
P
os
te
d
on

25
M
ay

20
23

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
68
50
03
44
.4
47
16
21
6/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Statistical-Topographical Mapping of Rainfall Over Mountainous

Terrain Using Beta Scaling
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Abstract

We present a robust approach for quantitative precipitation estimation (QPE) for water resources management in mountainous
catchments, where rainfall sums and variability are correlated with orographic elevation, but density of rain gauges does not
allow for advanced geostatistical interpolation of rainfall fields.

Key of the method is modelling rainfall at unobserved locations by their elevation-dependent expected daily mean, and a daily
fluctuation which is determined by spatial interpolation of the residuals of neighbouring rain gauges, scaled according to the
elevation difference. The scaling factor is defined as the ratio of covariance and variance, in analogy to the “beta” used in
economics.

The approach is parameterized and illustrated for the Chirilu catchments (Chillón, Ŕımac, Luŕın) in the Andes near Lima, Peru.

The results are compared to conventional IDW (inverse-distance weighting) interpolation and a merged national rainfall product.

The method results in QPE that are better matching with observed discharges. The combination of inverse-distance weighting

with β-scaling thus provides a robust and flexible means to estimate rainfall input to mesoscale mountainous catchments.
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Abstract 22 

We present a robust approach for quantitative precipitation estimation (QPE) for water resources 23 
management in mountainous catchments, where rainfall sums and variability are correlated with 24 
orographic elevation, but density of rain gauges does not allow for advanced geostatistical 25 
interpolation of rainfall fields.  26 

Key of the method is modelling rainfall at unobserved locations by their elevation-dependent 27 
expected daily mean, and a daily fluctuation which is determined by spatial interpolation of the 28 
residuals of neighbouring rain gauges, scaled according to the elevation difference. The scaling 29 
factor is defined as the ratio of covariance and variance, in analogy to the "beta" used in 30 
economics. 31 

The approach is parameterized and illustrated for the Chirilu catchments (Chillón, Rímac, Lurín) 32 
in the Andes near Lima, Peru. The results are compared to conventional IDW (inverse-distance 33 
weighting) interpolation and a merged national rainfall product. The method results in QPE that 34 
are better matching with observed discharges. The combination of inverse-distance weighting 35 
with ß-scaling thus provides a robust and flexible means to estimate rainfall input to mesoscale 36 
mountainous catchments. 37 

 38 

1 Introduction 39 

Mapping the precipitation patterns for terrain with complex topography can be a 40 
challenging task that is crucial for a broad range of applications in water resources management, 41 
including hydrological and water quality modeling, as well as for crop production modelling and 42 
ecological studies.  43 

Estimates of spatially distributed precipitation are typically based on rain gauge 44 
measurements, which are interpolated over the region of interest (Michaelides et al., 2009). 45 
Remote sensing methods are increasingly employed to estimate spatially distributed rainfall, but 46 
are known to be less reliable for quantitative estimates, especially in the case of satellite-based 47 
products (AghaKouchak et al., 2011). The quality of satellite-derived rainfall estimates varies 48 
across different climate and topographic settings as well as across space-time scales, and tends to 49 
be more reliable in humid areas and flat terrain (Anagnostou, 2004; Hu et al., 2019). Ground-50 
based remote sensing methods such as radar observations can achieve higher accuracies (Neuper 51 
& Ehret, 2019), but are also limited in their applicability in mountainous regions (Germann et al., 52 
2006; Young et al., 1999). The limited detection range and considerable costs of radar stations 53 
are further reasons why radar-based rainfall measurements may not be available in a particular 54 
region. Costs for installation and regular maintenance similarly affect the availability and data 55 
quality of classical rain gauge measurements, causing the data coverage to vary greatly across 56 
the globe, especially in mountainous areas. The installation of new rain gauges is an option to 57 
collect (additional) site-specific rainfall data (e.g., Buytaert et al., 2006; Michelon et al., 2021; 58 
Wienhöfer et al., 2011), but this involves considerable efforts in remote mountainous areas, and 59 
is usually limited by available funding.  60 

The total rainfall amount across a catchment is determined from these measurements in a 61 
procedure referred to as quantitative precipitation estimation (QPE). In many cases, the QPE is 62 
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based on an interpolation of rain gauge measurements, possibly considering other auxiliary data. 63 
The most widely used methods for spatial interpolation include deterministic approaches like 64 
Thiessen polygons or inverse-distance weighting (IDW), and probabilistic approaches like 65 
kriging and related geostatistical methods (see review articles by Li & Heap, 2014; Ly et al., 66 
2013; Sluiter, 2009).  67 

The basic, univariate versions of these methods use the value of interest and their 68 
geographical distances to interpolate to an unobserved location. Thiessen polygons simply take 69 
the value of the nearest station. The IDW method uses a weighted average of nearby stations, 70 
where the weights decrease with the distance of the stations. Kriging methods also use a 71 
weighted combination of observed values. The kriging weights are calculated using the 72 
theoretical variogram function, which indicates the decrease in statistical dependence as the 73 
distance between points increases. This function is equivalent to spatial covariance when second-74 
order stationarity is assumed (for an in-depth treatment of geostatistical approaches see, e.g., 75 
Webster & Oliver, 2007). Kriging is computationally more intensive, but offers the advantages 76 
of minimized estimation variance and prediction error estimates, if the underlying statistical 77 
assumptions are met.  78 

Generally, the choice of the interpolation method depends on the spatial scale, the density 79 
of the observation network, the topography of the area, and the nature of the variable to be 80 
interpolated (Herrera et al., 2019; Ly et al., 2013). Although many studies identified kriging as 81 
the favorable method for rainfall interpolation in different settings (e.g., Belo-Pereira et al., 2011; 82 
Campling et al., 2001; Hofstra et al., 2008), it is not necessarily the best method for all situations. 83 
A similar performance of kriging and IDW was reported by other researchers, for example when 84 
interpolating daily rainfall in two catchments of about 3000 km² in Belgium (Ly et al., 2011). 85 
Dirks et al. (1998) found that kriging did not outperform the inverse-distance, Thiessen, and 86 
simple average methods in their study of a high-density network of rain gauges on a Pacific 87 
island (13 gauges per 35 km²), because meaningful variograms for kriging could neither be found 88 
at daily nor at longer intervals. Rainfall interpolated with IDW was found to deliver more 89 
consistent results when used in hydrological models in a data-scarce region in West Africa (13 90 
gauges per 100,000 km²), as compared to rainfall estimates obtained with kriging or Thiessen 91 
polygons (Ruelland et al., 2008).  92 

Using multivariate techniques that consider the spatial correlations between rainfall and 93 
other relevant proxy variables can help to improve estimations of actual rainfall patterns. When 94 
both radar data proxies and rainfall gauges are available, the two data sources can be merged for 95 
the spatial interpolation, such that the spatial variability from radar images and quantitative 96 
information from gauge measurements are combined (e.g., Ehret et al., 2008; Heistermann & 97 
Kneis, 2011; see also the review article by Hu et al., 2019). Proxy information from satellite-98 
based rainfall estimates and atmospheric reanalysis can be incorporated in a similar manner, but 99 
the resulting global datasets offer a coarser spatial resolution and show large random errors and 100 
strong biases (Sun et al., 2018), which still limits their applicability for QPE at the catchment 101 
scale. For example, Scheel et al. (2011) reported only a modest correlation (r < 0.5) of satellite-102 
derived rainfall and ground observations for two study sites in the Central Andes.  103 

Since spatial variation of rainfall can be strongly related to the local and regional 104 
orography (Roe, 2005), QPE at the local or regional scale can benefit from information on 105 
physiographic characteristics, for example from digital elevation models (DEMs). This 106 
topographic information can be included with different methods, ranging from pure regression 107 



manuscript submitted to Water Resources Research 

 

techniques, over regression with spatial interpolation of the residuals, to more complex, 108 
multivariate geostatistical methods like external drift kriging, which accounts for a spatial drift of 109 
the mean values, or cokriging, which uses the variograms and the cross-variogram of the primary 110 
and secondary variables. For example, linear regression with orographic elevation is used by 111 
PRISM (Precipitation elevation Regressions on Independent Slopes Model) to estimate monthly 112 
and annual precipitation sums on individual “topographic facets” with similar slope orientation 113 
(Daly et al., 1994). PRISM includes smoothing of the DEM to determine the facets and the 114 
orographic elevation of the stations used in regression. The authors found that PRISM yielded 115 
lower cross-validation errors compared to geostatistical methods (kriging, detrended kriging, and 116 
cokriging) when applied to the Willamette River basin (Oregon, USA; basin size 29,730 km²). 117 
Goovaerts (2000) compared different methods for incorporating elevation into the spatial 118 
interpolation of monthly and annual rainfall in Southern Portugal. Approaches that are 119 
combining linear regression estimates of mean rainfall from elevation with interpolation of the 120 
residuals (simple kriging with varying local means, kriging with external drift) were found to 121 
work better than the more complex multivariate cokriging, or the more simple pure linear 122 
regression. Buytaert et al. (2006) investigated rainfall patterns in three small catchments in the 123 
South Ecuadorian Andes with multivariate regression. They found that interpolation of the 124 
residuals with kriging performed slightly better than using Thiessen polygons, but, more 125 
importantly, they also showed that including correlations of rainfall with topography outweighed 126 
the effects of different interpolation methods.  127 

A general conclusion from the reviewed literature is that a chosen QPE method should be 128 
specific to a particular catchment, and needs to reflect both the local conditions determining the 129 
rainfall patterns and the temporal and spatial coverage of rainfall observations. The available 130 
data need to be carefully analyzed for spatial covariance and correlation with topography, and 131 
the method of rainfall interpolation should then be chosen such that relationships present in the 132 
dataset are exploited in the best possible way. 133 

Here, we investigate catchment rainfall input in the Chirilu area, which encompasses the 134 
Chillón, Rímac, and Lurín watersheds near Lima, Peru. The objectives of the study are i) to 135 
analyze spatial and statistical relationships among daily rainfall data; ii) to develop a reliable 136 
interpolation method for rainfall using the identified relationships; and iii) to evaluate the 137 
performance of the developed method through cross-validation and comparisons with the 138 
conventional IDW interpolation and the Peruvian rainfall product PISCO as benchmarks. 139 

The paper is organized as follows. Relevant information about the study area, the data, 140 
and implementation are summarized in section 2. The statistical relationships of rainfall and 141 
topography and the rainfall interpolation model are detailed in sections 3 and 4, respectively. The 142 
results of the rainfall interpolation and evaluation are presented and discussed in section 5. 143 
Section 6 summarizes the study and offers conclusions. 144 

2 Materials and Methods 145 

2.1 Study area  146 

The study area is located on the western slopes of the Peruvian Andes in South America 147 
between 11.3° to 12.3°S and 76.0° to 77.2°W. It encompasses the neighboring catchments of the 148 



manuscript submitted to Water Resources Research 

 

Chillón, Rímac and Lurín Rivers (Chirilu). The three rivers drain an area of approximately 149 
7 300 km2, and discharge into the Pacific Ocean. The catchments are of particular interest as the 150 
Peruvian capital Lima strongly relies on water supply from this region (Lavado Casimiro et al., 151 
2012). Most of the water delivers the Rímac River, which is heavily supplemented with water 152 
from the much larger Mantaro catchment through transandine tunnels. 153 

The steep topographic gradient in the region, from around 5500 m a.s.l. at the Andes crest 154 
down to sea level over a distance of 100 km, conditions distinct climate zones throughout the 155 
basins. The climate ranges from extremely arid and arid in the lower coastal parts (0 to 1500 m 156 
a.s.l.) to semi-arid and semi-humid in the middle and upper parts (1500 to 5000 m a.s.l.). A few 157 
snow-covered and glacial areas are located at the highest elevations. Mean annual precipitation at 158 
the coast is less than 20 mm as opposed to around 800 mm in the highest parts of the basin 159 
(Observatorio del Agua Chillón Rímac Lurín, 2019). The aridity of the coastal region results 160 
from a quasi-permanent inversion of the lower atmosphere due to large-scale subsidence of air 161 
masses. The inversion layer effectively inhibits convection, and thus cloud and rainfall formation 162 
in the lower region, while precipitation in the highlands of the western slopes are mainly induced 163 
by advection of air masses from the east across the Amazon basin (Garreaud, 2009; Trachte et 164 
al., 2018). Temporal precipitation patterns show a distinct seasonality, with the main rainy 165 
season during the austral summer months December through February, as well as a dry season 166 
during the austral winter June through August.  167 

2.2 Data and preprocessing 168 

2.2.1 Rain gauges 169 

For this study, daily precipitation data from a total of 67 rain gauges at various altitudes 170 
were available (Figure 1). The rainfall dataset covers nearly 57 years from August 1963 until 171 
January 2020, and contains station located between 24 m and 4764 m a.s.l. Rainfall data from 62 172 
stations were kindly provided by the Observatorio del Agua Chillón Rímac Lurín. To collect 173 
additional data in unobserved parts, we installed five new stations (herein referred to as “IWG 174 
stations”) in the headwater catchments of the Lurín: two rain gauges in November 2017, one of 175 
which was operational only until May 2018, and the other three were installed in 176 
November/December 2018. 177 

However, the records of the 67 stations vary in length and include data gaps. The median 178 
number of stations available per day is 24, with a minimum of 2 and a maximum of 42 stations. 179 
The rain gauge data was aggregated to monthly and annual totals including only complete series. 180 
Only 16 of the stations have data for 360 or more months; 38 stations have data for 60 or more 181 
months. The aggregated data of 16 stations with records equivalent to 30 years of observation 182 
were used to assess the rainfall climatology, especially the relationships with topography, and 183 
spatial patterns presented in section 3. These 16 stations are located between 527 m and 4169 m 184 
a.s.l. 185 
 186 
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 187 

Figure 1: Overview map of the Lima area and the Chillón, Rímac and Lurín (Chirilu) 188 
catchments. 67 rain gauges have been used in the analysis: 16 stations have more than 360 189 
months of data, and additional 22 rain gauges have more than 60 months of data. The other are 190 
short-term stations, of which five were set up at higher elevations in the Lurín headwaters (IWG 191 
stations). The locations of discharge gauges Puente Magdalena and Puente Antapucro are also 192 
shown. 193 

 194 

2.2.2 PISCO precipitation product 195 

The PISCO dataset (Peruvian Interpolated data of SENAMHI’s Climatological and 196 
Hydrological Observations) is a national gridded data product provided by the Peruvian 197 
Meteorological and Hydrological National Service (SENAMHI) that covers the entire country of 198 
Peru at a spatial resolution of 0.1°. Precipitation data is available at daily and monthly resolution. 199 
We have used version “PISCO Prec v2p1 stable daily” (1981 to 2016) and “PISCO Prec v2p1 200 
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unstable monthly” (1981 to 2021), hereinafter referred to as daily and monthly PISCO, 201 
respectively. PISCO determines precipitation based on data from three different sources: the 202 
national quality-controlled and infilled rain gauge data set, climatologies based on satellite data 203 
(TRMM), and the Climate Hazards Group Infrared Precipitation (CHIRP) estimates. The 204 
merging algorithm uses residual inverse distance weighting for daily rainfall, and residual 205 
ordinary kriging for monthly rainfall. More details are given by Aybar et al. (2020). Another 206 
dataset for Peru and Ecuador with a spatial resolution of 0.1° (RAIN4PE; Fernandez-Palomino et 207 
al., 2022) was published after we started with the present work. We found that rainfall sums in 208 
the Chirilu catchments from this dataset are very similar, so we continued to use the PISCO 209 
dataset for comparison.  210 

2.2.3 Other data 211 

We use a global digital elevation model (DEM) with a spatial resolution of 30 m (ASTER 212 
Science Team, 2001). The DEM was used to determine a consistent set of station elevations. For 213 
the rainfall interpolation, the DEM was aggregated to 1000 m grid size. 214 

Runoff data from the Chillón and Lurín catchments were obtained from the Peruvian 215 
Meteorological and Hydrological National Service (Servicio Nacional de Meteorología e 216 
Hidrología del Perú, SENAMHI). 217 

 218 

3 Rainfall Patterns and Statistical Characteristics  219 

Average annual rainfall is virtually zero at lower altitudes. Above a threshold elevation, 220 
annual rainfall increases almost linearly to around 700 mm per year on average at the highest 221 
stations (Figure 2). Fitting a piecewise linear regression with two segments (Muggeo, 2003) to 222 
the average annual rainfall of 16 stations with more than 360 months of data yields a linear 223 
increase above a breakpoint at 1515 m a.s.l. (R² = 0.91). Data from stations with shorter records 224 
confirm the increase of average rainfall with elevation, but show a larger spread (Figure 2 a). 225 
There is no indication of temporal trends in average annual rainfall sums over the observation 226 
period (water years 1964 to 2019; the water year in Peru is from September to August). The 227 
inter-annual variance of the rainfall is also increasing with elevation; a threshold elevation of 228 
around 1823 m was found with a segmented linear model of rainfall variance against elevation 229 
(16 stations, R² = 0.60; Figure 2 b). 230 
 231 
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 232 

Figure 2: Annual rainfall in the study area in relationship to topography: average annual rainfall 233 
(a) and variance of rainfall (b) as a function of station elevation. Segmented linear functions 234 
(green lines) were fitted to the average and variance from 16 stations with more than 360 months 235 
of data (blue squares). Data from stations with more than 60 months of data are indicated by 236 
orange triangles; stations with shorter records are shown as grey points. Note b: 7 stations with 237 
shorter records exceed the upper axis limit for the rainfall variance. 238 

 239 

The analysis of average rainfall per month, again based on stations with more than 30 240 
data points for the respective month, confirms this dependency of rainfall on elevation above a 241 
certain threshold, and shows the seasonal pattern of rainfall (Figure 3). Seasonal averages of 242 
rainfall below the elevation threshold vary between 0.1 mm and 8.3 mm. During the rainy season 243 
from December until April, the elevation of this threshold varies between 766 m and 1818 m, 244 
and rainfall above the threshold increases to a maximum of over 150 mm per month on average. 245 
There is no significant rainfall during the dry season from May until September, except for minor 246 
rainfall above an elevation of around 3600 m. October and November can be regarded a 247 
transition period, with moderate rainfall occurring above 3100 m. We fitted piecewise linear 248 
functions to the long-term observations for each month (Figure 3). 249 
 250 
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 251 

Figure 3: Average rainfall by months as a function of station elevation. Piecewise linear 252 
regressions (green lines) were fitted to the average rainfall from 16 stations with more than 30 253 
complete records for this month (blue squares); the coefficient of determination and the 254 
breakpoint are given in each panel. Data from stations with more than 60 months of data are 255 
indicated by orange triangles; stations with shorter records by grey points.  256 
 257 
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 259 

To further assess spatial patterns, we looked at the spatial covariance of the rainfall after 260 
detrending the elevation dependency, and analyzed experimental variograms of different subsets 261 
of the data. Variograms describe the decline in statistical dependence with increasing separating 262 
distance of point pairs, which implies that the semivariance should grow monotonously with 263 
separating distance. This was not found, however, in the Chirilu rainfall dataset. The 264 
semivariance of the residuals - the deviation of the average annual rainfall at a station from the 265 
mean average rainfall expected at the elevation of the station – revealed pure nugget variograms 266 
(Figure 4 a, b), regardless of whether the 16 stations with long-term data, or all 67 stations were 267 
used. Fitting of theoretical variograms hence cannot provide a robust basis for spatial 268 
interpolation in this case. Similar results were obtained for variograms with average annual 269 
rainfall before detrending, and with mean monthly rainfall using the 16 long-term stations. Better 270 
variograms were obtained for the mean monthly rainfalls using all 67 stations, although the 271 
quality of the experimental variograms differed between the months. The semivariances again 272 
were consistently larger for all stations compared to the variogram analysis using only the long-273 
term stations. We also analysed residuals for the monthly and daily data, respectively, which 274 
again yielded mixed results. Variograms without clear statistical dependence were found for 236 275 
of 406 months with more than 20 stations (58 %), and for 104 of 198 days with more than 40 276 
stations (53 %). Neither the use of the Cressie-Hawkins-estimator, nor of ranked variograms 277 
yielded any improvement.  278 

We nevertheless found useful spatial relationships, when analyzing the correlation 279 
coefficient, which shows a systematic decline with the absolute value of the elevation difference 280 
(Figure 4 d). The relationship with separating distance is less strong (Figure 4 c). We explain this 281 
to be a consequence of the dependence of rainfall on elevation: two stations may experience a 282 
similar rainfall input not only if they are close to each other, but also if they are located at 283 
comparable elevations. The larger the difference in their elevation, the less correlated the rainfall 284 
records of two stations will be. This seems not necessarily the case when using the map distance 285 
of the stations.  286 

The low quality of the variograms made kriging appear unsuitable for interpolating the 287 
rainfall data. In consequence, we developed a different means to interpolate the rainfall data that 288 
makes use of the relationships of average rainfall and rainfall variance with elevation and the 289 
correlation as a function of elevation difference, as detailed in the next section. 290 
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 291 

Figure 4: Spatial patterns in observed rainfall: Experimental variograms of average annual 292 
rainfall, detrended from the dependency with elevation: a) based on data from long-term series 293 
(16 stations with > 360 months of data), b) based on all available data (67 stations).  Correlation 294 
(Pearson’s correlation coefficient) of monthly rainfall sums of 16 long-term stations (> 360 295 
months of data) against map distance (c), and against absolute difference in elevation (d). 296 
 297 

4 β-IDW Model for Rainfall Interpolation  298 

For mapping rainfall over the study area, we employ a Reynolds decomposition: the 299 
precipitation estimate 𝑃෠(𝑥௜, 𝑡) at a certain point xi and time t is expressed as the sum of the 300 
average rainfall that is expected according to elevation z at this point, 𝑃ത(𝑧(𝑥௜), 𝑡), and a temporal 301 
fluctuation from this average, 𝑃ᇱ(𝑥௜, 𝑡): 302 𝑃෠(𝑥௜, 𝑡) = 𝑃ത(𝑧(𝑥௜), 𝑡) + 𝑃ᇱ(𝑥௜, 𝑡) 1) 
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The average expected rainfall per month is determined from the piecewise linear 303 
regression for the respective month (Figure 3). For daily estimates, the expected rainfall sum per 304 
day is determined by dividing by the average number of rain days of the month.  305 

The deviation of the precipitation sum from its elevation-dependent average at a specific 306 
location and time step, 𝑃ᇱ(𝑥௜, 𝑡), is estimated from the deviation at an observation station, 307 𝑃ᇱ൫𝑥௝, 𝑡൯ 308 𝑃ᇱ(𝑥௜, 𝑡) = 𝛽(ℎ) ∙ 𝑃ᇱ൫𝑥௝, 𝑡൯ 2) 

where 𝛽 is a scaling parameter that depends on the elevation difference ℎ = 𝑧(𝑥௜) −309 𝑧(𝑥௝) between the interpolation location and the observation station.  310 

The scaled deviations from n stations are interpolated with IDW to get an estimate for the 311 
interpolation location: 312 𝑃෠ᇱ(𝑥௜, 𝑡) = ∑ 𝑑௜௝ିఒ𝛽௝(ℎ௜௝) ∙ 𝑃ᇱ൫𝑥௝, 𝑡൯௡௝ୀଵ ∑ 𝑑௜௝ିఒ௡௝ୀଵ  3) 

where 𝑑௜௝  are Euclidian distances, and 𝜆 is the power parameter. 313 

The scaling with 𝛽 reflects the increase in variance with the elevation. The estimate for 314 
the deviation from the mean should be higher than the observed deviation if the observation 315 
station is at a lower elevation than the interpolation point (𝛽 > 1), and lower if the observation is 316 
from a higher station. We found the following metric useful, which scales the covariance of two 317 
rainfall stations by the variance of one of the stations: 318 𝛽(ℎ௞௟) = cov(𝑃(𝑥௞), 𝑃(𝑥௟))

var(𝑃(𝑥௞))  4) 

where P( xk ) and P( xl ) are observed rainfall time series at two different locations, and 319 
cov and var denote covariance and variance, respectively. Unlike the correlation matrix, the 320 
matrix of scaling factors β is not symmetrical, which reflects the importance of the direction of 321 
the elevation difference given as ℎ௞௟ = 𝑧(𝑥௞) − 𝑧(𝑥௟).  322 

This metric has gained considerable attention in economics as the “beta”, which 323 
measures how an individual asset changes compared to changes in the overall stock market. This 324 
use dates back to the capital asset pricing model of Sharpe and Lintner in the 1960s (cf. Fama & 325 
French, 2004; Sharpe, 1991).  326 

Using the statistical-topographical β-IDW model for daily rainfall interpolation over a 327 
grid includes the following steps for each raster cell i:  328 

• determine the expected rainfall for that day according to the average monthly 329 
precipitation estimated for the elevation and month (Figure 3), divided by the 330 
average number of rain days for that month, 331 

• find the nearest n stations with data on that day, and determine their expected 332 
rainfall according to elevation, the deviation of the observed rainfall on that day, 333 
as well as map distances 𝑑௜௝ , elevation differences ℎ௜௝, and scaling factors 𝛽௝(ℎ௜௝) 334 
(Figure 5),  335 
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• interpolate the scaled deviations from the stations to the interpolation point using 336 
eq. (3), and get the rainfall estimate for that day by summing the expected rainfall 337 
and the interpolated actual deviation. 338 

5  Results and Discussion 339 

5.1 Parameterization of the scaling factor 𝛽 340 

For our case study, the relationship of 𝛽௞௟, eq. (4), and the elevation difference, ℎ௞௟, was 341 
analyzed using monthly rainfall time series of stations with average annual rainfall larger than 5 342 
mm (Figure 5). Functional relationships were established using 15 long-term stations; one station 343 
with less than 5 mm average annual rainfall was excluded. Stations with shorter records again 344 
showed larger scatter. Two functions were chosen for further analysis: a linear regression forced 345 
to pass through (0, 1) to ensure an unbiased estimate when the elevation difference is zero (L01; 346 
R2 = 0.75), and a segmented linear regression with two breakpoints (SLR; R2 = 0.84). Other 347 
regression functions (unconstrained linear, exponential, cubic polynomial, and local polynomial 348 
regression) yielded coefficients of determination in between these two models. 349 
 350 

 351 

Figure 5: Scaling factor β from monthly rainfall series as a function of elevation difference; 352 
regression functions L01 and SLR (linear through (0, 1), and piecewise linear with three 353 
segments, respectively) were fitted using the long-term stations with 360 or more months of data. 354 
Only stations with average annual rainfall larger than 5 mm were considered.  355 

 356 
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5.2 Leave-one-out cross-validation 357 

Suitable values for the number n of neighboring stations and the power parameter 𝜆 for 358 
the application of β-IDW to the study area were found through leave-one-out cross-validation. 359 
For this we used days with more than seven rainfall stations, which corresponds to 98 % of the 360 
study period (19933 days between 1 January 1964 and 28 September 2019). The minimum of n 361 
or the number of available stations of either day was used in the cross-validation.  362 

The combination with the lowest mean absolute errors (MAE) across all stations was 363 
found for L01 with n = (4, 6) and λ = 1 (median MAE of 0.71 mm/d), and for SLR with n = 4 364 
and λ = (0.5, 1) (median MAE of 0.76 mm/d). A conventional IDW interpolation with these 365 
parameters yielded a median MAE of 0.79 mm/d; the lowest median MAE of the classic IWD 366 
interpolations was 0.75 mm/d with n = 6 and λ = 1 (Table 1). We used the combinations with the 367 
lowest MAE for the β-IDW and the conventional IDW interpolation, respectively.  368 

The cross-validation MAE are generally higher at higher elevations. For example, the 369 
median MAE for the IWG stations in the cross-validation with the selected parameter 370 
combinations were 2.26 mm/d, 2.27 mm/d  and 2.51 mm/d for L01, SLR and conventional IDW, 371 
respectively. Overall, the cross-validation suggests a comparable performance of the methods at 372 
the location of the stations, indicating that no additional bias is introduced by the β-IDW 373 
approach. Still there are notable differences in the spatial patterns and estimated rainfall sums in 374 
unobserved parts of the catchments, as detailed in the next sections.  375 
 376 

Table 1: Cross-Validation Results: Mean Absolute Error (MAE) As a Function of the Number of 377 
Points n and IDW Distance Exponent 𝜆 for β-IDW and Conventional IDW 378 

n 

β-IDW (L01) 𝜆 
β-IDW (SLR) 𝜆 

Conventional IDW 𝜆 

 0.5 1 2 5 0.5 1 2 5 0.5 1 2 5 
1 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.84 0.84 0.84 0.84 
2 0.77 0.77 0.77 0.81 0.8 0.8 0.8 0.82 0.82 0.81 0.82 0.81 
4 0.72 0.71 0.75 0.81 0.76 0.76 0.78 0.79 0.8 0.79 0.78 0.8 
6 0.75 0.71 0.74 0.81 0.79 0.77 0.76 0.79 0.77 0.75 0.77 0.8 
8 0.76 0.73 0.74 0.81 0.77 0.77 0.77 0.8 0.84 0.8 0.76 0.8 

10 0.76 0.74 0.74 0.81 0.77 0.77 0.77 0.8 0.85 0.8 0.79 0.8 

Note. Values are median MAE of daily rainfall across all stations. Combinations highlighted in 379 
bold were chosen for following interpolations. 380 

 381 

5.3 Rainfall maps 382 

We applied the β-IDW model to map rainfall for the Chirilu catchments in the continuous 383 
period from 1 September 1999 to 1 December 2019 on a 1000 m grid. Figure 6 shows rainfall 384 
maps for the day with the maximum rainfall recorded at one station (24 January 2006), and the 385 
day of the maximum rainfall sum over all stations (9 February 2016), respectively. These 386 
examples illustrate how the patterns obtained with β-IDW are influenced by the combination of 387 
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topography and rainfall stations (Figure 6 a, b, e, f), compared to the conventional IDW 388 
interpolation (Figure 6 d, h) that is based on station data only.  389 

Differences between L01 and SLR are hardly discernible in the maps. Depending on the 390 
configuration of stations on a particular day, L01 may yield slightly larger extents of the area of 391 
maximum rainfall compared to SLR, due to the threshold parameterization of SLR (Figure 6 a, 392 
b).  393 

 394 
 395 
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Figure 6: Rainfall maps for the day with maximum rainfall observed at one station (24 January 397 
2006; 74 mm/d at San Lazaro de Escomarca, a-d), and the day with the maximum rainfall sum 398 
over all stations (9 February 2016; median station rainfall 10.8 mm/d, maximum station rainfall 399 
24.4 mm/d, e-h):  Statistical-topographic model β-IDW with parameterization L01 (a, e) and 400 
SLR (b, f), PISCO precipitation product (c, g), and conventional IDW interpolation (d, h). Only 401 
stations inside the Chirilu catchments were used for mapping, except for PISCO. The catchment 402 
outlines are given as reference; coordinates are in m (WGS 1984, UTM Zone 18S). 403 

 404 

 405 

Figure 7: Comparison of observed and mapped rainfall in the period 1 September 1999 to 1 406 
December 2019: average annual rainfall (top row) and variance (bottom row) as modelled with 407 
β-IDW (L01), β-IDW (SLR), classic IDW, and monthly and daily PISCO products, respectively. 408 
The observation stations are in the same categories as in Figure 2. 409 

 410 

The rainfall patterns modeled with β-IDW are roughly similar to PISCO when looking at 411 
the Chirilu catchments, where the rainfall stations that were used for β-IDW are located. The 412 
results outside of the Chirilu area are to be taken with caution and will not be considered further. 413 
The rainfall fields in the catchments correspond quite well in terms of their extent, while the 414 
location and the magnitude of the highest rainfall rates differ. The coarser resolution of the 415 
PISCO products can be one factor for this; another factor is that β-IDW scales the local 416 
deviations with the elevation difference to the observation stations, which leads to higher rainfall 417 
intensities at unobserved locations (Figure 6).  418 
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This is also evident when looking at the distribution of average annual rainfall of the map 419 
pixels (Figure 7, top row). The β-IDW models extrapolate the trend of increasing rainfall with 420 
elevation, whereas the other methods hardly yield values outside the observed range, and thus 421 
possibly underestimate rainfall at higher elevations. The conventional IDW interpolation also 422 
fails to reproduce the trend in the other direction accurately and overestimates average rainfall at 423 
lower elevations. 424 

The variance in the precipitation estimates from the β-IDW models matches well with the 425 
observed increase of variance with elevation, in particular at elevations below 4000 m. At higher 426 
elevations, the increase of the variance is not as steep as observed (Figure 7, bottom row). The 427 
daily PISCO product also matches the observed variance well. The increasing trend of the 428 
variance with elevation is not reproduced as well by the monthly PISCO product and the 429 
conventional IDW interpolation (Figure 7, bottom row). 430 

 431 

5.4 Catchment-scale rainfall 432 

5.4.1 Comparison of rainfall mapping methods 433 

Two gauged subcatchments in the Lurín (gauge Puente Antapucro, 1047 m a.s.l.) and the 434 
Chillón (gauge Puente Magdalena, 875 m a.s.l.) were chosen to assess the suitability of the 435 
rainfall mapping for catchment-wide rainfall input for the water years 2000-2019. They are 436 
similar in size and orientation, and both are covering the middle and upper parts of their basins 437 
where precipitation actually occurs.  438 

The annual areal precipitation inputs obtained with the β-IDW models are higher than 439 
those from the other methods in most years (Figure 8). Total areal rainfall is highest for L01, 440 
while SLR yields 97 % and 98 % of L01 in the Lurín and Chillón subcatchments, respectively. 441 
For the Lurín subcatchment, the mean annual rainfall input with conventional IDW, monthly and 442 
daily PISCO is only 62 % (63 %), 83 % (85 %), and 70 % (72 %) of the L01 (SLR) rainfall total, 443 
respectively. For the Chillón, conventional IDW, monthly and daily PISCO are on average 77 % 444 
(78 %), 92 % (94 %) and 84 % (86 %) of the L01 (SLR) rainfall total, respectively. The only 445 
exceptions are the water years 2018, in which monthly PISCO has higher areal rainfall input to 446 
both Lurín and Chillón compared to β-IDW, and 2019, in which conventional IDW exceeds the 447 
β-IDW estimates for the Chillón subcatchment.  448 

These consistently higher estimates are a result of the extrapolating property of the β-449 
IDW method to unobserved locations at higher altitudes. The differences to the other methods 450 
are thus smaller in the Chillón catchment, where more rain gauges are located at higher 451 
elevations compared to the Lurín (Figure 1), and the need for extrapolation is smaller. 452 

Despite their difference in rainfall totals, the different methods produce a similar 453 
interannual variation of rainfall totals, as shown by their correlations to each other. The annual 454 
rainfall time series modeled with β-IDW-L01 and β-IDW-SLR are very highly correlated (r = 455 
0.998); the same applies for daily and monthly PISCO products (r = 0.995). The correlation of 456 
conventional IDW is highest with daily PISCO (r = 0.952), but lowest with monthly PISCO (r = 457 
0.796). Daily PISCO also involves IDW interpolation, while the monthly PISCO is based on 458 
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Kriging. The correlation of conventional IDW with the β-IDW models, however, is not as high (r 459 
= 0.820 to 0.848), and comparable to monthly PISCO (r = 0.796). The correlation coefficients 460 
reported are mean values for the two subcatchments. Correlation coefficients are generally 461 
slightly smaller in the Lurín catchment, which can be attributed to the higher coverage with rain 462 
gauges in the Chillón catchment. 463 
 464 

 465 

Figure 8: Annual areal rainfall inputs estimated with five different methods for the Puente 466 
Magdalena subcatchment of the Chillón (a) and the Puente Antapucro subcatchment of the Lurín 467 
(b). The dashed line denotes the average catchment input expected according to elevation (see 468 
Figure 3). PISCO with daily rainfall is only available until the end of 2016. 469 

 470 

5.4.2 Evaluation using Rainfall-Runoff Ratios 471 

Higher rainfall inputs, as with β-IDW appear plausible in light of hydrological data from 472 
the study area. During the studied time period, discharge observations are available for the water 473 
years 2002 to 2019 at Puente Magdalena (Chillón), except for 2012 and 2016, and for the water 474 
years 2015 to 2019 at Puente Antapucro (Lurín). These data were used to calculate annual 475 
rainfall-runoff ratios for the two sub-catchments (Table 2). The rainfall mappings with β-IDW 476 
yield the lowest rainfall-runoff ratio on average, with 0.25 and 0.39 for Chillón and Lurín, 477 
respectively. The other methods yield comparable, slightly higher ratios for Chillón (0.27 to 478 
0.32), with β-IDW being closest to monthly PISCO. In the Lurín, β-IDW is also closest to 479 
monthly PISCO, which has an average rainfall-runoff ratio of 0.47, while the conventional IDW 480 
and daily PISCO are considerably higher (0.57 to 0.65; Table 2).  481 

When interpreting the rainfall-runoff ratios and the differences between the neighboring 482 
catchments not only the rainfall mapping should be taken into account, but also the (unknown) 483 
uncertainty and the short length of the discharge data. It seems adequate to note, nevertheless, 484 
that higher rainfall input leading to lower rainfall-runoff ratios generally is more realistic for the 485 
studied catchments. A systematic underestimation of rainfall from daily PISCO and other QPE 486 
products was also found in a modeling study over 72 gauged catchments in the Peruvian and 487 
Ecuadorian Andes (Fernandez-Palomino et al., 2022), and correction factors increasing the 488 
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rainfall by 43 % on average were needed to close the water balance, with the maximum bias 489 
located in the Ecuadorian Andes. Huerta (2020) reports average ratios of actual evapo-490 
transpiration and precipitation in the period 2003 to 2013, which convert to average discharge 491 
ratios as low as 0.05 to 0.28 for the Pacific watersheds, and about 0.34 for entire Perú. The 492 
results of all QPE methods for the Chillón give runoff ratios within this range, while rainfall-493 
runoff ratios for the Lurín all are higher, with the estimates using rainfall from β-IDW and 494 
monthly PISCO are much closer compared to the other methods in the Lurín (Table 2).  495 

This is partly because the discharge station Puente Antapucro is located at a higher 496 
elevation, and most of the water abstraction and infiltration to the groundwater is downstream of 497 
the gauge. On the other hand, the density of rainfall gauges and the length of concurrent 498 
discharge series is greater in the Chillón catchment. 499 

 500 

Table 2: Average Annual Rainfall-Runoff Ratios With the Different Rainfall Mapping Methods 501 
β-IDW L01 β-IDW SLR Conventional IDW PISCO monthly PISCO daily  

Chillón 0.25 0.25 0.32 0.27 0.30 
Lurín 0.39 0.39 0.57 0.47 0.65 

Note. Discharge data for 16 and 5 water years were available for the sub-catchments Puente 502 
Magdalena (Chillón) and Puente Antapucro (Lurín), respectively. 503 

 504 

5.4.3 Effect of Including New Rain Gauges  505 

Finally, we take the new IWG rain gauges, which are located at higher elevations in the 506 
Lurín subcatchment (Figure 1), as an example to analyze how station density affects the rainfall 507 
mapping. We compare the QPEs that are obtained with β-IDW and conventional IDW using the 508 
full data set to QPEs with a reduced data set, excluding the two and four rain gauges that 509 
measured in the headwaters of the Lurín catchment in the water years 2018 and 2019, 510 
respectively. 511 

In 2018, both datasets give very similar results (Figure 9). All three methods estimate 512 
rainfall to be below the expected long-term elevation-dependent average, while the extrapolation 513 
to higher elevations leads to more rainfall from the β-IDW models compared to conventional 514 
IDW. The estimates are marginally higher with the reduced data set, which shows that the 515 
observations at the two new stations do not provide much new information except being slightly 516 
lower than at the other twelve stations. 517 

In 2019, all three methods perform very similar with the full dataset, and catchment 518 
rainfall input is above the expected elevation-dependent average. This means that both the 519 
absolute rainfall and the deviations from the mean are higher for the four new stations than for 520 
the five other stations. Without the four additional stations, the estimated catchment rainfall is 521 
below the expected average, but still higher with β-IDW compared to conventional IDW (Figure 522 
9). 523 
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The new stations are thus located at the “right” places, where rainfall info actually was 524 
lacking before. When the station density is lower and observations especially at higher altitudes 525 
are missing, the β-IDW approach provides a means to compensate partially for the 526 
underestimation of catchment precipitation that occurs when interpolating station data without 527 
any scaling. Including new stations at the right locations has a larger effect than the interpolation 528 
method in this case, which is consistent with other studies (Buytaert et al., 2006; Dirks et al., 529 
1998; Michelon et al., 2021). 530 

 531 
 532 

 533 

Figure 9: Catchment rainfall input for Lurín (Puente Antapucro) in the water years 2018 (a) and 534 
2019 (b) with three mapping methods comparing the full dataset against a reduced dataset 535 
excluding the IWG stations in the headwater catchments. The dashed line denotes the expected 536 
annual catchment input according to pixel elevations for comparison. 537 

 538 

6 Conclusions 539 

We have presented an approach for mapping rainfall over mountainous catchments that is 540 
based on robust statistical relationships of rain gauge measurements with orographic elevation. 541 
The method uses daily rain gauge observations and models daily rainfall on a grid as the sum of 542 
the rainfall expected according to the elevation, and a deviation estimated from adjacent rain 543 
gauges. A key feature of the method is the scaling of the residuals according to their difference in 544 
elevation to the interpolation point. For the scaling we make use of the “beta” metric from 545 
economics, which is the covariance normalized with the variance. Because the deviation from 546 
the expected rainfall is finally calculated as the IDW interpolation of the scaled residuals, we 547 
named the method “β-IDW”. Other forms of interpolation, especially Kriging, could also be 548 
applied to the scaled residuals, if meaningful variograms can be defined. 549 

The development of β-IDW was motivated by our analysis of rainfall patterns in the 550 
Chirilu catchments near Lima, Peru. Geostatistical interpolation was hampered because 551 
consistent variograms could not be determined, neither with daily nor time-averaged data, even 552 
after detrending. We instead made use of other statistical relationships of long-term observations 553 
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of rainfall and topography to include spatial correlations. Average monthly rainfall sums were 554 
well portrayed as a segmented linear function of elevation, and expected daily rainfall was 555 
obtained by dividing by the average number of rainy days for the respective month. For the 556 
scaling factor β we used linear and segmented linear functions of elevation difference. The 557 
interpolated rainfall was evaluated by cross-validation and comparison with the PISCO product 558 
of the Peruvian meteorological survey, and analysis at the sub-catchment level. 559 

The results show that the β-IDW method can have advantages over other interpolation 560 
schemes when estimating rainfall input for mountainous catchments, where observations of 561 
higher rainfall at higher elevations are often underrepresented in the datasets. The β-scaling can 562 
overcome this limitation to a certain extent by its extrapolating property, as suggested by 563 
significantly higher rainfall input to the studied catchments with β-IDW than with conventional 564 
IDW, or more complex country-wide precipitation products, even though the latter incorporate 565 
both station observations and remote sensing information.  566 

Our method is readily applicable to any mountainous region where station observations 567 
and a DEM in coarse resolution are available. Except for the preparatory statistical analyses and 568 
regressions, the (computational) time and effort for a β-IDW interpolation is comparable to a 569 
conventional IDW approach. The method is flexible, in the sense that any changes of the rain 570 
gauge network can be handled on a day-to-day basis, and new rain gauges can be included 571 
seamlessly. As shown for the Lurín catchment, using β-IDW with the long-term relationships 572 
mainly from the neighboring catchments can significantly improve the quantitative precipitation 573 
estimation for a sparsely gauged catchment. Even though we would suggest that installation of 574 
new rain gauges at appropriate locations still is the best way for reducing the uncertainty in 575 
rainfall estimates, the β-IDW approach can provide an alternative means for quantitative 576 
precipitation estimation in mountain catchments, also in other regions of the world.  577 

The presented approach is useful for water resources management and related 578 
hydrological modelling at daily or longer time scales. If the β-scaling can also improve estimates 579 
of rainfall at higher temporal resolution for flood prediction and hydraulic modelling, possibly 580 
linked to approaches that explicitly consider the space-time behavior of rainfall fields, is subject 581 
for further research. 582 
  583 
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