAR-based mapping approach provides essential information on surface kinematics and 479 
accurate manual delineation for training the deep learning model; whereas the automated method 480 
improves mapping efficiency and more importantly, overcomes the conservativeness of the 481 
former approach and expands the InSAR-based sub-dataset. More specifically, some rock 482 
glaciers cannot be detected by InSAR due to coherence loss, geometric distortions, their 483 
topographic orientations insensitive to InSAR line-of-sight measurements, or simply their 484 
inactive kinematic status (Wang et al. 2017; Robson et al. 2020). By combining with the deep 485 
learning method, we can map the landforms that had been omitted due to coherence loss in the 486 
limited number of interferograms. In addition, rock glaciers moving parallel to the satellite 487 
direction, or along a steep slope, or at a very fast or slow pace, can be mapped as well. 488 

However, our deep learning approach has a limited level of automation: the results 489 
produced by this methodology still requires manual inspections and modifications to increase the 490 
accuracy. Among the factors controlling the deep learning performance, quality of training and 491 
validation samples is one primary factor that affects the mapping accuracy. In this study, the 492 
training and validation datasets consist of the boundaries of active rock glaciers in the InSAR-493 
based sub-dataset overlying the Sentinel-2 optical images (Figure 5). Quality of the input images 494 
is moderate, as the Sentinel-2 images have a medium spatial resolution of ~10 m, making it 495 
challenging to characterize some rock glaciers, especially small ones (area < 30,000 m2), from 496 
these optical images and possibly leading to inaccuracy in the output. Therefore, manual 497 
inspection is needed to build an inventory due to the false positives and a few inaccurate 498 
boundaries output by DL-based mapping method. Previous study used Sentinel-2 imagery to 499 
map rock glaciers with deep learning, but this is limited to a small region (Robson et al., 2020). 500 
Finally, the Google Earth images (2009–2020) and ALOS PALSAR data (2007–2009) we 501 
referred to while creating the InSAR-based sub-dataset are unsynchronized with the Sentinel-2 502 
images (Jul–Aug of 2019) used for producing the training data and for predicting rock glaciers 503 
by the trained model. Accordingly, we conducted additional manual inspections while preparing 504 
the input data and recognized few differences requiring corrections to the training data because 505 
the rock glacier activity is relatively low in the study area (Sect. 4.3), yet this asynchronization 506 
may lead to errors in areas where rock glaciers have been moving fast in recent decades (Bodin 507 
et al. 2017; Marcer et al. 2021). 508 

Furthermore, as we evaluated the effectiveness of the deep learning-based method by 509 
applying the trained model to a test area outside the original study area and the validation IoU, 510 
which reached a value of ~0.8 comparable with the previous milestone research (Chen et al., 511 
2018), the imperfect metric we achieved (i.e., validation IoU < 1) reveals the possibility that 512 
some rock glaciers may still be missed in our inventory. We estimated the magnitude of 513 
landform underestimation by calculating an index from the validation IoU and a test experiment 514 
in a new region (methodology detailed in Text S1); yet it is challenging to provide a precise 515 
estimate given that no ground truth data is available over the study region. 516 

In addition, our combined approach is limited to mapping intact landforms, i.e., active 517 
and transitional rock glaciers according to the updated categorization scheme of rock glacier 518 
activity proposed by RGIK (2022a, 2022b). The InSAR-based sub-inventory contains active rock 519 
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glaciers, the surface of which display coherent downslope motion as revealed by the 520 
interferograms. The transitional rock glaciers, on the other hand, show little movement over the 521 
surface, yet their geomorphologic characteristics are less distinguishable from the active 522 
landforms. Our deep learning model essentially learned the visual features of active rock glaciers 523 
through the optical images in the training dataset, and thus the model is likely to identify and 524 
delineate transitional rock glaciers as well. In contrast, relict rock glaciers usually develop 525 
distinct geomorphologic features such as subdued topography and vegetation cover, which 526 
cannot be mapped by the deep-learning model. 527 

5.2 Insights into permafrost distribution in the Western Kunlun Mountains 528 

By comparing the locations of rock glaciers in our inventory against three permafrost 529 
maps across the study area, we observed general consistency between the rock glacier and 530 
permafrost distribution inferred in the existing maps (Figure 12a). Moreover, we gained new 531 
insights into the different permafrost maps based on our rock glacier inventory, which can be 532 
used as an indicator of permafrost distribution (Barsch, 1996). 533 

First, in the map generated by Obu et al. (2019), a cluster of rock glaciers (10 out of 413 534 
inventoried landforms, ~2%) are situated in the non-permafrost zone which is consistently 535 
categorized as permafrost region in the two other maps created by Zou et al. (2017) and Ran et al. 536 
(2020) (Figure 12a–c). 537 

Second, two rock glaciers (wkl083 and wkl085) are in a region where two out of the three 538 
maps identified as seasonally frozen ground (Figure 12d–f). However, both landforms are 539 
located close to the permafrost boundary (Zou et al., 2017) or in the transitional permafrost zone 540 
(Ran et al., 2020). 541 

Third, besides the above examples, there are rock glaciers (12 out of 413 inventoried 542 
landforms, ~3%) occasionally situating in the area classified as seasonally frozen ground by Zou 543 
et al., (2017) but as permafrost by the other two (Obu et al., 2019; Ran et al., 2020). These rock 544 
glaciers also occur near the permafrost boundaries. Figure 12f gives an example (wkl082). 545 

In the first case, we consider that permafrost is very likely to develop in the sub-area. In 546 
the latter two cases, however, it is challenging to determine the presence or absence of 547 
permafrost from the isolated occurrence of rock glaciers near the permafrost boundaries. As the 548 
surface debris of rock glaciers usually acts as an insulating layer (Haeberli et al., 2006), the 549 
presence of rock glaciers indicates an environment where permafrost can develop under 550 
favourable conditions. Therefore, we consider these rock glaciers to represent the occurrence of 551 
permafrost within the local extent of the landforms, but we are cautious about drawing 552 
conclusions at the regional scale. 553 
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6 Conclusions 560 

We mapped rock glaciers at a regional scale and quantified their surface kinematics by 561 
combining InSAR and image semantic segmentation powered by deep learning. The deep 562 
learning method helped improve efficiency and overcome the limitations of InSAR-based 563 
mapping method. The combined method was applied to map rock glaciers across the Western 564 
Kunlun Mountains, where the extremely dry climate represents one characteristic environmental 565 
setting on the Tibetan Plateau. We draw the main conclusions as follows: 566 

(1) The DeepLabv3+ network trained by manually labelled data based on InSAR and 567 
Google Earth images can successfully identify and delineate rock glaciers from Sentinel-2 568 
images, attaining an IoU value of 0.801 for both training and validation datasets. The well-569 
trained model newly mapped 123 rock glaciers to supplement the non-exhaustive InSAR-based 570 
sub-inventory of 290 active rock glaciers. 571 

(2) There are 413 rock glaciers mapped over the study area, including 202 glacier-572 
connected rock glaciers (G-RGs), 143 debris-mantled slope-connected rock glaciers (DMS-573 
RGs), 41 glacier forefield-connected rock glaciers (GF-RGs), and 27 talus-connected rock 574 
glaciers (T-RGs). The mapped rock glaciers occupy a total area of ~ 108 km2 and are located at 575 
altitudes between 3390 m and 5540 m. The average slope angle is 17° and the dominating 576 
landform aspect is towards the east. 577 

(3) Among the mapped rock glaciers, the G-RGs and GF-RGs are larger (average areas: 578 
0.40 km2 and 0.38 km2) and occur on gentler slopes (14° and 15°) predominantly facing 579 
northeast, whereas the DMS-RGs are the smallest (0.05 km2) and occupy steep (23°) 580 
southeastern-facing slopes at the highest altitudes (4889 m). The T-RGs display a medium size 581 
(0.20 km2) and slope angle (18°) and mostly occur on southeastern-facing slopes at lower 582 
altitudes (4332 m). The GF-RGs have the lowest average altitude (4265 m). 583 

(4) We adopted the spatial average velocity of all pixels within the boundary of each rock 584 
glacier to represent the landform surface kinematics. In total, 256 rock glaciers have valid 585 
kinematic quantifications. Nearly 90% of the rock glaciers move slower than 50 cm yr-1. The 586 
mean downslope velocity is 24 cm yr-1, and the standard deviation is 22 cm yr-1. The median and 587 
maximum velocities are 17±1 cm yr-1 and 127±6 cm yr-1, respectively. 588 

(5) Among the active rock glaciers, the G-RGs and GF-RGs move faster at mean 589 
velocities of 31 cm yr-1 and 35 cm yr-1, respectively. The DMS-RGs and T-RGs creep at a slower 590 
average velocity of 17 cm yr-1. 591 

In summary, combining InSAR and optical imagery to manually map active rock glaciers 592 
proves to be an effective way to quantify rock glacier kinematics consistently in remote areas. 593 
The inventory produced by this work will serve as an important database for scientific 594 
investigations such as managing geohazards (e.g., Kummert and Delaloye, 2018), assessing 595 
sediment budget (e.g., Kofler et al., 2022), and monitoring permafrost changes (e.g., Haberkorn 596 
et al. 2021; Thibert and Bodin, 2022). 597 

Several improvements can be implemented to optimize the deep learning method: (1) to 598 
increase the amount and diversity of training samples by including rock glacier boundaries from 599 
other regions; (2) to adopt higher-resolution and more cloud-free optical images for producing 600 
input dataset; and (3) to use generative adversarial network for translating optical images (for 601 
landform inference) to the domain of training data and include them during training. With the 602 
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utilization of improved deep learning techniques, it is promising to compile rock glacier 603 
inventories efficiently over a significant extent of permafrost areas, e.g., the Tibetan Plateau, 604 
which provides a baseline dataset and allows the monitoring of rock glaciers as indicators of 605 
permafrost degradation and potential water sources in a changing climate. 606 
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