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Abstract

The paper is dedicated to the classical glissade’s modeling in order to explain the earthquake mechanisms. The B&K model

has been rethought generalizing the uniform movement of the largest stratum, corresponds to any continually acting force. In

addition, for the resistance function has been used an expression obtained by the authors, based on the Elementary Catastrophes

Theory that fully satisfies the conditions of the existence and uniqueness theorem regarding the solutions of the systems of

ODE. The generalized B&K model equations have been solved numerically for a particular case through the respective standard

software package MATLAB. The analysis of the results highlights a periodicity at the seismic activity (obtained at constant

force) and the earthquake’s appearances it is shown as a consequence of the different system’s resonance points. All of the

above would allow through the reengineering methods obtaining valuable information related to the structure and behavior of

local plates.
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Abstract13

The paper is dedicated to the classical glissade’s modeling in order to explain the14

earthquake mechanisms. The B&K model has been rethought generalizing the uniform15

movement of the largest stratum, corresponds to any continually acting force. In addi-16

tion, for the resistance function has been used an expression obtained by the authors,17

based on the Elementary Catastrophes Theory that fully satisfies the conditions of the18

existence and uniqueness theorem regarding the solutions of the systems of ODE. The19

generalized B&K model equations have been solved numerically for a particular case through20

the respective standard software package MATLAB. The analysis of the results highlights21

a periodicity at the seismic activity (obtained at constant force) and the earthquake’s22

appearances it is shown as a consequence of the different system’s resonance points. All23

of the above would allow through the reengineering methods obtaining valuable infor-24

mation related to the structure and behavior of local plates.25

Plain Language Summary26

We all know that there are mediums that “amplify” the mechanical vibrations: for27

example, some bridges have fallen due to the force of relatively weak winds or by sol-28

diers who have marched on them. Some parts of the tectonic plates (the shells we live29

on) also behave like this. The said behavior we have modeled using solid blocks joined30

by springs. The article explains how virtual seismograms are obtained (clearly identi-31

fying their characteristics) from a constant push force which is basically due to tectonic32

plate collisions. In principle the software allows us to change the different parameters33

and constants and, in this way, to fit the computerized model to the real seismograms.34

1 Introduction35

For the first time in an article by (Burridge & Knopoff, 1967), an explanation of36

telluric movements is proposed through the modeling of some glissade processes. We, af-37

ter having detected an error in the deduction of the total resistance function F#(ν), have38

proposed (Garzón & NETCHEV, 2022) a new way, based on the liquefaction phenome-39

na, to complete the missing information in said B&K article regarding the low-velocity40

dominium. In the present circumstances, after analyzing the corresponding impact, it41

can be seen as more appropriate to generalize the initial model, in order to be able to42

use the new analytical properties of the improved by us function F#(ν) as well as to spe-43

cify some moments solving the differential equations system that describes the telluric44

movements. The model of (Burridge & Knopoff, 1967), has been maybe for a long time45

a reference that single one accounts for the causes of an earthquake. In that model, a46

system of differential equations is used, which clearly are the equations of uniform mo-47

tion. But such a equations system can not describe seismic processes because it does not48

generate it.49

Since our considerations consist of completely including the B&K model as a par-50

ticular case, here we are not going to make a review of the art state of the subject that51

comprises later ideas to date assuming that the initial model has not lost importance more-52

over, the second author exposed it during the SIAM event (Ceballos Garzón & Neytchev Netchev,53

2022). We have analyzed additionally the simplest particular case which allows simu-54

lating the processes related to the emergence (due to resonance effects) and propagation55

of seismic waves is the maximum that can be achieved with this type of model.56

In the second section, we consider our Mechanical glissade’s model and the third57

section is dedicated to the numerical solution of the respective equations. The article ends58

with certain conclusions.59
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2 Mechanical glissade’s modeling60

Let us consider the following model of a one-dimensional glissade (for the case of61

the equilibrium position, see Fig.1). The biggest stratum slides against another one through62

a three small body system linked among the neighbors by springs and by leafs with the63

big body.64

Figure 1. Springs-leafs body configuration.

Assuming that the forces exerted by the springs and leafs depend linearly on the
balance deviations, projecting on the shown in Fig.1 abscissa that determines the grades
of freedom, we can write the following system of differential equations (the points above
the coordinates or other symbols mark the time derivatives order):

MẌ = f + λ(x1 −X) + λ(x2 −X − l0) + λ(x3 −X − 2l0)

mẍ1 = −λ(x1 −X) + µ(x2 − x1 − l0) + cF#(ẋ1),

mẍ2 = −λ(x2 −X − l0)− µ(x2 − x1 − l0) + µ(x3 − x2 − l0) + cF#(ẋ2),

mẍ3 = −λ(x3 −X − 2l0)− µ(x3 − x2 − l0) + cF#(ẋ3). (1)

Here, f is the pushing force, λ and µ are the coefficients of the linear elasticity accor-65

ding to Fig.1, being M and m the respective mass of the biggest stratum and the gli-66

ssade blocks. l0 facilitates the geometric description of the processes and c agrees with67

the physical dimensions of the respective related magnitudes (if this is necessary). All68

these are some empiric constants, the symbols X, x1, x2, and x3 are the blocks coordi-69

nates regarding the axis of the Fig.1.70

Introducing the unknowns Y , y1, y2, and y3 we can in a standard way rewrite this
as a normal system of eight ordinary differential equations:

Ẋ = Y,

ẋ1 = y1,

ẋ2 = y2,

ẋ3 = y3,

Ẏ = A+ Λ(x1 −X) + Λ(x2 −X − l0) + Λ(x3 −X − 2l0) = A+ Λ[Σ3
i=1xi − 3(X + l0)],

ẏ1 = −κ(x1 −X) + ν(x2 − x1 − l0) + ιF#(y1),

ẏ2 = −κ(x2 −X − l0)− ν(x2 − x1 − l0) + ν(x3 − x2 − l0) + ιF#(y2),

ẏ3 = −κ(x3 −X − 2l0)− ν(x3 − x2 − l0) + ιF#(y3). (2)

where, obviously A = f
M , Λ = λ

M , κ = λ
m , ν = µ

m and ι = c
m . Unlike the equations

system used by B&K (and by other authors too), in our case we do have not the impo-
sition of a constant velocity movement of the biggest layer (body) but any continually
acting force f = f(t) that pushes it. Let us consider two particular cases. The first
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case is when the force f = −λ(x1−X)−λ(x2−X−l0)−λ(x3−X−2l0), (i.e. constant
velocity for the biggest block) and coincides with the B&K model if one sets l0 = 0.
There are another trivial alterations of the used symbols, which the reader can easily see
by comparing the respective formulae and taking into account the used configuration geo-
metries. In these particular circumstances all the corroborations that are logically flaw-
less, done by (Burridge & Knopoff, 1967) for its already became classical model, are valid
for our generalization too including the affirmation that when all blocks are moving at
the same speed, the state is unstable. The second particular case will be considered
a little later. In a similar way the ODE corresponding to N blocks can be written:

Ẋ = Y

ẋj = yj

Ẏ = A+ Λ

[
ΣNi=1xi −N

(
X +

N − 1

2
l0

)]
,

ẏj = −κ(xj −X− (j− 1)l0)− ν(xj − xj−1 − l0) + ν(xj+1 − xj − l0) + ιF#(yj) =

− κ(xj −X − (j − 1)l0) + ν(xj+1 − xj−1) + ιF#(yj). (3)

Here, x1 = x0 + l0 and xN+1 = XN + l0 while j = 1, 2 . . . , N . Another way to genera-71

lize the results, is including different types of viscosity, block sizes, etc; it will be wor-72

king with different values for the constants, which appears in the Eq.3. A little more tech-73

nical effort is necessary to widespread our model in two dimensions (Rundle & Brown,74

1991) but, that does not lead to new considerable interesting conceptualizations and it75

can be yes indeed important only for its use in concrete real situations.76

Let now us consider with more attention the second particular case i.e. the force
f = const. The reason is that if the large block of Fig.1 is a stratum, the experience
shows that within an interval of thousand, maybe several million years, its movement
is with good (let us call it if necessary “zero”) approximation under uniform conditions.
That is why, if we suppose that the small blocks number (which move (quasi) randomly
i.e. without a strong correlation) is sufficiently large, one can write:

n∑
i=1

xi =

n∑
i=1

XMC + x
′

i = NxMC +

n∑
i=1

x
′

i = NxMC = N〈Y 〉t = NV t, (4)

being the last sum equal to zero because for each deviation of a small block forward with
respect to the mass center there would be another one lagging (almost) in the same mea-
sure (the coordinates x

′

i are with respect to the mass center). Replacing in the system
(3) the value of the sum (4) by NV t, one can see that this is the nearest resemblance
form of our system of 2N+2 equations regarding the 2N B&K equations (considered
by us for this reason as a rough calculation where the consecutive description of one of
the stratums is missing). The thus obtained “leftover equations” give us an estimation
of the relative stratum motion:

Ẋ = Y

Ẏ = A+ ΛN

[
V t−

(
X +

N − 1

2
l0

)]
. (5)

Here t is the elapsed time from a fixed initial instant. The real solutions of the system
(5) represent the instantaneous velocity of the large block as a sinus function around a
constant velocity level:

Y = Y0 sin(
√

ΛNt+ ϕ0) + V. (6)

The integration constants Y0 and ϕ0 can be obtained by introducing (when required) ini-77

tial conditions something which now and here is not interesting to us. The above result78

reaffirms the conclusion by (Burridge & Knopoff, 1967) that the system is unstable (even79

when it starts from “ideal” initial conditions) but clearly, this type of movement as that80

provided by the simplified equations also could not generate earthquakes.81
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Now we will proceed to certain numerical solutions of the equations (2). The cases82

for N > 3 can be considered in the same way but they would require the use of more83

powerful computing resources.84

3 Numerical solutions and their analysis85

The first think that we want to note is that the Eq.(2) form an autonomous nor-86

mal system of ordinary differential equations whose right parts have continuous partial87

derivatives with respect to all the symbols/magnitudes which participate in its construc-88

tions. This allows us to affirm the existence and uniqueness of the respective solutions89

for any reasonable set of initial conditions. But finding analytical solutions in the gene-90

ral case is an impossible task. However presently, there exists software that permits sol-91

ving this type of systems. For convenience, we have selected the software MATLAB (More92

specifically, all the calculations have been made with Matlab 2022a, and all three pro-93

grams are attached to this article).94

The initial condition assignments regarding the movements of the small blocks can95

be more or less random ones safeguarding, clear, the physical meaning of each of these96

(the runnings of the program shows the results depend little or nothing on these). Un-97

fortunately, there are no measurements made on purpose, but we have selected an exam-98

ple where one of the most interesting research results easy can be observed. In the follo-99

wing figure (Fig.2), which is a frame of the video added as an application, it can be seen

Figure 2. Dependence on time (in relative units) of the oscillations’ speeds of the large body

(left-hand side) and consecutively of the three small ones (right-hand side).

100

how the occurrence of earthquakes is explained as the passing of the present modeled101

system through its resonance points (it is common knowledge that a system of springs102

under certain very general circumstances would pass through their resonance points (Moulton,103

1952)). The foregoing suggests interpreting the graph of Fig.2 as follows: the maximum104

oscillations around time equal to 1 as the main tremor, the remaining three or four ones105

as aftershocks, and the small seismic activity around the abscissa at 9 as a partial rup-106

ture of local plates being the geophonic noise created by the oscillations of the small blocks.107

It is clear that in the long run, the average velocity can be considered constant as indi-108

cated by the observations because obviously, the average drag force is opposite to the109
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push force. The advance of the large block is very small compared to the back and forth110

vibrations and therefore it would not be relevant to show it explicitly (during an earth-111

quake the epicentre is practically immobile) although it is calculated by the program.112

Let us note assuming that there are no losses and big distortions along the seis-113

mic waves way, the respective real seismograms will largely repeat the behavior of the114

velocity oscillations in situ because the contemporary seismographs record the speed of115

vibrations (Kramer, 1996).116

4 Conclusions117

From the above considerations we can make some conclusions that show why this118

generalized model is an improvement. The first one is related to the fact that our me-119

chanical model is more consistent: the movement of the biggest stratum is not assumed120

to be always uniform but obeys any motion under the influence of a force (due to the121

interaction of the tectonic plates). The second advantage is that the resistance func-122

tion used by us allows us to use the standard methods for solving systems of ordinary123

differential equations with no extra precautions and in this way the laws of classical me-124

chanics are from the methodological point of view correctly applied too. As a result, a125

very realistic behavior of the stratum speed stands out, a thing that matches with the126

records of the observations completed by the seismologists – for any historically known127

epicenter, the mini earthquakes appear periodically although the time lapses are not ex-128

actly the same. On the other hand, if it is possible to measure the pushing force of the129

moving stratum, there will be feasible to compare the model with the actual observa-130

tional data. In the end, let us use technological language: our model (if available an ap-131

propiate HPC cluster) is like an unknown prototype, which works well linked to tectonic132

movements then, to obtain results it is convenient to do reengineering consisting of ma-133

king a fit with the real seismograms lead to assume certain substantiated things regar-134

ding the structure of the ground (due to that, in general, the same consequences lead135

to the same causes) that, completed with an appropriate instrumentation research, could136

give valuable information trustworthy.137

Open Research138

It is worth noting that no data were used in this study.139
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Abstract13

The paper is dedicated to the classical glissade’s modeling in order to explain the14

earthquake mechanisms. The B&K model has been rethought generalizing the uniform15

movement of the largest stratum, corresponds to any continually acting force. In addi-16

tion, for the resistance function has been used an expression obtained by the authors,17

based on the Elementary Catastrophes Theory that fully satisfies the conditions of the18

existence and uniqueness theorem regarding the solutions of the systems of ODE. The19

generalized B&K model equations have been solved numerically for a particular case through20

the respective standard software package MATLAB. The analysis of the results highlights21

a periodicity at the seismic activity (obtained at constant force) and the earthquake’s22

appearances it is shown as a consequence of the different system’s resonance points. All23

of the above would allow through the reengineering methods obtaining valuable infor-24

mation related to the structure and behavior of local plates.25

Plain Language Summary26

We all know that there are mediums that “amplify” the mechanical vibrations: for27

example, some bridges have fallen due to the force of relatively weak winds or by sol-28

diers who have marched on them. Some parts of the tectonic plates (the shells we live29

on) also behave like this. The said behavior we have modeled using solid blocks joined30

by springs. The article explains how virtual seismograms are obtained (clearly identi-31

fying their characteristics) from a constant push force which is basically due to tectonic32

plate collisions. In principle the software allows us to change the different parameters33

and constants and, in this way, to fit the computerized model to the real seismograms.34

1 Introduction35

For the first time in an article by (Burridge & Knopoff, 1967), an explanation of36

telluric movements is proposed through the modeling of some glissade processes. We, af-37

ter having detected an error in the deduction of the total resistance function F#(ν), have38

proposed (Garzón & NETCHEV, 2022) a new way, based on the liquefaction phenome-39

na, to complete the missing information in said B&K article regarding the low-velocity40

dominium. In the present circumstances, after analyzing the corresponding impact, it41

can be seen as more appropriate to generalize the initial model, in order to be able to42

use the new analytical properties of the improved by us function F#(ν) as well as to spe-43

cify some moments solving the differential equations system that describes the telluric44

movements. The model of (Burridge & Knopoff, 1967), has been maybe for a long time45

a reference that single one accounts for the causes of an earthquake. In that model, a46

system of differential equations is used, which clearly are the equations of uniform mo-47

tion. But such a equations system can not describe seismic processes because it does not48

generate it.49

Since our considerations consist of completely including the B&K model as a par-50

ticular case, here we are not going to make a review of the art state of the subject that51

comprises later ideas to date assuming that the initial model has not lost importance more-52

over, the second author exposed it during the SIAM event (Ceballos Garzón & Neytchev Netchev,53

2022). We have analyzed additionally the simplest particular case which allows simu-54

lating the processes related to the emergence (due to resonance effects) and propagation55

of seismic waves is the maximum that can be achieved with this type of model.56

In the second section, we consider our Mechanical glissade’s model and the third57

section is dedicated to the numerical solution of the respective equations. The article ends58

with certain conclusions.59
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2 Mechanical glissade’s modeling60

Let us consider the following model of a one-dimensional glissade (for the case of61

the equilibrium position, see Fig.1). The biggest stratum slides against another one through62

a three small body system linked among the neighbors by springs and by leafs with the63

big body.64

Figure 1. Springs-leafs body configuration.

Assuming that the forces exerted by the springs and leafs depend linearly on the
balance deviations, projecting on the shown in Fig.1 abscissa that determines the grades
of freedom, we can write the following system of differential equations (the points above
the coordinates or other symbols mark the time derivatives order):

MẌ = f + λ(x1 −X) + λ(x2 −X − l0) + λ(x3 −X − 2l0)

mẍ1 = −λ(x1 −X) + µ(x2 − x1 − l0) + cF#(ẋ1),

mẍ2 = −λ(x2 −X − l0)− µ(x2 − x1 − l0) + µ(x3 − x2 − l0) + cF#(ẋ2),

mẍ3 = −λ(x3 −X − 2l0)− µ(x3 − x2 − l0) + cF#(ẋ3). (1)

Here, f is the pushing force, λ and µ are the coefficients of the linear elasticity accor-65

ding to Fig.1, being M and m the respective mass of the biggest stratum and the gli-66

ssade blocks. l0 facilitates the geometric description of the processes and c agrees with67

the physical dimensions of the respective related magnitudes (if this is necessary). All68

these are some empiric constants, the symbols X, x1, x2, and x3 are the blocks coordi-69

nates regarding the axis of the Fig.1.70

Introducing the unknowns Y , y1, y2, and y3 we can in a standard way rewrite this
as a normal system of eight ordinary differential equations:

Ẋ = Y,

ẋ1 = y1,

ẋ2 = y2,

ẋ3 = y3,

Ẏ = A+ Λ(x1 −X) + Λ(x2 −X − l0) + Λ(x3 −X − 2l0) = A+ Λ[Σ3
i=1xi − 3(X + l0)],

ẏ1 = −κ(x1 −X) + ν(x2 − x1 − l0) + ιF#(y1),

ẏ2 = −κ(x2 −X − l0)− ν(x2 − x1 − l0) + ν(x3 − x2 − l0) + ιF#(y2),

ẏ3 = −κ(x3 −X − 2l0)− ν(x3 − x2 − l0) + ιF#(y3). (2)

where, obviously A = f
M , Λ = λ

M , κ = λ
m , ν = µ

m and ι = c
m . Unlike the equations

system used by B&K (and by other authors too), in our case we do have not the impo-
sition of a constant velocity movement of the biggest layer (body) but any continually
acting force f = f(t) that pushes it. Let us consider two particular cases. The first
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case is when the force f = −λ(x1−X)−λ(x2−X−l0)−λ(x3−X−2l0), (i.e. constant
velocity for the biggest block) and coincides with the B&K model if one sets l0 = 0.
There are another trivial alterations of the used symbols, which the reader can easily see
by comparing the respective formulae and taking into account the used configuration geo-
metries. In these particular circumstances all the corroborations that are logically flaw-
less, done by (Burridge & Knopoff, 1967) for its already became classical model, are valid
for our generalization too including the affirmation that when all blocks are moving at
the same speed, the state is unstable. The second particular case will be considered
a little later. In a similar way the ODE corresponding to N blocks can be written:

Ẋ = Y

ẋj = yj

Ẏ = A+ Λ

[
ΣNi=1xi −N

(
X +

N − 1

2
l0

)]
,

ẏj = −κ(xj −X− (j− 1)l0)− ν(xj − xj−1 − l0) + ν(xj+1 − xj − l0) + ιF#(yj) =

− κ(xj −X − (j − 1)l0) + ν(xj+1 − xj−1) + ιF#(yj). (3)

Here, x1 = x0 + l0 and xN+1 = XN + l0 while j = 1, 2 . . . , N . Another way to genera-71

lize the results, is including different types of viscosity, block sizes, etc; it will be wor-72

king with different values for the constants, which appears in the Eq.3. A little more tech-73

nical effort is necessary to widespread our model in two dimensions (Rundle & Brown,74

1991) but, that does not lead to new considerable interesting conceptualizations and it75

can be yes indeed important only for its use in concrete real situations.76

Let now us consider with more attention the second particular case i.e. the force
f = const. The reason is that if the large block of Fig.1 is a stratum, the experience
shows that within an interval of thousand, maybe several million years, its movement
is with good (let us call it if necessary “zero”) approximation under uniform conditions.
That is why, if we suppose that the small blocks number (which move (quasi) randomly
i.e. without a strong correlation) is sufficiently large, one can write:

n∑
i=1

xi =

n∑
i=1

XMC + x
′

i = NxMC +

n∑
i=1

x
′

i = NxMC = N〈Y 〉t = NV t, (4)

being the last sum equal to zero because for each deviation of a small block forward with
respect to the mass center there would be another one lagging (almost) in the same mea-
sure (the coordinates x

′

i are with respect to the mass center). Replacing in the system
(3) the value of the sum (4) by NV t, one can see that this is the nearest resemblance
form of our system of 2N+2 equations regarding the 2N B&K equations (considered
by us for this reason as a rough calculation where the consecutive description of one of
the stratums is missing). The thus obtained “leftover equations” give us an estimation
of the relative stratum motion:

Ẋ = Y

Ẏ = A+ ΛN

[
V t−

(
X +

N − 1

2
l0

)]
. (5)

Here t is the elapsed time from a fixed initial instant. The real solutions of the system
(5) represent the instantaneous velocity of the large block as a sinus function around a
constant velocity level:

Y = Y0 sin(
√

ΛNt+ ϕ0) + V. (6)

The integration constants Y0 and ϕ0 can be obtained by introducing (when required) ini-77

tial conditions something which now and here is not interesting to us. The above result78

reaffirms the conclusion by (Burridge & Knopoff, 1967) that the system is unstable (even79

when it starts from “ideal” initial conditions) but clearly, this type of movement as that80

provided by the simplified equations also could not generate earthquakes.81
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Now we will proceed to certain numerical solutions of the equations (2). The cases82

for N > 3 can be considered in the same way but they would require the use of more83

powerful computing resources.84

3 Numerical solutions and their analysis85

The first think that we want to note is that the Eq.(2) form an autonomous nor-86

mal system of ordinary differential equations whose right parts have continuous partial87

derivatives with respect to all the symbols/magnitudes which participate in its construc-88

tions. This allows us to affirm the existence and uniqueness of the respective solutions89

for any reasonable set of initial conditions. But finding analytical solutions in the gene-90

ral case is an impossible task. However presently, there exists software that permits sol-91

ving this type of systems. For convenience, we have selected the software MATLAB (More92

specifically, all the calculations have been made with Matlab 2022a, and all three pro-93

grams are attached to this article).94

The initial condition assignments regarding the movements of the small blocks can95

be more or less random ones safeguarding, clear, the physical meaning of each of these96

(the runnings of the program shows the results depend little or nothing on these). Un-97

fortunately, there are no measurements made on purpose, but we have selected an exam-98

ple where one of the most interesting research results easy can be observed. In the follo-99

wing figure (Fig.2), which is a frame of the video added as an application, it can be seen

Figure 2. Dependence on time (in relative units) of the oscillations’ speeds of the large body

(left-hand side) and consecutively of the three small ones (right-hand side).

100

how the occurrence of earthquakes is explained as the passing of the present modeled101

system through its resonance points (it is common knowledge that a system of springs102

under certain very general circumstances would pass through their resonance points (Moulton,103

1952)). The foregoing suggests interpreting the graph of Fig.2 as follows: the maximum104

oscillations around time equal to 1 as the main tremor, the remaining three or four ones105

as aftershocks, and the small seismic activity around the abscissa at 9 as a partial rup-106

ture of local plates being the geophonic noise created by the oscillations of the small blocks.107

It is clear that in the long run, the average velocity can be considered constant as indi-108

cated by the observations because obviously, the average drag force is opposite to the109
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push force. The advance of the large block is very small compared to the back and forth110

vibrations and therefore it would not be relevant to show it explicitly (during an earth-111

quake the epicentre is practically immobile) although it is calculated by the program.112

Let us note assuming that there are no losses and big distortions along the seis-113

mic waves way, the respective real seismograms will largely repeat the behavior of the114

velocity oscillations in situ because the contemporary seismographs record the speed of115

vibrations (Kramer, 1996).116

4 Conclusions117

From the above considerations we can make some conclusions that show why this118

generalized model is an improvement. The first one is related to the fact that our me-119

chanical model is more consistent: the movement of the biggest stratum is not assumed120

to be always uniform but obeys any motion under the influence of a force (due to the121

interaction of the tectonic plates). The second advantage is that the resistance func-122

tion used by us allows us to use the standard methods for solving systems of ordinary123

differential equations with no extra precautions and in this way the laws of classical me-124

chanics are from the methodological point of view correctly applied too. As a result, a125

very realistic behavior of the stratum speed stands out, a thing that matches with the126

records of the observations completed by the seismologists – for any historically known127

epicenter, the mini earthquakes appear periodically although the time lapses are not ex-128

actly the same. On the other hand, if it is possible to measure the pushing force of the129

moving stratum, there will be feasible to compare the model with the actual observa-130

tional data. In the end, let us use technological language: our model (if available an ap-131

propiate HPC cluster) is like an unknown prototype, which works well linked to tectonic132

movements then, to obtain results it is convenient to do reengineering consisting of ma-133

king a fit with the real seismograms lead to assume certain substantiated things regar-134

ding the structure of the ground (due to that, in general, the same consequences lead135

to the same causes) that, completed with an appropriate instrumentation research, could136

give valuable information trustworthy.137

Open Research138

It is worth noting that no data were used in this study.139
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