
P
os
te
d
on

25
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
68
50
03
85
.5
85
75
29
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

A generalized relationship linking water balance and vegetation

carbon uptake across site-to-regional scales

Guta Wakbulcho Abeshu1, Hong-Yi Li1, Mingjie Shi2, Jack Brookshire3, Jinyun Tang4,
chonggang xu5, Nathan G McDowell6, and L. Ruby Leung7

1University of Houston
2Pacific Northwest National Laboratory
3Montana State University
4Lawrence Berkeley National Laboratory (DOE)
5lanl
6Pacific Northwest National Lab
7PNNL

May 25, 2023

Abstract

The linear relationship between gross primary productivity (GPP) and evapotranspiration (ET), evidenced by site-scale ob-

servations, is well recognized as an indicator of the close interactions between carbon and hydrologic processes in terrestrial

ecosystems. However, it is not clear whether this relationship holds at the catchment scale, and if so, what are the controlling

factors of its slope and intercept. This study proposes and examines a generalized GPP-ET relationship at 380 near-natural

catchments across various climatic and landscape conditions in the contiguous U.S., based on monthly remote sensing-based

GPP data, vegetation phenology, and several hydrometeorological variables. We demonstrate the validity of this GPP-ET

relationship at the catchment scale, with Pearson’s r [?] 0.6 for 97% of the 380 catchments. Furthermore, we propose a re-

gionalization strategy for estimating the slope and intercept of the generalized GPP-ET relationship at the catchment scale

by linking the parameter values a priori with hydrometeorological data. We validate the monthly GPP predicted from the

relationship and regionalized parameters against remote-sensing based GPP product, yielding Kling-Gupta Efficient (KGE)

values [?] 0.5 for 92% of the catchments. Finally, we verify the relationship and its parameter regionalization at 35 AmeriFlux

sites with KGE [?] 0.5 for 25 sites, demonstrating that the new relationship is transferable across the site, catchment, and

regional scales. The relationship will be valuable for diagnosing coupled water–carbon simulations in land surface and Earth

system models and constraining remote-sensing based estimation of monthly ET.
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Key Points: 19 
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● The relationship and its parameterization are validated across the site, catchment, and 24 

regional scales 25 
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Abstract 27 

The linear relationship between gross primary productivity (GPP) and evapotranspiration (ET), 28 
evidenced by site-scale observations, is well recognized as an indicator of the close interactions 29 
between carbon and hydrologic processes in terrestrial ecosystems. However, it is not clear 30 
whether this relationship holds at the catchment scale, and if so, what are the controlling factors 31 
of its slope and intercept. This study proposes and examines a generalized GPP-ET relationship 32 
at 380 near-natural catchments across various climatic and landscape conditions in the 33 
contiguous U.S., based on monthly remote sensing-based GPP data, vegetation phenology, and 34 
several hydrometeorological variables. We demonstrate the validity of this GPP-ET relationship 35 
at the catchment scale, with Pearson’s r ≥ 0.6 for 97% of the 380 catchments. Furthermore, we 36 
propose a regionalization strategy for estimating the slope and intercept of the generalized GPP-37 
ET relationship at the catchment scale by linking the parameter values a priori with 38 
hydrometeorological data. We validate the monthly GPP predicted from the relationship and 39 
regionalized parameters against remote-sensing based GPP product, yielding Kling-Gupta 40 
Efficient (KGE) values ≥ 0.5 for 92% of the catchments. Finally, we verify the relationship and 41 
its parameter regionalization at 35 AmeriFlux sites with KGE ≥ 0.5 for 25 sites, demonstrating 42 
that the new relationship is transferable across the site, catchment, and regional scales. The 43 
relationship will be valuable for diagnosing coupled water–carbon simulations in land surface 44 
and Earth system models and constraining remote-sensing based estimation of monthly ET. 45 
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1. Introduction 46 
 47 
The linear relationship between gross primary productivity (GPP) and evapotranspiration (ET) 48 
has been studied by ecologists over the past decades. The relationship is considered a 49 
manifestation of the tight coupling between carbon and water fluxes via both biotic and abiotic 50 
processes and their interactions (Baldocchi, 1994; Baldocchi et al., 2001; Beer et al., 2007, 2009; 51 
Gentine et al., 2019; Law et al., 2002; Niu et al., 2011; Ponton et al., 2006; Smallman & 52 
Williams, 2019; Y. Yang et al., 2013; Zhou et al., 2014). Understanding this relationship 53 
provides valuable information on global carbon and water balance, vegetation growth, ecosystem 54 
responses to environmental changes, and the trade-off between photosynthetic carbon 55 
assimilation and concomitant transpiration (M. Huang et al., 2015; Ito & Inatomi, 2012; Keenan 56 
et al., 2013; Novick et al., 2016; Van Der Sleen et al., 2015). As such, in recent decades, the 57 
coupling between these two processes has been recognized as essential for assessing ecosystem-58 
level response to climate variability (Baldocchi, 1994; Beer et al., 2009; Brümmer et al., 2012; 59 
Hatfield & Dold, 2019; Kuglitsch et al., 2008; Niu et al., 2011; Ponton et al., 2006; Xiao et al., 60 
2013). Still, a better quantification of the GPP-ET relationship has been called upon to improve 61 
our understanding of the consequences of the projected future changes in temperature and 62 
precipitation regimes on ecosystem carbon and water balance (Krinner et al., 2014; Niu et al., 63 
2011; Zhou et al., 2017).  64 
Hydrologists view ET as a critical component of water balance at the catchment scale (Abeshu & 65 
Li, 2021; Fu, 1981; Greve et al., 2015, 2016; Ol’dekop, 1911; Pike, 1964; Sivapalan et al., 2011; 66 
Troch et al., 2009; Turc, 1954; Wang & Tang, 2014; L. Zhang et al., 2001, 2004). For instance, 67 
the Budyko curve describes the evaporative index, a ratio of long-term mean actual ET over 68 
long-term mean precipitation, as a function of climate regimes in terms of aridity index, a ratio of 69 
long-term mean potential ET over long-term mean precipitation (Budyko, 1974; Chen & 70 
Sivapalan, 2020; Choudhury, 1999; Li et al., 2014; Li & Sivapalan, 2014; Meira Neto et al., 71 
2020; H. Yang et al., 2008; Yao & Wang, 2022; Ye et al., 2015; L. Zhang et al., 2001, 2004). 72 
Parameters of the Budyko-type formulas are closely related to vegetation dynamics at the 73 
catchment scale (Donohue et al., 2007, 2010; Wang & Tang, 2014; L. Zhang et al., 2001; S. 74 
Zhang et al., 2016, 2018). The Horton Index, defined as the ratio of ET over total wetting (water 75 
available for vaporization), has even closer linkages with a few phenological features (Abeshu & 76 
Li, 2021; Brooks et al., 2011; Horton, 1933; Sivapalan et al., 2011; Tang & Wang, 2017; Troch 77 
et al., 2009; Voepel et al., 2011). It is thus a step further in connecting catchment-scale water 78 
balance and vegetation dynamics. However, few of these hydrologic studies focus on the GPP-79 
ET relationship within the context of catchment water balance. This motivates the first objective 80 
of this study to examine the GPP-ET relationship at the catchment scale across various climate 81 
and vegetation regimes.  82 
Ecologists have established the coupled relationship between photosynthetic carbon assimilation 83 
and transpiration at the leaf scale (Bacon, 2004; Farquhar et al., 1989; Lloyd & Farquhar, 1994; 84 
Peters et al., 2018; Seibt et al., 2008) and between GPP and ET at the ecosystem scale 85 
(Baldocchi, 1994; Beer et al., 2009; Jiang et al., 2020; Law et al., 2002; L. Yu et al., 2022; Zhou 86 
et al., 2014, 2017) from observations. Equation (1) describes the generic GPP-ET relationship at 87 
the ecosystem scale. The slope of the relationship, 𝜔, is referred to as water use efficiency and is 88 
often estimated as the ratio of long-term mean GPP to long-term mean ET at the ecosystem scale 89 
(Beer et al., 2009). When used for estimating GPP or ET, the equation is assumed to have a zero-90 
intercept, i.e., GPP is negligible when ET approaches zero and vice versa (Beer et al., 2007, 91 
2010; Y. Yang et al., 2013). 92 
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 𝐺𝑃𝑃 = 𝜔𝐸𝑇
 93 
However, it has been argued that an additional intercept term is needed for the ecosystem-scale 94 
GPP-ET relationship (Boese et al., 2017). In other words, the intercept term is not always 95 
negligible. As illustrated in Fig. 1, the zero-intercept assumption is not valid in at least three 96 
cases: 1) at cropland sites after harvest GPP is zero, but ET may not be negligible due to surface 97 
evaporation (see Nguyen & Choi, 2022); in evergreen forest-dominated ecosystems, there is a 98 
certain level of carbon assimilation even during the winter season (see Beer et al., 2007; G. Yu et 99 
al., 2008); in wetland or broadleaf forest-dominated ecosystems, significant evaporation occurs 100 
during the dormant season (see Baldocchi & Ryu, 2011). Over the past decades, many studies 101 
provided a quantitative understanding of the biotic and abiotic implications of the slope and its 102 
environmental controlling factors across vegetation types and spatial scales (Beer et al., 2009, 103 
2010; Yulong Zhang et al., 2016; Zhou et al., 2014). However, there remains a lack of direct 104 
quantitative assessments of the slope and its linkages to climatic and environmental factors with 105 
the inclusion of the intercept term (Boese et al., 2017), let alone an understanding and assessment 106 
of the intercept term. Among the very few exceptions is a study by Boese et al. (2017) at the site 107 
scale, where they introduced various intercept options to Eqn. 1 to predict ET based on GPP at 108 
over a hundred eddy covariance sites. However, their formulation has several limitations, such as 109 
using rain-free periods only for parameter estimation and excluding the other environmental 110 
conditions that could influence the stomatal opening of plants. Furthermore, the intercept term of 111 
their best-performing model is entirely independent of any variable reflecting vegetation activity. 112 
This motivates our second objective to derive quantitative linkages between the slope and 113 
intercept of the GPP-ET relationship and climatic and environmental factors.  114 
The linear GPP-ET relationship has been utilized to evaluate simulations by large-scale land 115 
surface or earth system models, for instance, regarding the coupling between water and carbon 116 
fluxes at the regional or global scales (M. Huang et al., 2016; Ito & Inatomi, 2012; Sun et al., 117 
2016; S. Yang et al., 2020, 2021; Z. Yu et al., 2017). However, most global GPP simulations 118 
suffer from significant biases and uncertainties (Yahai Zhang & Ye, 2021, 2022). A recent study 119 
evaluated forty-four global GPP products (nearly thirty were model-based outputs, and the rest 120 
were observation-based) and found significant inconsistencies among model-based products for 121 
some regions, seasons, and vegetation types (Yahai Zhang & Ye, 2021). A chief reason behind 122 
these GPP simulation biases and inconsistencies is a mismatch of spatial scales, i.e., between the 123 
site scale (where process understanding has been gained from local observations) and the 124 
regional or global scales (where the models are developed and applied) (Xie et al., 2023). In the 125 
land surface or earth system models, the global domain is discretized into grids with typical grid 126 
sizes ranging from tens to thousands of km2, far larger than the site scale, which is on the order 127 
of < 1km2 (Pastorello et al., 2020). Such a scale mismatch often leads to large model structural 128 
uncertainty, e.g., oversimplification or poor parameterization of sub-grid heterogeneity, which is 129 
non-trivial at the typical spatial resolutions that land surface or earth system models are applied 130 
(Bonan et al., 2018; Li et al., 2011, 2013; Smallman et al., 2013; Smallman & Williams, 2019). 131 
Therefore, our third objective is to verify whether the new understanding of the GPP-ET 132 
relationship gained at the catchment scale is transferable to the site scale. If so, it is possible that 133 
such an understanding is also applicable at the global scale. Note that site scale refers to the scale 134 
at which individual monitoring stations are located. Catchment scale, on the other hand, refers to 135 
the scale at which a larger area is studied as a single hydrological system. 136 
To advance the three objectives discussed above, three specific scientific questions are used to 137 
guide our analysis at the catchment and site scales using observations to address: 1) Is the GPP-138 
ET linear relationship valid at the catchment scale? 2) If so, can we establish quantitative 139 



Confidential manuscript submitted to Water Resources Research 

5 
 

linkages between environmental factors and the slope and intercept of this linear relationship at 140 
the catchment scale? 3) How are the new quantitative understandings transferable from the 141 
catchment scale to the site and regional scales? The rest of this paper is organized as follows: 142 
Section 2 introduces the data. Section 3 describes the methods. Section 4 presents the results. 143 
Section 5 summarizes the conclusions. 144 

2. Data 145 
We use the catchment-scale data directly from the Catchment Attributes and Meteorology for 146 
Large-Sample Studies (CAMELS) dataset (Addor et al., 2017; Newman et al., 2015). CAMELS 147 
provides daily hydrometeorological observations, such as precipitation, vapor pressure, 148 
shortwave radiation, minimum air temperature, maximum air temperature, and streamflow, for 149 
over three decades (1982 to 2014). It also includes daily ET simulations in the same period from 150 
the integrated Snow-17/SAC-SMA model (Addor et al., 2017; Burnash, 1995). Static catchment 151 
attributes, including dominant vegetation type (and its areal fraction in a catchment) and Green 152 
Vegetation Fraction (GVF) difference, are also available from CAMELS. GVF represents the 153 
fraction of a catchment area covered by green vegetation. The green and non-green portions are 154 
assumed to be areas that do or do not transpire, respectively. GVF difference is the difference 155 
between the maximum and minimum monthly mean GVF. It represents the seasonal dynamics in 156 
the catchment area contributing to the water balance through transpiration. 157 
We also use the GPP data retrieved from Landsat GPP products over the contiguous United 158 
States (CONUS) with a spatial resolution of 30-meter and a temporal resolution of 16-day 159 
(Robinson et al., 2018). We choose Landsat GPP over the other satellite-based products because 160 
it has a 36-year observational period (1991-2021), which overlaps with the CAMELS dataset for 161 
29 years.  162 
Figure 2 summarizes the data used in this study. Harmonization and processing of the data from 163 
various sources are detailed in the following seven steps: 164 

1) The CAMELS dataset provides an integrated Snow-17/SAC-SMA model output for ten 165 
optimal parameter sets. We collect the daily ET produced with each parameter set and 166 
compute the daily ensemble mean (𝐸𝑇 ).  167 

2) The annual ensemble mean ET (ETensemble) is then validated against the observed annual 168 
mean ET (ETobs). ETobs is calculated as annual mean precipitation minus annual mean 169 
runoff depth (estimated from the observed streamflow and catchment area). We only 170 
keep those CAMELS catchments satisfying |ETobs ETensemble|

ETobs
× 100% ≤ 10%  for further 171 

analysis. 172 
3) For catchments selected in Step 2, we remap the gridded Landsat GPP to each catchment 173 

and then convert the 16-day to monthly time series. 174 
4) We identify 1986-2010 as the study period during which all hydroclimatic variables and 175 

Landsat GPP data are continuously available (i.e., no missing data) for most catchments 176 
selected in Step 2. After filtering out catchments with missing data, we obtain 392 177 
catchments. 178 

5) We define the dominant vegetation cover for each catchment as the single vegetation type 179 
covering at least 50% of the drainage area. Hence, we exclude those catchments that do 180 
not have any vegetation type covering no less than 50% of the catchment area. We finally 181 
obtained 380 catchments with drainage areas ranging from 6.25 to 25,818 km2 (Fig. 3).  182 

6) For convenience, we classify the 380 catchments into six groups based on their dominant 183 
vegetation type, resulting in three forested and three non-forested catchment groups 184 
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(Table 1). Forested catchments include Deciduous Broadleaf (DBF) (89), Evergreen 185 
Forest (Needle leaf + Broadleaf) (EF) (25), and Mixed Forests (MF) (50) dominated 186 
catchments. Non-forested catchments include Croplands plus Croplands/Natural 187 
Vegetation Mosaic (CL/NVM) (111), Grasslands (GL) (46), and a combination of 188 
Savannas, Woody Savannas, and Open/Closed Shrublands, hereafter WSSL catchments 189 
(59). 190 

7) We calculate some climatic variables based on the existing CAMELS data. For instance, 191 
Vapor Pressure Deficit (VPD) represents the difference between actual and saturation 192 
vapor pressure, which we use to represent the atmospheric water demand of plants. We 193 
take the daily actual vapor pressure data directly from CAMELS. We calculate daily 194 
saturation vapor pressure as the mean of saturation vapor pressure at maximum and 195 
minimum air temperatures with the Magnus formula (Parish & Putnam, 1977). Inputs for 196 
the Magnus formula are daily air temperature data from CAMELS.  197 

Figure 3 shows the spatial maps (for the 380 catchments) of dominant vegetation types (Fig. 3a), 198 
the ensemble annual mean ET in 1986-2010 (Fig. 3b), and the long-term mean annual GPP in 199 
1986-2010 (Fig. 3c). 200 
In addition to the catchment-scale data, we collect the site-scale monthly data over CONUS, 201 
mainly from the AmeriFlux dataset (Pastorello et al., 2020). We select 35 AmeriFlux sites in 202 
CONUS, as listed in Table 2, with a minimum of 36 months (not necessarily continuous) of both 203 
GPP and ET observations in 1986-2010. Note that the data’s starting years, ending years, and 204 
lengths vary among the sites. Table 2 provides more details about these sites. We obtain daily 205 
forcing data from Daymet (Thornton et al., 2021), including minimum and maximum 206 
temperature, actual vapor pressure, shortwave radiation, and snow for the 35 sites. For 207 
consistency, we also group these sites into the six classes of vegetation types, which yielded five 208 
DBF, four EF (all evergreen needleleaf), five GL, eight WSSL (three open shrublands, three 209 
closed shrublands, one savannah, and one woody savannah), and thirteen CL/NVM (twelve CL 210 
and one NVM) sites. 211 

3. Methods 212 
In this study, we first develop a generic expression of the GPP-ET linear relationship that 213 
includes both the slope and intercept at the catchment scale (3.1). Data at the catchment scale 214 
described above are used to evaluate the validity of the GPP-ET linear relationship and calibrate 215 
the parameters (slope and intercept) of the relationship. Analysis is then performed to understand 216 
the spatial variability of the parameter values and to derive a multilinear regression relationship 217 
between the parameters and various climatic and environmental factors. The regression 218 
relationship is used to regionalize the parameters, and the validity of the regionalization is further 219 
tested at the site scale using the site-specific data described above. The statistical analysis 220 
techniques used in this study are briefly described in 3.2.  221 

3.1. Generic form of GPP- ET relationship at the catchment scale 222 
In catchment hydrology, normalization is a typical strategy to form a generic formula by 223 
minimizing the impacts of catchment size or magnitudes of any specific variables (Abeshu & Li, 224 
2021; Chen et al., 2013; Chen & Sivapalan, 2020; Wang & Tang, 2014; Ye et al., 2015). Here 225 
we assume that normalized monthly GPP and ET at the catchment scale are linearly related as 226 
 GPPmGPP =a ETmET +b (2)
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Where 𝐺𝑃𝑃  and 𝐸𝑇  are monthly GPP (gC/m2/day) and ET (mm/day) at the catchment scale, 227 
respectively, and GPP and ET are their corresponding long-term averages. 𝒂 and 𝒃 are 228 
dimensionless linear coefficients.  229 
Rearranging Eqn. (2) for 𝐺𝑃𝑃 , we get 230 
 231 
 GPPm= GPPET (aET m +bET). (3)

GPPET  is essentially the long-term mean ecosystem water use efficiency. Eqn. (3) can be simplified 232 
as  233 
 GPPm=βETm + αET (4)

Where 𝛽 (𝑔𝐶/𝑚2/𝑚𝑚) and 𝛼 (𝑔𝐶/𝑚2/𝑚𝑚) are two parameters. Eqn. (4) represents a two-234 
parameter linear relationship between GPP and ET that can be used to predict GPP given ET. 𝛽 235 
quantifies the increasing rate of GPP with increasing ET and vice versa, implying vegetation 236 
carbon uptake per unit of water use. 𝛼 is associated with the dormant season when GPP or ET is 237 
low. The intercept term (i.e., 𝛼 ∗ ET) is analogous to the residual conductance term employed in 238 
plant stomatal conductance models (Medlyn et al., 2011). If 𝛼 > 0, plant carbon uptake persists 239 
even when both transpiration and evaporation stop due to low VPD (𝐸𝑇 ≈ 0 and 𝐺𝑃𝑃 > 0). If 240 𝛼 < 0, evaporation continues to occur when there is no GPP associated with the above-ground 241 
biomass (𝐸𝑇 > 0 and 𝐺𝑃𝑃 ≈ 0). If 𝛼 ≈ 0, evapotranspiration and carbon uptake approach zero 242 
simultaneously (𝐸𝑇 ≈ 0 and 𝐺𝑃𝑃 ≈ 0). 243 
Note that if 𝛼 = 0, Eqn. (4) essentially reduces to Eqn. (1). Hereafter, we refer Eqn. (1) to as 244 
function-I and Eqn. (4) as function-II for future comparison. We determine the parameters for 245 
function-I and function-II in two stages. In the first stage, monthly GPP and ET data for each 246 
catchment (see Section 2) from 1986 to 2002 were used to calibrate the parameters. We then 247 
utilize these calibrated parameters to determine monthly GPP in 2003-2010 and verify them 248 
against Landsat GPP. The parameter values obtained in the first stage are denoted as 249 
“calibrated”. In the second stage, we explore and derive quantitative regression relationships 250 
between the calibrated function-II parameters and climatic and environmental factors such as 251 
precipitation, solar radiation, VPD, geography (i.e., the latitude and longitude at the centroid of 252 
each catchment), etc. This way, the function-II parameters can be estimated a priori instead of 253 
through calibration and are denoted as “estimated”. Note that these quantitative regression 254 
relationships, if successfully derived, can be used to regionalize the function-II parameters and 255 
provide parameter estimates over sparsely measured locations (Ali et al., 2014; Beck et al., 2020; 256 
Merz & Blöschl, 2004; Ye et al., 2014). 257 

3.2. Statistical methods 258 
The seasonal dynamics of meteorology, hydrology, and vegetation play an essential role in 259 
understanding the spatial variations of the slope and intercept of the GPP-ET linear relationship. 260 
The Seasonality Index (SI), as defined below, is used to quantify the seasonal dynamics of 261 
different processes. Various statistical metrics, including Pearson and Spearman’s correlation 262 
coefficients and Kling-Gupta Efficiency, are used to evaluate the validity of the GPP-ET linear 263 
relationship. Principal Component Analysis is used to determine the variance of the parameters 264 
of the GPP-ET relationship explained by climatic and environmental factors. Lastly, the 265 
Variance Inflation Factor (VIF) is used to determine the multicollinearity between the various 266 
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climatic and environmental factors used as predictors in a regression formula to predict the 267 
parameters of the GPP-ET relationship. These various statistical methods are briefly explained 268 
below.  269 
Seasonality Index (SI): SI applies to a time series of any time-varying variable and quantifies its 270 
seasonal distribution. SI is computed with the Walsh & Lawler (1981) method. SI ranges 271 
between 0 and 1.833, indicating that this variable uniformly occurs over the 12 months in a year 272 
and within a single month, respectively. 273 
Pearson correlation coefficient (Pearson's r): Pearson's r is a statistical metric used to evaluate 274 
the linearity of a relationship between paired data. Its numerical value ranges from -1 to +1, 275 
where a perfect positive and negative association is indicated by values of +1 and -1, 276 
respectively, while a value of 0 indicates no association. Evans (1996) provides the following 277 
interpretation of the absolute values of Pearson's r as: < 0.2 – very weak, 0.2 to 0.4 – Weak, 0.4 278 
to 0.6 – Moderate, 0.6 to 0.8 – Strong, ≥ 0.8–Very strong. 279 
Spearman's correlation (Spearman's ρ): Spearman's correlation is a statistical measure that 280 
assesses the strength and direction of a monotonic relationship between paired data, whether it is 281 
linear or not. The magnitude of the correlation coefficient ranges from -1 to +1, indicating 282 
perfect negative and positive monotonic relationships, respectively. The absolute value of 283 
Spearman's ρ is often interpreted using the following rule of thumb: 0 to 0.20 – negligible, 0.21 284 
to 0.40 – weak, 0.41 to 0.60 – moderate, 0.61 to 0.80 – strong, and 0.81 to 1.00 – very strong. 285 
Kling-Gupta Efficiency (KGE): We use KGE (Kling et al., 2012) as the goodness-of-fit measure 286 
for calibrating and validating function-I and function-II. The KGE value ranges between 287 −∞ 𝑡𝑜 1. KGE = 1 implies a perfect agreement between observed and simulated data. 288 
Principal Component Analysis (PCA): we use PCA to measure how much variability of 289 
parameters, 𝛽 and 𝛼, can be explained by the catchment climatic and geographic variables. 290 
Variance Inflation Factor (VIF): Multicollinearity between components of any regression 291 
formula is tested using the VIF method (Miles, 2014; Neter et al., 1983). Generally, if 5.0 < VIF 292 
< 10.0, the multicollinearity issue requires further investigation. VIF >10 is a sign of severe 293 
multicollinearity and must be corrected. Remedial measures are necessary until VIF is less than 294 
5.0 between any two components. A typical remedial strategy is to use more tolerant regression 295 
techniques such as the least absolute shrinkage and selection operator (LASSO) and Ridge 296 
regression (Dormann et al., 2013; Franke, 2010). 297 

4. Results  298 

4.1. Validating the GPP-ET linear relationship at the catchment scale 299 

Linearity analysis via Pearson's r suggests that the catchment-scale GPP-ET linear relationship 300 
is indeed valid regardless of catchment size, climate, topography, or vegetation type (Fig. 4). 301 
Pearson's r in 1986-2010 is higher than 0.6 for 97% of the 380 catchments, and is higher than 302 
0.8 for 88% of them. Only 12 (3%) catchments have Pearson's r lower than 0.6. These 12 303 
catchments are all located in an arid climate, and WSSL dominates 9 of them. The relatively low 304 
Pearson's r values in the arid catchments are likely due to two reasons: i) the uncertainty in ET 305 
estimation from the SAC-SMA model (Newman et al., 2015) and ii) the increase in the relative 306 
importance of evaporation components besides transpiration. Note that, even among these 3% 307 
catchments, Pearson's r is still no less than 0.4 except for two catchments, indicating a certain 308 
level of linearity.  309 
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Fig. 4 also shows the scatter plots of monthly GPP versus ET normalized by their corresponding 310 
long-term mean in 1986-2010 for 16 representative catchments (Fig. 4a-p). The 16 catchments 311 
are selected in two steps. First, the 380 catchments are divided into three geographic groups 312 
based on longitude: the eastern, western, and central US regions. Then six catchments from the 313 
eastern, five from the central, and five from the western US are selected based on the strength of 314 
GPP seasonality, i.e., SI values ranging from the minimum to the maximum. Clearly, the 315 
intercept is not negligible for some catchments and varies even among the same vegetation types.  316 
Indeed, function-II performs better than function-I in those catchments dominated by grasslands 317 
and shrubs, as suggested by Fig. 5. In this study, we calibrate the parameters for both function-I 318 
and function-II in the calibration period 1986-2003 and use the calibrated parameters to predict 319 
the monthly GPP in the validation period 2003-2010. Fig. 5 displays the monthly KGE values 320 
(between the predicted and observed GPP time series) for all 380 catchments (map in the middle) 321 
in 2003-2010. It also shows the predicted and observed monthly GPP time series for the 16 322 
representative catchments (Fig. 5a-p). For those catchments dominated by grasslands and shrubs 323 
(Fig. 5b, c, d, g, and m), function-I is subject to at least noticeable overestimation in June-August 324 
when GPP is highest and underestimation in November-January when GPP is lowest. However, 325 
function-II eliminates these noticeable biases. Fig. 5q summarizes this comparison between 326 
function-I and function-II in terms of Cumulative Distribution Function (CDF) for the KGE 327 
values (between the observed and predicted monthly GPP) in the calibration and validation 328 
periods, respectively. A CDF curve here describes the percentage of the 380 catchments with 329 
their KGE values below a certain threshold. For example, CDF at KGE = 0.8 indicates the 330 
percentage of the 380 catchments with KGE ≤ 0.8. Function-II achieves KGE ≥ 0.8 for 333 of 331 
the 380 catchments, whilst function-I achieves KGE ≥ 0.8 for only 158 catchments. Over the 332 
CONUS domain, function-II performs better by better capturing both the maximum and 333 
minimum of the GPP values, hence better capturing the seasonality of the GPP time series.  334 
The calibrated slope, 𝛽, values from function-II are larger than those calibrated 𝜔 values from 335 
function-I (i.e., the ratio of long-term mean GPP to long-term mean ET) values at ~70.5% of the 336 
380 catchments suggesting that the insights on the slope of the GPP-ET relationship gained from 337 
previous site-scale studies may not be directly applicable to the catchment and larger scales. 338 
Moreover, the absolute values of the calibrated intercept, 𝛼 ∗ ET, are nonzero 339 
(i.e., >0.05gC/m2/day) for 96% of the 380 catchments. This indicates that, in part, including the 340 
intercept in the linear equation is responsible for the calibrated slope being consistently greater 341 
than the traditional ones in a large proportion of the catchments. Hence, the previous 342 
understanding of the GPP-ET relationship needs to be reexamined at the catchment scale via the 343 
lens of function-II and its parameters.  344 

4.2. Understanding the function-II parameters 345 

The spatial patterns of the calibrated 𝛽 and 𝛼 values (Fig. 6) are similar to that of the annual 346 
mean GPP (Fig. 3). Roughly, 𝛽 decreases from northeast to southwest, except for catchments 347 
along the Pacific Northwest coast. Physically, 𝛽 represents the vegetation carbon uptake per 348 
millimeter of water. At a given geographic longitude, 𝛽 and 𝛼 increase and decrease with 349 
latitude, respectively. Their spatial patterns are closely related to the climate and environmental 350 
factors of CONUS that vary with latitude. Generally, mean annual vapor pressure deficit and 351 
solar radiation decrease northward, and precipitation seasonality is strong in the central and 352 
western US and weak in the eastern US and the Rocky Mountains. Furthermore, the phase index 353 
between PET and precipitation is moderately negatively correlated with 𝛼 (𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛′𝑠 𝜌 = -354 
0.40) but exhibits no significant association with 𝛽.  On the other hand, the parameter 𝛽 is 355 
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negatively correlated with the aridity index (Spearman's ρ = -0.65), which is only moderately 356 
and positively associated with 𝛼  (Spearman's ρ = 0.436). Both parameters are also significantly 357 
associated with precipitation frequency (Spearman's ρ = 0.7 for 𝛽 and -0.565 for 𝛼). The spatial 358 
variability of 𝛽 and 𝛼 also shows strong agreement with the peak mean monthly GVF values 359 
(𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛′𝑠 𝜌 is 0.75 for  𝛽 and -0.9 for  𝛼). 360 

The systematic difference in these parameters in catchments with different dominant vegetation 361 
types is further shown in Fig. 7. The catchment vegetation phenological cycle imposes 362 
significant control on the GPP-ET relationship. In Fig. 7a, from top to bottom, the mean 363 
calibrated 𝛽 values (averaged across the catchments) are largest in the DBF-dominated 364 
catchments, followed by MF, EF, WSSL, and GL. The large values of 𝛽 in DBF-dominated 365 
catchments can be attributed to their markedly distinct phenological stages, including leaf 366 
regeneration and senescence, resulting in a rapid shift in carbon uptake between the transient and 367 
dormant states. Photosynthesis rarely occurs during the dormant state, even when ET persists due 368 
to soil evaporation. The high values of 𝛽 reflect the combined effect of DBF characteristics and 369 
environmental factors resulting in a strong GPP seasonality. EF maintains foliage year-round, 370 
and even during the dormant season, carbon uptake is higher than other vegetation types, which 371 
increases further with greening-up. The phenological characteristics of the EF and the dominant 372 
effect of PET result in a relatively subdued GPP seasonality compared to DBF, hence, lower 𝛽 373 
values in comparison. MF is a mixture of DBF and EF, so its calibrated 𝛽 values reasonably lie 374 
between those of the two, reflecting a property that emerged from the combined characteristics 375 
of EF and DBF forests. In GL catchments,  gross primary productivity is primarily driven by 376 
temperature and precipitation (both magnitude and timing) and hence, highly dynamic and varies 377 
on a days-to-weeks scale. In these catchments, ET is often close to total water availability 378 
(Abeshu & Li, 2021). These factors result in very similar monthly variations in ET and GPP, as 379 
indicated by the 𝛽 value only slightly greater than one. The WSSL vegetation is combined 380 
herbaceous and forested; as such, their calibrated 𝛽 values lie reasonably between those of 381 
forested and grassland catchments. For the last vegetation group, i.e., CL/NVM, the phenological 382 
stages include temporary crop cover, harvest, and a bare soil period. The phenology and climate 383 
characteristics are similar to that of DBF, but human factors also influence this group through 384 
fertilization and other management practices that promote crop growth and harvest. The 385 
similarity between CL/NVM and DBF explains why the CL/NVM covers have the second-386 
highest calibrated 𝛽 value (on average) after DBF.  387 

The calibrated 𝛼 values are non-negligible (|𝛼| > 0.05 𝑔𝐶/𝑚2/𝑑𝑎𝑦) for 360 of the 380 388 
catchments and exhibit systematic differences among the vegetation types. Fig. 7b suggests that 389 
positive 𝛼 values primarily exist in the catchments dominated by WSSL (51 of 59 catchments), 390 
EF (17 of 25 catchments), and some GL (16 of 46 catchments). The positive 𝛼 values suggest a 391 
condition under which plant continues to take up carbon, but ET diminishes during the dormant 392 
season. For instance, low VPD (high humidity) translates to low transpiration and soil 393 
evaporation. However, plant carbon uptake can persist, driven by the energy from solar radiation. 394 
Negative 𝛼 values prevail in the catchments dominated by DBF, MF, GL, and CL/NVM, 395 
indicating that soil evaporation takes over during the dormant season when photosynthesis 396 
diminishes via phenological processes (DBF, MF, and GL) or human activities (CL/NVM). GPP 397 
happens only in the presence of light, but given sufficient VPD, ET occurs all the time; as such, 398 
the absence of light can result in a scenario where ET > 0 while GPP = 0. A similar scenario can 399 
also manifest under the condition where daytime processes are diminished (i.e., GPP and 400 
daytime ET are zero), but night-time ET is not, as daytime and night-time ET respond differently 401 



Confidential manuscript submitted to Water Resources Research 

11 
 

to low VPD levels (Han & Wang, 2021). Catchments with 𝛼 >  0 are located in the coastal areas 402 
of the Pacific Northwest, Pacific Coast, Southwest, Gulf Coast, and the southern part of the 403 
Great Plains (for GL) (see Fig. 3a and Fig. 6b). Particularly in the southwestern coastal areas, the 404 
winter period atmospheric river precipitation strongly influences the NDVI (Albano et al., 2017). 405 
Hence, to a certain degree, this also contributes to 𝛼 being relatively larger and positive in that 406 
area. The winter temperature is relatively mild in these regions of CONUS (Lute & Luce, 2017). 407 
The winter temperature decreases systematically from the coastal regions inland, where the rest 408 
of the catchments are located. The magnitude of 𝛼, in general, can be attributed to plant 409 
functionality and winter temperature. Plants have a minimum threshold for freezing temperature, 410 
beyond which plant radiation conversion efficiency diminishes to zero, hence no photosynthetic 411 
activities (i.e., 𝐺𝑃𝑃 =  0). However, driven by solar radiation, soil, and canopy surface 412 
evaporation may persist, leading to 𝐸𝑇 > 0 even when transpiration is nonexistent, resulting in 413 𝛼 <  0. Further, during the winter days, the daytime process, including GPP and ET, might be 414 
inhibited by the absence of sufficient photoperiods, but night-time ET can still occur. The  𝛼 415 
values are particularly greater than zero in the western U.S. 416 

Fig. 7a and b show systematic agreement between the variations of 𝛽 and 𝛼 with vegetation 417 
types, indicating that catchments with strong seasonal variations in GVF have larger 𝛽 values 418 
and smaller 𝛼 values (e.g., DBF) and vice versa (e.g., WSSL). The above differences in the 419 
function-II parameters among the vegetation regimes can be further explained by the GVF 420 
difference (Fig. 7c). GVF difference at the catchment scale quantifies the seasonal changes in the 421 
spatial coverage of active greenness within a catchment. For forested catchments, GVF generally 422 
decreases from DBF to MF to EF. Both 𝛽 and 𝛼 show a systematic pattern, with 𝛽 showing a 423 
pattern similar to GVF and 𝛼 opposite to GVF. DBF has thick canopies at the peak of the 424 
growing period and loses most leaves in winter, resulting in relatively large temporal dynamics 425 
of spatial cover (GVF difference> 0.4). EF catchments, on the other hand, maintain most of the 426 
canopy cover year-round (GVF difference< 0.2). The MF type, as expected, lies between the 427 
two, reflecting the influence of both vegetation types. From Fig. 7c, one can see that GL 428 
catchments have a wide range of GVF values, implying that some catchments are dominated by 429 
perennial grasslands with low GVF differences, while others are seasonal grasslands with higher 430 
GVF differences. The GVF difference is generally low in the WSSL catchments (<0.2) because 431 
this category is a mixture of forest and grasslands (perennial or seasonal), and the green canopy 432 
coverage remains relatively stable throughout the year. To generalize, catchments with rapid 433 
seasonal change in spatial cover are characterized by relatively high positive slope and high 434 
negative intercept in the GPP-ET linear relationship, while catchments with subdued seasonal 435 
dynamics are characterized by relatively smaller slope and smaller but positive intercept in the 436 
GPP-ET relationship. To a certain degree, these characteristics indicate a space-time similarity of 437 
catchment vegetation dynamics.  438 

4.3. Regionalizing the function-II parameters 439 

Taking advantage of the insights gained from the above analyses, we attempt to regionalize the 440 
function-II parameters by estimating the function-II parameters a priori at the regional scale. 441 
Parameter regionalization is an effective strategy to transfer the process-based understanding 442 
from gaged to ungaged catchments and from catchment- to regional scale (Abeshu & Li, 2021; 443 
Guo et al., 2014; Ye et al., 2014). We aim to identify regression relationships between the target 444 
variables (𝛽 and 𝛼 in this case) and climate and other environmental factors as predictors. We do 445 
not explicitly include phenological variables, such as GVF, as predictors primarily because the 446 
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phenological characteristics of vegetation are already closely related to climate and 447 
environmental conditions.  448 
The environmental factors for consideration are mostly static, such as geographic locations, soil 449 
properties, geography, etc. The climatic factors are expressed in terms of seasonality index, 450 
mean, maximum, or minimum values extracted from the corresponding time series in 1986-2010. 451 
Here we select the climate and environmental predictor variables based on two criteria: 1) 452 
observational data of these factors should be extensively available globally; 2) the factors should 453 
have good monotonic relationships with 𝛽 and 𝛼, at least for some vegetation types. After a few 454 
rounds of trial and error, we identify the following predictor variables that satisfy the two criteria 455 
and lead to the best possible regression formulas: Geographic latitude (Lat), Long-term mean 456 
VPD (𝑉𝑃𝐷), Minimum monthly mean VPD (𝑉𝑃𝐷 ), Long-term mean shortwave radiation 457 
(𝑆𝑊𝑅), Minimum monthly mean SWR (𝑆𝑊𝑅 ), Long-term mean snow fraction (𝑆𝐹), and the 458 
Seasonality index of monthly precipitation (𝑆𝐼 ). 459 

We use Spearman's ρ to determine whether the above predictors have monotonic relationships 460 
with 𝛽 and 𝛼 for each vegetation type, as shown in Fig. 8. For instance, latitude has moderate to 461 
strong monotonic relationships with both 𝛽 and 𝛼 (|Spearman's ρ| > 0.4) among most vegetation 462 
regimes, except for WSSL. 𝑆𝑊𝑅 has strong monotonic relationships with both 𝛽 and 𝛼 463 
(|Spearman's ρ| > 0.6) in catchments dominated by DBF, MF, GL, CL/NVM. Furthermore, we 464 
perform principal-component-analysis (PCA) to assess if the predictors included in Fig. 8 465 
explain the most variability in the function-II parameters, as shown in Fig. 9. It appears that the 466 
first two PCA components alone can explain more than 80% of the variability of both 𝛽 and 𝛼 467 
within each vegetation regime, suggesting that these climatic and environmental factors can 468 
potentially well predict both 𝛽 and 𝛼 for each vegetation regime at the catchment scale.  469 
We obtain two multilinear regression formulas for 𝛽 and 𝛼, separately.  470 
 𝛽 = 1.615 − 0.0056(𝑙𝑛( 𝑆𝑊𝑅) ∗ 𝐿𝑎𝑡) − 2.087 𝑙𝑛 𝑙𝑛 (𝑉𝑃𝐷) − 1.081(𝑆𝐹 ∗ 𝑆𝐼 ) (5)

 𝛼 = 7.956 + 1.958 (𝑙𝑛 𝑙𝑛 𝑉𝑃𝐷 ∗ 𝐿𝑎𝑡) + 1.369(𝑆𝐼 + 𝑆𝐹) − 1.364𝑆𝑊𝑅  (6)

It is possible that multicollinearity exists among the predictors. Hence, we check for 471 
multicollinearity using VIF. The VIF is < 2.75 for 𝛽, and  < 5.50 for 𝛼, indicating that the 472 
regression formulas (Eqn. 5 and 6) are reasonably free from multicollinearity (Fig. 9).  473 

Fig. 10 shows that the regression formulas well capture the spatial variability of 𝛽 and 𝛼 . KGE 474 
and r2 are 0.71 and 0.73 for 𝛽, and 0.81 and 0.79 for 𝛼, respectively. Between the two 475 
parameters, 𝛼 generally shows a lower difference between the estimated and predicted values. 476 
About 72% of catchments for 𝛽 and 78% for 𝛼 are within a 20% margin of error (i.e., absolute 477 
difference divided by actual value). Thirty-nine (~10% of 380: 13 WSSL, 12 EF, 12 GL, and 2 478 
CL/NVM) catchments show a deviation larger than 20% for both parameters. We further apply 479 
the estimated β and α values in function-II against Landsat GPP shows KGE ≥ 0.5 and ≥ 0.80 for 480 
92% and 62% of the catchments, respectively (Fig. 11). Only 30 of the 380 catchments have 481 
KGE below 0.5, and only three have KGE less than zero. The dominant vegetation types in these 482 
30 catchments are GL (15), EF (7), and WSSL (7). The two regression formulas can thus 483 
reasonably well regionalize the function-II parameters, enabling the transferability of function-II 484 
over the whole contiguous U.S.  485 
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4.4. Verifying function-II at the Site-scale 486 

Lastly, we evaluate whether function-II (Eqn. 4) and its parameter regionalization (Eqn. 5 and 6) 487 
at the catchment scale are transferable to the site scale. We compare the simulated GPP (using 488 
the site-scale climate and other data described in Section 2) against the AmeriFlux GPP 489 
observations at 35 sites and the monthly scale. The results show that function-II captures the site-490 
scale GPP reasonably well, as indicated by R2 ≥ 0.5 for 32 sites and KGE ≥ 0.5 for 25 sites 491 
(Table 3). The mean and median KGE across all sites are 0.51 and 0.61, respectively. The few 492 
sites with relatively poor performances are mainly located in the western U.S., where Eqn. 5 493 
performs relatively poorly even at the catchment scale. 494 
Figure 12 depicts the monthly time series of simulated and observed GPP at five sites, one for 495 
each vegetation type. The model captures the reference data well for the DBF site but 496 
underestimates the peak values (Fig. 12a). The function consistently overestimates for the EF site 497 
(Fig. 12b). Given that the intercept coefficients of both sites are < 0 and the seasonal patterns are 498 
reasonably captured (Table 3), the overestimation is mainly due to underestimated intercept (i.e., 499 
underestimated α), underestimated long-term ET, or both. For WSSL and GL (Fig. 12c and d), 500 
the model captures the reference data reasonably well. Similar to the DBF site, the CL/NVM 501 
results show poor performance in terms of magnitude but capture the patterns well (Fig. 12e). 502 
Further, in general, the poor performances could be attributed to parameter estimation 503 
uncertainties. For most of these sites, seeing that the temporal dynamics are captured well in both 504 
magnitude and pattern, other than the peak GPP months, the cause is likely a bias in peak period 505 
ET (i.e., underestimation) or decoupling between ET and GPP (i.e., linearity does not apply) 506 
during this period. Overall, function-II provides reasonable estimates of GPP at the site scale, 507 
with only three sites having KGE less than zero. Hence our results suggest that function-II works 508 
across a wide range of spatial scales, given that the study catchments also span a wide range of 509 
sizes. 510 
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5. Discussions   511 
In this study, two GPP-ET formulas at monthly scales are evaluated at the catchment scale: the 512 
traditional one-parameter relationship (function-I) and the newly proposed two-parameter 513 
relationship (function-II). Typically, the slope of a GPP-ET relationship is considered as the 514 
long-term ecosystem water use efficiency (WUE), which reflects climatic and phenological 515 
controls on vegetation carbon gain and water consumption. The superior performance of 516 
function-II suggests that the function-II slope, β, is a more reliable estimator of WUE than the 517 
function-I slope, ω. Fig. 13 shows that β significantly differs from ω in most catchments, 518 
particularly for cases where ω was larger than 2gC/m2/mm. Compared to β, ω overestimates 519 
WUE in the southwestern catchments dominated by EF and WSSL, where seasonality of GPP is 520 
weak, and underestimates it in those northeastern catchments dominated by DBF, MF, GL, and 521 
CL/NVM, where seasonality of GPP is strong.  522 
WUE is a widely employed indicator for evaluating an ecosystem's adaptability to changing 523 
environmental conditions. An overestimation of WUE may create the impression that ecosystems 524 
are more resilient to water stress than they truly are, impacting our understanding of their 525 
adaptability to climate change (J. Huang et al., 2016). Furthermore, such overestimation can 526 
misrepresent an ecosystem's contribution to carbon sequestration, implying it can assimilate 527 
more carbon dioxide per unit of water consumed than it actually can (Keenan et al., 2013). 528 
Furthermore, fluctuations in WUE under extreme circumstances can trigger cascading effects on 529 
ecosystem functioning. For instance, overestimating WUE may lead to a false sense of 530 
ecosystem resilience to drought, whereas underestimation could result in overlooking the 531 
potential repercussions of drought or other water stresses on ecosystems (Leuzinger et al., 2011). 532 
Such misjudgments can prompt improper management decisions and produce adverse ecological 533 
consequences. An underestimation of WUE may lead to similar misjudgments as above except in 534 
an opposite direction, e.g., overestimation of ecosystem resiliency under water stress. Reliable 535 
estimation of WUE across diverse plant species and ecosystems is crucial for biodiversity 536 
conservation, as it helps identify species and ecosystems more susceptible to climate change 537 
(Chaves et al., 2003). Such knowledge can inform targeted conservation efforts to safeguard 538 
vulnerable species and habitats. 539 
Despite the improved performance of function-II (over function-I), certain limitations persist. 540 
Firstly, the GPP-ET linearity is weaker in some catchments than the rest due to noticeable 541 
contribution from surface evaporation. Hence the proposed function could be further improved in 542 
such areas. Secondly, the proposed function does not capture monthly peak GPP values in some 543 
cases. The likely reasons include: biases in ET estimation, WUE may vary from one season to 544 
another (or vary at a longer time scale) instead of being constant. Both are beyond the scope of 545 
this study and left for future work. Lastly, ET is used as a whole instead of partitioning explicitly 546 
into transpiration and evaporation. ET partitioning is a long-standing challenge in both ecologic 547 
and hydrologic communities. These limitations, nevertheless, do not affect our conclusions, but 548 
rather open new opportunities for future research. 549 

6. Conclusions   550 
This study presents a generalized monthly GPP-ET relationship that works well across the 551 
catchment and site scales, hence regional scale as well. Driven by three objectives and the 552 
corresponding scientific questions, we have analyzed data at 380 catchments across CONUS. For 553 
the question “Is the GPP-ET linear relationship valid at the catchment scale”, we find a strong 554 
linear relationship between monthly GPP and ET for most catchments (Pearson's r > 0.6 for 97% 555 
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of the 380 catchments) except for a few arid catchments dominated by woody savanna or 556 
shrublands. We also find a non-negligible linear intercept of the GPP-ET relationship at the 557 
catchment scale for 360 catchments. Hence, we argue that a new, generalized GPP-ET 558 
relationship with a non-zero intercept is more suitable at the catchment and monthly time scale. 559 
For the question “Can we establish quantitative linkages between environmental factors and the 560 
slope and intercept of this linear relationship at the catchment scale”, we have established 561 
quantitative linkages between the parameters of the new GPP-ET relationship and the climatic 562 
and environmental factors. We have also developed and validated a parameter regionalization 563 
strategy (based on multilinear regression analysis), enabling the transferability of the new GPP-564 
ET relationship from gaged to ungauged catchments. For the question “How is the new 565 
quantitative understanding transferable from the catchment scale to the site and regional 566 
scales”, we have verified the new GPP-ET relationship and its parameter regionalization at 35 567 
AmeriFlux sites with relatively satisfactory performance. We attribute the seemingly higher 568 
biases at the site scale (compared to the catchment scale) to the difference in the input data 569 
sources and the uncertainty in the parameter regionalization. Taken together, we suggest that the 570 
new GPP-ET relationship and its parameter regionalization can be transferable across the site, 571 
catchment, and regional scales.  572 
The outcomes from this study have at least three important implications: 1) They can bridge the 573 
ecological and hydrologic communities by providing a unified understanding of ET (water cycle) 574 
and its linkages to vegetation productivity (carbon cycle). Any future new understanding of GPP 575 
from the ecologic community and water balance from the hydrologic community can likely 576 
further advance our understanding of this generalized GPP-ET relationship, coupling between 577 
the water and carbon cycles, and other individual ecological and hydrologic processes. 2) They 578 
can be used as physically meaningful indicators of the coupled hydrological-ecological processes 579 
to diagnose the simulation results from land surface and earth system models. Such diagnosis 580 
will shed light on the possible deficiencies in these models' structures or parameterizations for 581 
representing hydrological and ecological processes and their interactions. 3) They can be used to 582 
provide physical constraints for remote sensing-based ET products. Such products have been 583 
subject to substantial biases, particularly during cloudy days. Remote-sensing measurements 584 
provide valuable GPP and ET products at various spatiotemporal resolutions, but almost all of 585 
these products are obtained from optical spectral measurements, which clouds can easily 586 
contaminate. This can lead to uncertainty in the measurement quality of each revisit at a certain 587 
location, especially for regions with persistent cloud cover throughout the year, such as the 588 
Amazon (Samanta et al., 2012; Xu et al., 2019). This research provides a foundation for 589 
recompiling GPP and ET products from multiple instruments with varying resolutions. Given the 590 
GPP-ET relationships shown in this paper, it is extraordinarily meaningful to apply the GPP-ET 591 
relationships obtained from different ecosystems to multiple satellite products, which could 592 
reduce uncertainties and reproduce data products with enhanced spatial and temporal coverage. 593 
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first two principal components (PC1 and PC2) of the predictors  for the calibrated parameters: (a) 992 
for the parameter 𝛃 and (b) for the parameter 𝛂. 993 
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 1038 
 1039 
 1040 
 1041 
 1042 
 1043 
Table 1: Catchments group based on dominant vegetation cover type. 1044 

Group Vegetation type(Count) Group Name Count 
1 Deciduous Broadleaf(89)  DBF 89 

2 Evergreen Neadleaf Forest(22) EF 25 
Evergreen Broadleaf Forest(3)  

3 Mixed Forests(50)  MF 50 

4 
Croplands(46) 

CL/NVM 111 Croplands/Natural Vegetation 
Mosaic(65)  

5 

Savannas(4) 

WS-SL 59 Woody Savannas(45) 
Open Shrublands(7)  
Closed Shrublands(3) 

6 Grasslands(46) GL 46 
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Table 2: Ameriflux sites used in this study 1045 

Site ID Lon Lat Vegetation Start 
Date 

End 
Date β α KGE R2 

US-ARM -97.49 36.61 CL/NVM 2003-01 2020-12 1.69 -0.01 0.64 0.66 
US-Bi1 -121.50 38.10 CL/NVM 2016-08 2021-12 0.74 0.73 0.3 0.87 
US-Bi2 -121.54 38.11 CL/NVM 2017-05 2021-12 0.74 0.74 0.14 0.79 
US-CF1 -117.08 46.78 CL/NVM 2017-05 2020-12 2.01 -0.61 0.58 0.87 
US-CF2 -117.09 46.78 CL/NVM 2017-05 2020-12 1.99 -0.60 0.62 0.85 
US-CF3 -117.13 46.76 CL/NVM 2017-06 2021-12 1.98 -0.59 0.61 0.84 
US-CF4 -117.13 46.75 CL/NVM 2017-06 2021-12 1.98 -0.59 0.66 0.89 
US-Ne1 -96.48 41.17 CL/NVM 2001-06 2020-12 2.19 -0.39 0.54 0.87 
US-Ro1 -93.09 44.71 CL/NVM 2004-01 2016-12 2.79 -1.20 0.61 0.76 
US-Ro5 -93.06 44.69 CL/NVM 2017-01 2020-12 2.78 -1.19 0.5 0.63 
US-Ro6 -93.06 44.69 CL/NVM 2017-01 2021-12 2.78 -1.19 0.81 0.81 
US-Tw3 -121.65 38.12 CL/NVM 2013-06 2018-05 0.77 0.79 0.31 0.87 

US-HWB -77.85 40.86 CL/NVM 2015-08 2018-08 2.68 -0.88 0.6 0.78 
US-Ha1 -72.17 42.54 DBF 1991-11 2020-12 2.90 -0.97 0.58 0.83 

US-MMS -86.41 39.32 DBF 1999-02 2020-12 2.51 -0.80 0.54 0.94 
US-MOz -92.20 38.74 DBF 2004-06 2019-12 2.29 -0.56 0.61 0.93 
US-UMd -84.70 45.56 DBF 2007-06 2021-12 3.10 -1.26 0.61 0.94 
US-xBR -71.29 44.06 DBF 2017-02 2021-12 2.94 -0.88 0.73 0.94 
US-GLE -106.24 41.37 EF 2005-01 2020-09 3.36 -0.93 -0.1 0.57 
US-Ho2 -68.75 45.21 EF 2002-06 2020-12 3.03 -1.11 0.46 0.73 
US-Me2 -121.56 44.45 EF 2002-01 2020-12 2.01 0.31 0.68 0.81 
US-NR1 -105.55 40.03 EF 1999-01 2016-12 3.38 -0.79 0.06 0.71 
US-KFS -95.19 39.06 GL 2008-01 2019-12 2.26 -0.35 0.79 0.67 
US-KLS -97.57 38.77 GL 2012-05 2019-12 1.79 -0.07 0.65 0.59 
US-ONA -81.95 27.38 GL 2016-05 2020-12 1.35 0.90 0.86 0.79 
US-Ro4 -93.07 44.68 GL 2014-01 2021-12 2.77 -1.18 0.66 0.92 
US-Sne -121.75 38.04 GL 2016-06 2020-12 0.80 0.76 -0.48 0.19 
US-Rms -116.75 43.06 WSSL 2014-10 2020-09 2.30 -0.20 0.87 0.94 
US-Rwe -116.76 43.07 WSSL 2003-02 2007-09 2.27 -0.21 0.16 0.88 
US-Rwf -116.72 43.12 WSSL 2014-06 2020-09 2.14 -0.12 0.72 0.94 
US-Jo2 -106.60 32.58 WSSL 2010-08 2020-12 0.69 0.65 0.49 0.36 
US-Rws -116.71 43.17 WSSL 2014-10 2020-09 1.61 -0.02 0.73 0.67 
US-SRC -110.84 31.91 WSSL 2008-03 2014-06 0.39 0.97 -0.14 0.56 
US-Wjs -105.86 34.43 WSSL 2007-05 2021-12 1.09 0.32 0.8 0.76 
US-Mpj -106.24 34.44 WSSL 2008-01 2020-12 1.21 0.28 0.66 0.45 
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