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Abstract

Convective available potential energy (CAPE), a metric associated with severe weather, is expected to increase with warming,

but we have lacked a framework that describes its changes in the populated midlatitudes. In the tropics, theory suggests mean

CAPE should rise following the Clausius-Clapeyron (C-C) relationship at ˜6%/K. In the heterogeneous midlatitudes, where the

mean change is less relevant, we show that CAPE changes are larger and can be well-described by a simple framework based

on moist static energy (MSE) surplus, which is robust across climate states. This effect is highly general and holds across both

high-resolution nudged regional simulations and free-running global climate models. The simplicity of this framework means

that complex distributional changes in future CAPE can be well-captured by a simple scaling of present-day data using only

three parameters.
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Key Points:8

• In midlatitudes summer, future CAPE increases show distributional structure and9

it is insufficient to be described with mean changes10

• CAPE shows a strong dependence on “MSE surplus” and this dependence holds11

across climate states12

• The CAPE distributional shift is well captured by adjusting current climate pro-13

files with 3 parameters: surface T and RH, and upper-level T14
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Abstract15

Convective available potential energy (CAPE), a metric associated with severe weather,16

is expected to increase with warming, but we have lacked a framework that describes its17

changes in the populated midlatitudes. In the tropics, theory suggests mean CAPE should18

rise following the Clausius–Clapeyron (C–C) relationship at ∼6%/K. In the heteroge-19

neous midlatitudes, where the mean change is less relevant, we show that CAPE changes20

are larger and can be well-described by a simple framework based on moist static energy21

(MSE) surplus, which is robust across climate states. This effect is highly general and22

holds across both high-resolution nudged regional simulations and free-running global23

climate models. The simplicity of this framework means that complex distributional changes24

in future CAPE can be well-captured by a simple scaling of present-day data using only25

three parameters.26

Plain Language Summary27

Severe thunderstorms cause substantial damage and may become more destructive28

in the future. Because these events are associated with conditions of high “Convective29

Available Potential Energy” (CAPE), it is important to understand how CAPE might30

increase in a future warmer climate, but existing theories designed for the tropics are not31

suitable for the U.S. and similar areas. We find that future changes in CAPE are com-32

plex and cannot be predicted based on surface temperature alone, but can be using three33

factors: temperature and moisture at the surface and temperature at a higher level. A34

single simple framework is able to explain CAPE differences between present and future,35

warm and cold regions, or daytime and nighttime.36

1 Introduction37

Convective Available Potential Energy (CAPE), loosely defined as the vertically38

integrated buoyancy of a near-surface air parcel, is a metric closely associated with ex-39

treme convective weather events that can cause substantial socioeconomic damages (e.g.,40

Johns & Doswell, 1992). CAPE is derived from the difference between the temperature41

profile of a parcel rising pseudo-adiabatically from the surface and that of the background42

environment (Moncrieff & Miller, 1976), which determines the maximum possible up-43

draft velocity during undiluted ascent. In meteorology, CAPE is used to predict thun-44

derstorm events and in particular hail (Groenemeijer & van Delden, 2007; Kunz, 2007;45

Kaltenböck et al., 2009). Studies have also used the covariate of CAPE and wind shear46

to explain differences in thunderstorm frequency across locations (Brooks et al., 2003,47

2007) or across climate states (Trapp et al., 2009; Diffenbaugh et al., 2013).48

Early efforts to understand CAPE in observations sought to characterize it as a func-49

tion of near-surface temperature and moisture (Williams & Renno, 1993; Ye et al., 1998).50

More recent studies of CAPE in observations have tended to focus on decadal-scale trends,51

often finding large increases. For example, (Gettelman et al., 2002) found trends equiv-52

alent to ∼50%/K in 15 tropical radiosonde stations. Model studies of CAPE under cli-53

mate change have tended to produce smaller effects. Several recent studies that simu-54

late the tropics using convection-permitting models (0.2–4 km resolution) without ad-55

vection, i.e. approximating radiative-convective equilibrium, find CAPE increases of 8%/K56

(Muller et al., 2011), 8%/K (Romps, 2011), 12%/K (Singh & O’Gorman, 2013), 7%/K57

(Seeley & Romps, 2015), and 6–7%/K from theory (Romps, 2016). In the midlatitudes,58

changes may be larger: both Diffenbaugh et al. (2013) and Chen et al. (2020) show ∼10%/K59

over the Eastern part of the continental United States. The representation of CAPE changes60

is extensively evaluated across CMIP6 models by Lepore et al. (2021), finding 10–14%/K61

changes for U.S. and 6–8%/K changes for regions including Europe, India and South-62

east Asia.63
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Theoretical frameworks to explain climatological CAPE fall into two groups. One64

approach assumes that background environmental profiles are fully determined by sur-65

face temperature, and predicts them by considering the effects of convective entrainment.66

Singh and O’Gorman (2013) proposed a “zero-buoyancy model” based on the assump-67

tion that entrainment makes actual buoyancy in an ascending convective plume small68

relative to CAPE (with column RH considered fixed). Singh and O’Gorman (2015) and69

Zhou and Xie (2019) extended the work and validated the approach under radiative-convective70

equilibrium (RCE). However, the theory is not expected to work for midlatitudes land,71

which has strong spatial and temporal variations, even though its climatological mean72

profile is close to RCE (Miyawaki et al., 2022).73

A second approach treats surface and mid-tropospheric conditions as independent74

variables. Emanuel and Bister (1996) (henceforth EB96) drew on heat engine theory and75

described the relationship as76

CAPE = A · (hs − hm) (1)

where hs and hm are moist static energy (MSE) near the surface (boundary layer) and77

in the mid-troposphere, respectively. In this perspective, CAPE represents the maximum78

possible kinetic energy that can be released given a heat transfer of (hs−hm), and CAPE79

is generated only when surface MSE exceeds that of a mid-tropospheric threshold. Agard80

and Emanuel (2017), Li and Chavas (2021) (hereafter, AE17 and LC21) and Chavas and81

Li (2022) modified the approach to use a different threshold term, dry static energy, and82

showed that results captured aspects of CAPE variations in the midlatitudes.83

We modify the framework based on Emanuel (1994) and use as the threshold term84

the minimum “saturation MSE” h∗
m in the mid-troposphere, the moist static energy a85

parcel would have if saturated:86

CAPE = A · (hs − h∗
m) (2)

We term the difference hs−h∗
m the ‘MSE surplus’. The integral form of this expression87

can be derived from the definition of CAPE given the assumption that the effect of wa-88

ter vapor on buoyancy is negligible. (See Supporting Information Text S1.) We then sim-89

plify to a linear dependence (as in e.g. AE17) by replacing the integral with a difference90

at a single location. This assumption is valid as long as the shape of the environmen-91

tal temperature profile does not vary strongly with hs and can be folded into the slope92

A. The rationale for h∗
m as the threshold term can also be expressed intuitively: CAPE93

depends only on temperature differences, and above the level of free convection, the ris-94

ing parcel is saturated and conserves h∗, so its difference with the environment should95

be taken with a comparable quantity. Zhang and Boos (2023) used h∗
m as a threshold96

for convective instability over summertime mid-latitude land, but Equation (2) has not97

yet been evaluated as a framework for CAPE.98

A sufficiently general framework should explain not only average CAPE, or CAPE99

in the average profile, but its variations across space and time in the highly heteroge-100

neous midlatitudes. This generality is required for any application to extreme weather,101

since only the high tail of CAPE is associated with the severe thunderstorms that pro-102

duce large socioeconomic impacts. Although no prior work has addressed future changes103

in midlatitudes CAPE distributions, studies suggest they may shift in complex ways. For104

example, Chen et al. (2020) show that spatial patterns of CAPE changes over North Amer-105

ica differ from those of present-day CAPE.106

In this work, we use observations and model simulations to evaluate how CAPE107

changes under CO2-induced warming, and to test whether the relationship of Equation108

(2) captures these changes. That is, we ask whether it robustly applies to current and109

future CAPE distributions across climate states. Furthermore, we ask whether robust-110

ness means that complex distributional changes can be reproduced by as few as three111

–3–



manuscript submitted to Geophysical Research Letters

parameters derived from regional means. Our goal is to quantify changes in CAPE dis-112

tributions in the midlatitudes and to provide a simple framework that explains them.113

114

2 Data and Methods115

2.1 Model output116

Most analysis here uses high-resolution model output: a paired set of present and117

future dynamically downscaled simulations over continental North America from the Weather118

Research and Forecasting model (WRF, version 3.4.1) run at 4 km resolution. Both runs119

are described in Liu et al. (2017) and are acquired from NCAR RDA (Rasmussen & Liu,120

2017). The present-day simulation (CTRL) uses ERA-Interim reanalysis for initial and121

boundary conditions and for a large-scale spectral nudging (scales >2000 km) applied122

to levels above the planetary boundary layer, to match planetary-scale weather patterns.123

Small-scale processes can still evolve freely. The future simulation is a pseudo-global-warming124

(PGW) scenario, treated identically but with reanalysis adjusted by a spatially- and temporally-125

varying offset derived from the CMIP5 multi-model mean projection under RCP8.5, to126

reflect large-scale changes under increased CO2. These runs have been validated against127

observations (Wang et al., 2021) and used in studies of future CAPE changes (Sun et128

al., 2016; K. L. Rasmussen et al., 2017). In this work, we use the years 2001–2012 and129

the equivalent future period.130

To test whether results apply generally to a diverse set of free-running models, we131

use 11 CMIP6 models, selected based on the availability of the 6-hourly output needed132

for CAPE calculation. Model biases range from -60–+1700 J/kg, with the best perfor-133

mance (MPI-ESM1-2-LR) comparable to WRF, at ∼30 vs. 14 J/kg (Wang et al., 2021;134

Chavas & Li, 2022). We use pairs of historical (2005-2014) and ssp585 (2091-2100) sim-135

ulations (Eyring et al., 2016). To allow comparison with observations, we subset all model136

output to 80 grid points that match International Global Radiosonde Archive (IGRA)137

weather stations in North America, as in Wang et al. (2021). For consistency, we cal-138

culate surface-based CAPE in all runs using the same python package. For ‘paired’ com-139

parisons, we match each profile in CTRL/historical with its equivalent in PGW/ssp585.140

As in prior studies, most analyses here use only the summertime (MJJA or JJA), when141

convection is most active.142

2.2 Methods: regressions and subsetting143

All linear fits in this work are made using binned median data, to homogenize CAPE144

sampling. All fits are computed using orthogonal distance regression (ODR), which is145

most appropriate in conditions where errors in both dependent and independent vari-146

ables matter. See Schwarzwald et al. (2021) for discussion of ODR. When fitting to es-147

timate the fractional change in CAPE between climate states, we use the entire dataset,148

and we divide by the overall mean temperature change (4.65 K in WRF runs) when giv-149

ing values in %/K. However, many comparisons focus on convective conditions and there-150

fore involve a subset of the data. For regressions of CAPE against MSE surplus, we im-151

pose an absolute cut at CAPE >1000 J/kg. In other cases we compute values for pro-152

files above the 73rd quantile in CAPE, which corresponds to CAPE >1000 J/kg in the153

WRF CTRL run. When constructing synthetic profiles, we apply a temperature offset154

derived from profiles with CAPE >73rd percentile in each climate state (3.92 K in WRF155

runs), to best capture the change in convective conditions.156
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2.3 Synthetic profiles157

To help understand the minimal information needed to reproduce future CAPE changes,158

we construct three synthetic CAPE distributions based on the WRF CTRL profiles.159

1. For Clausius-Clapeyron scaling, shown for illustrative purposes only, we simply mul-160

tiply each CTRL CAPE value by 1.33 (= e0.061·4.65, where 6.1%/K is C–C for the161

mean temperature of high-CAPE profiles, 301.8 K). We neglect several factors whose162

systematic effects on CAPE would largely cancel: the projected rise in the Level163

of Neutral Buoyancy (LNB) (+0.6%/K); the reduction in surface RH (-0.4%/K),164

and treating profiles separately (-0.1%/K).165

2. For the constant offset case, we add a fixed temperature offset of 3.92 K to each166

CTRL profile at each level from surface to 200 hPa (near the LNB in the mean167

CTRL profile), then linearly interpolate to zero change at 75 hPa. We show cases168

with and without a surface RH adjustment of -0.9%, the mean change for profiles169

with CAPE >73rd quantile.170

3. For the lapse rate adjustment case, we modify the constant offset procedure to also171

include a change in lapse rate Γ = (Ts − T200)/z200. That is, we linearly inter-172

polate between a warming of 3.92 K at the surface and a similarly-derived 4.94173

K at 200 hPa. We apply the -0.9% surface RH adjustment.174

For context, we also show predictions of the SO13 theory under a 4.65 K temperature175

rise. We derive entrainment rate parameters of 0.67 and 0.68 for the WRF CTRL and176

PGW runs, and use LNB values for each profile. (Singh and O’Gorman (2013) used a177

fixed entrainment parameter of 0.75 and a fixed LNB temperature of 200 K.)178

3 Results179

3.1 Changes in CAPE distributions180

We begin our analysis by asking: in midlatitudes model projections, how much and181

how does CAPE change with warming? In the WRF model runs, average summertime182

CAPE rises by 10% per degree of warming (a 61% increase, from 684 to 1103 J/kg with183

a mean surface temperature rise of 4.65 K). However, an alternate approach that em-184

phasizes changes in higher-CAPE conditions may be more appropriate, and we use it through-185

out this work. We perform an orthogonal regression on the density distributions of paired186

profiles in present and future runs, which yields a clear shift upwards even though weather187

systems are not identical in the two runs and the scatter is therefore large (Figure 1, left).188

The slope yields a CAPE increase of 8.0%/K (45% total). With either method, the change189

is larger than in Clausius Clapeyron (6.1%/K) or in the SO13 theory developed for the190

tropics (6.0%/K), but smaller than would result from simply changing surface values while191

leaving atmospheric profiles unchanged (11.7%/K in the constant offset synthetic, which192

adds a single ∆T to all levels in all profiles). (See Figure S2.) Midlatitudes atmospheric193

lapse rates have therefore lessened slightly in the future simulation, as expected.194

Distributional effects in future CAPE changes can be readily seen by comparing195

values for individual quantiles to the overall regression line (Figure 1, left, dots). The196

lower quantiles lie above the regression line and the extreme high-CAPE quantiles (>∼3000197

J/kg) below it, meaning the future CAPE distribution is narrower than that produced198

by a simple mean shift. This relative narrowing manifests as a downward slope in a quan-199

tile regression plot, which shows the ratio of individual quantiles of future vs. present-200

day CAPE (Figure 1, right). The effect is a necessary result of the nonlinear CAPE -201

temperature relationship: a given temperature rise produces a greater effect in low-CAPE202

conditions. For this reason, relative narrowing occurs even when surface temperature in-203

creases are uniform and environmental profiles do not change (constant offset, green) or204
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Figure 1. (Left) Comparison of CAPE in present (CTRL) and future (PGW) model runs as

a density plot of paired profiles (see Methods), showing also the 1:1 line (dashed); the orthogonal

regression (solid); and quantiles of the distribution (large dots, 1% increments from 0-0.99; small

dots 0.1% increments above 0.99). (Right) Quantile ratio plot, constructed by taking the ratio

of future to present CAPE quantiles, showing WRF output (black, same dots as L. panel), the

synthetic datasets C-C scaling (light blue) and constant offset (green), and for reference SO13

(purple, with changes computed relative to its own CTRL distribution). Gray horizontal line

marks the +45% mean change from the orthogonal regression. Four vertical tick bars mark the

percentiles matching 1000, 2000, 3000, and 4000 J/kg (73.2%, 86.5%, 95.1%, and 98.9%, respec-

tively). The x-axis is truncated to omit quantiles where CTRL CAPE is zero. Changes in WRF

are smaller than those in constant offset, implying some lapse rate adjustment.

in a theoretical approach that does not use observed environmental profiles (SO13, pur-205

ple).206

3.2 The effect of changes in environmental profiles207

We found in section 3.1 that environmental adjustments appear to reduce future208

CAPE increases. To isolate this effect, we examine mean CAPE in surface temperature209

and humidity (T–H) space, following Wang et al. (2021) (Figure 2). Since surface T and210

H uniquely define the moist adiabat on which a parcel rises, a change in CAPE for a given211

T–H is due only to an altered environmental profile. This approach effectively decom-212

poses CAPE changes into a sampling effect and a partially compensating lapse rate ef-213

fect. In the WRF model runs used here, increased sampling of hot and humid surface214

conditions in PGW would more than double CAPE from its CTRL values if environmen-215

tal profiles remained constant (Figure 2, top), but environmental changes nearly halve216

that increase (Figure 2, bottom). This environmental damping makes future CAPE smaller217

for each T–H bin, so that hotter or wetter surface conditions are needed to achieve the218

same CAPE.219
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Figure 2. Density heatmaps of (top) sampling of T–H bins and (bottom) mean CAPE in

each T–H bin, in CTRL (left) and PGW (right) WRF runs during summer (MJJA). Bins shown

are all those with 3 or more observations. Solid and dashed lines mark RH of 100 and 50%. In

the bottom row, dashed/dotted lines mark CAPE contours at 2000 and 4000 J/kg, with CTRL

contours repeated in PGW panel as gray lines. Although conditions sampled in PGW are hotter

than in CTRL (top), each given T,H bin is associated with smaller CAPE (bottom).

Most of this damping results from subtle changes in environmental profiles. Lapse220

rates across the domain lessen by 3% between CTRL and PGW, from -6.56 to -6.35 K/km221

(for the CAPE >73rd quantile subset). However, some damping also occurs even if the222

lapse rate distribution remains fixed (Figure S3). Because lapse rates in our domain are223

correlated with temperature – binned averages range from -5 K/km at 270 K to over -224

7 K/km at 320 K – then as the surface warms, each given temperature become associ-225

ated with more stable conditions (Figure S4). The combined result is that CAPE con-226

tours in T–H space shift substantially between CTRL and PGW.227

We can immediately make two inferences about CAPE changes in our model runs.228

First, because CAPE contours align with those of MSE (Figure S5), CAPE in our dataset229

must be strongly related to surface MSE. Second, because CAPE contours in T–H space230

shift while MSE by definition cannot, this relationship must shift in future simulations.231

Both effects are consistent with Equation (2).232
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3.3 CAPE-MSE surplus framework233

As predicted, the relationship between CAPE and surface MSE is reasonably lin-234

ear in each climate state and shifts as the climate warms (Figure 3, top left). That is,235

CAPE on average does not develop unless surface MSE (hs) exceeds some threshold, which236

changes between present and future simulations. This threshold, the x-intercept of the237

fitted regression, matches the mean minimum saturation MSE (h∗
m) in each climate state238

to within < 0.3%. When CAPE is plotted against MSE surplus (hs − h∗
m) instead, as239

in Equation (2), the relationship becomes robust across climate states and the residual240

variance becomes smaller, suggesting that this is a fundamental physical relationship (Fig-241

ure 3, top right). On both measures, variance and robustness, the CAPE-MSE surplus242

relationship of Equation (2) outperforms the expression based on dry static energy used243

in Agard and Emanuel (2017) and Li and Chavas (2021) (Figure S6, which shows both244

WRF runs and observations). Fitted slopes are nearly identical in WRF CTRL and PGW245

runs and in observations (0.27 in all), and intercepts are nearly zero (0.7, 1.1, and 1.6246

kJ/kg for CTRL, PGW, and observations, respectively). In this perspective, the effects247

of climate change reduce to a greater sampling of conditions with high MSE surplus.248

The relationship described by Equation (2) applies across all models tested and ap-249

pears remarkably robust not only across climate states but across locations and times.250

It holds in 11 free-running climate models from the CMIP6 archive (Figure 3, bottom),251

though they differ strongly in their CAPE distributions and projected changes: mean252

values over present-day summertime N. America range from 704 to over 2461 J/kg, and253

future changes range from 5-10%/K. Their CAPE-MSE surplus relationships also dif-254

fer, with slopes of 0.22 to 0.29. Nevertheless, in each model that relationship remains255

constant across climate states. In the WRF model output, fitted slopes to CAPE vs. MSE256

surplus remain similar when the dataset is divided by latitude (northern vs. southern257

stations), by time of day (daytime vs. nighttime profiles), by interannual variations (anoma-258

lously warm vs. cold years), or even by season (winter vs. summer) (Figure S7).259

3.4 A 3-parameter transformation260

The robustness of Equation (2) across climate states suggests that model-projected261

CAPE changes result from relatively simple adjustments. The fitted slope for each model,262

A, is a function of the shape of the environmental profile; for A to remain constant, that263

shape must not alter much. Changes in CAPE in Equation (2) can then result only from264

changes in surface conditions (hs, which depends on surface temperature and humidity),265

or in a single metric of temperature in the free troposphere (h∗
m). While the quantile ra-266

tio plot in Figure 1 shows that transformations based on 1 or 2 parameters are insuffi-267

cient for describing CAPE distributional changes, it appears that 3 parameters may be268

sufficient.269

To construct our scaling, we use the two effects that produce the shift in CAPE270

contours in T–H space seen in Section 3.2 – an overall surface warming and a small de-271

crease in mean lapse rates – and add the small but significant change in surface relative272

humidity in our WRF runs (-0.9%). As described in Methods, we calculate mean changes273

in these three parameters across our domain and apply them to the CTRL profiles. This274

simple adjustment correctly produces the shifting CAPE-MSE relationship, matching275

its slope and x-intercept (Figure 4, left). It also reproduces both the distributional nar-276

rowing and the magnitude of CAPE change for the high-CAPE conditions of interest (Fig-277

ure 4, right). While midlatitudes CAPE is highly heterogeneous, a relatively straight-278

forward transformation can capture its full distributional change in a future warmer cli-279

mate.280
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Figure 3. (Top) Relationships between CAPE and surface MSE (left) and MSE surplus

(right), for WRF runs in in N. America summertime (MJJA), showing all cases where CAPE

>1000 J/kg (CTRL = blue, dotted; PGW = red, solid). Lines are fitted orthogonal regressions.

Color shading increments are 1.5% for the left panel and 0.75% for the right. The CAPE-MSE

surplus relationship is robust across climate states. (Bottom) CAPE–MSE surplus relation-

ships in 11 free-running CMIP6 models and WRF for N. American summertime (JJA), using

all cases where CAPE >500 J/kg. Color shading increments are 0.5% for all models except

EC-Earth3 (0.25%). The CAPE–MSE surplus is robust in all models, even those with with unre-

alistic CAPE.
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Figure 4. Comparison of present and future CAPE in model output (black) and synthetics:

C–C scaling (light blue), constant offset including an RH adjustment (orange), and lapse rate

adjustment (green). (Left) Fitted regression lines of the future CAPE-MSE relationship as in

Figure 3. See Table S1 for slopes and x-intercepts. (Right) Future changes in CAPE as quantile

ratio plots, as in Figure 1. The simple lapse rate adjustment effectively reproduces CAPE distri-

butional changes.

4 Discussion281

Increases in severe weather events, which are associated with high CAPE, are a sub-282

stantial societal concern under global warming. Their understanding has been hindered283

by lack of a widely accepted theory or framework to describe midlatitudes CAPE changes.284

Theories developed for the convective tropics (e.g. Singh & O’Gorman, 2013), are not285

appropriate for midlatitudes land, where advection and a strong diurnal cycle mean that286

the mid-troposphere is often decoupled from the surface (Figure S9). In this work, we287

show that Equation (2), a modified version of the heat-engine theory originally proposed288

in 1996 (EB96) and of its later extensions (AE17, LC21), provides a compact represen-289

tation of midlatitudes CAPE that is robust across space, over diurnal and seasonal cy-290

cles, and across climate states.291

We term the work developed here a framework rather than a theory because the292

transformation requires empirical values and we do not predict the slope A, which ac-293

counts for the shape of the environmental profile and is empirically fit. Similarly, AE17294

would require an empirical correction to their slope ln(Ti/Tn) for a realistic moist at-295

mosphere. In EB96, by contrast, A is based on thermodynamics and is effectively the296

Carnot efficiency of the atmosphere. In our WRF runs, the empirical slope of the CAPE-297

MSE relationship is larger than Carnot (0.24, vs. 0.14 for Carnot as defined by EB96),298

but this is not a violation of the 2nd Law given our focus on highly convective conditions.299

Any transformation that describes changes in midlatitudes CAPE will necessar-300

ily require at least three parameters, one more than SO13, because the midlatitudes free301

troposphere cannot be predicted from surface T and RH even on average. In this work302

we find that only three parameters are required: three regional mean values across our303

domain are sufficient to capture the full distributional change in the CAPE >73rd quan-304

tile. This result may seem counterintuitive, since present-day North America encompasses305
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a wide range of environmental conditions, future climate changes are spatially variable,306

and the response of CAPE is highly nonlinear. However, CAPE develops appreciably only307

in a relatively restricted subset of T–H space, where changes are more uniform.308

The CAPE changes projected in our WRF runs and in most CMIP6 models are309

higher than Clausius-Clapeyron, the expectation under RCE. This difference matters for310

occurrence of extreme conditions. Incidences of summertime CAPE >2000 J/kg, a commonly-311

used threshold for severe weather, rise half again as much in our WRF projections as un-312

der C–C scaling (14% in CTRL; >24% in PGW, 20% in C–C). Predicting how these ex-313

treme values will affect future severe weather requires also understanding how they will314

map to convective updraft velocities, but understanding CAPE changes under CO2-induced315

warming is a necessary first step. The dependence of CAPE on MSE surplus provides316

a simple but robust framework for predicting and understanding that response.317
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Text S1. Derivation of CAPE-MSE surplus framework
In this section we show the background for the framework in our manuscript. We repeat the

derivation from Emanuel, Atmospheric Convection (1994) that restates CAPE as a function of

pseudo-entropy, show how this can be approximated as a linear dependence in pseudo-enthalpy

(moist static energy), and finally demonstrate that the error introduced by the core assumption

required in Emanuel (1994) (hereafter E94) – that virtual temperature corrections can be ignored

– is relatively minor and considerably smaller than that in an alternative CAPE framework.
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Emanuel (1994) derivation

We start from the definition of CAPE in pressure coordinates:

CAPE =
∫ pi

pn

(αp −αa)d p (1)

where αp and αa are the volume per mass for air in the parcel and the environment, respectively.

Because CAPE is a positive quantity, the integration is from low to high pressure, i.e. from the

top of a convective event (pn) to the level of convective initiation (pi).

The rising parcel will be saturated, and changes in its volume per mass can be divided into

two terms, separating the effects of its saturation pseudo-entropy s∗ (which is independent of

moisture) and of its actual moisture content. That is:

∆α =
∂α

∂ s∗

∣∣∣∣
r
∆s∗+

∂α

∂ r

∣∣∣∣
s∗

∆r (2)

If we treat the environment as also saturated – acceptable if the effect of moisture on density

is small – then it can be similarly decomposed and CAPE can be written as:

CAPE =
∫ pi

pn

(
∂α

∂ s∗
(s∗p − s∗a)+

∂α

∂ r
(rp − ra)

)
·d p (3)

The volume per mass of dry air (αd) can be approximated as αd = α

1+r . where r is the mass

mixing ratio of water vapor, typically 0.01 or less. Emanuel then makes the further assumption

that the buoyancy effects of this water vapor r (the virtual temperature effect) can be neglected

entirely, so that the second term in Equation (3) vanishes and in the first term α is replaced by

αd . This yields Eq. (6.4.2a) in Emanuel (1994):

CAPE ≈
∫ pi

pn

∂αd

∂ s∗
(s∗p − s∗a) ·d p (4)

The neglect of virtual temperature effects for both parcel and environment produces a slight

net underestimation of derived CAPE, but the distortion is smaller than in other approximate

CAPE frameworks and is compensated for by the empirical regression coefficient. See discus-

sion at the end of the section and Figure S1. The Maxwell relationship (∂α

∂ s )p = (∂T
∂ p )s allows

converting the integration coordinate in Equation (4) from pressure to temperature:

CAPE =
∫ pi

pn

∂T
∂ p

(s∗p − s∗a) ·d p (5)

=
∫ Ti

Tn

(s∗p − s∗a) ·dT (6)
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which is Equation (6.4.2) in Emanuel (1994).

Because the integration is now over temperature, and the difference between environment

and parcel is taken at the same T , we can readily substitute saturated pseudo-enthalpy h∗ for the

saturated pseudo-entropy s∗ via:

∆h∗ = T ∆s∗ (7)

Equation (6) then becomes:

CAPE =
∫ Ti

Tn

h∗p −h∗a
T

dT (8)

Here h∗p = hs is conserved for an adiabatically rising parcel, while the moist static energy of the

environment h∗a is a weak function of T in individual atmospheric profiles, reaching a minimum

in mid-troposphere that can be <15% below hs.

Approximating the integral as a simple difference

All simplified frameworks for CAPE must replace the integral with some kind of simple

difference. If the moist static energy difference between the parcel and the environment were

independent of T , we could write

CAPE = (hs −h∗) · ln Ti

Tn
(9)

This assumption is obviously not realistic and in practice the true shape of atmospheric profiles

necessitates adding an empirical coefficient to the relationship. Since an empirical coefficient

is needed regardless, for convenience we take the difference at the location of the minimum

tropospheric MSE, typically around 650 mb.

CAPE ≈ A · (hs −h∗m) (10)

which is the linear relationship used in this work; (hs − h∗m) is the “ MSE surplus”. The coef-

ficient A captures the shape of the profile, and, if virtual temperature corrections were indeed

negligible, would be mathematically constrained to be between zero and ln Ti
Tn

(see also Agard

and Emanuel (2017)), at maximum ∼0.4 (for Ti = 300 K, Tn = 200 K). (In practice, compensat-

ing for the neglected virtual temperature corrections raises A slightly.) For the same temperature

range, a larger A corresponds to a more uniform ∆h profile between the lifting condensation level

and the tropopause. For the dataset used in this work, the empirical slope A is 0.27.
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Effect of assumptions in derivation

The derivation in E94 relies on two successive assumptions about the direct effect of water

on the density of the environment through which a parcel rises. We show here that the effect of

these assumptions is not prohibitive and is smaller than the effect of the core assumption in the

alternative CAPE framework of Eq. (5) in Li and Chavas (2021) (LC21). The assumptions are:

• E94a: compute the virtual temperature effect for the environment assuming saturation

• E94b: neglect the virtual temperature effect for both parcel and environment

• LC21 Equation (5): assume all water vapor in the parcel condenses at the LCL

In reality, the mean environmental relative humidity in our high-CAPE midlatitudes summer-

time profiles is 0.44 (for all levels below 200 hPa). Both of the assumptions in E94 will therefore

produce an underestimation of CAPE (the parcel is less buoyant than in reality), while that in

LC21 will produce an overestimation (the parcel is more buoyant).

We illustrate the effects of these assumptions on an example atmospheric profile in Figure

S1. The example profile is chosen to match the location and time of Figure 3 in Li and Chavas

(2021): Springfield, MO in early June. At 650 hPa, the true buoyancy g∆Tv
Tve

is 0.143 m/s2. The

assumptions in E94 underestimate buoyancy by 14% and 22% (0.123 and 0.111 m/s2), while

that in LC21 overestimates it by a factor of 6 (0.845 m/s2). The discrepancies are about half

as large when averaged over the parcel’s ascent but their relative sizes are unchanged: E94a,b

cause underestimations of 6% and 7% and LC21 causes an overestimation of a factor of 3. If

we use instead an average summertime profile over the Southeastern U.S., the bias produced by

E94 remains below 13% while that in LC21 is a factor of eight. In both frameworks, the bias is

largely accounted for by an empirical regression coefficient, but the more modest assumptions

of E94 lead to a robust regression across climate states.
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Figures S1 – S9

Figure S1. Illustration of the effect of assumptions in E94 and LC21, on (left) the virtual temperatures

of parcel and environment and (right) the virtual temperature difference between parcel and environ-

ment. The example profile is that for a 1 × 1 deg grid in ERA5 including Springfield, MO, at 18 UTC

on June 6th, 2005, chosen to approximately match the snapshot used in LC21 Figure 3 (0000 UTC June

07, 2011). E94a (green) raises the environmental Tv; E94b (blue) lowers Tv in both environment and

parcel; and LC21 (red) raises Tv in the parcel by condensing all water at the LCL. The biases introduced

by E94 are more modest than those in LC21, though all are ultimately accounted for by empirical re-

gression coefficients.
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Figure S2. Changes between present and future CAPE, as in main text Figure 1 left panel, but for

(left) constant-offset and (right) SO13, calculated as described in text. CAPE changes are too large

in constant offset and too small in SO13: dividing by 4.65 K produces fractional changes of 12%/K

and 6%/K, respectively, vs. the 8%/K derived from model output. For constant offset in particular, the

quantiles fall below the orthogonal distance regression line above the 80th percentile. In both cases,

however, the quantile regression matches the orthogonal distance regression reasonably well.
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Figure S3. (Left and middle) Mean CAPE heatmap as in main text Figure 2 for present and future

model output and (right) for the constant offset synthetic representation of future CAPE. Contours

in black show CAPE of 2000 and 4000 J/kg in each panel, with CTRL contours repeated in gray in

middle and right panels. Contours shift in PGW model output (center), meaning that warmer or wetter

conditions are required to achieve the same CAPE. The constant offset synthetic (right), which involves

changes in surface conditions alone and has no lapse rate adjustment, exhibits about half the shift of the

PGW simulations.
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Figure S4. Changes in (top) temperature and (bottom) lapse rate as a function of (left) temperature

bins and (right) latitudinal bins. The blue dashed lines are synthetics applying a same 4.65 K offset to

the CTRL climate (blue solid lines). The damping of CAPE under a warmer climate can be explained

by a more stable lapse rate associated with a set of given surface conditions.
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Figure S5. Contours of CAPE and surface moist static energy (MSE) in model output for simulations

in present (CTRL, left) and future (PGW, middle) conditions. CAPE contours follow those of moist

static energy in the convection-promoting regime (CAPE > 1000 J/kg, RH > 40%), The relationship

differs between CTRL and PGW (right). Contours here are cut off at RH=100%, as in main text Figure

2. CAPE contours aligns with those of surface MSE in conditions with high CAPE, suggesting a strong

dependence between CAPE and surface MSE. Future changes in CAPE can be translated to a change

in mapping between surface MSE and CAPE.
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Figure S6. Comparison of the CAPE relationship with dry static energy (DSE) surplus (left) and

with MSE surplus (right). DSE surplus is defined as the difference between surface MSE and mean

mid-tropospheric DSE (virtual-temperature weighted free troposphere DSE). The top rows show model

output (WRF) versus observations (IGRA) under CTRL climate, and the bottom rows show CTRL

versus PGW in model output. Color shading increments are 1.5% for all panels, and the text shows

the slopes for CTRL and IGRA/PGW. Conclusions are 1) the WRF simulation realistically reproduces

the observed joint distribution of CAPE and MSE surplus and 2) a linear expression with MSE surplus

outperforms that with DSE surplus both in residual variance and in robustness.
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Figure S7. Tests of the robustness of the CAPE-MSE surplus relationship with different subsets of the

data. Top left: stations lower and higher latitude than 35N. Top right: daytime versus nighttime (using

only stations below 30N, to avoid biasing the sampling). Bottom left: summertime (MJJA) versus

wintertime (NDJF) (all other panels use summertime data only; note that the month of February 2005

in the PGW run is removed due to missing surface 2D fields). Bottom right: the hottest 3 years (2001,

2006, 2012) versus the coldest 3 years (2004, 2008, 2009). Figure uses only CAPE ≥ 1000 J/kg, and

all panels besides lower L. use summertime data only. MSE surplus is derived using the minimum

saturation MSE in each individual profile. Each color shading is a 1.5% increment in density, and the

orthogonal regression is fit using binned median values. The CAPE-MSE surplus framework (including

its intercepts and slopes) is highly consistent across all cases tested.
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Figure S8. Quantile ratio plots of future–present CAPE in model output (PGW vs. CTRL) and in

synthetic future distributions, showing also the effect of RH changes. For each synthetic we show one

version with constant surface RH and one with a uniform ∼1% reduction, which lowers future CAPE

changes by about 6% in both cases. (Left) Constant offset. Mean fractional changes are 1.92 with

fixed RH and 1.81 with the reduction. Values are derived from the average quantile ratios for ≥ 73rd

percentile. (Right) Lapse rate adjustment. Mean fractional changes are 1.71 and 1.61.
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Figure S9. Comparison of probability distributions of midlatitdues summertime CAPE under current

CTRL climate in our WRF model output and in the SO13 zero-buoyancy model driven by CTRL sur-

face temperatures. (Left) full CAPE distribution and (right) with y-axis truncated at 0.0005 to show

detail. The zero-buoyancy model cannot reproduce a realistic distribution, overestimating the occur-

rence of moderately high CAPE (between 1500 and 3500 J/kg). This peak occurs even though we

modify the SO13 procedure to force the integration to stop at the actual LNB of each profile. Without

that modification, SO13 cannot produce zero-CAPE values and the distribution is even more unimodal.

SO13 is designed to reproduce climatological means in strongly convecting regions and is not appro-

priate for midlatitudes land.
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Tables S1 – S2

Table S1. List of CMIP6 Models included in this study and shown in main text Figure 3. The

outputs are 6-hourly model level data, for both historical and ssp585 experiments. All model output is

available from ESGF (https://esgf-node.llnl.gov/search/cmip6/).

Model Variant label Horizontal grid Vertical levels
ACCESS-ESM1-5 r6i1p1f1 192 × 145 38

CanESM5 r1i1p2f1 128 × 64 49
CMCC-CM2-SR5 r1i1p1f1 288 × 192 30

CNRM-CM6-1 r1i1p1f2 256 × 128 91
CNRM-ESM2-1 r1i1p1f2 256 × 128 91

EC-Earth3 r1i1p1f1 512 × 256 91
GISS-E2-1-G r1i1p1f2 144 × 90 40
MIROC-ES2L r1i1p1f2 128 × 64 40

MPI-ESM1-2-LR r1i1p1f1 192 × 96 47
MPI-ESM1-2-HR r1i1p1f1 384 × 192 95
NorESM2-MM r1i1p1f1 288 × 192 32

Table S2. Evaluating synthetics: fitted slopes and intercepts of the future CAPE-MSE framework

as in main text Figure 4, for actual PGW model output and for three synthetic datasets. C–C scaling

produces too small a slope and constant offset too small an intercept. Lapse rate adjustment performs

well at both.

PGW C–C Constant offset Lapse rate adj.
slope 0.239 0.271 0.240 0.236

x-intercept (kJ/kg) 346.2 350.4 343.8 345.8


