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Abstract

Global estimates of mesoscale vertical velocity remain poorly constrained due to a historical lack of adequate observations

on the spatial and temporal scales needed to measure these small magnitude velocities. However, with the wide-spread and

frequent observations collected by the Argo array of autonomous profiling floats, we can now better quantify mesoscale vertical

velocities throughout the global ocean. We use the underutilized trajectory data from the Argo array to estimate the time

evolution of isotherm displacement around a float as it drifts at 1000 dbar, allowing us to quantify vertical velocity averaged

over approximately 4.5 days for that pressure level. The resulting estimates have a non-normal, high-peak, and heavy-tail

distribution. The vertical velocity distribution has a mean value of (1.9±0.02)×10-6 m s-1 and a median value of (1.3±
0.2)×10-7 m s-1, but the high-magnitude events can be up to the order of 10-4 m s-1 , We find that vertical velocity is highly

spatially variable and is largely associated with a combination of topographic features and horizontal flow. These are some

of the first observational estimates of mesoscale vertical velocity to be taken across such large swaths of the ocean without

assumptions of uniformity or reliance on horizontal divergence.
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Key Points:5

• Five-day averaged vertical velocities from Argo observations near 1000 dbar are6

non-normally distributed, with a high peak and heavy tails..7

• Mesoscale vertical velocities are on the order of centimeters per day, but high-magnitude8

events can be on the order of meters per day.9

• Vertical velocities estimated from Argo floats are spatially variable and correlated10

with topographic features and horizontal surface flow.11
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Abstract12

Global estimates of mesoscale vertical velocity remain poorly constrained due to a his-13

torical lack of adequate observations on the spatial and temporal scales needed to mea-14

sure these small magnitude velocities. However, with the wide-spread and frequent ob-15

servations collected by the Argo array of autonomous profiling floats, we can now bet-16

ter quantify mesoscale vertical velocities throughout the global ocean. We use the un-17

derutilized trajectory data from the Argo array to estimate the time evolution of isotherm18

displacement around a float as it drifts at 1000 dbar, allowing us to quantify vertical ve-19

locity averaged over approximately 4.5 days for that pressure level. The resulting esti-20

mates have a non-normal, high-peak, and heavy-tail distribution. The vertical velocity21

distribution has a mean value of (1.9±0.02)×10-6 m s-1 and a median value of (1.3±22

0.2)×10-7 m s-1, but the high-magnitude events can be up to the order of 10−4 m s-1,23

We find that vertical velocity is highly spatially variable and is largely associated with24

a combination of topographic features and horizontal flow. These are some of the first25

observational estimates of mesoscale vertical velocity to be taken across such large swaths26

of the ocean without assumptions of uniformity or reliance on horizontal divergence.27

Plain Language Summary28

Vertical velocity in the ocean is a fundamental part of how water circulates through-29

out the globe. This impacts the temperature, salt, nutrients, and currents that make up30

the ocean. However, vertical velocities are very small and are, therefore, difficult to mea-31

sure. In particular, the vertical velocities of ocean events that occur on roughly a weekly32

to monthly time scale (mesoscale) are poorly understood. We have developed a method33

for estimating these mesoscale vertical velocities across the globe using an array of au-34

tonomous robots called Argo floats. Our results show that vertical velocities vary greatly35

depending on location, with the largest values occurring where there is a combination36

of relatively shallow ocean depths and larger horizontal velocities. These estimates are37

some of the first of their kind to be made from observations across such large swaths of38

the ocean.39

1 Introduction40

An essential component of many physical, chemical, and biological processes, ver-41

tical motion in the ocean occurs at all spatial and temporal scales, with a high degree42

of variability in both. As the pathway from the ocean interior to the surface, vertical flow43

directly impacts thermocline structure, nutrient transport, and global circulation (Sverdrup,44

1947; Stommel & Arons, 1959; Munk, 1966; Martin & Richards, 2001; Pilo et al., 2018;45

Liang et al., 2017). At the largest scales, the highly idealized model created by Stommel46

and Arons (1959) first estimated vertical velocities ranging between 0.5 and 3.0×10−7
47

m s-1, averaged over large areas of the deep ocean, to compensate for dense water for-48

mation at high latitudes. As the spatio-temporal scale of the motions decrease, the mag-49

nitude of the associated vertical velocities tends to increase, as well as the variability across50

regions. The time-averaged vertical velocity at mid-depths associated with mesoscale mo-51

tions has been estimated to be on the order of 10−6 m s-1 in a model (Liang et al., 2017),52

while values on the order of 10−4 m s-1 have been estimated within coherent vortices (Martin53

& Richards, 2001; Pilo et al., 2018). Small-scale vertical velocities observed at mid-depths54

within internal waves and lee waves have been estimated to be on the order of 10−2 m55

s-1 (Merckelbach et al., 2010) and 10−1 m s-1 (Cusack et al., 2017), respectively. While56

these smaller-scale estimates are often inferred from observations at the locations and57

depths where phenomena at these scales occur, estimates at meso and larger scales are58

commonly determined from numerical models which do not resolve the small-scale pro-59

cesses, horizontally or vertically. Directly observing vertical velocities in the ocean at these60
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scales has been an enduring challenge, due to the small magnitudes and high spatio-temporal61

variability (Stommel & Arons, 1959; Martin & Richards, 2001; Liang et al., 2017).62

Despite the inherent difficulties, estimates of vertical velocities have previously been63

computed using observations across different scales, depths, and geographic locations,64

from many different sources including hydrographic profiles (Stommel & Arons, 1959;65

Munk, 1966; Martin & Richards, 2001), moorings (Sévellec et al., 2015), floats (Freeland,66

2013; Cusack et al., 2017), and gliders (Merckelbach et al., 2010; Frajka-Williams et al.,67

2011). However, these estimates are often only able to capture either large- or small-scale68

vertical velocities due to limited sampling area or necessary assumptions of uniformity69

in depth and across smaller scales (Stommel & Arons, 1959; Freeland, 2013; Liang et al.,70

2017). The vertical velocities of mesoscale phenomena, which have horizontal scales of71

∼100 km, are not particularly well observed, even though such motions are in one of the72

most dynamic energy bands in the ocean (Ferrari & Wunsch, 2009). Because mid-depth73

mesoscale velocities - both horizontal and vertical - are historically poorly characterized74

from observations, constraints on these flows in numerical models are completely lack-75

ing (Zilberman et al., 2023). Oceanic models such as those used for coupled climate pro-76

jections may therefore be misrepresenting these vertical motions and the associated fluxes77

of tracers. To advance our understanding of this critical component of the oceanic ve-78

locity field, a novel approach is needed to greatly expand our ability to estimate verti-79

cal velocities in the global ocean from observations.80

The observations collected by the Argo array of profiling floats constitute the largest81

global, open-ocean, subsurface oceanic dataset. Since the late 1990s, the Argo program82

has vastly increased the coverage and quality of oceanographic observational data (Roemmich83

et al., 2019). The classic Argo float cycle consists of a descent to 1000 dbar, a drift with84

the flow at that level in a quasi-isobaric fashion for approximately 10 days, another de-85

scent to 2000 dbar, an ascent to the surface while taking profile measurements of con-86

ductivity, temperature, and depth (CTD), and finally the transmission of data collected87

during the cycle to data acquisition centers using Iridium communications. The profile88

data from 0 to 2000 dbar are well-organized by the Argo program, comprehensively qual-89

ity controlled, and have been extensively used in oceanographic research (Riser et al.,90

2016; Roemmich et al., 2019; Wong et al., 2020). Argo float profiles have previously been91

used to estimate vertical velocities in the open northeast Pacific (Freeland, 2013); how-92

ever, that large-scale bulk estimate relied on computing the divergence within a well-defined93

control volume. Expanding this method to retrieve global vertical velocities at a finer94

scale, across a wide range of dynamic regimes, would require consideration of further pro-95

cesses and flows with the resulting uncertainties quickly dominating the estimates.96

In addition to the profiles of temperature and salinity collected at the end of each97

cycle, a large number of Argo floats also record temperature and pressure measurements98

during the drift at 1000 dbar. The vast majority of floats do not measure salinity dur-99

ing the park phase. The temperature and pressure park phase data have been less fre-100

quently utilized than the profile measurements, and the associated quality control has101

been less consistent across platforms. Drift data at hourly resolution have previously been102

used to compute high-frequency isotherm displacement relative to the quasi-isobaric float,103

in order to examine internal wave characteristics near 1000 dbar (Hennon et al., 2014).104

The observations recorded during the drift phase of Argo floats remain, however, rela-105

tively untapped as a source of information about the subsurface ocean. The work pre-106

sented here uses these data to estimate mesoscale (∼ 5-day mean) vertical velocities at107

mid-ocean depths. The resulting near-global picture of the vertical flow at 1000 dbar,108

quantified directly from observations for the first time at such scales, not only reveals109

important patterns of spatial variability but also provides a critical benchmark for the110

subsurface flow in numerical models.111

Section 2 introduces the analysis framework underlying the method we have de-112

veloped to estimate vertical velocity using data recorded during an Argo float’s drift phase.113
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In section 3 we apply the theory to the global Argo database and detail the extensive114

quality control steps that we have taken to ensure consistency in our estimates. The re-115

sulting vertical velocity estimates are presented in section 4, and several key geographic116

areas are highlighted. Additionally, we investigate how our estimates of vertical veloc-117

ity relate to geographic location, bathymetry, horizontal flow, and sea level anomaly. Fi-118

nally, section 5 compares the Argo-based estimates to model-based vertical velocities and119

discusses the implications of our results.120

2 Theoretical Framework121

To develop a method for estimating vertical velocity from high-frequency data recorded122

during the drift of Argo floats, we start with the evolution of temperature T following123

a water parcel124

DT

Dt
= kz

∂2T

∂z2
+ kh(

∂2T

∂x2
+

∂2T

∂y2
) +Q (1)125

where kz
∂2T
∂z2 represents the rate of change in temperature due to vertical mixing includ-126

ing the vertical diffusivity kz, kh(
∂2T
∂x2 + ∂2T

∂y2 ) represents the rate of change in temper-127

ature due to horizontal mixing including the horizontal diffusivity kh, and Q corresponds128

to the rate of change in temperature from external sources and sinks of heat. Consider129

now the temperature evolution of a water parcel at mid-depths in the open ocean, over130

approximately 5 days. For the associated space and time scales, we can assume that the131

influence of horizontal mixing on temperature (following a water parcel) is negligible. In132

addition, if the vertical temperature gradient dT
dz is constant, the contribution of verti-133

cal mixing will vanish. Thus, given these conditions are upheld, we can neglect the tem-134

perature change due to mixing altogether.135

In the open ocean there are negligible sources and sinks of heat at the float park-136

ing depth of 1000 dbar, so we can also approximate Q as zero. Thus, we are left with137

DT
Dt ≈ 0, which can be expanded to show the contribution due to advection by both hor-138

izontal and vertical velocities (uH and w, respectively),139

∂T

∂t
+ uH · ∇HT + w

∂T

∂z
≈ 0. (2)140

Applying this framework now to an ideal, completely isobaric float that perfectly141

follows the horizontal projection of the flow causes the horizontal velocity relative to the142

float, uH , to vanish. In other words, the temporal evolution of temperature observed by143

the float as it is drifting with the horizontal flow will solely reflect the vertical advection144

of the background temperature gradient. Further decomposing the temperature into a145

time-averaged mean T̄ and a time-varying anomaly T ′ and assuming that the temper-146

ature gradient at depth is constant at these spatial and temporal scales allows Equation147

(2) to be solved for w as148

w = −∂(T ′ + T̄ )

∂t
/
∂T

∂z
≈ − d

dt

(
T

′
/
∂T

∂z

)
. (3)149

Thus, vertical velocity at the park depth can be computed from the observed rate of change150

of isotherm displacement relative to the float.151

Moving from a theoretical particle to a real world float, we must consider that the152

float is not perfectly isobaric. In fact, the floats move on equilibrium surfaces defined by153

their mass, which deviate from pressure surfaces depending on surrounding conditions154

and float compressibility (Swift & Riser, 1994). Following Hennon et al. (2014), we ac-155

count for the vertical motion of an Argo float away from the 1000-dbar isobar by sub-156

tracting the float displacement, given by the pressure anomaly during the drift. Doing157

this ensures that the isotherm displacement we estimate is a product of fluid motion alone.158
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We then incorporate the pressure correction term into Eq.3. The pressure measured by159

a float must also be converted into units of depth to give velocity in m s-1, which can160

be done by assuming a hydrostatic balance (z = P
ρg ). Following this we are left with161

the following equation for w:162

w = − 1

ρg

d

dt

(
T

′

(dT/dP ) 1000
− P

′

)
(4)163

where T
′
is the park phase temperature anomaly defined by T

′
= T−T̄ with T̄ being164

the time average temperature, P
′
is the park phase float displacement defined by P

′
=165

P − P̄ with P̄ being the time average pressure, (dT/dP )1000 is the constant tempera-166

ture gradient at 1000 dbar, ρ is the local density at 1000 dbar, and g is the gravitational167

constant. This final equation allows us to estimate vertical velocity solely using data from168

Argo floats, with T
′
and P

′
calculated from the float trajectory data and with (dT/dP )1000169

and ρ calculated from the float profile data.170

3 Estimation of Argo-float based vertical velocity171

3.1 Global Argo Data172

Data used in this work include the drift trajectory, profile, technical (e.g. float sys-173

tems reports during cycles), and metadata (e.g. float cycle configuration information)174

for the global array of Argo floats. Though there are over 16,000 floats with trajectory175

information available in the Global Data Acquisition Center (GDAC), many of the cy-176

cles from these floats cannot be used in estimating vertical velocity. Data that are us-177

able for these estimates start in August 2005 and continue through April 2022. Data prior178

to 2005 are not usable because early float versions did not report an adequate number179

of samples during the drift cycle. Additionally, some later data are not usable because180

floats deployed by different programs or from different manufacturers report the drift data181

inconsistently with one another causing the necessary trajectory information to be less-182

uniformly available compared to that of the profile data. The biggest discrepancy is in183

the sampling regime during the park cycle, which results in floats reporting data rang-184

ing from sparse drift averages up to comprehensive hourly measurements of temperature185

and pressure. Note that the technical data and metadata for floats are similar to the tra-186

jectory data in they are inconsistently implemented between float programs. This can187

lead to missing file components causing the data from a float to be unusable in estimat-188

ing vertical velocity. In particular, we are unable to use cycles that report temperature189

and pressure less frequently than every 6 hours during the park phase as well as cycles190

that have inadequate geographic coordinates, cycle numbering, and time information.191

To ensure that our results that are as robust as possible, we have designated several qual-192

ity control parameters (Section 3.3) in addition to the Argo program quality control sys-193

tem (Wong et al., 2020). In consequence, our vertical velocity estimates are gleaned from194

998 floats, encompassing 107,144 estimates.195

3.2 Methods196

From Eq.4, both the temperature gradient, (dT/dP )1000, and the density, ρ, at 1000197

dbar are found using float profile measurements. To get representative values for the en-198

tire park phase, the profiles directly before and after each individual park phase are av-199

eraged. The density at 1000 dbar is computed using the Gibbs-SeaWater Oceanographic200

Toolbox routines created by McDougall and Barker (2011) and is a function of absolute201

salinity and temperature at a constant pressure of 1000 dbar. The temperature gradi-202

ent is determined by finding the least squares best-fit line to the averaged temperature203

profile within 100 dbar from the parking depth (Hennon et al., 2014) (Figure 1b).204

Starting with the raw temperature and pressure data reported during the entire205

float park, each drift cycle is split into a half-cycle of at least 4 days in length. The tem-206
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Figure 1. Example process for estimating vertical velocity using cycle number 134 from float

1901150 (WMO ID). No float buoyancy adjustments occurred during this cycle, so we are able to

estimate two vertical velocities, one on each side of the gray dashed line in each panel. a. Map of

all float cycle locations colored by date taken, except cycle number 134 which is noted in blue. b.

Profile of temperature and pressure from cycle 134 with data surrounding 1000 dbar used to cal-

culate left(dT/dPright)1000, with at least 90% linear fit, highlighted in blue. c.Hourly sampled

trajectory data where the temperature (blue) is shaded as the envelope of 100 iterations of added

random error of ±0.002°C and the pressure (yellow) is shaded as the envelope of 100 iterations

with added random error of ±2.4dbar, as used in the Monte Carlo simulation described in section

3.3 d. Float displacement P
′
(yellow), isotherm displacement including the float displacement

T
′

(dT/dP ) 1000
(blue), corrected isotherm displacement T

′

(dT/dP ) 1000
− P

′
(black), and the pchip

filter of the corrected isotherm displacement. Note that all of these values are converted to me-

ters using an assumption of hydrostatic balance. e. Derivative of the filtered corrected isotherm

displacement (solid black) and average value of the derivative (dashed black), which results in

vertical velocity estimates of (7.6 ± 0.1) × 10-5 m s-1 and (−3.0 ± 0.1) × 10-5 m s-1 on the left

and right sides of the cycle, respectively. Note that the error of these estimates is taken from the

standard deviation of the 100 estimates that resulted from the Monte Carlo iterations.
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perature and pressure anomalies during the park, T
′
and P

′
, are found by subtracting207

the half-cycle mean values from the data for each half-cycle (Figure 1c). These anoma-208

lies are then applied to Eq.(4) to find the corrected isotherm displacement (Figure 1d).209

To examine phenomena on longer than inertial time scales, we use a fourth order low-210

pass Butterworth filter with a cutoff frequency of 0.3 cycles per day on the corrected isotherm211

displacement with odd reflected endpoints. This effectively removes high frequency vari-212

ability caused by internal tides and other short-lived events (Hennon et al., 2014). Af-213

ter filtering, we fit the data using a piecewise cubic Hermite interpolating polynomial214

(pchip) (Fritsch & Carlson, 1980) and take the derivative with respect to time to get the215

slopes of the data during the drift half-cycle. We then take the average of this deriva-216

tive and convert to depth units by assuming hydrostatic balance (as was done to reach217

Eq. 4) and using the density calculated from the profile, giving us approximate values218

for the half-cycle-average vertical velocity (Figure 1e).219

3.3 Quality Control220

After a measurement cycle occurs, floats transmit to the data acquisition centers221

via the Argos-2 (<1% of usable floats) or the Iridium (>99% of usable floats) satellite222

systems. Then the data go through an automated quality control process that checks for223

reasonable dates, locations, velocities, pressures, temperatures, and salinities (Wong et224

al., 2020; Argo user’s manual , 2022). Values are flagged with identifiers ranging from225

1 to 4, where 1 corresponds to good data and 4 corresponds to bad data. This project226

uses quality control flags equal to 1, 2, or data that have been adjusted to reach the same227

level of qualification (Wong et al., 2020). Within 24 hours after a float surfaces, the data228

have gone through the process described above and are publicly available as Realtime-229

mode data. In the following 5 months, more rigorous quality control should be done up-230

dating the cycle label to Delayed-mode (Wong et al., 2020). However, this step is often231

only applied to the profile and not to the trajectory data, the technical data, or the meta-232

data. For estimating vertical velocity, we use the Delayed-mode data for the selection233

of floats where it is available (23.5% of usable cycles) and the Realtime-mode data in all234

other cases.235

As stated in section 2, the vertical temperature gradient must be linear to main-236

tain the assumption that there are limited vertical mixing effects on temperature. To237

enforce this condition, only cycles where the least squares best-fit line accounts for at238

least 90% of the temperature variance are considered (Hennon et al., 2014). In some cases,239

the slope estimated from the profile data was near zero resulting in the magnitude of our240

vertical velocity estimates being unreasonably large. To counteract these cases, any ver-241

tical velocity with a magnitude larger than 10 standard deviations away from the mean242

of all the estimates are neglected (<0.05% of estimates).243

Due to differences in float manufacturing and measurement goals, not all floats are244

programmed in the same manner. In particular, floats do not all have the same park-245

ing pressure and do not report data at the same interval during the drift. To keep the246

vertical velocity estimates comparable to one another, only floats that are assigned a park247

pressure of 1000 dbar in their metadata have been used. For differing drift data inter-248

vals, only floats that report both temperature and pressure measurements at a minimum249

of 6-hourly time increments during the park phase have been included. Previous stud-250

ies that have analyzed isotherm displacement during the drift cycle could only use hourly-251

reporting floats because they were trying to capture the signal from internal gravity waves252

and tides (Hennon et al., 2014). The mesoscale vertical velocities we are estimating per-253

sist over somewhat larger time scales, so we can use floats with a longer time between254

samples. As confirmation that the 6-hourly floats supply sufficient resolution, we con-255

ducted a test where we sub-sampled the hourly floats to every 6 hours, with randomly256

selected initial points, and re-estimated the vertical velocity using our method. When257

comparing the initial velocity estimates from the hourly samples with those from the sub-258
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sampled regime, there is a 91% correspondence in the linear fit; the slope of this linear259

fit is 0.87. Though the 6-hour sub-sampling does slightly cause our method underesti-260

mate the vertical velocity magnitude, particularly at large values, we feel that this the261

error is sufficiently small with the average difference between the 6-hour sub-sampled val-262

ues and the hourly true values being 2.2×10−7 m s-1. Floats that measure once per day263

or transmit a cycle average value do not capture the necessary temperature variability264

to estimate isotherm motion around the float and are therefore discarded.265

To maintain the programmed park pressure, floats will internally adjust their buoy-266

ancy under certain conditions. If a float is pushed outside of a pre-determined thresh-267

old (most often ± 10 dbar, located in the float metadata) from the programmed park268

pressure for three hours consecutively, the float increases or decreases its buoyancy to269

move back into the target zone. This adjustment causes additional variability in tem-270

perature measurements that is difficult to distinguish from temperature variability caused271

by isotherm displacement alone. Buoyancy adjustments can happen multiple times in272

a single drift cycle and the floats then report the number of times that they adjust in273

their technical data; however, they do not report when the adjustments actually occur.274

To manually determine when an adjustment happens, hourly data are required. Thus,275

for floats with a lower sampling frequency than hourly any cycles with reported adjust-276

ments are discarded. For floats that do measure on an hourly basis, we use the pressure277

data to compute the time of adjustment and keep only those cycles where the number278

of computed adjustments equals that reported in the technical data. Only half-cycles with279

no adjustments (omitting data in a 6 hour window after any prior adjustments) were used280

to compute vertical velocity. The floats do adjust preferentially in certain areas, which281

can likely be attributed to large magnitude vertical motions influencing the floats. Be-282

cause we are neglecting cycle halves that include these adjustments, the estimates for283

vertical velocities shown in this paper can be considered conservative.284

To estimate the error involved in calculating the vertical velocity, we have conducted285

a Monte Carlo simulation that incorporates random error based on instrument accuracy.286

Floats are equipped with CTD sensors that have published accuracy of ±0.002°C (0.0002°C287

drift per year) and ±2.4 dbar (0.8 dbar drift per year) for temperature and pressure, re-288

spectively (Wong et al., 2020). Because the average values are removed during the cal-289

culations, the precision of each measurement are a more likely to impact the observa-290

tion quality, but these values are smaller than those of the accuracy. We feel confident291

that using the larger values allows for robust testing in the Monte Carlo simulation. For292

each calculation of vertical velocity, 100 iterations of random error within the accuracy293

ranges were incorporated into the temperature and pressure data. These data were then294

used to compute 100 estimates of vertical velocity for each half cycle. The final value is295

the average of all the different iterations and the error is assumed to be represented by296

the standard deviation (Figure 1c). To compute aggregate statistics (mean, median, vari-297

ance, etc.) on subsets of the data, we use all 100 of the Monte Carlo iterations for each298

half cycle and report the average of the desired statistic along with the standard devi-299

ation as our error estimate.300

4 Results301

4.1 Global estimates of near 1000-meter vertical velocity302

The locations of vertical velocity estimates from the global Argo array have a spa-303

tial distribution that varies widely across geographic regions (Figure 2 a-c). Though the304

Argo array is well-distributed globally (Wong et al., 2020), these estimates of vertical305

velocity do not have uniform coverage and are particularly sparse in the Atlantic and306

North Pacific Oceans (Figure 2c). This is due to a lack of adequate 1000 dbar drift data307

in those areas in addition to a rigorous application of quality control measures (section308

3.3).309
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Figure 3. Probability density function (PDF) of global vertical velocities with Cauchy (green)

and Normal (purple) distributions plotted atop. Note that the y-axis is on a logarithmic scale.

The estimated vertical velocities have a particularly heavy-tailed distribution with310

a high peak (Figure 3). These data have the smallest sum square error (defined as
∑

i (yi − f(xi))
2
,311

where yi is the given histogram value and f(xi) is the value predicted by the probabil-312

ity density function) when fit by the Cauchy function as Eq. 5,313

f(x) =
1

π(1 + x2)
(5)314

which is the equivalent to a Student’s t continuous fit with one degree of freedom (Forbes315

et al., 2010). In comparison, a normal distribution is equivalent to a Student’s t contin-316

uous fit with infinite degrees of freedom, meaning that these data are decidedly non-Gaussian317

(Forbes et al., 2010). One characteristic of a Cauchy probability distribution is that the318

higher order statistical moments are undefined and do not converge with increased sam-319

pling (Forbes et al., 2010; Sugiyama, 2016). Therefore, the mean and standard devia-320

tion that we compute for our finite dataset are highly dependent on the selection of sam-321

pling parameters and do not converge for large sample size. To characterize our dataset,322

we compute and report the median, which is less influenced by heavy tails. We also ex-323

amine the mean and standard deviation for our data with the caveat that these values324

are dependent on the particular characteristics of sampling. With this in mind, this type325

of statistical analysis can still help provide insight into the variability of our estimates.326

The median vertical velocity from the entirety of our estimates, is (1.3 ± 0.2) ×327

10-7 m s-1 and the average vertical velocity is (1.9 ± 0.02) × 10-6 m s-1. If these data328

were collected everywhere globally, over a sufficiently long time period, the true aver-329

age would be equivalent to zero due to the conservation of mass in the ocean (Stommel330

& Arons, 1959; Freeland, 2013). However, there is no evidence to suggest that the ver-331
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Figure 4. Global Sea Level Anomaly (SLA) vs. Vertical velocity estimates colored by the

number of observations for each 0.01m ×10−5m s−1 box

tical motion occurring at just the mesoscale should be balanced within itself, so we can-332

not assume that the average of our irregularly-sampled, mesoscale estimates should be333

equal to zero. The variance of our vertical velocity estimates is (3.0 ± 0.01) × 10-9 m334

s-1, which is impacted by both the high peak and heavy-tails of our distribution. There335

is a slight positive skew of 0.6±0.03; however, due to the shape of the distribution dis-336

cussed above, we cannot disentangle if this is a product of the uneven spatial and tem-337

poral distribution of our samples or a product of actual physical phenomena. To gain338

different insights into these estimates, we examine areas that are well sampled in con-339

text with sea level anomaly.340

4.2 Sea level anomaly341

To examine how our mid-depth vertical velocity estimates correspond with other342

physical phenomena in the ocean, we use the Data Unification and Altimeter Combina-343

tion System (DUACS) gridded (L4) altimeter product with a 1/4° × 1/4 ° resolution with344

daily data ranging from 1993 to June 2020 (CMEMS, 2021). From this gridded prod-345

uct, we use both the Sea Level Anomaly (SLA) and the horizontal (zonal [U] and merid-346

ional [V]) absolute geostrophic velocities at the surface.347

The SLA in this dataset is given as the sea surface height above mean sea surface348

using a 20 year mean from 1993 through 2012; however, to better compare this data with349

that given by the Argo array, we have changed the reference period to be a 15 year mean350

from 2005 through 2020 following the methods in Pujol et al. (2016). To directly link351

float estimates with satellite SLA, we located the nearest grid cell in the DUACS L4 prod-352

uct to each vertical velocity estimate location and averaged the SLA at that point for353
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the actual dates of the float cycle. We repeat the process for the horizontal velocity mag-354

nitude, computed from surface U and V , by finding the nearest grid cells in the satel-355

lite product to our float estimates. However, we then average across all times(1993-2012)356

rather than just the float period. Taking the average over the entire time-series results357

in a mean state horizontal velocity, to which we can compare our vertical velocity.358

Investigating the SLA from all locations where we have half cycles, we see that there359

is no distinct correlation between the SLA and the vertical velocity estimates (Figure360

4). The highest values of vertical velocity would visually appear to be associated with361

smaller magnitude SLA, but there are a considerably more data points present at smaller362

magnitudes than at higher magnitudes for both the vertical velocity and SLA (note Fig-363

ure 4 has an exponential colorbar). Statistically this pattern is simply a product of the364

high peaks in both the vertical velocity and SLA distributions rather than showing a par-365

ticular physical phenomena. Additionally, the SLA is measured at the surface via satel-366

lites, so comparing these measurements to our mid-depth estimates of vertical velocity367

is not direct. Certainly, not every eddy has a subsurface component that will have an368

effect at the Argo parking depth. There are ways to locate sub-surface phenomena solely369

using satellite data (Assassi et al., 2016); however, these methods have difficulty in com-370

plex areas with strong currents, of which a great deal of our study area is composed. In-371

stead, separating our vertical velocity estimates and their associated SLA into subsets372

of areas with high coverage will allow us to examine the degree of variability between373

different locations.374

4.3 Spatial variability and areas of interest375

Because of the varying data density across the globe, spatial analysis of the entire376

data set is not wholly informative. We have selected a few key areas for comparison. Namely,377

we chose two major topographic features in the Antarctic Circumpolar Current (ACC)378

in the Southern Ocean (Kerguelen Plateau (KP) and Pacific-Antarctic Ridge (PAR), Fig-379

ure 5 d-e) and selected juxtaposed examples in the gyres north of each (Indian Ocean380

Gyre (IOG) and Pacific Ocean Gyre (POG), Figure 5 b-c). Each of these subsets of data381

has a comparable number of observations rather than equal study areas. We find that382

the distributions of vertical velocity estimates over topographic features are similar to383

the global distribution in that they have high peaks and heavy tails that are best fit by384

the Cauchy function (Figure 5d-e). Our estimates in quiescent areas have much lighter385

tails and, though still not entirely normally distributed, are better fit by a normal dis-386

tribution across most of the estimates with the only misfits being infrequent, high-magnitude387

events appearing in the tails (Figure 5 b-c).388

The median, mean, and variance of our vertical velocity estimates for each of the389

selected areas from Figure 5 are shown in Table 1. The mean values are similar in mag-390

nitude for the more energetic areas (KP, PAR) on the order of 10−6 to 10−5 m s-1, as391

well as for the more quiescent areas (IOG,PAR) on the order of 10−7 m s-1. However,392

due to the heavy-tailed distributions, all of the mean values depend on the particular393

sampling scheme selected, even for large sample sizes, so these average results must be394

interpreted with caution. The differences in variance are more illuminating. In the ocean395

gyres, the variance of our estimates are on the order of 10−10 [m s-1]2 while the topo-396

graphic features have a variance nearer to 10−8 and 10−9 [m s-1]2 for PAR and KP, re-397

spectively. This emphasizes the impact that the high-magnitude, heavy tails have in ar-398

eas with significant bathymetry. As another large topographic feature in the ACC, we399

expect to see a similar pattern for Drake Passage (DP) (Figure 5g). Though the esti-400

mates in this area are sparser than in the others, the variance is once again two orders401

of magnitude larger than those of the ocean gyres and comparable to the other active402

regions. The scale of the global variance is approximately 10−9 [m s-1]2, showing the im-403

pact of the large vertical velocities that are localized in space.404
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Figure 5. Probability density function distributions with Normal and Cauchy distribution

functions plotted on top for select areas highlighted by corresponding color in a global map (a).

b) Indian Ocean Gyre [IOG] with 3,001 observations, c) Pacific Ocean Gyre [POG] with 3,143 ob-

servations, d) Kerguelen Plateau [KP] with 3,057 observations, e) Pacific-Antarctic Ridge [PAR]

with 3,053 observations, f) North Atlantic [NA] with 3,664 observations, g) Drake Passage [DP]

with 487 observations. Note that the x axes on panels (b) and (c) are decreased by a factor of 4

from the other PDFs.
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Table 1. Aggregate statistics (mean, median, variance) of vertical velocity estimates globally

and for selected areas shown in Figure 5.

Area Median (m s-1) Mean (m s-1) Variance ([m s-1]2)

Global (1.3± 0.2)× 10-7 (1.9± 0.02)× 10-6 (3.0± 0.01)× 10-9

KP (1.2± 0.2)× 10-6 (5.4± 0.2)× 10-6 (7.8± 0.09)× 10-9

IOG (7.3± 1.4)× 10-7 (8.5± 0.7)× 10-7 (4.5± 0.05)× 10-10

PAR (7.4± 0.2)× 10-6 (1.4± 0.02)× 10-5 (1.0± 0.01)× 10-8

POG (−6.2± 0.9)× 10-7 (−4.7± 0.4)× 10-7 (1.2± 0.01)× 10-10

DP (1.1± 0.1)× 10-5 (2.5± 0.07)× 10-5 (1.7± 0.03)× 10-8

NA (−1.2± 0.3)× 10-6 (−6.1± 2.3)× 10-7 (1.5± 0.01)× 10-8

Another area of interest is the North Atlantic (NA, Figure 5f), where the vertical405

velocity distribution is similar to the high energy areas of the Southern Ocean. As a re-406

gion with mixed layers exceeding 1000 m, deep water formation, and significant eddy ac-407

tivity (Stommel & Arons, 1959; Ferrari & Wunsch, 2009), it is expected that the North408

Atlantic mimics the other active regions. Indeed, the variance is once again two orders409

of magnitude larger than that of the quiescent areas.410

The median values of our vertical velocity estimates range from 10−7 to10−5 m s-1411

(Table 1). The larger values occur in high energy areas while the smaller values occur412

in the gyres. The global median is on the same order of magnitude as the gyre median413

values. This shows that, though the effects of large-magnitude events can be seen in the414

global variance, the small-magnitude phenomena that form the high peak in the distri-415

bution dominate the median (and mean).416

The SLA associated with our select areas also highlight the variability between dif-417

ferent locations. The SLA in the IOG and POG (Figure 6ab) are similar in range go-418

ing from -0.33 to 0.35 m with small vertical velocities. However, the SLA in the PAR419

(Figure 6d) is more limited only ranging between -0.11 to 0.15 m with larger vertical ve-420

locities. Even more different are the SLAs near the KP (Figure 6c), where the range of421

both SLA (-0.49 to 0.41m) and vertical velocity are wide. This reinforces that there is422

high variability in the spatial distribution of vertical velocities that are interacting with423

a variety of mechanisms, even in similarly energetic regimes.424

4.4 Southern Ocean bathymetry425

To examine additional factors that may impact the observed vertical velocity vari-426

ability, we utilize the ETOPO1 1 Arc Minute Global Relief Model (Amante & Eakins,427

2009; NGDC, 2009). We use the version of this dataset that includes bathymetry at the428

base of the Antarctic and Greenland ice sheets. To better compare between the gridded429

relief model and the Argo array, we located the nearest grid cell to each float cycle lo-430

cation that contains an ocean depth. Because bathymetry changes on time scales much431

longer than the mesoscale phenomena we are focused on, we assume that the bathymetry432

remains constant.433

By selecting both bathymetric and vertical velocity data from a large region with434

dense coverage, we can observe the changes in vertical velocity magnitude variability as435

it is related to space. Analyzing only estimates in the Southern Hemisphere, where the436
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Figure 6. DUACS Sea Level Anomaly at the nearest grid point averaged over time of corre-

sponding half cycles (as described in section 4.2 versus vertical velocity estimates for select areas

highlighted by corresponding color in a global map in Figure 5a. a) IOG, b) POG, c) KP, d)

PAR. Note that the y axes on panels (a) and (b) are decreased by a factor of 4 from panels (c)

and (d).
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Figure 7. Southern Ocean bathymetry from ETOPO1 averaged meridionally between 50°S
and 60°S (blue) plotted on top of box plots showing the distributions of vertical velocity esti-

mates in 3° longitude sections between 50°S and 60°S, where the orange line corresponds to the

median value, the box corresponds to the 25th and 75th percentiles, and the error bars corre-

spond to full range of vertical velocity magnitudes in each area.

majority of our data reside, we find that there are a larger number of high-magnitude437

values between -60°N and -40°N (Figure 2a), as well as ample low-magnitude estimates438

in this region. The distribution is similar to the full data set with its particularly heavy439

tails coupled with a high peak. This latitude band corresponds with the general area of440

the ACC, which generates a considerable number of mesoscale and sub-mesoscale phe-441

nomena where we would expect higher magnitude vertical velocities (Rosso et al., 2014;442

Cusack et al., 2017). Looking closer at the variation in longitude (Figure 2b), we can see443

that the higher magnitude velocities do not occur uniformly, but instead have a unique444

distribution with certain areas being hot spots of higher magnitude vertical velocity.445

Consistent with the results discussed in section 4.3, these hot spots correspond roughly446

to known bathymetric features in the path of the ACC, including KP, PAR, DP from447

Section 4.3 as well as Macquerie Ridge (Tamsitt et al., 2017).To quantify the relation-448

ship between bathymetry and vertical velocity, we compute the lagged correlation be-449

tween ocean bottom depth from ETOPO1 and absolute vertical velocity, both of which450

are first averaged in geographic bins that span 50°S to 60°S in latitude and 3° in longi-451

tude.The correlation between average vertical velocity and bathymetry peaks (r = 0.438)452

when w lags the average bottom depth by 12° longitude. This highlights that, in gen-453

eral, higher magnitude values occur downstream of elevated topography. Averaging in-454

stead across all latitudes of the Southern Hemisphere gives a maximum correlation be-455

tween absolute vertical velocity and bottom depth of 0.267, smaller than the correlation456

found for the ACC alone. This implies that bottom topography has a bigger impact on457

vertical velocity variability in the Southern Ocean than it does in the global ocean as458

a whole.459

An additional factor that may impact the distribution of 1000-m vertical veloci-460

ties is the strength of the horizontal flow. Examining the global surface velocities from461

satellites (as described in section 4.2) with their corresponding float w estimates, we see462
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Figure 8. Average absolute value vertical velocity within grid cells of horizontal surface veloc-

ity averaged over 1993-2020 (bin size of 0.0025 m s-1) and ocean depth (bin size of 75 m). Only

grid cells with at least 5 estimates of vertical velocity are shown here. Note that floats are typi-

cally not deployed in waters shallower than 2000 m (due to a desire to prevent float grounding)

so sparseness in samples above this depth is expected.
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that deep areas with small horizontal surface velocities tend to have smaller values of463

w. However, areas with larger average horizontal surface flow (> 0.08m s-1) have more464

high magnitude vertical velocities, even where the ocean is deep (between 4000-5000 m)465

(Figure 8).466

Taken altogether, these results indicate that at mid-depths, higher vertical veloc-467

ities occur downstream of shallow bathymetry and in areas with increased horizontal ve-468

locities at the surface (Figure 8), such as the ACC. Prior research has shown elevated469

mesoscale eddy activity frequently occurs where strong horizontal flows cross over to-470

pographic features (Rosso et al., 2014; Cusack et al., 2017; Liang et al., 2017). These find-471

ings align very well with the results presented here, providing evidence that the 5-day472

average vertical velocities determined from Argo observations primarily reflect mesoscale473

phenomena.474

5 Discussion and conclusions475

The results presented here are the first estimates of subsurface vertical velocity de-476

termined directly from observations, across wide swaths of the global ocean. Our approach477

of using measurements from floats in the globally distributed Argo array provides insight478

into three-dimensional flows occurring near 1000 dbar. The sampling distribution is un-479

even, with some regions well covered and others lacking data entirely, due to differences480

in how floats report data from the drift phase at the parking depth. As the global Argo481

array continues to evolve, drift data suited for this method will continue to be collected482

from many floats, thereby increasing the coverage of these vertical velocity estimates (Riser483

et al., 2016; Roemmich et al., 2019; Wong et al., 2020; Argo user’s manual , 2022). Fur-484

thermore, we encourage all float manufacturers and users to measure and report hourly485

temperature and pressure data during the drift phase when possible, to expand the spa-486

tial coverage of these vertical velocity estimates.487

In areas with adequate sampling, our results highlight distinctive spatial variabil-488

ity in vertical velocities at 1000 dbar. In particular, there is clear evidence of a relation-489

ship between vertical motion and topographic features, with further influence in areas490

with strong horizontal flows. This topographic dominance is consistent with prior global491

estimates of mid-depth vertical velocity using model fields (Liang et al., 2017). To bet-492

ter assess our estimates in relation to velocity output from a widely-used ocean state es-493

timate, we retrieved data from the latest Estimating the Circulation and Climate of the494

Ocean (ECCO) project (version 4, release 4) (Forget et al., 2015). We used the monthly-495

averaged vertical component of velocity from 2004 to 2017, which best overlaps with the496

time period available for the float estimates. We took the 1/2° resolution LLC90 grid,497

chose the depth level closest to 1000 dbar, and then selected only locations that have at498

least one float estimate of vertical velocity within 50km of center of the model grid-cell.499

Subsampling the model output in this way eliminates data from the coastal areas and500

shallow areas where floats do not sample.501

Averaging the resulting model vertical velocity fields over the full 13-year period502

reveals spatial variability that matches the spatial pattern in the Argo-based estimates503

remarkably well. This similarity again emphasizes the topographic influence on verti-504

cal motions near 1000 dbar (Figure 2, Figure 9). The ECCO vertical velocities in Fig-505

ure 9 are an order of magnitude smaller than the float-based velocities in Figure 2, re-506

flecting the difference in the temporal scales of the two estimates.507

Examining instead the monthly-averaged velocities from ECCOv4.4, again restricted508

to only the locations of the float estimates, the normalized distribution of vertical ve-509

locity exhibits a high peak and heavy tails that is best fit by the Cauchy distribution,510

like the float-based estimates.511
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Figure 9. Global map of the vertical velocity field from the ECCOv4.4 model in grid cells

that contain observational estimates from floats.
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Figure 10. Distributions of model vertical velocity (blue) and observational estimates (gray),

with each bin showing the count in the bin divided by the total number of observations and by

the bin size (1× 10−6 m s-1).
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Although the 5-day averaged float estimates and the monthly model w fields still512

have different temporal scales, the similarity in the shape of the distributions provides513

support for the efficacy of the vertical velocity estimation method described here. In-514

terestingly, the distribution of the observational w estimates is more symmetric than the515

distribution of the model vertical velocities, which is skewed towards negative values. Pos-516

sible reasons for this include the uneven temporal spacing in the float estimates when517

compared to the model field, potential spatial sampling biases in the float estimates, or518

inadequate representation of mesoscale motions in the model. In addition, the tails of519

the float-based distribution decrease monotonically, while the model-based distribution520

exhibits multiple local maxima in both tails, likely due to limitations of the model’s ver-521

tical resolution (Wong et al., 2020; Forget et al., 2015; Liang et al., 2017).522

Advecting a synthetic float using model velocity fields and then recreating our ver-523

tical velocity estimation procedure might appear to be an ideal way to validate this tech-524

nique.Unfortunately, the spatial and temporal scales required to accurately represent all525

the relevant dynamics, from the float interactions with the surrounding waters to oceanic526

mesoscale features, are immensely challenging to achieve (Swift & Riser, 1994; Liang et527

al., 2017; Wang et al., 2020).Thus a direct model-based validation of the method devel-528

oped here remains outside of the scope of this work.529

The direct estimates of 1000-dbar vertical velocity given here would not be pos-530

sible without high-frequency data from the parking phase of Argo profiling floats. Though531

measuring vertical velocities was not an original intention of the Argo program (Riser532

et al., 2016; Roemmich et al., 2019), being able to adapt this globally-distributed in situ533

observational data set for novel methods such as the one presented here has immensely534

increased its scientific value. Continued improvements in float technology will allow for535

refinement and expansion of this method, as well as the development of others. These536

capabilities are made possible by the dedicated efforts of the international Argo program537

to ensure that all float data (i.e. trajectory, technical, metadata, and profile data) are538

provided in a consistent, quality-controlled format.539

The estimates of w computed here directly from Argo float drift observations fit540

well within the range of values given by prior studies (Stommel & Arons, 1959; Liang541

et al., 2017; Martin & Richards, 2001; Pilo et al., 2018; Freeland, 2013; Cusack et al.,542

2017). The distribution of these velocities, characterized by a narrow peak and heavy543

tails, emphasizes the distinctly non-Gaussian nature of vertical flows in the interior ocean.544

The variability in 5-day average w at 1000 dbar revealed here provides widespread di-545

rect observation-based evidence of the importance of topographic interactions in gener-546

ating strong vertical motions at the oceanic mesoscale. This novel application of the Argo547

data set greatly expands our knowledge of the subsurface circulation of the global ocean548

and provides a unique observational constraint for model validation.549
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Global estimates of mesoscale vertical velocity near1

1000 m from Argo observations2

Katy M. Christensen1, Alison R. Gray1, and Stephen C. Riser13
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Key Points:5

• Five-day averaged vertical velocities from Argo observations near 1000 dbar are6

non-normally distributed, with a high peak and heavy tails..7

• Mesoscale vertical velocities are on the order of centimeters per day, but high-magnitude8

events can be on the order of meters per day.9

• Vertical velocities estimated from Argo floats are spatially variable and correlated10

with topographic features and horizontal surface flow.11
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Abstract12

Global estimates of mesoscale vertical velocity remain poorly constrained due to a his-13

torical lack of adequate observations on the spatial and temporal scales needed to mea-14

sure these small magnitude velocities. However, with the wide-spread and frequent ob-15

servations collected by the Argo array of autonomous profiling floats, we can now bet-16

ter quantify mesoscale vertical velocities throughout the global ocean. We use the un-17

derutilized trajectory data from the Argo array to estimate the time evolution of isotherm18

displacement around a float as it drifts at 1000 dbar, allowing us to quantify vertical ve-19

locity averaged over approximately 4.5 days for that pressure level. The resulting esti-20

mates have a non-normal, high-peak, and heavy-tail distribution. The vertical velocity21

distribution has a mean value of (1.9±0.02)×10-6 m s-1 and a median value of (1.3±22

0.2)×10-7 m s-1, but the high-magnitude events can be up to the order of 10−4 m s-1,23

We find that vertical velocity is highly spatially variable and is largely associated with24

a combination of topographic features and horizontal flow. These are some of the first25

observational estimates of mesoscale vertical velocity to be taken across such large swaths26

of the ocean without assumptions of uniformity or reliance on horizontal divergence.27

Plain Language Summary28

Vertical velocity in the ocean is a fundamental part of how water circulates through-29

out the globe. This impacts the temperature, salt, nutrients, and currents that make up30

the ocean. However, vertical velocities are very small and are, therefore, difficult to mea-31

sure. In particular, the vertical velocities of ocean events that occur on roughly a weekly32

to monthly time scale (mesoscale) are poorly understood. We have developed a method33

for estimating these mesoscale vertical velocities across the globe using an array of au-34

tonomous robots called Argo floats. Our results show that vertical velocities vary greatly35

depending on location, with the largest values occurring where there is a combination36

of relatively shallow ocean depths and larger horizontal velocities. These estimates are37

some of the first of their kind to be made from observations across such large swaths of38

the ocean.39

1 Introduction40

An essential component of many physical, chemical, and biological processes, ver-41

tical motion in the ocean occurs at all spatial and temporal scales, with a high degree42

of variability in both. As the pathway from the ocean interior to the surface, vertical flow43

directly impacts thermocline structure, nutrient transport, and global circulation (Sverdrup,44

1947; Stommel & Arons, 1959; Munk, 1966; Martin & Richards, 2001; Pilo et al., 2018;45

Liang et al., 2017). At the largest scales, the highly idealized model created by Stommel46

and Arons (1959) first estimated vertical velocities ranging between 0.5 and 3.0×10−7
47

m s-1, averaged over large areas of the deep ocean, to compensate for dense water for-48

mation at high latitudes. As the spatio-temporal scale of the motions decrease, the mag-49

nitude of the associated vertical velocities tends to increase, as well as the variability across50

regions. The time-averaged vertical velocity at mid-depths associated with mesoscale mo-51

tions has been estimated to be on the order of 10−6 m s-1 in a model (Liang et al., 2017),52

while values on the order of 10−4 m s-1 have been estimated within coherent vortices (Martin53

& Richards, 2001; Pilo et al., 2018). Small-scale vertical velocities observed at mid-depths54

within internal waves and lee waves have been estimated to be on the order of 10−2 m55

s-1 (Merckelbach et al., 2010) and 10−1 m s-1 (Cusack et al., 2017), respectively. While56

these smaller-scale estimates are often inferred from observations at the locations and57

depths where phenomena at these scales occur, estimates at meso and larger scales are58

commonly determined from numerical models which do not resolve the small-scale pro-59

cesses, horizontally or vertically. Directly observing vertical velocities in the ocean at these60
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scales has been an enduring challenge, due to the small magnitudes and high spatio-temporal61

variability (Stommel & Arons, 1959; Martin & Richards, 2001; Liang et al., 2017).62

Despite the inherent difficulties, estimates of vertical velocities have previously been63

computed using observations across different scales, depths, and geographic locations,64

from many different sources including hydrographic profiles (Stommel & Arons, 1959;65

Munk, 1966; Martin & Richards, 2001), moorings (Sévellec et al., 2015), floats (Freeland,66

2013; Cusack et al., 2017), and gliders (Merckelbach et al., 2010; Frajka-Williams et al.,67

2011). However, these estimates are often only able to capture either large- or small-scale68

vertical velocities due to limited sampling area or necessary assumptions of uniformity69

in depth and across smaller scales (Stommel & Arons, 1959; Freeland, 2013; Liang et al.,70

2017). The vertical velocities of mesoscale phenomena, which have horizontal scales of71

∼100 km, are not particularly well observed, even though such motions are in one of the72

most dynamic energy bands in the ocean (Ferrari & Wunsch, 2009). Because mid-depth73

mesoscale velocities - both horizontal and vertical - are historically poorly characterized74

from observations, constraints on these flows in numerical models are completely lack-75

ing (Zilberman et al., 2023). Oceanic models such as those used for coupled climate pro-76

jections may therefore be misrepresenting these vertical motions and the associated fluxes77

of tracers. To advance our understanding of this critical component of the oceanic ve-78

locity field, a novel approach is needed to greatly expand our ability to estimate verti-79

cal velocities in the global ocean from observations.80

The observations collected by the Argo array of profiling floats constitute the largest81

global, open-ocean, subsurface oceanic dataset. Since the late 1990s, the Argo program82

has vastly increased the coverage and quality of oceanographic observational data (Roemmich83

et al., 2019). The classic Argo float cycle consists of a descent to 1000 dbar, a drift with84

the flow at that level in a quasi-isobaric fashion for approximately 10 days, another de-85

scent to 2000 dbar, an ascent to the surface while taking profile measurements of con-86

ductivity, temperature, and depth (CTD), and finally the transmission of data collected87

during the cycle to data acquisition centers using Iridium communications. The profile88

data from 0 to 2000 dbar are well-organized by the Argo program, comprehensively qual-89

ity controlled, and have been extensively used in oceanographic research (Riser et al.,90

2016; Roemmich et al., 2019; Wong et al., 2020). Argo float profiles have previously been91

used to estimate vertical velocities in the open northeast Pacific (Freeland, 2013); how-92

ever, that large-scale bulk estimate relied on computing the divergence within a well-defined93

control volume. Expanding this method to retrieve global vertical velocities at a finer94

scale, across a wide range of dynamic regimes, would require consideration of further pro-95

cesses and flows with the resulting uncertainties quickly dominating the estimates.96

In addition to the profiles of temperature and salinity collected at the end of each97

cycle, a large number of Argo floats also record temperature and pressure measurements98

during the drift at 1000 dbar. The vast majority of floats do not measure salinity dur-99

ing the park phase. The temperature and pressure park phase data have been less fre-100

quently utilized than the profile measurements, and the associated quality control has101

been less consistent across platforms. Drift data at hourly resolution have previously been102

used to compute high-frequency isotherm displacement relative to the quasi-isobaric float,103

in order to examine internal wave characteristics near 1000 dbar (Hennon et al., 2014).104

The observations recorded during the drift phase of Argo floats remain, however, rela-105

tively untapped as a source of information about the subsurface ocean. The work pre-106

sented here uses these data to estimate mesoscale (∼ 5-day mean) vertical velocities at107

mid-ocean depths. The resulting near-global picture of the vertical flow at 1000 dbar,108

quantified directly from observations for the first time at such scales, not only reveals109

important patterns of spatial variability but also provides a critical benchmark for the110

subsurface flow in numerical models.111

Section 2 introduces the analysis framework underlying the method we have de-112

veloped to estimate vertical velocity using data recorded during an Argo float’s drift phase.113
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In section 3 we apply the theory to the global Argo database and detail the extensive114

quality control steps that we have taken to ensure consistency in our estimates. The re-115

sulting vertical velocity estimates are presented in section 4, and several key geographic116

areas are highlighted. Additionally, we investigate how our estimates of vertical veloc-117

ity relate to geographic location, bathymetry, horizontal flow, and sea level anomaly. Fi-118

nally, section 5 compares the Argo-based estimates to model-based vertical velocities and119

discusses the implications of our results.120

2 Theoretical Framework121

To develop a method for estimating vertical velocity from high-frequency data recorded122

during the drift of Argo floats, we start with the evolution of temperature T following123

a water parcel124

DT

Dt
= kz

∂2T

∂z2
+ kh(

∂2T

∂x2
+

∂2T

∂y2
) +Q (1)125

where kz
∂2T
∂z2 represents the rate of change in temperature due to vertical mixing includ-126

ing the vertical diffusivity kz, kh(
∂2T
∂x2 + ∂2T

∂y2 ) represents the rate of change in temper-127

ature due to horizontal mixing including the horizontal diffusivity kh, and Q corresponds128

to the rate of change in temperature from external sources and sinks of heat. Consider129

now the temperature evolution of a water parcel at mid-depths in the open ocean, over130

approximately 5 days. For the associated space and time scales, we can assume that the131

influence of horizontal mixing on temperature (following a water parcel) is negligible. In132

addition, if the vertical temperature gradient dT
dz is constant, the contribution of verti-133

cal mixing will vanish. Thus, given these conditions are upheld, we can neglect the tem-134

perature change due to mixing altogether.135

In the open ocean there are negligible sources and sinks of heat at the float park-136

ing depth of 1000 dbar, so we can also approximate Q as zero. Thus, we are left with137

DT
Dt ≈ 0, which can be expanded to show the contribution due to advection by both hor-138

izontal and vertical velocities (uH and w, respectively),139

∂T

∂t
+ uH · ∇HT + w

∂T

∂z
≈ 0. (2)140

Applying this framework now to an ideal, completely isobaric float that perfectly141

follows the horizontal projection of the flow causes the horizontal velocity relative to the142

float, uH , to vanish. In other words, the temporal evolution of temperature observed by143

the float as it is drifting with the horizontal flow will solely reflect the vertical advection144

of the background temperature gradient. Further decomposing the temperature into a145

time-averaged mean T̄ and a time-varying anomaly T ′ and assuming that the temper-146

ature gradient at depth is constant at these spatial and temporal scales allows Equation147

(2) to be solved for w as148

w = −∂(T ′ + T̄ )

∂t
/
∂T

∂z
≈ − d

dt

(
T

′
/
∂T

∂z

)
. (3)149

Thus, vertical velocity at the park depth can be computed from the observed rate of change150

of isotherm displacement relative to the float.151

Moving from a theoretical particle to a real world float, we must consider that the152

float is not perfectly isobaric. In fact, the floats move on equilibrium surfaces defined by153

their mass, which deviate from pressure surfaces depending on surrounding conditions154

and float compressibility (Swift & Riser, 1994). Following Hennon et al. (2014), we ac-155

count for the vertical motion of an Argo float away from the 1000-dbar isobar by sub-156

tracting the float displacement, given by the pressure anomaly during the drift. Doing157

this ensures that the isotherm displacement we estimate is a product of fluid motion alone.158
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We then incorporate the pressure correction term into Eq.3. The pressure measured by159

a float must also be converted into units of depth to give velocity in m s-1, which can160

be done by assuming a hydrostatic balance (z = P
ρg ). Following this we are left with161

the following equation for w:162

w = − 1

ρg

d

dt

(
T

′

(dT/dP ) 1000
− P

′

)
(4)163

where T
′
is the park phase temperature anomaly defined by T

′
= T−T̄ with T̄ being164

the time average temperature, P
′
is the park phase float displacement defined by P

′
=165

P − P̄ with P̄ being the time average pressure, (dT/dP )1000 is the constant tempera-166

ture gradient at 1000 dbar, ρ is the local density at 1000 dbar, and g is the gravitational167

constant. This final equation allows us to estimate vertical velocity solely using data from168

Argo floats, with T
′
and P

′
calculated from the float trajectory data and with (dT/dP )1000169

and ρ calculated from the float profile data.170

3 Estimation of Argo-float based vertical velocity171

3.1 Global Argo Data172

Data used in this work include the drift trajectory, profile, technical (e.g. float sys-173

tems reports during cycles), and metadata (e.g. float cycle configuration information)174

for the global array of Argo floats. Though there are over 16,000 floats with trajectory175

information available in the Global Data Acquisition Center (GDAC), many of the cy-176

cles from these floats cannot be used in estimating vertical velocity. Data that are us-177

able for these estimates start in August 2005 and continue through April 2022. Data prior178

to 2005 are not usable because early float versions did not report an adequate number179

of samples during the drift cycle. Additionally, some later data are not usable because180

floats deployed by different programs or from different manufacturers report the drift data181

inconsistently with one another causing the necessary trajectory information to be less-182

uniformly available compared to that of the profile data. The biggest discrepancy is in183

the sampling regime during the park cycle, which results in floats reporting data rang-184

ing from sparse drift averages up to comprehensive hourly measurements of temperature185

and pressure. Note that the technical data and metadata for floats are similar to the tra-186

jectory data in they are inconsistently implemented between float programs. This can187

lead to missing file components causing the data from a float to be unusable in estimat-188

ing vertical velocity. In particular, we are unable to use cycles that report temperature189

and pressure less frequently than every 6 hours during the park phase as well as cycles190

that have inadequate geographic coordinates, cycle numbering, and time information.191

To ensure that our results that are as robust as possible, we have designated several qual-192

ity control parameters (Section 3.3) in addition to the Argo program quality control sys-193

tem (Wong et al., 2020). In consequence, our vertical velocity estimates are gleaned from194

998 floats, encompassing 107,144 estimates.195

3.2 Methods196

From Eq.4, both the temperature gradient, (dT/dP )1000, and the density, ρ, at 1000197

dbar are found using float profile measurements. To get representative values for the en-198

tire park phase, the profiles directly before and after each individual park phase are av-199

eraged. The density at 1000 dbar is computed using the Gibbs-SeaWater Oceanographic200

Toolbox routines created by McDougall and Barker (2011) and is a function of absolute201

salinity and temperature at a constant pressure of 1000 dbar. The temperature gradi-202

ent is determined by finding the least squares best-fit line to the averaged temperature203

profile within 100 dbar from the parking depth (Hennon et al., 2014) (Figure 1b).204

Starting with the raw temperature and pressure data reported during the entire205

float park, each drift cycle is split into a half-cycle of at least 4 days in length. The tem-206
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Figure 1. Example process for estimating vertical velocity using cycle number 134 from float

1901150 (WMO ID). No float buoyancy adjustments occurred during this cycle, so we are able to

estimate two vertical velocities, one on each side of the gray dashed line in each panel. a. Map of

all float cycle locations colored by date taken, except cycle number 134 which is noted in blue. b.

Profile of temperature and pressure from cycle 134 with data surrounding 1000 dbar used to cal-

culate left(dT/dPright)1000, with at least 90% linear fit, highlighted in blue. c.Hourly sampled

trajectory data where the temperature (blue) is shaded as the envelope of 100 iterations of added

random error of ±0.002°C and the pressure (yellow) is shaded as the envelope of 100 iterations

with added random error of ±2.4dbar, as used in the Monte Carlo simulation described in section

3.3 d. Float displacement P
′
(yellow), isotherm displacement including the float displacement

T
′

(dT/dP ) 1000
(blue), corrected isotherm displacement T

′

(dT/dP ) 1000
− P

′
(black), and the pchip

filter of the corrected isotherm displacement. Note that all of these values are converted to me-

ters using an assumption of hydrostatic balance. e. Derivative of the filtered corrected isotherm

displacement (solid black) and average value of the derivative (dashed black), which results in

vertical velocity estimates of (7.6 ± 0.1) × 10-5 m s-1 and (−3.0 ± 0.1) × 10-5 m s-1 on the left

and right sides of the cycle, respectively. Note that the error of these estimates is taken from the

standard deviation of the 100 estimates that resulted from the Monte Carlo iterations.
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perature and pressure anomalies during the park, T
′
and P

′
, are found by subtracting207

the half-cycle mean values from the data for each half-cycle (Figure 1c). These anoma-208

lies are then applied to Eq.(4) to find the corrected isotherm displacement (Figure 1d).209

To examine phenomena on longer than inertial time scales, we use a fourth order low-210

pass Butterworth filter with a cutoff frequency of 0.3 cycles per day on the corrected isotherm211

displacement with odd reflected endpoints. This effectively removes high frequency vari-212

ability caused by internal tides and other short-lived events (Hennon et al., 2014). Af-213

ter filtering, we fit the data using a piecewise cubic Hermite interpolating polynomial214

(pchip) (Fritsch & Carlson, 1980) and take the derivative with respect to time to get the215

slopes of the data during the drift half-cycle. We then take the average of this deriva-216

tive and convert to depth units by assuming hydrostatic balance (as was done to reach217

Eq. 4) and using the density calculated from the profile, giving us approximate values218

for the half-cycle-average vertical velocity (Figure 1e).219

3.3 Quality Control220

After a measurement cycle occurs, floats transmit to the data acquisition centers221

via the Argos-2 (<1% of usable floats) or the Iridium (>99% of usable floats) satellite222

systems. Then the data go through an automated quality control process that checks for223

reasonable dates, locations, velocities, pressures, temperatures, and salinities (Wong et224

al., 2020; Argo user’s manual , 2022). Values are flagged with identifiers ranging from225

1 to 4, where 1 corresponds to good data and 4 corresponds to bad data. This project226

uses quality control flags equal to 1, 2, or data that have been adjusted to reach the same227

level of qualification (Wong et al., 2020). Within 24 hours after a float surfaces, the data228

have gone through the process described above and are publicly available as Realtime-229

mode data. In the following 5 months, more rigorous quality control should be done up-230

dating the cycle label to Delayed-mode (Wong et al., 2020). However, this step is often231

only applied to the profile and not to the trajectory data, the technical data, or the meta-232

data. For estimating vertical velocity, we use the Delayed-mode data for the selection233

of floats where it is available (23.5% of usable cycles) and the Realtime-mode data in all234

other cases.235

As stated in section 2, the vertical temperature gradient must be linear to main-236

tain the assumption that there are limited vertical mixing effects on temperature. To237

enforce this condition, only cycles where the least squares best-fit line accounts for at238

least 90% of the temperature variance are considered (Hennon et al., 2014). In some cases,239

the slope estimated from the profile data was near zero resulting in the magnitude of our240

vertical velocity estimates being unreasonably large. To counteract these cases, any ver-241

tical velocity with a magnitude larger than 10 standard deviations away from the mean242

of all the estimates are neglected (<0.05% of estimates).243

Due to differences in float manufacturing and measurement goals, not all floats are244

programmed in the same manner. In particular, floats do not all have the same park-245

ing pressure and do not report data at the same interval during the drift. To keep the246

vertical velocity estimates comparable to one another, only floats that are assigned a park247

pressure of 1000 dbar in their metadata have been used. For differing drift data inter-248

vals, only floats that report both temperature and pressure measurements at a minimum249

of 6-hourly time increments during the park phase have been included. Previous stud-250

ies that have analyzed isotherm displacement during the drift cycle could only use hourly-251

reporting floats because they were trying to capture the signal from internal gravity waves252

and tides (Hennon et al., 2014). The mesoscale vertical velocities we are estimating per-253

sist over somewhat larger time scales, so we can use floats with a longer time between254

samples. As confirmation that the 6-hourly floats supply sufficient resolution, we con-255

ducted a test where we sub-sampled the hourly floats to every 6 hours, with randomly256

selected initial points, and re-estimated the vertical velocity using our method. When257

comparing the initial velocity estimates from the hourly samples with those from the sub-258
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sampled regime, there is a 91% correspondence in the linear fit; the slope of this linear259

fit is 0.87. Though the 6-hour sub-sampling does slightly cause our method underesti-260

mate the vertical velocity magnitude, particularly at large values, we feel that this the261

error is sufficiently small with the average difference between the 6-hour sub-sampled val-262

ues and the hourly true values being 2.2×10−7 m s-1. Floats that measure once per day263

or transmit a cycle average value do not capture the necessary temperature variability264

to estimate isotherm motion around the float and are therefore discarded.265

To maintain the programmed park pressure, floats will internally adjust their buoy-266

ancy under certain conditions. If a float is pushed outside of a pre-determined thresh-267

old (most often ± 10 dbar, located in the float metadata) from the programmed park268

pressure for three hours consecutively, the float increases or decreases its buoyancy to269

move back into the target zone. This adjustment causes additional variability in tem-270

perature measurements that is difficult to distinguish from temperature variability caused271

by isotherm displacement alone. Buoyancy adjustments can happen multiple times in272

a single drift cycle and the floats then report the number of times that they adjust in273

their technical data; however, they do not report when the adjustments actually occur.274

To manually determine when an adjustment happens, hourly data are required. Thus,275

for floats with a lower sampling frequency than hourly any cycles with reported adjust-276

ments are discarded. For floats that do measure on an hourly basis, we use the pressure277

data to compute the time of adjustment and keep only those cycles where the number278

of computed adjustments equals that reported in the technical data. Only half-cycles with279

no adjustments (omitting data in a 6 hour window after any prior adjustments) were used280

to compute vertical velocity. The floats do adjust preferentially in certain areas, which281

can likely be attributed to large magnitude vertical motions influencing the floats. Be-282

cause we are neglecting cycle halves that include these adjustments, the estimates for283

vertical velocities shown in this paper can be considered conservative.284

To estimate the error involved in calculating the vertical velocity, we have conducted285

a Monte Carlo simulation that incorporates random error based on instrument accuracy.286

Floats are equipped with CTD sensors that have published accuracy of ±0.002°C (0.0002°C287

drift per year) and ±2.4 dbar (0.8 dbar drift per year) for temperature and pressure, re-288

spectively (Wong et al., 2020). Because the average values are removed during the cal-289

culations, the precision of each measurement are a more likely to impact the observa-290

tion quality, but these values are smaller than those of the accuracy. We feel confident291

that using the larger values allows for robust testing in the Monte Carlo simulation. For292

each calculation of vertical velocity, 100 iterations of random error within the accuracy293

ranges were incorporated into the temperature and pressure data. These data were then294

used to compute 100 estimates of vertical velocity for each half cycle. The final value is295

the average of all the different iterations and the error is assumed to be represented by296

the standard deviation (Figure 1c). To compute aggregate statistics (mean, median, vari-297

ance, etc.) on subsets of the data, we use all 100 of the Monte Carlo iterations for each298

half cycle and report the average of the desired statistic along with the standard devi-299

ation as our error estimate.300

4 Results301

4.1 Global estimates of near 1000-meter vertical velocity302

The locations of vertical velocity estimates from the global Argo array have a spa-303

tial distribution that varies widely across geographic regions (Figure 2 a-c). Though the304

Argo array is well-distributed globally (Wong et al., 2020), these estimates of vertical305

velocity do not have uniform coverage and are particularly sparse in the Atlantic and306

North Pacific Oceans (Figure 2c). This is due to a lack of adequate 1000 dbar drift data307

in those areas in addition to a rigorous application of quality control measures (section308

3.3).309
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Figure 3. Probability density function (PDF) of global vertical velocities with Cauchy (green)

and Normal (purple) distributions plotted atop. Note that the y-axis is on a logarithmic scale.

The estimated vertical velocities have a particularly heavy-tailed distribution with310

a high peak (Figure 3). These data have the smallest sum square error (defined as
∑

i (yi − f(xi))
2
,311

where yi is the given histogram value and f(xi) is the value predicted by the probabil-312

ity density function) when fit by the Cauchy function as Eq. 5,313

f(x) =
1

π(1 + x2)
(5)314

which is the equivalent to a Student’s t continuous fit with one degree of freedom (Forbes315

et al., 2010). In comparison, a normal distribution is equivalent to a Student’s t contin-316

uous fit with infinite degrees of freedom, meaning that these data are decidedly non-Gaussian317

(Forbes et al., 2010). One characteristic of a Cauchy probability distribution is that the318

higher order statistical moments are undefined and do not converge with increased sam-319

pling (Forbes et al., 2010; Sugiyama, 2016). Therefore, the mean and standard devia-320

tion that we compute for our finite dataset are highly dependent on the selection of sam-321

pling parameters and do not converge for large sample size. To characterize our dataset,322

we compute and report the median, which is less influenced by heavy tails. We also ex-323

amine the mean and standard deviation for our data with the caveat that these values324

are dependent on the particular characteristics of sampling. With this in mind, this type325

of statistical analysis can still help provide insight into the variability of our estimates.326

The median vertical velocity from the entirety of our estimates, is (1.3 ± 0.2) ×327

10-7 m s-1 and the average vertical velocity is (1.9 ± 0.02) × 10-6 m s-1. If these data328

were collected everywhere globally, over a sufficiently long time period, the true aver-329

age would be equivalent to zero due to the conservation of mass in the ocean (Stommel330

& Arons, 1959; Freeland, 2013). However, there is no evidence to suggest that the ver-331
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Figure 4. Global Sea Level Anomaly (SLA) vs. Vertical velocity estimates colored by the

number of observations for each 0.01m ×10−5m s−1 box

tical motion occurring at just the mesoscale should be balanced within itself, so we can-332

not assume that the average of our irregularly-sampled, mesoscale estimates should be333

equal to zero. The variance of our vertical velocity estimates is (3.0 ± 0.01) × 10-9 m334

s-1, which is impacted by both the high peak and heavy-tails of our distribution. There335

is a slight positive skew of 0.6±0.03; however, due to the shape of the distribution dis-336

cussed above, we cannot disentangle if this is a product of the uneven spatial and tem-337

poral distribution of our samples or a product of actual physical phenomena. To gain338

different insights into these estimates, we examine areas that are well sampled in con-339

text with sea level anomaly.340

4.2 Sea level anomaly341

To examine how our mid-depth vertical velocity estimates correspond with other342

physical phenomena in the ocean, we use the Data Unification and Altimeter Combina-343

tion System (DUACS) gridded (L4) altimeter product with a 1/4° × 1/4 ° resolution with344

daily data ranging from 1993 to June 2020 (CMEMS, 2021). From this gridded prod-345

uct, we use both the Sea Level Anomaly (SLA) and the horizontal (zonal [U] and merid-346

ional [V]) absolute geostrophic velocities at the surface.347

The SLA in this dataset is given as the sea surface height above mean sea surface348

using a 20 year mean from 1993 through 2012; however, to better compare this data with349

that given by the Argo array, we have changed the reference period to be a 15 year mean350

from 2005 through 2020 following the methods in Pujol et al. (2016). To directly link351

float estimates with satellite SLA, we located the nearest grid cell in the DUACS L4 prod-352

uct to each vertical velocity estimate location and averaged the SLA at that point for353
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the actual dates of the float cycle. We repeat the process for the horizontal velocity mag-354

nitude, computed from surface U and V , by finding the nearest grid cells in the satel-355

lite product to our float estimates. However, we then average across all times(1993-2012)356

rather than just the float period. Taking the average over the entire time-series results357

in a mean state horizontal velocity, to which we can compare our vertical velocity.358

Investigating the SLA from all locations where we have half cycles, we see that there359

is no distinct correlation between the SLA and the vertical velocity estimates (Figure360

4). The highest values of vertical velocity would visually appear to be associated with361

smaller magnitude SLA, but there are a considerably more data points present at smaller362

magnitudes than at higher magnitudes for both the vertical velocity and SLA (note Fig-363

ure 4 has an exponential colorbar). Statistically this pattern is simply a product of the364

high peaks in both the vertical velocity and SLA distributions rather than showing a par-365

ticular physical phenomena. Additionally, the SLA is measured at the surface via satel-366

lites, so comparing these measurements to our mid-depth estimates of vertical velocity367

is not direct. Certainly, not every eddy has a subsurface component that will have an368

effect at the Argo parking depth. There are ways to locate sub-surface phenomena solely369

using satellite data (Assassi et al., 2016); however, these methods have difficulty in com-370

plex areas with strong currents, of which a great deal of our study area is composed. In-371

stead, separating our vertical velocity estimates and their associated SLA into subsets372

of areas with high coverage will allow us to examine the degree of variability between373

different locations.374

4.3 Spatial variability and areas of interest375

Because of the varying data density across the globe, spatial analysis of the entire376

data set is not wholly informative. We have selected a few key areas for comparison. Namely,377

we chose two major topographic features in the Antarctic Circumpolar Current (ACC)378

in the Southern Ocean (Kerguelen Plateau (KP) and Pacific-Antarctic Ridge (PAR), Fig-379

ure 5 d-e) and selected juxtaposed examples in the gyres north of each (Indian Ocean380

Gyre (IOG) and Pacific Ocean Gyre (POG), Figure 5 b-c). Each of these subsets of data381

has a comparable number of observations rather than equal study areas. We find that382

the distributions of vertical velocity estimates over topographic features are similar to383

the global distribution in that they have high peaks and heavy tails that are best fit by384

the Cauchy function (Figure 5d-e). Our estimates in quiescent areas have much lighter385

tails and, though still not entirely normally distributed, are better fit by a normal dis-386

tribution across most of the estimates with the only misfits being infrequent, high-magnitude387

events appearing in the tails (Figure 5 b-c).388

The median, mean, and variance of our vertical velocity estimates for each of the389

selected areas from Figure 5 are shown in Table 1. The mean values are similar in mag-390

nitude for the more energetic areas (KP, PAR) on the order of 10−6 to 10−5 m s-1, as391

well as for the more quiescent areas (IOG,PAR) on the order of 10−7 m s-1. However,392

due to the heavy-tailed distributions, all of the mean values depend on the particular393

sampling scheme selected, even for large sample sizes, so these average results must be394

interpreted with caution. The differences in variance are more illuminating. In the ocean395

gyres, the variance of our estimates are on the order of 10−10 [m s-1]2 while the topo-396

graphic features have a variance nearer to 10−8 and 10−9 [m s-1]2 for PAR and KP, re-397

spectively. This emphasizes the impact that the high-magnitude, heavy tails have in ar-398

eas with significant bathymetry. As another large topographic feature in the ACC, we399

expect to see a similar pattern for Drake Passage (DP) (Figure 5g). Though the esti-400

mates in this area are sparser than in the others, the variance is once again two orders401

of magnitude larger than those of the ocean gyres and comparable to the other active402

regions. The scale of the global variance is approximately 10−9 [m s-1]2, showing the im-403

pact of the large vertical velocities that are localized in space.404
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Figure 5. Probability density function distributions with Normal and Cauchy distribution

functions plotted on top for select areas highlighted by corresponding color in a global map (a).

b) Indian Ocean Gyre [IOG] with 3,001 observations, c) Pacific Ocean Gyre [POG] with 3,143 ob-

servations, d) Kerguelen Plateau [KP] with 3,057 observations, e) Pacific-Antarctic Ridge [PAR]

with 3,053 observations, f) North Atlantic [NA] with 3,664 observations, g) Drake Passage [DP]

with 487 observations. Note that the x axes on panels (b) and (c) are decreased by a factor of 4

from the other PDFs.
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Table 1. Aggregate statistics (mean, median, variance) of vertical velocity estimates globally

and for selected areas shown in Figure 5.

Area Median (m s-1) Mean (m s-1) Variance ([m s-1]2)

Global (1.3± 0.2)× 10-7 (1.9± 0.02)× 10-6 (3.0± 0.01)× 10-9

KP (1.2± 0.2)× 10-6 (5.4± 0.2)× 10-6 (7.8± 0.09)× 10-9

IOG (7.3± 1.4)× 10-7 (8.5± 0.7)× 10-7 (4.5± 0.05)× 10-10

PAR (7.4± 0.2)× 10-6 (1.4± 0.02)× 10-5 (1.0± 0.01)× 10-8

POG (−6.2± 0.9)× 10-7 (−4.7± 0.4)× 10-7 (1.2± 0.01)× 10-10

DP (1.1± 0.1)× 10-5 (2.5± 0.07)× 10-5 (1.7± 0.03)× 10-8

NA (−1.2± 0.3)× 10-6 (−6.1± 2.3)× 10-7 (1.5± 0.01)× 10-8

Another area of interest is the North Atlantic (NA, Figure 5f), where the vertical405

velocity distribution is similar to the high energy areas of the Southern Ocean. As a re-406

gion with mixed layers exceeding 1000 m, deep water formation, and significant eddy ac-407

tivity (Stommel & Arons, 1959; Ferrari & Wunsch, 2009), it is expected that the North408

Atlantic mimics the other active regions. Indeed, the variance is once again two orders409

of magnitude larger than that of the quiescent areas.410

The median values of our vertical velocity estimates range from 10−7 to10−5 m s-1411

(Table 1). The larger values occur in high energy areas while the smaller values occur412

in the gyres. The global median is on the same order of magnitude as the gyre median413

values. This shows that, though the effects of large-magnitude events can be seen in the414

global variance, the small-magnitude phenomena that form the high peak in the distri-415

bution dominate the median (and mean).416

The SLA associated with our select areas also highlight the variability between dif-417

ferent locations. The SLA in the IOG and POG (Figure 6ab) are similar in range go-418

ing from -0.33 to 0.35 m with small vertical velocities. However, the SLA in the PAR419

(Figure 6d) is more limited only ranging between -0.11 to 0.15 m with larger vertical ve-420

locities. Even more different are the SLAs near the KP (Figure 6c), where the range of421

both SLA (-0.49 to 0.41m) and vertical velocity are wide. This reinforces that there is422

high variability in the spatial distribution of vertical velocities that are interacting with423

a variety of mechanisms, even in similarly energetic regimes.424

4.4 Southern Ocean bathymetry425

To examine additional factors that may impact the observed vertical velocity vari-426

ability, we utilize the ETOPO1 1 Arc Minute Global Relief Model (Amante & Eakins,427

2009; NGDC, 2009). We use the version of this dataset that includes bathymetry at the428

base of the Antarctic and Greenland ice sheets. To better compare between the gridded429

relief model and the Argo array, we located the nearest grid cell to each float cycle lo-430

cation that contains an ocean depth. Because bathymetry changes on time scales much431

longer than the mesoscale phenomena we are focused on, we assume that the bathymetry432

remains constant.433

By selecting both bathymetric and vertical velocity data from a large region with434

dense coverage, we can observe the changes in vertical velocity magnitude variability as435

it is related to space. Analyzing only estimates in the Southern Hemisphere, where the436
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Figure 6. DUACS Sea Level Anomaly at the nearest grid point averaged over time of corre-

sponding half cycles (as described in section 4.2 versus vertical velocity estimates for select areas

highlighted by corresponding color in a global map in Figure 5a. a) IOG, b) POG, c) KP, d)

PAR. Note that the y axes on panels (a) and (b) are decreased by a factor of 4 from panels (c)

and (d).
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Figure 7. Southern Ocean bathymetry from ETOPO1 averaged meridionally between 50°S
and 60°S (blue) plotted on top of box plots showing the distributions of vertical velocity esti-

mates in 3° longitude sections between 50°S and 60°S, where the orange line corresponds to the

median value, the box corresponds to the 25th and 75th percentiles, and the error bars corre-

spond to full range of vertical velocity magnitudes in each area.

majority of our data reside, we find that there are a larger number of high-magnitude437

values between -60°N and -40°N (Figure 2a), as well as ample low-magnitude estimates438

in this region. The distribution is similar to the full data set with its particularly heavy439

tails coupled with a high peak. This latitude band corresponds with the general area of440

the ACC, which generates a considerable number of mesoscale and sub-mesoscale phe-441

nomena where we would expect higher magnitude vertical velocities (Rosso et al., 2014;442

Cusack et al., 2017). Looking closer at the variation in longitude (Figure 2b), we can see443

that the higher magnitude velocities do not occur uniformly, but instead have a unique444

distribution with certain areas being hot spots of higher magnitude vertical velocity.445

Consistent with the results discussed in section 4.3, these hot spots correspond roughly446

to known bathymetric features in the path of the ACC, including KP, PAR, DP from447

Section 4.3 as well as Macquerie Ridge (Tamsitt et al., 2017).To quantify the relation-448

ship between bathymetry and vertical velocity, we compute the lagged correlation be-449

tween ocean bottom depth from ETOPO1 and absolute vertical velocity, both of which450

are first averaged in geographic bins that span 50°S to 60°S in latitude and 3° in longi-451

tude.The correlation between average vertical velocity and bathymetry peaks (r = 0.438)452

when w lags the average bottom depth by 12° longitude. This highlights that, in gen-453

eral, higher magnitude values occur downstream of elevated topography. Averaging in-454

stead across all latitudes of the Southern Hemisphere gives a maximum correlation be-455

tween absolute vertical velocity and bottom depth of 0.267, smaller than the correlation456

found for the ACC alone. This implies that bottom topography has a bigger impact on457

vertical velocity variability in the Southern Ocean than it does in the global ocean as458

a whole.459

An additional factor that may impact the distribution of 1000-m vertical veloci-460

ties is the strength of the horizontal flow. Examining the global surface velocities from461

satellites (as described in section 4.2) with their corresponding float w estimates, we see462
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Figure 8. Average absolute value vertical velocity within grid cells of horizontal surface veloc-

ity averaged over 1993-2020 (bin size of 0.0025 m s-1) and ocean depth (bin size of 75 m). Only

grid cells with at least 5 estimates of vertical velocity are shown here. Note that floats are typi-

cally not deployed in waters shallower than 2000 m (due to a desire to prevent float grounding)

so sparseness in samples above this depth is expected.
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that deep areas with small horizontal surface velocities tend to have smaller values of463

w. However, areas with larger average horizontal surface flow (> 0.08m s-1) have more464

high magnitude vertical velocities, even where the ocean is deep (between 4000-5000 m)465

(Figure 8).466

Taken altogether, these results indicate that at mid-depths, higher vertical veloc-467

ities occur downstream of shallow bathymetry and in areas with increased horizontal ve-468

locities at the surface (Figure 8), such as the ACC. Prior research has shown elevated469

mesoscale eddy activity frequently occurs where strong horizontal flows cross over to-470

pographic features (Rosso et al., 2014; Cusack et al., 2017; Liang et al., 2017). These find-471

ings align very well with the results presented here, providing evidence that the 5-day472

average vertical velocities determined from Argo observations primarily reflect mesoscale473

phenomena.474

5 Discussion and conclusions475

The results presented here are the first estimates of subsurface vertical velocity de-476

termined directly from observations, across wide swaths of the global ocean. Our approach477

of using measurements from floats in the globally distributed Argo array provides insight478

into three-dimensional flows occurring near 1000 dbar. The sampling distribution is un-479

even, with some regions well covered and others lacking data entirely, due to differences480

in how floats report data from the drift phase at the parking depth. As the global Argo481

array continues to evolve, drift data suited for this method will continue to be collected482

from many floats, thereby increasing the coverage of these vertical velocity estimates (Riser483

et al., 2016; Roemmich et al., 2019; Wong et al., 2020; Argo user’s manual , 2022). Fur-484

thermore, we encourage all float manufacturers and users to measure and report hourly485

temperature and pressure data during the drift phase when possible, to expand the spa-486

tial coverage of these vertical velocity estimates.487

In areas with adequate sampling, our results highlight distinctive spatial variabil-488

ity in vertical velocities at 1000 dbar. In particular, there is clear evidence of a relation-489

ship between vertical motion and topographic features, with further influence in areas490

with strong horizontal flows. This topographic dominance is consistent with prior global491

estimates of mid-depth vertical velocity using model fields (Liang et al., 2017). To bet-492

ter assess our estimates in relation to velocity output from a widely-used ocean state es-493

timate, we retrieved data from the latest Estimating the Circulation and Climate of the494

Ocean (ECCO) project (version 4, release 4) (Forget et al., 2015). We used the monthly-495

averaged vertical component of velocity from 2004 to 2017, which best overlaps with the496

time period available for the float estimates. We took the 1/2° resolution LLC90 grid,497

chose the depth level closest to 1000 dbar, and then selected only locations that have at498

least one float estimate of vertical velocity within 50km of center of the model grid-cell.499

Subsampling the model output in this way eliminates data from the coastal areas and500

shallow areas where floats do not sample.501

Averaging the resulting model vertical velocity fields over the full 13-year period502

reveals spatial variability that matches the spatial pattern in the Argo-based estimates503

remarkably well. This similarity again emphasizes the topographic influence on verti-504

cal motions near 1000 dbar (Figure 2, Figure 9). The ECCO vertical velocities in Fig-505

ure 9 are an order of magnitude smaller than the float-based velocities in Figure 2, re-506

flecting the difference in the temporal scales of the two estimates.507

Examining instead the monthly-averaged velocities from ECCOv4.4, again restricted508

to only the locations of the float estimates, the normalized distribution of vertical ve-509

locity exhibits a high peak and heavy tails that is best fit by the Cauchy distribution,510

like the float-based estimates.511
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Figure 9. Global map of the vertical velocity field from the ECCOv4.4 model in grid cells

that contain observational estimates from floats.
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Figure 10. Distributions of model vertical velocity (blue) and observational estimates (gray),

with each bin showing the count in the bin divided by the total number of observations and by

the bin size (1× 10−6 m s-1).
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Although the 5-day averaged float estimates and the monthly model w fields still512

have different temporal scales, the similarity in the shape of the distributions provides513

support for the efficacy of the vertical velocity estimation method described here. In-514

terestingly, the distribution of the observational w estimates is more symmetric than the515

distribution of the model vertical velocities, which is skewed towards negative values. Pos-516

sible reasons for this include the uneven temporal spacing in the float estimates when517

compared to the model field, potential spatial sampling biases in the float estimates, or518

inadequate representation of mesoscale motions in the model. In addition, the tails of519

the float-based distribution decrease monotonically, while the model-based distribution520

exhibits multiple local maxima in both tails, likely due to limitations of the model’s ver-521

tical resolution (Wong et al., 2020; Forget et al., 2015; Liang et al., 2017).522

Advecting a synthetic float using model velocity fields and then recreating our ver-523

tical velocity estimation procedure might appear to be an ideal way to validate this tech-524

nique.Unfortunately, the spatial and temporal scales required to accurately represent all525

the relevant dynamics, from the float interactions with the surrounding waters to oceanic526

mesoscale features, are immensely challenging to achieve (Swift & Riser, 1994; Liang et527

al., 2017; Wang et al., 2020).Thus a direct model-based validation of the method devel-528

oped here remains outside of the scope of this work.529

The direct estimates of 1000-dbar vertical velocity given here would not be pos-530

sible without high-frequency data from the parking phase of Argo profiling floats. Though531

measuring vertical velocities was not an original intention of the Argo program (Riser532

et al., 2016; Roemmich et al., 2019), being able to adapt this globally-distributed in situ533

observational data set for novel methods such as the one presented here has immensely534

increased its scientific value. Continued improvements in float technology will allow for535

refinement and expansion of this method, as well as the development of others. These536

capabilities are made possible by the dedicated efforts of the international Argo program537

to ensure that all float data (i.e. trajectory, technical, metadata, and profile data) are538

provided in a consistent, quality-controlled format.539

The estimates of w computed here directly from Argo float drift observations fit540

well within the range of values given by prior studies (Stommel & Arons, 1959; Liang541

et al., 2017; Martin & Richards, 2001; Pilo et al., 2018; Freeland, 2013; Cusack et al.,542

2017). The distribution of these velocities, characterized by a narrow peak and heavy543

tails, emphasizes the distinctly non-Gaussian nature of vertical flows in the interior ocean.544

The variability in 5-day average w at 1000 dbar revealed here provides widespread di-545

rect observation-based evidence of the importance of topographic interactions in gener-546

ating strong vertical motions at the oceanic mesoscale. This novel application of the Argo547

data set greatly expands our knowledge of the subsurface circulation of the global ocean548

and provides a unique observational constraint for model validation.549
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