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Abstract

The ambient solar wind plays a significant role in propagating interplanetary coronal mass ejections and is an important

driver of space weather geomagnetic storms. A computationally efficient and widely used method to predict the ambient solar

wind radial velocity near Earth involves coupling three models: Potential Field Source Surface, Wang-Sheeley-Arge (WSA),

and Heliospheric Upwind eXtrapolation. However, the model chain has eleven uncertain parameters that are mainly non-

physical due to empirical relations and simplified physics assumptions. We, therefore, propose a comprehensive uncertainty

quantification (UQ) framework that is able to successfully quantify and reduce parametric uncertainties in the model chain.

The UQ framework utilizes variance-based global sensitivity analysis followed by Bayesian inference via Markov chain Monte

Carlo to learn the posterior densities of the most influential parameters. The sensitivity analysis results indicate that the five

most influential parameters are all WSA parameters. Additionally, we show that the posterior densities of such influential

parameters vary greatly from one Carrington rotation to the next. The influential parameters are trying to overcompensate

for the missing physics in the model chain, highlighting the need to enhance the robustness of the model chain to the choice of

WSA parameters. The ensemble predictions generated from the learned posterior densities significantly reduce the uncertainty

in solar wind velocity predictions near Earth.
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Key Points:9

• We quantify and reduce the parametric uncertainties of the PFSS, WSA, and HUX10

models on the ambient solar wind predictions near Earth.11

• Global sensitivity analysis shows that the five most influential parameters are all12

numerical parameters in the WSA model.13

• The posterior of the influential parameters changes greatly in time, motivating the14

investigation of the forecasting capability of WSA.15
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Abstract16

The ambient solar wind plays a significant role in propagating interplanetary coronal mass17

ejections and is an important driver of space weather geomagnetic storms. A computation-18

ally efficient and widely used method to predict the ambient solar wind radial velocity near19

Earth involves coupling three models: Potential Field Source Surface, Wang-Sheeley-Arge20

(WSA), and Heliospheric Upwind eXtrapolation. However, the model chain has eleven un-21

certain parameters that are mainly non-physical due to empirical relations and simplified22

physics assumptions. We, therefore, propose a comprehensive uncertainty quantification23

(UQ) framework that is able to successfully quantify and reduce parametric uncertainties in24

the model chain. The UQ framework utilizes variance-based global sensitivity analysis fol-25

lowed by Bayesian inference via Markov chain Monte Carlo to learn the posterior densities of26

the most influential parameters. The sensitivity analysis results indicate that the five most27

influential parameters are all WSA parameters. Additionally, we show that the posterior28

densities of such influential parameters vary greatly from one Carrington rotation to the29

next. The influential parameters are trying to overcompensate for the missing physics in30

the model chain, highlighting the need to enhance the robustness of the model chain to the31

choice of WSA parameters. The ensemble predictions generated from the learned posterior32

densities significantly reduce the uncertainty in solar wind velocity predictions near Earth.33

Plain Language Summary34

Predicting the ambient solar wind is an important component of space weather fore-35

casting. We use advanced statistical techniques to analyze the important parameters in a36

widely-used ambient solar wind model. The numerical results show that five specific param-37

eters have the largest impact on solar wind model predictions near Earth and that these38

parameters can fluctuate considerably over time. The statistical results give us a deeper un-39

derstanding of the limitations and potential improvements for enhancing the accuracy and40

reliability of ambient solar wind forecasts. Such an understanding is essential for mitigating41

the potential impacts of severe geomagnetic storms.42

1 Introduction43

The ambient (or background) solar wind is the long-lived large-scale plasma that em-44

anates from the Sun and travels into interplanetary space, which excludes interplanetary45

coronal mass ejections and other transient events. It is crucial to accurately predict the am-46

bient solar wind since interplanetary coronal mass ejections, the primary source of extreme47

space weather events, are modeled as perturbations to the ambient solar wind (Odstrcil &48

Pizzo, 1999). Additionally, corotating interaction regions between fast and slow ambient49

solar wind streams are drivers of moderate space weather events (Riley et al., 2012). In50

fact, corotating interaction regions have been found to contribute to 70% of geomagnetic51

activity at Earth during solar minimum and about 30% during solar maximum (Richardson52

et al., 2000). Thus, generating reliable predictions of the ambient solar wind is essential53

for improving space weather prediction capabilities and for accurately assessing the risk of54

space weather events.55

State-of-the-art ambient solar wind models couple two regions: the corona and helio-56

sphere. The coronal domain spans from the surface of the Sun (1RS, i.e., one solar radius)57

up to the coronal outer boundary, which is typically set to a distance between 2.5RS to 30RS58

depending on the model that is used. The solution at the coronal outer boundary is extrap-59

olated into the heliospheric domain up to Earth’s orbit and beyond. High-fidelity simula-60

tions of the ambient solar wind are constructed via time-dependent magnetohydrodynamic61

(MHD) models, such as the Magnetohydrodynamics Algorithm outside a Sphere (Linker et62

al., 1999; Mikić et al., 2018; Riley et al., 2019) and the Space Weather Modeling Frame-63

work (Toth et al., 2005; van der Holst et al., 2014). Such MHD models simulate the ambient64

solar wind by relaxing the coronal and heliospheric simulations to a steady-state solution,65
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requiring high computational costs. In an effort to reduce simulation time (especially in66

operational settings), the space weather community commonly uses lower-fidelity models67

based on reduced physics and empirical relations. A well-established and widely-used chain68

of lower-fidelity models couples the Potential Field Source Surface (PFSS) (Altschuler &69

Newkirk, 1969; Schatten et al., 1969), Wang-Sheeley-Arge (WSA) (Arge et al., 2004), and70

Heliospheric Upwind eXtrapolation (HUX) (Riley & Lionello, 2011; Riley & Issan, 2021;71

Issan & Riley, 2022) models.72

There has been a continuous effort in the space weather community to improve am-73

bient solar wind models by comparing the model predictions to in-situ spacecraft obser-74

vations (Reiss et al., 2022). Such in-situ observations can also be leveraged to reduce75

prediction uncertainties stemming from initial conditions, boundary conditions, fitting pa-76

rameters, numerical errors, measurement noise, etc. There are two types of prediction un-77

certainty. Aleatoric uncertainty results from intrinsic randomness or variability associated78

with parameters, mesh resolution, initial conditions, etc; epistemic uncertainty results from79

a lack of complete knowledge of physics and model inadequacies. Here, we study aleatoric80

uncertainty, specifically parametric uncertainty, in the PFSS→WSA→HUX model chain.81

We rigorously examine the uncertainty and sensitivity of eleven mainly non-physical model82

parameters, such as the source surface height and WSA numerical parameters, and their im-83

pact on the solar wind radial velocity predictions near Earth. Quantifying and reducing the84

parametric uncertainties in the ambient solar wind models is critical for making informed85

decisions in operational settings.86

As a core contribution of this work, we present a comprehensive uncertainty quantifi-87

cation (UQ) framework to advance the use of rigorous UQ techniques in space weather. The88

proposed UQ framework is described in the following steps. First, we perform variance-based89

global sensitivity analysis to identify which parameters influence the solar wind predictions90

near Earth the most. Subsequently, parameters that hardly contribute to the prediction91

variability are set to their fixed nominal values, which facilitates a posteriori parameter di-92

mensionality reduction. Then, we apply Bayesian inference to uncover the posterior density93

of the influential parameters, which is the conditional probability of the influential param-94

eters given observational data. Lastly, we sample from the learned posterior densities and95

generate an ensemble of the ambient solar wind predictions near Earth, which demonstrates96

that the UQ framework reduces the parametric uncertainty in the predicted solar wind97

velocity.98

Sensitivity analysis quantifies the contribution of parametric uncertainty on the vari-99

ability of a quantity of interest (QoI). Common methods can be classified into two groups:100

local and global. Local sensitivity analysis methods vary the parameters about a nominal101

value by computing local partial derivatives, whereas global sensitivity analysis methods102

account for variance effects in the entire parameter space (Saltelli et al., 2008). We use103

variance-based global sensitivity analysis by estimating Sobol’ sensitivity indices (Sobol’,104

2001). A sensitivity analysis study by Jivani et al. (2022) estimated the Sobol’ sensitivity105

indices associated with uncertain parameters in the MHD Alfvén Wave Solar atmosphere106

Model (van der Holst et al., 2014). A recent study by Reiss et al. (2020) used Morris107

screening (Morris, 1991), a hybrid local/global sensitivity analysis method, to identify the108

most influential parameters in the WSA model. The Morris screening method averages local109

derivative approximations to provide global sensitivity measures (Smith, 2013, §15.2). It is110

typically used when variance-based methods are prohibitively expensive since it can only111

rank the parameters based on their importance but, unlike variance-based methods, does112

not quantify the relative contributions of each parameter to the QoI variance. Our study113

differs from Reiss et al. (2020) since we consider parametric uncertainty stemming not only114

from WSA but also from PFSS and HUX. Additionally, our study differs from Reiss et al.115

(2020) since we compute full global sensitivity information.116

Parameter estimation techniques are typically divided into two approaches: frequen-117

tist and Bayesian. The frequentist approach seeks to find a single ’optimal’ value of each118
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Figure 1. A flowchart of the models and observational data utilized in this study. The GONG

and ACE images are adapted from NSO3 and NASA4, respectively.

parameter by solving an optimization problem. For example, maximum likelihood estima-119

tion (Milton & Arnold, 2003), such that the optimal values of the parameters minimize120

the difference between the model prediction and observational data. Riley et al. (2015),121

Reiss et al. (2020), and Kumar and Srivastava (2022) took a frequentist approach to find122

the optimal parameters in the WSA model. This paper presents a Bayesian approach to123

learning the uncertain parameters in the PFSS→WSA→HUX model chain. The Bayesian124

approach views the parameters as random variables and seeks to learn their posterior den-125

sity. In the Bayesian setting, the solution to the UQ inverse problem is represented by a126

probability density function of the parameters. In stark contrast, the frequentist approach127

yields a point estimate. Thus, the Bayesian approach provides a complete picture of the128

uncertainty associated with the model parameters. Subsequently, relevant point estimates,129

such as the maximum a posteriori (MAP), variance, and mean, can all be computed from130

the posterior density. Here, we use Markov chain Monte Carlo (MCMC) (Metropolis et al.,131

1953; Hastings, 1970) to learn the posterior densities of the most influential parameters. In132

particular, we employ the MCMC affine invariant ensemble sampler (Goodman & Weare,133

2010; Foreman-Mackey et al., 2013), which is robust to different scales in the parameters.134

The main questions we seek to answer via the proposed UQ framework are: (1) How135

does parametric uncertainty in the PFSS→WSA→HUX model chain impact the uncertainty136

in the solar wind velocity predictions near Earth? Can we reduce such uncertainties using137

Bayesian inference methods? (2) What are the most influential parameters in the model138

chain? (3) How do the posterior densities of the influential parameters change over time?139

Is there a clear trend in the posterior evolution? (4) Is the model chain robust to the choice140

of its parameters? Is it reliable enough to be used for real-time operational forecasting?141

This paper is organized as follows. Section 2 describes the models and observational142

data used in this work. Section 3 discusses variance-based global sensitivity analysis, an143

algorithm to compute Sobol’ sensitivity indices via Monte Carlo integration, and numerical144

results. In Section 4 we discuss Bayesian inference via MCMC algorithms and numerical145

results. Section 5 then offers conclusions and an outlook to future work.146

2 Ambient Solar Wind Model Chain and Observational Data147

We consider the coupling of three well-established models: (1) Potential Field Source148

Surface (PFSS), (2) Wang-Sheeley-Arge (WSA), and (3) Heliospheric Upwind eXtrapolation149

(HUX), to predict the ambient solar wind radial velocity near Earth. Reiss et al. (2019,150

2020) and Bailey et al. (2021) use a similar chain of models with the addition of the Schatten151

Current Sheet (SCS) model, developed by Schatten et al. (1969), resulting in the following152

model chain: PFSS→SCS→WSA→HUX. The SCS model is added to correct the PFSS153

radial magnetic field latitudinal variations to match Ulysses’ observations (Wang & Sheeley,154

1995). However, a recent study by Kumar and Srivastava (2022) showed that adding SCS155

to the chain of models did not necessarily improve the accuracy of the solar wind radial156
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Figure 2. An illustration of different components in PFSS→WSA→HUX model chain during

CR 2053. The PFSS radial magnetic field at the lower and upper boundaries is shown in (a) and

(b). The lower boundary condition is obtained from GONG synoptic maps and the extrapolated

upper boundary is shown at the source surface, which is set to rSS = 2.5RS in this example. The

WSA inputs, i.e. the magnetic field expansion factor and coronal hole map, are shown in (c)

and (d). The red (blue) coronal hole areas show the negative inward (positive outward) fields.

Lastly, (e) shows a comparison of the model chain solar wind radial velocity predictions at L1

with ACE in-situ observations. In this example, we set the WSA parameters to v0 = 250 km
s
, v1 =

945 km
s
, α = 0.16, β = 1, γ = 0.6, w = 0.02rad, δ = 1.75, ψ = 3 and the HUX parameters to

αacc = 0.15, rh = 50RS.

velocity predictions at L1 (during 2006-2011). We thus analyze the PFSS→WSA→HUX157

model chain.158

The PFSS model is used to predict the magnetic field in the coronal domain. The159

PFSS magnetic field solution is then used as an input to the WSA relation, which computes160

the solar wind radial velocity at the outer boundary of the coronal domain. The WSA161

results are then set as the initial condition for the HUX model, which extrapolates the162

solar wind radial velocity into the heliospheric domain. Finally, the model chain solar wind163

radial velocity predictions are compared with ACE spacecraft in-situ observations. We164

use synoptic magnetograms from Global Oscillation Network Group (GONG) as the inner165

boundary condition for the PFSS model. A flowchart of the models and data used in this166

study is shown in Figure 1. The subsequent sections explain the different components of167

the model chain and observational data in further detail.168

2.1 Potential Field Source Surface (PFSS) Model169

The PFSS model proposed by Altschuler and Newkirk (1969) and Schatten et al.170

(1969) solves for the coronal magnetic field B(r, θ, ϕ) = [Br(r, θ, ϕ), Bθ(r, θ, ϕ), Bϕ(r, θ, ϕ)]171

from the photosphere (the visible surface of the Sun) to the outer radius called the source172

surface. The PFSS model assumes that beyond the source surface, the magnetic field is173

purely radial, i.e. open magnetic field lines are carried into interplanetary space by the solar174

wind. Additionally, the PFSS model neglects the coronal electric current density since,175

above the photosphere, there is a large decrease in particle density and a smaller decrease in176

magnetic field strength (Kruse et al., 2020); it also assumes that the corona is electrostatic177
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since during solar minimum, the corona evolves slowly, and features can last for several178

Carrington rotations (CRs). It is important to mention that some of the above assumptions179

hold less during specific time periods. For example, during solar maximum, the photospheric180

field changes more rapidly, challenging the electrostatic assumption. Additionally, Riley et181

al. (2006) found that the concept of spherical source surface is more reasonable during solar182

maximum than during solar minimum. These assumptions (coupled with Ampère’s law)183

lead to184

∇×B = 0,185

so that the magnetic field can be described by its potential B = −∇Ψ. By combining the186

potential description with Gauss’s law (∇ ·B = 0), we get Laplace’s equation187

∇2Ψ = 0,188

subject to the following boundary conditions189

∂Ψ

∂r
(r = 1RS, θ, ϕ) = g(θ, ϕ),

∂Ψ

∂θ
(r = rSS, θ, ϕ) =

∂Ψ

∂ϕ
(r = rSS, θ, ϕ) = 0,

Ψ(r, θ, ϕ = 0) = Ψ(r, θ, ϕ = 2π),

(1)190

where θ ∈ [0, π] is Carrington colatitude, ϕ ∈ [0, 2π] is Carrington longitude, RS denotes so-191

lar radii unit of distance which is 695,700km, and approximately 1/215th of an astronomical192

unit (AU), r ∈ [1RS, rSS] is the radial distance from the center of the Sun, rSS is the source193

surface height, and g(θ, ϕ) is a given photospheric synoptic map. The PFSS model is typi-194

cally solved via spherical harmonic expansion or numerical discretization methods (Caplan195

et al., 2021; Liu et al., 2022; Stansby et al., 2020). We employ the pfsspy Python package196

(version 1.1.2), developed by Stansby et al. (2020), for solving PFSS via finite-difference197

discretization and for tracing magnetic field lines. The finite-difference discretization is on198

a rectilinear grid equally spaced in sin(colatitude), longitude, and ln(radius) coordinates,199

see Stansby et al. (2020) for more details on the solver. In this study, all simulations are200

performed on a 180× 360× 100 grid resolution in sin(colatitude), longitude, and ln(radius),201

respectively, i.e. we solve for 6.48×106 states. As an illustrative example, Figure 2(a) shows202

the radial magnetic field at the photosphere (inner boundary) for CR 2053 obtained by the203

GONG synoptic maps (see Section 2.4.1) and Figure 1(b) shows the radial magnetic field204

results at the source surface (outer boundary), which is set to rSS = 2.5RS for this example.205

2.2 Wang-Sheeley-Arge (WSA) Model206

The WSA model developed by Arge et al. (2004) is a semi-empirical model of the207

ambient solar wind velocity in the inner-heliosphere, which fuses the Wang-Sheeley (WS)208

model developed by Wang and Sheeley (1990) with the distance to the coronal hole boundary209

(DCHB) model developed by Riley et al. (2001). The WSA model (coupled with the MHD210

Enlil model) is used in operational forecasting at the National Oceanic and Atmospheric211

Administration (NOAA) Space Weather Prediction Center (Parsons et al., 2011). The WSA212

model is given by213

vwsa(fp, d, v0, v1, α, β, γ, w, δ, ψ) = v0 +
v1 − v0
(1 + fp)α

(
β − γ exp

(
−
(
d

w

)δ))ψ
,214

where v0 and v1 correspond to the minimum and maximum solar wind velocities, d is the215

minimum angular distance that an open field footpoint lies from a coronal hole boundary, fp216

is the magnetic field expansion factor, and α, β, γ, δ, w, ψ are additional tunable parameters.217
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The magnetic expansion factor fp is derived from the coronal magnetic field by tracing218

down field lines from the source surface to the photosphere, namely219

fp =

(
1RS

rSS

)2 ∣∣∣∣ Br(1RS, θp, ϕp)

Br(rSS, θSS, ϕSS)

∣∣∣∣ , (2)220

where Br(r, θ, ϕ) is the radial magnetic field component, and the subscripts p and SS refer221

to the field line trace at the photosphere and solar surface, respectively. The distance222

to the coronal hole boundary d is also derived from the coronal magnetic field solution223

via a two-step approach. First, the coronal hole regions are identified by tracing field224

lines from the photosphere to the source surface and detecting the footpoints of all open225

magnetic field lines, i.e. coronal hole regions. Second, the great-circle angular distance d226

is computed between the footprints of the open magnetic field lines to the nearest coronal227

hole boundary. To illustrate these concepts, Figure 2(c) presents the magnetic expansion228

factor for CR 2053, and the black dashed line shows ACE’s spacecraft projected trajectory.229

Similarly, Figure 2(d) shows the coronal hole map for CR 2053 with ACE’s trajectory field230

line traces, which mainly trace down to low-latitude coronal holes.231

2.3 Heliospheric Upwind eXtrapolation (HUX) Model232

The two-dimensional HUX model developed by Riley and Lionello (2011) extrapolates233

the coronal solar wind radial velocity into the heliospheric domain. The HUX model is234

based on simplified physical assumptions of the fluid momentum equation, which reduces235

to the following nonlinear scalar homogeneous time-stationary equation236

−Ωrot(θ = θ̂)
∂v(r, ϕ)

∂ϕ
+ v(r, ϕ)

∂v(r, ϕ)

∂r
= 0, (3)237

where the independent variables are the radial distance from the Sun r and Carrington238

longitude ϕ, and the dependent variable is the solar wind radial velocity v(r, ϕ). The angular239

frequency of the Sun’s rotation is evaluated at a constant Carrington colatitude θ̂ (Riley240

& Issan, 2021), which is estimated by Ωrot(θ) = 2π
25.38 − 2.77π

180 cos
(
π
2 − θ

)2
. The problem241

is subject to the boundary condition v(rSS, ϕ) = vrSS(ϕ) and is defined on the longitudinal242

periodic domain 0 ≤ ϕ ≤ 2π and r ≥ rSS. Riley and Lionello (2011) suggest adding243

an acceleration boost to the boundary condition (before propagation) to account for the244

residual acceleration present in the inner heliosphere, i.e.245

vacc(rSS, vrSS
(ϕ);αacc, rh) = αacc(1− e−rSS/rh)vrSS(ϕ), (4)246

where vrSS(ϕ) is the radial velocity at the source surface (obtained from WSA relation),247

αacc is the acceleration factor, and rh is the radial location at which the acceleration ends.248

We discretize Eq. (3) via finite-differencing on a uniform mesh with 600 × 300 resolution249

in ϕ ∈ [0, 2π] and r ∈ [rSS, rmax], respectively. We set rmax to be ACE’s maximum radial250

distance from the Sun for the considered CR. We solve the equation using the first-order251

upwind scheme, see Issan and Riley (2022) for more details about the numerical scheme and252

stability requirements. Figure 2(e) shows the coupling of PFSS, WSA, and HUX solar wind253

speed predictions in comparison to ACE’s in-situ observations for CR 2053, see Section 2.4.2254

for more details about ACE. We set θ̂ to be ACE’s mean latitude over a CR and obtain255

the inner boundary velocity profile by computing the magnetic field expansion and distance256

to the coronal hole at ACE’s projected trajectory (which are inputs in the WSA model).257

The solar wind velocity at ACE’s trajectory is obtained by linearly interpolating the two-258

dimensional HUX solution along ACE’s trajectory.259
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2.4 Observational Data260

2.4.1 Global Oscillations Network Group (GONG) Synoptic Magnetograms261

Deployed in 1995, the GONG synoptic magnetograms are produced every hour at262

GONG’s six ground-based sites with identical telescopes. The six sites in California, Hawaii,263

Australia, India, Spain, and Chile, are distributed worldwide so that the Sun is visible at264

nearly all times. The line-of-sight full-disk GONG magnetograms are provided every minute265

by its main instrument known as Fourier Tachometer (Hill, 2018; Harvey et al., 1996).266

The magnetic field strength (measured in Gauss) is determined spectroscopically using the267

Zeeman effect. In the presence of a magnetic field, gas spectral lines split into two or more268

components, and the frequency of the spectral lines depends on the strength of the magnetic269

field (Moldwin, 2008).270

In this study, we use the GONG full CR synoptic magnetograms as the photospheric271

radial magnetic field g(θ, ϕ) boundary condition for the PFSS model, see Eq. (1), which272

are publicly available at National Solar Observatory’s website5. The synoptic maps are273

calibrated from roughly 8,000-10,000 input full-disk 10-min average magnetograms (Hill,274

2018) and are provided at 180×360 resolution in Carrington sin(colatitude) and Carrington275

longitude, respectively. These synoptic maps are obtained over a full CR and reasonably276

approximate the solar conditions at quiet times of the cycle when the solar evolution is slow.277

Figure 2(a) above shows the GONG synoptic map for CR 2053.278

2.4.2 Advanced Composition Explorer (ACE) in-situ Solar Wind Measure-279

ments280

The NASA ACE satellite launched in 1997 is in Lissajous orbit around L1 (one of281

Earth-Sun gravitational equilibrium points), located about 1.5× 106 km forward of Earth.282

The location of ACE gives about 1-hour advance warning of the arrival of space weather283

events on Earth. The ACE instruments measure the solar wind, interplanetary magnetic284

field, and high-energy particles. This study uses the solar wind radial velocity in-situ mea-285

surements provided by ACE’s Solar Wind Electron Proton Alpha Monitor (SWEPAM)286

instrument (McComas et al., 1998). To download the radial velocity data and ACE’s287

trajectory at a 1-hour cadence, we used HelioPy, a community-developed Python pack-288

age (Stansby et al., 2021), for retrieving space physics datasets from NASA’s Space Physics289

Data Facility website6.290

2.5 Model Chain Simulations291

The PFSS→WSA→HUX model chain simulations are run on the Alfvén server at the292

University of Colorado SWx-TREC (Space Weather Technology, Research, and Education293

Center), which is equipped with 2x AMD EPYC 74F3 24-Core processors (3.2 GHz) and a294

total 2 Tb of RAM. The model chain takes about 16 seconds to simulate on one CPU. We295

profiled the model chain computations and found that 98% of the total time is spent solving296

the PFSS model and computing the distance to the coronal hole and magnetic expansion,297

1.8% is spent on solving the HUX model and less than a percent is spent on evaluating the298

WSA model.The sensitivity analysis results required 3 × 1.3 × 105 = 3.9 × 105 simulations299

and the MCMC results required 10× 250× 2.6× 104 = 6.5× 107 model simulations, i.e. a300

total of approximately 10,400 CPU hours.301

5 https://gong.nso.edu/data/magmap/crmap.html
6 https://cdaweb.gsfc.nasa.gov/index.html/
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3 Global Sensitivity Analysis302

Variance-based global sensitivity analysis aims to identify the parameters that con-303

tribute the most to a given QoI variability, which can be done quantitatively via comput-304

ing Sobol’ sensitivity indices (Sobol’, 2001). Parameters with high sensitivity indices are305

classified as influential, whereas parameters with low sensitivity indices are classified as306

non-influential. Computing Sobol’ sensitivity indices facilitate a posteriori parameter di-307

mensionality reduction in subsequent inverse UQ tasks (such as Bayesian inference). This308

is established by setting non-influential parameters to their nominal values and only con-309

sidering parametric uncertainty stemming from influential parameters. Parametric dimen-310

sionality reduction is often necessary for computationally demanding models and unbiased311

inverse UQ methods.312

3.1 Uncertain Parameters313

The PFSS→WSA→HUX model chain has many parameters that are uncertain, induc-314

ing uncertainty in the solar wind velocity forecasts near Earth. All uncertain parameters315

in the model chain are mainly non-physical. We identified a total of eleven uncertain con-316

tinuous parameters: one parameter in PFSS (source surface height), eight parameters in317

WSA (numerical parameters), and two parameters in HUX (acceleration parameters). Ta-318

ble 1 lists the uncertain input parameters and their corresponding prior densities. We set319

all prior densities to be uniform with reasonable ranges determined in previous parametric320

studies by Lee et al. (2011, §2), Arden et al. (2014, §2.5), Meadors et al. (2020, Eq. 9),321

Kumar and Srivastava (2022, Table 1), and Riley et al. (2015, Table 1).322

The source surface radial height rSS in the PFSS model has intrinsic uncertainties323

since, in reality, it is non-spherical and is a function of space and time. Lowering the source324

surface results in more coronal holes, open flux, and strong curvature in the heliospheric325

current sheet, whereas raising the source surface height results in the opposite effect. Riley326

et al. (2006) suggested avoiding the strict constraint of a spherical source surface by a327

detailed comparison of PFSS to MHD models, and Kruse et al. (2020) altered the PFSS328

model to employ an oblate or prolate elliptical source surface. Arden et al. (2014) show329

that the source surface has a “breathing” effect of which the canonical 2.5RS source surface,330

originally suggested by Altschuler and Newkirk (1969), matches measured interplanetary331

magnetic field (IMF) open flux near Earth during solar maximum, yet extends up to 4RS332

during solar minimum of solar cycle 23 and the start of cycle 24. A similar study by Lee333

et al. (2011) found that setting the source surface to 1.8RS matched best the IMF strength334

during the minimum of solar cycle 23. The optimal source surface heights determined335

in Arden et al. (2014) and Lee et al. (2011) do not agree and further emphasize the need336

for additional numerical investigation. Additionally, Lee et al. (2011, Figure 14) and Nikolić337

(2019, Figure 3) compared the PFSS coronal holes to observed extreme ultraviolet synoptic338

images, their results suggest 1.5 − 1.8RS for the source surface during CR 2060. Similar339

to our study, Meadors et al. (2020) also considers the source surface as an uncertain input340

parameter and learns its density via particle filtering and WIND spacecraft observations.341

Based on Lee et al. (2011, §2), Arden et al. (2014, §2.5) and Meadors et al. (2020, Eq. 9),342

we allow the source surface to vary from 1.5RS to 4RS.343

The eight numerical parameters of the WSA model, v0, v1, α, β, γ, δ, w, ψ, similar to344

the source surface, cannot be directly measured and are usually adjusted for different ob-345

servatories, e.g. Wilcox solar observatories and GONG (Riley et al., 2015). Additionally,346

Riley et al. (2015) and Kumar and Srivastava (2022) showed that the optimal parameter347

can vary greatly from one CR to the next. It is, therefore, important to understand the348

uncertainties in the WSA parameters and their impact on predicted solar wind speed near349

Earth. We set the eight parameter ranges based on previous parametric studies by Riley et350

al. (2015, Table 1) and Kumar and Srivastava (2022, Table 1).351

–9–



manuscript submitted to Space Weather

Table 1. The eleven uncertain continuous parameters in the PFSS→WSA→HUX model chain

are modeled with uniform priors with physically meaningful ranges taken from previous parametric

studies by Lee et al. (2011, §2), Arden et al. (2014, §2.5), Meadors et al. (2020, Eq. 9), Kumar and

Srivastava (2022, Table 1), and Riley et al. (2015, Table 1).

Parameter Model Description Prior Range Nominal Value

rSS [RS] PFSS source surface height [1.5, 4] 2.5

v0 [kms ] WSA minimum velocity [200, 400] 250

v1 [kms ] WSA maximum velocity [550, 950] 750

α WSA numerical parameter [0.05, 0.5] 0.1

β WSA numerical parameter [1, 1.75] 1

w [rad] WSA numerical parameter [0.01, 0.4] 0.02

γ WSA numerical parameter [0.06, 0.9] 0.9

δ WSA numerical parameter [1, 5] 1.75

ψ WSA numerical parameter [3, 4] 3

αacc HUX acceleration factor [0, 0.5] 0.15

rh [RS] HUX
radial location at which
the acceleration ends [30, 60] 50

The HUX model has two free parameters αacc and rh in the acceleration boost term,352

see Eq. (4). Riley and Lionello (2011) suggest setting αacc = 0.15 and rh = 50RS. A353

recent study by Riley and Issan (2021) compared HUX to three-dimensional MHD velocity354

predictions and found the optimal αacc and rh via nonlinear least-squares optimization for a355

few CRs spanning from CR 2029 to CR 2231. They found that the average optimal αacc and356

rh are 0.16 and 52.6RS , respectively. Riley and Issan (2021) took a frequentist approach357

to find the optimal HUX parameters. In this study, we formulate the inference problem358

using the Bayesian approach, which provides a complete picture of parametric uncertainty359

in the form of a non-parametric posterior density. From this, one can compute any relevant360

estimates, such as the MAP, mode, etc. We allow the two HUX parameters to vary based361

on physically reasonable ranges specified in Table 1.362

363

3.2 Sobol’ Indices364

To introduce the notion of global sensitivity indices, let (Ω,F ,P) be a probability space365

with sample space Ω, σ-algebra F , and the probability measure P, where X : Ω → X is a366

random vector with its entries being independent random variables Xi for i = 1, . . . d. We367

denote with x = X(ω) a sample (realization) of the random vectorX for a given event ω ∈ Ω.368

From the independence assumption, the joint probability density function (pdf) π(x) is the369

product of the marginals, i.e. π(x) = π1(x1)π2(x2) · · ·πd(xd). We consider a generic model370

f : X → Y that maps a d-dimensional input parameter x = [x1, x2, . . . , xd]
⊤ ∈ X ⊆ Rd371

to a scalar QoI y ∈ Y ⊆ R. We assume that f is square-integrable with respect to π,372

such that the expectation (mean) E[f(X)] =
∫
Rd f(x)π(x)dx and variance Var[f(X)] =373 ∫

Rd (f(x)− E[f(x)])2 π(x)dx of the QoI are both finite.374
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Definition 1 (Sobol’ Indices) The first-order Sobol’ sensitivity indices measure the375

main variance contribution due to the ith random input parameter, such that376

Si :=
VarXi [EX∼i(f(X)|Xi)]

Var[f(X)]
, i = 1, . . . , d, (5)377

where VarXi
denotes the variance with respect to only the Xi random input parameter, Var378

without subscript denotes variance involving all parameters, and X∼i denotes all random379

input parameters but Xi. The second-order Sobol’ sensitivity indices measure the secondary380

variance contribution due to the interaction of the ith and jth parameters (where i ̸= j),381

such that382

Sij :=
VarXi,Xj [EX∼i,j (f(X)|Xi, Xj)]

Var[f(X)]
− Si − Sj .383

The total-order Sobol’ sensitivity indices measure the total variance contributions of the ith384

parameter, such that385

Ti := Si +

d∑
j=1

Sij +H.O.T. = 1− VarX∼i [EXi(f(X)|X∼i)]

Var[f(X)]
=

EX∼i [VarXi(f(X)|X∼i)]

Var[f(X)]
,

(6)

386

where H.O.T. refers to higher-order terms. The first, second, and higher-order indices sum
up to 1, such that

d∑
i=1

Si +

d∑
i=1

d∑
j=2,j>i

Sij + · · ·+ S12...d = 1.

Notice that if the total-order index Ti ≈ 0, then EX∼i
[VarXi

(f(X)|X∼i)] ≈ 0, which,387

by the non-negativity of the variance operator, implies that VarXi
(f(X)|X∼i) ≈ 0. There-388

fore, if Ti ≈ 0, the uncertainty in Xi hardly influences the variance of the QoI, and Xi can389

be deemed as non-influential.390

Sobol’ sensitivity indices can not be computed in closed form except for QoIs that391

are integrable with respect to π (the joint probability of the uncertain parameters X).392

Appendix A shows that the sensitivity indices can be computed analytically for the simple393

Wang-Sheeley model (Wang & Sheeley, 1990). However, the QoIs we consider (like most394

model QoIs arising from simulations of complex systems) are not integrable with respect to395

π. Thus, we need to approximate the indices numerically.396

3.3 Estimating Sobol’ Indices via Monte Carlo Integration397

The first- and total-order Sobol’ sensitivity indices described in Eqns. (5) and (6) can398

be estimated via Monte Carlo (MC) integration, which requires N(d+2) model evaluations,399

where N is the number of independent samples of X and d is the number of uncertain400

parameters. Since each model evaluation is independent of the other, the MC model evalu-401

ations can be easily computed in parallel. The four-step algorithm of Saltelli (2002), which402

is based on Sobol’ (2001) original work, is implemented as follows:403

1. Draw 2N quasi-random samples of the random vector X and store them as404

A =


x
(1)
1 . . . x

(1)
d

...
...

x
(N)
1 . . . x

(N)
d

 ∈ RN×d and B =


x
(N+1)
1 . . . x

(N+1)
d

...
...

x
(2N)
1 . . . x

(2N)
d

 ∈ RN×d,405

where x
(j)
i denotes the ith entry and jth sample of X. Quasi-MC methods gen-406

erate near-random samples that aim to distribute well over the parameter space.407

These sampling strategies usually result in a faster rate of convergence in MC inte-408
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gration. We use Latin hypercube sampling developed by McKay et al. (1979). Other409

common quasi-random low-discrepancy sequences are Sobol’ (Sobol’, 1967) and Hal-410

ton (Halton, 1960).411

2. Define matrices C(i) for i = 1, 2, . . . , d, which are a copy of B except the ith column412

is replaced by A(:, i), the ith column of A, so that413

C(i) =

 | | |
B(:, 1) . . . A(:, i) . . . B(:, d)

| | |

 ∈ RN×d, i = 1, . . . , d.414

3. Evaluate the QoI for each row of the matrices A,B,C(i), denoted as A(j, :), B(j, :),415

C(i)(j, :), i.e.416

y
(j)
A = f(A(j, :)) ∈ R, y

(j)
B = f(B(j, :)) ∈ R and y

(j)

C(i) = f(C(i)(j, :)) ∈ R,417

for j = 1, . . . , N . The evaluation of yA and yB requires 2N model evaluations, whereas418

the evaluation of yC(i) requires d · N model evaluations, which results in a total of419

N(d+ 2) model evaluations.420

4. Estimate using MC integration the first-order Si and total-order Ti sensitivity indices421

for i = 1, . . . , d. We use the unbiased Janon/Monod’s estimator (Janon et al., 2014;422

Monod et al., 2006), such that423

Si ≈
1
N

∑N
j=1 y

(j)
A y

(j)

C(i) −
(

1
N

∑N
j=1 y

(j)
A

)(
1
N

∑N
j=1 y

(j)

C(i)

)
1
N

∑N
j=1

(
y
(j)
A

)2
−
(

1
N

∑N
j=1 y

(j)
A

)2 ,424

Ti ≈ 1−

1
N

∑N
j=1 y

(j)
B y

(j)

C(i) −
(

1
N

∑N
j=1

(
y
(j)
B +y

(j)

C(i)

2

))2

1
2N

∑N
j=1

((
y
(j)
B

)2
+
(
y
(j)

C(i)

)2)
−
(

1
N

∑N
j=1

(
y
(j)
B +y

(j)

C(i)

2

))2 .425

426

The algorithm intuition can be explained as follows. The first-order sensitivity estima-427

tion is based on the product of yA and yC(i) , which multiplies the QoI with input A and the428

QoI with input C(i) where all parameters except Xi have been re-sampled. Intuitively, if Xi429

is influential then yA and yC(i) are correlated and Si is large. We can intuit the estimation430

of the total-order indices Ti in a similar way. The product of yB and yC(i) multiplies the431

QoI with input B and the QoI with input C(i) where we only re-sample Xi. Thus, if Xi is432

influential then yB and yC(i) are not correlated and Ti is large.433

There are many other MC Sobol’ sensitivity indices estimators, see Puy et al. (2022)434

for a comprehensive comparison. Saltelli’s (Saltelli, 2002) and Jansen’s (Jansen, 1999)435

estimators are also commonly used estimators. We compared the three estimators and436

found that Janon/Monod’s estimator resulted in faster convergence for our study.437

3.4 Global Sensitivity Analysis Numerical Results438

We perform global sensitivity analysis using the PFSS→WSA→HUX model chain for439

CR 2048 (September 21st, 2006 to October 18th, 2006), CR 2053 (February 4th, 2007 to440

March 4th, 2007), and CR 2058 (June 21st, 2007 to July 18th, 2007). The three CRs441

occurred during the declining phase of solar cycle 23. The eleven model input parameters442

are listed in Table 1 and are described in Section 3.1. We use N = 104 Latin Hypercube443

samples (McKay et al., 1979) to estimate the Sobol’ sensitivity indices via MC integration444

(Section 3.3), which requires N(d + 2) = 1.3 × 105 model evaluations for each CR. We445

consider two quantities of interest: the RMSE between ACE velocity measurements and the446

model predictions at L1 and longitude-dependent model predictions at L1 (independent of447

ACE observations). The results are discussed in the following subsections.448
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Figure 3. The total-order indices Ti of the RMSE between the model chain and ACE observa-

tions are shown for (a) CR 2048, (b) CR 2053, and (c) CR 2058. The box plot for each index shows

the uncertainty in the index estimate using bootstrapping with N = 3× 103 samples and 100 repli-

cations. The box plots display the range between the first and third quartiles, with a middle line

indicating the median. The whiskers represent the span from the minimum to maximum estimates.

The results show that rSS, ψ, δ, v0, rh, αacc are non-influential as their total-order indices are lower

than 0.05 (shown in dashed black horizontal line).

3.4.1 Sobol’ Indices for RMSE449

The QoI f(X) for which we compute the Sobol’ sensitivity indices is the root mean450

squared error (RMSE) between the model chain solar wind radial velocity prediction at L1451

and ACE at 1-hour cadence observations. Figure 3 shows the total-order indices for CR452

2048, CR 2053, and CR 2058. The total-order indices for all three CRs have the same453

ordering for the five most influential parameters, i.e. β, γ, α, v1, w (listed in descending454

order). The five most influential parameters are all WSA model parameters. The other six455

parameters rSS, ψ, v0, δ, rh, αacc are deemed as non-influential since their total-order indices456

are less than 0.05. We also estimate the uncertainty in the estimated total-order indices by457

using bootstrapping with N = 3× 103 samples and 100 replications. The box plots for each458

index are shown in Figure 3. The uncertainty in the estimated total-order indices does not459

influence the classification between influential and non-influential parameters. The total-460

order indices show that six out of the eleven uncertain parameters are non-influential, and461

subsequently, they hardly contribute to the predicted solar wind radial velocity variability462

at L1. We, therefore, set the six non-influential parameters to their fixed nominal values (see463

Table 1) in the subsequent Bayesian inference, which facilitates a posteriori dimensionality464

reduction and significant computational speed up for performing MCMC.465

Figure 4(a) shows an ensemble of the global sensitivity analysis model evaluations for466

CR 2053. We plot the median and 50% and 95% credible interval of the 1.3 × 105 model467

evaluations used to compute the sensitivity indices (which were constructed via prior density468

samples). A credible interval is an interval within which the ensemble members fall with a469

particular probability. The 95% credible interval shown in Figure 4(a) spans an excessively470

large range and includes non-physical solutions (for example, solar wind radial velocity at471

1800km
s ). This is because the uncertainties in the model chain parameters highly influence472

the solar wind velocity predictions at L1. We aim to reduce such large parametric uncertain-473

ties via Bayesian inference; see Section 4. Figure 4(b) and Figure 4(c) show histograms of474

the RMSE and Pearson correlation coefficient (PCC) between the global sensitivity analysis475

simulations in comparison to ACE observations for CR 2053. The histograms show that the476

RMSE mean is 217.2km
s and the PCC mean is 0.5. Also, the RMSE maximum a posteriori477

(MAP) is 101.5km
s and the PCC MAP is 0.71. By reducing the uncertainty in the model478

parameters, we expect the ensemble to be more accurate.479

3.4.2 Longitude-Dependent Sobol’ Indices480

We define longitude-dependent (or time-dependent) QoIs, which are the solar wind481

radial velocity predictions at L1 at a 1-hour cadence. In contrast to the RMSE indices,482
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Figure 4. (a) Ensemble generated from prior samples of the global sensitivity analysis model

evaluations for CR 2053. The credible interval shows that parametric uncertainty in the model chain

results in very high uncertainty in the solar wind radial velocity predictions at L1. A histogram of

the ensemble RMSE and PCC are shown in (b) and (c), respectively.

defined in Subsection 3.4.1, the longitude-dependent QoIs are independent of ACE obser-483

vations. Figure 5 presents the seven largest first-order Si and total-order Ti indices as a484

function of Carrington longitude for CR 2048, CR 2053, and CR 2058. We do not plot the485

first- and total-order indices of ψ, δ, αacc, rh since their maximum indices (in longitude) are486

less than 0.05. The five most influential parameters during all three CRs are β, γ, α, v1, w,487

which agree with the RMSE indices results, see Figure 3. The first-order indices are signif-488

icantly smaller than the total-order indices, which indicates that higher-order interactions489

between parameters influence the predicted solar wind velocity variability. Additionally, the490

influence of w, the width over which the solar wind ramps up from low- to high-speed flow at491

coronal-hole boundaries, is mainly around a small longitudinal region. For example, during492

CR 2053, w is only influential from approximately 190◦ to 280◦. We suspect this is because493

ACE’s footprints lie closer to the center of a low-latitude coronal hole at approximately 250◦494

to 310◦, see Figure 2(d). The large distance to coronal hole boundary d corresponds to high495

solar wind speed in this region, which is then advected to 190◦ to 280◦ at L1 (at 1
v speed,496

see Eq. (3)). Thus, w seems to be influential only in regions where d, the distance to the497

coronal hole boundary, in the WSA relation is large.498

4 Bayesian Inference via Markov Chain Monte Carlo Sampling499

After identifying the set of influential parameters via variance-based global sensitiv-500

ity analysis, our goal is to learn the uncertainties of such influential parameters, which we501

achieve through Bayesian inference. Bayesian parameter estimation leverages Bayes’ theo-502

rem to learn the pdf of uncertain model parameters given observational data. Samples from503

such pdfs can be directly obtained using Markov chain Monte Carlo (MCMC) algorithms.504

These samples are then used to generate an ensemble prediction to quantify and reduce505

the effect of the parametric uncertainty on the QoI. The following subsections introduce506

Bayesian inference and MCMC sampling.507
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Figure 5. Longitude-dependent (top) first-order Si and (bottom) total-order indices Ti for (a)

CR 2048, (b) CR 2053, and (c) CR 2058. We do not plot the indices of ψ, δ, αacc, rh since their max-

imum first-order and total-order indices (in longitude) are less than 0.05. The parameters β, γ, α, v1

are the most influential across all longitudinal locations, whereas w seems to be more longitudinal

(or time) dependent. For example, during CR 2048, w is only influential from approximately 280◦

to 360◦ in longitude.

4.1 Bayesian Parameter Estimation508

The philosophy behind Bayesian statistics is that the model parameters are random509

variables with an unknown pdf. This differs from the frequentist perspective, where the510

parameters are assumed deterministic but unknown. In the Bayesian setting, we seek to511

estimate the pdf of model influential parameters X given a parameter-dependent QoI f(·)512

(e.g. solar wind radial velocity at L1) and measurements of the QoI z = {z1, z2, . . . , zn}513

(e.g. ACE radial velocity measurements) taken at time instances t1 < t2 < . . . < tn (e.g.,514

at a 1-hour cadence). In other words, we aim to estimate the conditional pdf π(x|z), which515

is referred to as the posterior density or simply posterior. The posterior density can be516

evaluated via Bayes’ rule:517

π(x|z) = π(z|x)π(x)
π(z)

=
π(z|x)π(x)∫

Rd π(z|x)π(x)dx
∝ π(z|x)π(x),518

where π(x) is the prior, π(z|x) is the likelihood, and π(z) is the evidence (also referred519

to as the marginal likelihood or normalizing constant). The parameters x are samples520

of the random variable X, and the observations zi are samples of the random variable521

Zi. Most often, the evidence can not be properly defined, so we estimate the posterior522

up to a normalizing constant. The posterior density can be continuously refined as more523

measurements are included.524

The prior density π(x) is chosen based on physically meaningful ranges and previous525

studies in the literature; see Table 1 for the list of the uniform prior densities used in this526

study. Generally, the priors are not restricted to uniform densities and may weigh favorable527

values more heavily. However, if prior knowledge is of questionable accuracy, it is better to528

use non-informative priors (Smith, 2013, §8.1).529

We assume that the QoI of the model and measurements are related via530

Zi = f(X; ti) + ϵi, i = 1, . . . , n, (7)531

–15–



manuscript submitted to Space Weather

where Zi is a random variable representing the measurements at time instance ti, f(X; ti)532

is the QoI at time instance ti and ϵi is a random variable representing the discrepancies533

between the QoI and measurements. Here, we model ϵi as a Gaussian random variable534

with zero mean and standard deviation σ ∈ R+. We note that the model discrepancies and535

measurement noise are modeled as additive and mutually independent of X. Thus, by the536

assumption of Gaussian additive error and independence of measurements, we can write the537

likelihood as538

π(z|x) =
n∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
[zi − f(x; ti)]

2

)
∝ exp

(
− 1

2σ2

n∑
i=1

[zi − f(x; ti)]
2

)
.539

Although we derived an expression for the prior and likelihood densities, we can not directly540

sample from the posterior density since the evidence (or normalizing constant) remains541

unknown. To overcome this issue, MCMC algorithms enable sampling from arbitrary pdfs542

and allow for the unbiased estimation of the posterior density, mean, and variance.543

4.2 Markov Chain Monte Carlo Sampling544

MCMC algorithms generate samples from an arbitrary target pdf (such as posterior545

pdf) by generating a random walk in the parameter space that draws a representative set546

of samples from the target pdf. The random walk is a Markov chain, with the property547

that each sample only depends on the position of the previous sample. MCMC algorithms548

converge to the exact target pdf as the number of samples increases. This convergence549

property is established by the ergodicity property of MCMC, which requires the Markov550

chain to be aperiodic, irreducible, and reversible with respect to the target pdf (Roberts &551

Rosenthal, 2004).552

The first and most frequently used MCMC algorithm is the Metropolis-Hastings al-553

gorithm (Metropolis et al., 1953; Hastings, 1970) developed at Los Alamos National Lab-554

oratory. The Metropolis–Hastings algorithm generates samples from an arbitrary pdf it-555

eratively. The samples are drawn from a proposal density which is chosen a priori and556

depends on the position of the previous sample of the Markov chain. A proposed sample557

is then accepted or rejected with some probability. If accepted, the proposed sample is558

appended to the Markov chain and used to generate the next sample; otherwise, if rejected,559

the proposed sample is discarded, and the previous sample is appended to the Markov chain.560

A common choice of proposal density is the Gaussian distribution centered at the previous561

sample location.562

4.2.1 Affine Invariant Ensemble Sampler (AIES)563

In this study, we use the affine invariant ensemble sampler (AIES) developed by (Goodman564

& Weare, 2010), which is an adaptive ensemble extension of the original Metropolis-Hastings565

sampler (Metropolis et al., 1953; Hastings, 1970). Instead of evolving a single Markov chain,566

AIES evolves an ensemble of chains, called walkers, in parameter space. AIES is invari-567

ant under an affine transformation of the parameter space, which is particularly appealing568

for problems where the parameter scales vary by several orders of magnitude, i.e. highly569

anisotropic target pdfs. AIES can transform anisotropic pdfs to isotropic pdfs with an affine570

transformation, which is much easier to sample from. Additionally, other MCMC samplers571

typically require tuning many sampler hyperparameters; for example, Metropolis-Hastings572

has d2 hyperparameters parameters where d is the number of uncertain parameters (entries573

of the Gaussian proposal distribution covariance). Such tuning is often infeasible when the574

posterior evaluations are computationally demanding, as is the case in many space weather575

applications. AIES addresses this challenge by having only two hyperparameters in the576

stretch move (Goodman & Weare, 2010). One hyperparameter in AIES is the number of577

walkers L, which is required to be greater than double the number of uncertain parameters578
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L ≥ 2d + 1, and the other hyperparameter denoted by a is related to the stretch move,579

which we explain next.580

The AIES stretch move is described as follows. Consider an ensemble of walkers581

{Υ1(ℓ), . . . ,ΥL(ℓ)}, where ℓ = 1, . . . ,M is the iteration index and L is the number of582

walkers. The proposed next step for an arbitrary walker Υk(ℓ) is given by583

Υk(ℓ+ 1) = Υj(ℓ) + S (Υk(ℓ)−Υj(ℓ))584

where Υj(ℓ) is a complementary walker in the ensemble chosen at random (where j ̸= k),585

S is a random variable with density g(s) that satisfies g
(
1
s

)
= sg (s). An example of such586

a density, proposed by Goodman and Weare (2010) and implemented in the emcee Python587

package (Foreman-Mackey et al., 2013), is588

g(s) =

{ 1√
s

s ∈ [ 1a , a]

0 otherwise,
(8)589

where a > 1 can be adjusted to improve the sampler’s performance and is typically set to590

a = 2. Thus, the proposed next step for a given walker lies on a straight line connecting591

the walker’s current location and another random walker in the ensemble. The acceptance592

probability of the next proposed step is593

P (Υk(ℓ+ 1)|Υk(ℓ)) = min

(
1, Sd−1π(Υk(ℓ+ 1))

π(Υk(ℓ))

)
,594

where S is the random variable with density defined in Eq. (8), d is the number of uncertain595

parameters, and π is the target pdf. If the proposal is rejected, then Υk(ℓ+ 1) = Υk(ℓ).596

In this study, we use the Python implementation of AIES, i.e. the emcee package597

(version 3.1.4) developed by Foreman-Mackey et al. (2013), with the stretch move, a = 2,598

and L = 250 walkers. We initialize the walkers by randomly sampling a Gaussian density599

with the mean set to the prior mean and standard deviation set to 10−2 times the prior600

range.601

4.2.2 Markov Chain Monte Carlo Burn-in602

MCMC burn-in refers to the period when a Markov chain exhibits initial transient603

behavior unrepresentative of the target pdf. It is therefore recommended to disregard the604

first few iterations at the beginning of the Markov chain (Smith, 2013, §8.4). Burn-in is605

typically an artifact of selecting a low-probability initial condition and can also be thought of606

as a way to find a better initial condition. The burn-in length can be chosen by detecting the607

iteration where the target pdf evaluations start to plateau, which can be assessed visually608

(or statistically) by monitoring the likelihood evaluations and the marginal paths associated609

with each parameter as a function of MCMC iterations. We found that after 103 iterations,610

the likelihood evaluations began to plateau, meaning the Markov chains entered a region611

of high probability. We, therefore, disregard the first 103 samples in each walker, which we612

consider as the burn-in period.613

4.2.3 Markov Chain Monte Carlo Convergence Assessment614

Estimating the mean of a Markov chain (or an ensemble of Markov chains) is chal-615

lenging since its samples are not independent and identically distributed (i.i.d.). This is616

because—by definition—each sample depends on the previous sample in a Markov chain.617

Therefore, samples drawn close to each other tend to be correlated. The MC mean estimator618

of an ensemble of Markov chains with L walkers and M iterations is an unbiased estimator,619

–17–



manuscript submitted to Space Weather

i.e.620

µ̂ =
1

M

M∑
ℓ=1

 1

L

L∑
j=1

Υj(ℓ)

 with Var[µ̂] =
τ

LM
Var[Υ],621

where τ is the integrated autocorrelation time (IAT)622

τ =

∞∑
ℓ=−∞

C(ℓ)

C(0)
= 1 + 2

∞∑
ℓ=1

C(ℓ)

C(0)
623

and C(ℓ) = limh→∞ Cov[Υ(ℓ + h),Υ(h)] is the lag-ℓ autocovariance function. In practice,624

the IAT and the autocovariance function are estimated using a finite Markov chain of length625

M , see Foreman-Mackey et al. (2013) for a more detailed discussion. The larger the IAT,626

the more samples are needed to converge to the target pdf. In this study, we run the chains627

until their length M is at least 50 times the maximum IAT (which is computed for each628

parameter) as suggested by Foreman-Mackey et al. (2013) and compute the estimated IAT629

using the Python emcee package (Foreman-Mackey et al., 2013).630

4.3 Markov Chain Monte Carlo Numerical Results631

We use the AIES sampler (described in Section 4.2.1) to uncover the posterior density632

of the five most influential parameters β, γ, α, v1, w, for CR 2048 to CR 2058 (spanning633

from September 21st, 2006 to July 18th, 2007). We exclude CR 2051 since, during this634

time period, three CMEs reached L1, and the PFSS→WSA→HUX model chain does not635

account for transient events such as CMEs. We assume in Eq. (7) that the model chain636

solar wind radial velocity predictions at L1 and ACE measurements (at 1-hour cadence) are637

related via Gaussian error with mean zero and standard deviation σ = 80km
s . The standard638

deviation is chosen from previous parametric studies by Reiss et al. (2020, Table 1) and639

Kumar and Srivastava (2022, Figure 8). The posteriors are approximated with 2.6 × 104640

MCMC iterations, 103 iterations excluded for burn-in, and L = 250 walkers, resulting in641

M = 6.25× 106 MCMC posterior samples per CR.642

4.3.1 Markov Chain Monte Carlo Posterior Densities643

The posterior densities for CR 2052 and CR 2053 in one- and two-dimensional pro-644

jected parameter space are shown in Figure 6. It is apparent that the marginal posterior645

of v1 is uniformly distributed (resembling the prior density in Table 1), meaning that v1646

is highly uncertain and can take any value in the prior range with equal probability. This647

means that the likelihood function is flat in the v1 direction, i.e. v1 may not be identifiable648

from ACE observations. The corner plot shows that β and v1 are negatively correlated.649

Note that the marginal posteriors of parameters α and β have little to no support overlap650

in CR 2052 and CR 2053. This suggests that such parameters are difficult to predict in651

advance.652

The marginal posterior densities for CR 2048 to CR 2058 (excluding CR 2051) are653

shown in Figure 7, which indicates that the posterior densities evolve from one CR to the654

next in a non-predictable fashion. For example, the marginalized posterior of α has relatively655

small support that varies randomly from one CR to the next. We also notice that the MAP,656

shown in dashed vertical lines, changes greatly from one CR to the next, which agrees with657

the previous parametric studies by Kumar and Srivastava (2022) and Riley et al. (2015).658

Since the posterior densities vary greatly from one CR to the next, it is not possible to use659

the posterior samples from a given CR to create an accurate ensemble prediction of the next660

CR (in contrast to the adaptive-WSA method proposed by Reiss et al. (2020)). If the model661

chain is used for re-analysis studies, we recommend using the proposed UQ framework to662

generate accurate ensembles. The ensembles generated from the MCMC posterior samples663

will be highly accurate as the parameter posteriors are learned using observational data at L1664
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Figure 6. A corner plot of the posterior density of the five most influential parameters

v1, α, β, w, γ during CR 2052 (blue) and CR 2053 (red). The corner plot shows the MCMC samples

in two-dimensional and one-dimensional projected parameter space. The dashed line shows the

estimated MAP of each parameter.

and will also be able to successfully capture the parametric uncertainty on the predictions.665

The next subsection discusses our ensemble prediction numerical results.666

4.3.2 Ensemble Prediction667

We generate an ensemble prediction based on varying model parameters using MCMC668

posterior samples. The ensemble members are then used to compute ensemble statistics,669

such as the ensemble median and prediction interval. The prediction interval accounts for670

both the propagated parametric uncertainty and assumed model discrepancy errors (Smith,671

2013, §9.4.3). The (1−α)×100% prediction interval for a fixed but unknown new observation672

Zi at time instance ti is the interval [Zl, Zu] such that673

P(Zl ≤ Zi ≤ Zu) = 1− α,674

where Zi is independent of the data used to construct the random variables Zl and Zu (Smith,675

2013, §9.4.1). We estimate the interval [Zl, Zu] via computing the α/2th and 1 − α/2th676

quantiles of the set of ensemble members with added Gaussian model discrepancy errors.677

Figure 8(a) and Figure 9(a) show the median and 50% and 95% prediction interval of the678

5 × 103 ensemble members during CR 2053 and CR 2052, respectively. The ensemble is679

generated using posterior samples trained separately on each CR. Figure 8(b) and Fig-680
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Figure 7. The marginal posterior densities of the five most influential parameters v1, α, β, w, γ

from CR 2048 to CR 2058 (excluding CR 2051). The dashed line shows the estimated MAP of each

parameter. The marginal posteriors change substantially from one CR to the next.
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Figure 8. (a) Ensemble prediction with 5 × 103 ensemble members generated from posterior

samples for CR 2053. The figure shows the ensemble statistics (median and prediction intervals)

and ACE observations. Figures (b) and (c) show the RMSE and PCC of the ensemble in comparison

to ACE observations, respectively.

ure 9(b) show a histogram of the RMSE of the ensemble members for each CR. Figure 8(c)681

and Figure 9(c) show a histogram of the PCC of the ensemble members for each CR. By682

comparing Figures 4(b/c) to Figures 8(b/c), it is apparent that the ensemble generated683

from the posterior density is able to substantially reduce the parametric uncertainty and684

improve the accuracy of the ensemble prediction. Specifically, the mean RMSE is reduced685

from 217.2km
s to 55.7km

s , and the mean PCC is increased from 0.5 to 0.88. The results show686

that the proposed UQ framework is able to successfully reduce the uncertainty of the model687

parameters on the solar wind radial velocity prediction and should be utilized in further688

re-analysis studies.689

5 Conclusions and Discussion690

The PFSS→WSA→HUX model chain is commonly used to predict the ambient solar691

wind radial velocity near Earth. The model chain has eleven uncertain input parameters692

that can not be directly measured since they are mainly non-physical. We, therefore, propose693

a comprehensive UQ framework for quantifying and reducing the parametric uncertainty of694

the model chain. The proposed framework utilizes variance-based global sensitivity analysis695

to reduce the dimensionality of the parameter space, followed by Bayesian inference to learn696

the full parameter pdfs via MCMC. We apply the UQ framework on a time period spanning697

from CR 2048 to CR 2058 during the declining phase of solar cycle 23. The sensitivity698

analysis results show that β, γ, α, v1, w are the five most influential parameters in the model699

chain. These parameters are all WSA parameters. We learned the posterior densities of the700

five most influential parameters using AIES (an MCMC sampler). The posterior samples701

are then used to generate an ensemble prediction and quantify the parametric uncertainty in702

the predicted solar wind velocity. We found that the ensemble results are able to accurately703

quantify the uncertainty in the predictions and thus suggest the proposed UQ framework704

should be utilized in further re-analysis studies employing the model chain.705

The Bayesian inference numerical results also show that the posterior densities vary706

randomly from one CR to the next. This is mainly due to the following reasons: (1) the707
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Figure 9. Same as Figure 8 for CR 2052.

model chain is not robust to the choice of WSA numerical parameters, and (2) the WSA708

model is overparameterized (i.e. needs to be reformulated for forecasting purposes). The709

reformulation of the WSA model will involve searching for a parsimonious model that is710

robust to its choice of parameters. Candidates of models that balance the trade-off between711

accuracy and parsimony can be found using sparse regression techniques with different712

regularization (Brunton et al., 2016). The optimal model can later be selected via the713

Bayesian or Akaike information criterion (Schwarz, 1978; Akaike, 1974). The substantial714

and unpredictable change in the posterior densities from one CR to the next questions the715

applicability of the model chain in operational real-time forecasting.716

We suspect the drastic changes in the posterior densities are also due to the parameters717

trying to overcompensate the intrinsic and “hard-wired” limitations of each of the models718

(i.e. biases due to epistemic uncertainties). We next discuss such limitations. First, we719

do not have an accurate estimate of the photospheric fields (Poduval et al., 2020). There720

are differences between magnetograms from different observatories. There are also different721

saturation levels and noise (Riley et al., 2014). Second, the PFSS solutions rely on the722

existence of a spherical source surface, which does not exist (Riley et al., 2006). The723

sensitivity analysis results show that the choice of the source surface height is non-influential724

on the predicted solar wind velocity at L1, yet in the analysis we assume it exists. Also,725

the fields are not potential, particularly around active regions. Third, the WSA model has726

known inaccuracies, e.g. the expansion factor in the vicinity of pseudostreamers (Riley et727

al., 2015), as well as unknown inaccuracies. Fourth, the HUX model assumes only radial728

propagation and neglects external forces and the pressure gradient (Riley & Lionello, 2011).729

Fifth, time dependence is not included in synoptic maps and all throughout the model730

chain. Thus, the physics simplifications in the model chain introduce model discrepancies731

between the spacecraft observations and model predictions. We assume such discrepancies732

are Gaussian distributed in the Bayesian inference setup. This is generally a reasonable733

assumption, which is necessary in order to formulate the likelihood in the Bayesian setting,734

yet it is important to point out that the model chain discrepancies are structured and are735

not i.i.d.736

Future studies can incorporate the proposed UQ framework for learning the posterior737

densities of uncertain parameters for various (and more complex) space weather models,738

for example, the WSA-Enlil model (Parsons et al., 2011). It will be interesting to ap-739
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Table A1. The analytically computed Sobol’ sensitivity indices of the WS model for fp =

10, 102, 104. The results show that α is the most influential parameter (in comparison to v0 and

v1). Additionally, the indices indicate that v0 is more influential when fp is high and that v1 is

more influential when fp is low.

fp Sv0 Sv1 Sα Sv0,v1 Sv0,α Sv1,α Tv0 Tv1 Tα

10 0.061 0.383 0.512 0 0.008 0.034 0.07 0.417 0.554

102 0.131 0.133 0.679 0 0.011 0.045 0.143 0.178 0.735

104 0.289 0.036 0.623 0 0.01 0.041 0.3 0.077 0.674

ply the proposed UQ framework to WSA-Enlil to make sure the WSA posteriors do not740

change drastically in time and verify that the WSA-Enlil model is reliable for real-time fore-741

casting. Depending on the computational resources and computational complexity of the742

model at hand, one might need to incorporate surrogate models (computationally efficient743

approximate models), such as projection-based reduced-order models (Benner et al., 2015;744

Issan & Kramer, 2022) and interpolatory surrogates (Xiu & Karniadakis, 2002), to compute745

Sobol’ sensitivity indices and run MCMC. If the model is computationally efficient (i.e. or-746

der of seconds/minutes) we recommend using the MC methods presented in this study as747

they are unbiased estimators. Other unbiased estimators include multi-fidelity estimators,748

see Peherstorfer et al. (2018) for a detailed survey.749

Appendix A Global Sensitivity Analysis of the Wang-Sheeley Model:750

Analytic Results751

The Wang-Sheeley (WS) semi-empirical model developed by Wang and Sheeley (1990)752

is based on the inverse relationship between the solar wind speed and the magnetic field753

expansion factor fp (defined in Eq. (2)). The WS model relation is given by754

vws(fp, v0, v1, α) = v0 +
v1 − v0
fαp

755

where v0 and v1 correspond to the minimum and maximum solar wind velocities, fp is the756

magnetic field expansion factor, and α is an additional numerical parameter.757

The Sobol’ sensitivity indices described in Eqns. (5)–(6) for the WS model parameters758

v0, v1, α can be computed analytically (symbolically) if we assume the model parameters are759

independent and have uniform priors. In contrast, for the PFSS, WSA, and HUXmodels, the760

sensitivity indices can only be approximated numerically via MC integration, see Section 3.3.761

We set the priors to be uniform with ranges listed in Table 1. Table A1 shows the Sobol’762

sensitivity indices of the three model parameters v0, v1, α for fp = 10, 102, 104. Larger fp763

corresponds to slower solar wind velocity, in which case v0 becomes more influential, and764

v1 becomes less influential. The second-order indices show that v0 and v1 do not interact765

and that α’s interaction with v0 and v1 is minor compared to the first-order indices. By the766

first- and total-order indices of α, we can conclude that it is the most influential parameter767

independent of fp (in comparison to v0 and v1) which agrees with the ordering in the WSA768

model, see Section 3.4.769

Acronyms770

UQ Uncertainty Quantification771

QoI Quantity of Interest772

MAP Maximum a posteriori773
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MCMC Markov chain Monte Carlo774

PFSS Potential-field Source-surface775

WSA Wang-Sheeley-Arge776

HUX Heliospheric Upwind eXtrapolation777

GONG Global Oscillations Network Group778

ACE Advanced Composition Explorer779

RMSE Root mean squared error780

CR Carrington rotation781

AIES Affine Invariant Ensemble Sampler782

MC Monte Carlo783

pdf probability density function784

Open Research785

The public repository https://github.com/opaliss/Parameter Estimation Solar786

Wind contains a collection of Jupyter notebooks in Python 3.9 containing the code and data787

used in this study. The GONG synoptic maps are retrieved from https://gong.nso.edu/788

data/magmap/crmap.html and the ACE spacecraft observations can be found at https://789

cdaweb.gsfc.nasa.gov/index.html/.790
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. . . Kóta, J. (2005). Space weather modeling framework: A new tool for the space986

–27–



manuscript submitted to Space Weather

science community. Journal of Geophysical Research: Space Physics, 110 (A12). doi:987

https://doi.org/10.1029/2005JA011126988

van der Holst, B., Sokolov, I. V., Meng, X., Jin, M., W. B. Manchester, I., Tóth, G., &989
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Abstract16

The ambient solar wind plays a significant role in propagating interplanetary coronal mass17

ejections and is an important driver of space weather geomagnetic storms. A computation-18

ally efficient and widely used method to predict the ambient solar wind radial velocity near19

Earth involves coupling three models: Potential Field Source Surface, Wang-Sheeley-Arge20

(WSA), and Heliospheric Upwind eXtrapolation. However, the model chain has eleven un-21

certain parameters that are mainly non-physical due to empirical relations and simplified22

physics assumptions. We, therefore, propose a comprehensive uncertainty quantification23

(UQ) framework that is able to successfully quantify and reduce parametric uncertainties in24

the model chain. The UQ framework utilizes variance-based global sensitivity analysis fol-25

lowed by Bayesian inference via Markov chain Monte Carlo to learn the posterior densities of26

the most influential parameters. The sensitivity analysis results indicate that the five most27

influential parameters are all WSA parameters. Additionally, we show that the posterior28

densities of such influential parameters vary greatly from one Carrington rotation to the29

next. The influential parameters are trying to overcompensate for the missing physics in30

the model chain, highlighting the need to enhance the robustness of the model chain to the31

choice of WSA parameters. The ensemble predictions generated from the learned posterior32

densities significantly reduce the uncertainty in solar wind velocity predictions near Earth.33

Plain Language Summary34

Predicting the ambient solar wind is an important component of space weather fore-35

casting. We use advanced statistical techniques to analyze the important parameters in a36

widely-used ambient solar wind model. The numerical results show that five specific param-37

eters have the largest impact on solar wind model predictions near Earth and that these38

parameters can fluctuate considerably over time. The statistical results give us a deeper un-39

derstanding of the limitations and potential improvements for enhancing the accuracy and40

reliability of ambient solar wind forecasts. Such an understanding is essential for mitigating41

the potential impacts of severe geomagnetic storms.42

1 Introduction43

The ambient (or background) solar wind is the long-lived large-scale plasma that em-44

anates from the Sun and travels into interplanetary space, which excludes interplanetary45

coronal mass ejections and other transient events. It is crucial to accurately predict the am-46

bient solar wind since interplanetary coronal mass ejections, the primary source of extreme47

space weather events, are modeled as perturbations to the ambient solar wind (Odstrcil &48

Pizzo, 1999). Additionally, corotating interaction regions between fast and slow ambient49

solar wind streams are drivers of moderate space weather events (Riley et al., 2012). In50

fact, corotating interaction regions have been found to contribute to 70% of geomagnetic51

activity at Earth during solar minimum and about 30% during solar maximum (Richardson52

et al., 2000). Thus, generating reliable predictions of the ambient solar wind is essential53

for improving space weather prediction capabilities and for accurately assessing the risk of54

space weather events.55

State-of-the-art ambient solar wind models couple two regions: the corona and helio-56

sphere. The coronal domain spans from the surface of the Sun (1RS, i.e., one solar radius)57

up to the coronal outer boundary, which is typically set to a distance between 2.5RS to 30RS58

depending on the model that is used. The solution at the coronal outer boundary is extrap-59

olated into the heliospheric domain up to Earth’s orbit and beyond. High-fidelity simula-60

tions of the ambient solar wind are constructed via time-dependent magnetohydrodynamic61

(MHD) models, such as the Magnetohydrodynamics Algorithm outside a Sphere (Linker et62

al., 1999; Mikić et al., 2018; Riley et al., 2019) and the Space Weather Modeling Frame-63

work (Toth et al., 2005; van der Holst et al., 2014). Such MHD models simulate the ambient64

solar wind by relaxing the coronal and heliospheric simulations to a steady-state solution,65
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requiring high computational costs. In an effort to reduce simulation time (especially in66

operational settings), the space weather community commonly uses lower-fidelity models67

based on reduced physics and empirical relations. A well-established and widely-used chain68

of lower-fidelity models couples the Potential Field Source Surface (PFSS) (Altschuler &69

Newkirk, 1969; Schatten et al., 1969), Wang-Sheeley-Arge (WSA) (Arge et al., 2004), and70

Heliospheric Upwind eXtrapolation (HUX) (Riley & Lionello, 2011; Riley & Issan, 2021;71

Issan & Riley, 2022) models.72

There has been a continuous effort in the space weather community to improve am-73

bient solar wind models by comparing the model predictions to in-situ spacecraft obser-74

vations (Reiss et al., 2022). Such in-situ observations can also be leveraged to reduce75

prediction uncertainties stemming from initial conditions, boundary conditions, fitting pa-76

rameters, numerical errors, measurement noise, etc. There are two types of prediction un-77

certainty. Aleatoric uncertainty results from intrinsic randomness or variability associated78

with parameters, mesh resolution, initial conditions, etc; epistemic uncertainty results from79

a lack of complete knowledge of physics and model inadequacies. Here, we study aleatoric80

uncertainty, specifically parametric uncertainty, in the PFSS→WSA→HUX model chain.81

We rigorously examine the uncertainty and sensitivity of eleven mainly non-physical model82

parameters, such as the source surface height and WSA numerical parameters, and their im-83

pact on the solar wind radial velocity predictions near Earth. Quantifying and reducing the84

parametric uncertainties in the ambient solar wind models is critical for making informed85

decisions in operational settings.86

As a core contribution of this work, we present a comprehensive uncertainty quantifi-87

cation (UQ) framework to advance the use of rigorous UQ techniques in space weather. The88

proposed UQ framework is described in the following steps. First, we perform variance-based89

global sensitivity analysis to identify which parameters influence the solar wind predictions90

near Earth the most. Subsequently, parameters that hardly contribute to the prediction91

variability are set to their fixed nominal values, which facilitates a posteriori parameter di-92

mensionality reduction. Then, we apply Bayesian inference to uncover the posterior density93

of the influential parameters, which is the conditional probability of the influential param-94

eters given observational data. Lastly, we sample from the learned posterior densities and95

generate an ensemble of the ambient solar wind predictions near Earth, which demonstrates96

that the UQ framework reduces the parametric uncertainty in the predicted solar wind97

velocity.98

Sensitivity analysis quantifies the contribution of parametric uncertainty on the vari-99

ability of a quantity of interest (QoI). Common methods can be classified into two groups:100

local and global. Local sensitivity analysis methods vary the parameters about a nominal101

value by computing local partial derivatives, whereas global sensitivity analysis methods102

account for variance effects in the entire parameter space (Saltelli et al., 2008). We use103

variance-based global sensitivity analysis by estimating Sobol’ sensitivity indices (Sobol’,104

2001). A sensitivity analysis study by Jivani et al. (2022) estimated the Sobol’ sensitivity105

indices associated with uncertain parameters in the MHD Alfvén Wave Solar atmosphere106

Model (van der Holst et al., 2014). A recent study by Reiss et al. (2020) used Morris107

screening (Morris, 1991), a hybrid local/global sensitivity analysis method, to identify the108

most influential parameters in the WSA model. The Morris screening method averages local109

derivative approximations to provide global sensitivity measures (Smith, 2013, §15.2). It is110

typically used when variance-based methods are prohibitively expensive since it can only111

rank the parameters based on their importance but, unlike variance-based methods, does112

not quantify the relative contributions of each parameter to the QoI variance. Our study113

differs from Reiss et al. (2020) since we consider parametric uncertainty stemming not only114

from WSA but also from PFSS and HUX. Additionally, our study differs from Reiss et al.115

(2020) since we compute full global sensitivity information.116

Parameter estimation techniques are typically divided into two approaches: frequen-117

tist and Bayesian. The frequentist approach seeks to find a single ’optimal’ value of each118
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Figure 1. A flowchart of the models and observational data utilized in this study. The GONG

and ACE images are adapted from NSO3 and NASA4, respectively.

parameter by solving an optimization problem. For example, maximum likelihood estima-119

tion (Milton & Arnold, 2003), such that the optimal values of the parameters minimize120

the difference between the model prediction and observational data. Riley et al. (2015),121

Reiss et al. (2020), and Kumar and Srivastava (2022) took a frequentist approach to find122

the optimal parameters in the WSA model. This paper presents a Bayesian approach to123

learning the uncertain parameters in the PFSS→WSA→HUX model chain. The Bayesian124

approach views the parameters as random variables and seeks to learn their posterior den-125

sity. In the Bayesian setting, the solution to the UQ inverse problem is represented by a126

probability density function of the parameters. In stark contrast, the frequentist approach127

yields a point estimate. Thus, the Bayesian approach provides a complete picture of the128

uncertainty associated with the model parameters. Subsequently, relevant point estimates,129

such as the maximum a posteriori (MAP), variance, and mean, can all be computed from130

the posterior density. Here, we use Markov chain Monte Carlo (MCMC) (Metropolis et al.,131

1953; Hastings, 1970) to learn the posterior densities of the most influential parameters. In132

particular, we employ the MCMC affine invariant ensemble sampler (Goodman & Weare,133

2010; Foreman-Mackey et al., 2013), which is robust to different scales in the parameters.134

The main questions we seek to answer via the proposed UQ framework are: (1) How135

does parametric uncertainty in the PFSS→WSA→HUX model chain impact the uncertainty136

in the solar wind velocity predictions near Earth? Can we reduce such uncertainties using137

Bayesian inference methods? (2) What are the most influential parameters in the model138

chain? (3) How do the posterior densities of the influential parameters change over time?139

Is there a clear trend in the posterior evolution? (4) Is the model chain robust to the choice140

of its parameters? Is it reliable enough to be used for real-time operational forecasting?141

This paper is organized as follows. Section 2 describes the models and observational142

data used in this work. Section 3 discusses variance-based global sensitivity analysis, an143

algorithm to compute Sobol’ sensitivity indices via Monte Carlo integration, and numerical144

results. In Section 4 we discuss Bayesian inference via MCMC algorithms and numerical145

results. Section 5 then offers conclusions and an outlook to future work.146

2 Ambient Solar Wind Model Chain and Observational Data147

We consider the coupling of three well-established models: (1) Potential Field Source148

Surface (PFSS), (2) Wang-Sheeley-Arge (WSA), and (3) Heliospheric Upwind eXtrapolation149

(HUX), to predict the ambient solar wind radial velocity near Earth. Reiss et al. (2019,150

2020) and Bailey et al. (2021) use a similar chain of models with the addition of the Schatten151

Current Sheet (SCS) model, developed by Schatten et al. (1969), resulting in the following152

model chain: PFSS→SCS→WSA→HUX. The SCS model is added to correct the PFSS153

radial magnetic field latitudinal variations to match Ulysses’ observations (Wang & Sheeley,154

1995). However, a recent study by Kumar and Srivastava (2022) showed that adding SCS155

to the chain of models did not necessarily improve the accuracy of the solar wind radial156
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Figure 2. An illustration of different components in PFSS→WSA→HUX model chain during

CR 2053. The PFSS radial magnetic field at the lower and upper boundaries is shown in (a) and

(b). The lower boundary condition is obtained from GONG synoptic maps and the extrapolated

upper boundary is shown at the source surface, which is set to rSS = 2.5RS in this example. The

WSA inputs, i.e. the magnetic field expansion factor and coronal hole map, are shown in (c)

and (d). The red (blue) coronal hole areas show the negative inward (positive outward) fields.

Lastly, (e) shows a comparison of the model chain solar wind radial velocity predictions at L1

with ACE in-situ observations. In this example, we set the WSA parameters to v0 = 250 km
s
, v1 =

945 km
s
, α = 0.16, β = 1, γ = 0.6, w = 0.02rad, δ = 1.75, ψ = 3 and the HUX parameters to

αacc = 0.15, rh = 50RS.

velocity predictions at L1 (during 2006-2011). We thus analyze the PFSS→WSA→HUX157

model chain.158

The PFSS model is used to predict the magnetic field in the coronal domain. The159

PFSS magnetic field solution is then used as an input to the WSA relation, which computes160

the solar wind radial velocity at the outer boundary of the coronal domain. The WSA161

results are then set as the initial condition for the HUX model, which extrapolates the162

solar wind radial velocity into the heliospheric domain. Finally, the model chain solar wind163

radial velocity predictions are compared with ACE spacecraft in-situ observations. We164

use synoptic magnetograms from Global Oscillation Network Group (GONG) as the inner165

boundary condition for the PFSS model. A flowchart of the models and data used in this166

study is shown in Figure 1. The subsequent sections explain the different components of167

the model chain and observational data in further detail.168

2.1 Potential Field Source Surface (PFSS) Model169

The PFSS model proposed by Altschuler and Newkirk (1969) and Schatten et al.170

(1969) solves for the coronal magnetic field B(r, θ, ϕ) = [Br(r, θ, ϕ), Bθ(r, θ, ϕ), Bϕ(r, θ, ϕ)]171

from the photosphere (the visible surface of the Sun) to the outer radius called the source172

surface. The PFSS model assumes that beyond the source surface, the magnetic field is173

purely radial, i.e. open magnetic field lines are carried into interplanetary space by the solar174

wind. Additionally, the PFSS model neglects the coronal electric current density since,175

above the photosphere, there is a large decrease in particle density and a smaller decrease in176

magnetic field strength (Kruse et al., 2020); it also assumes that the corona is electrostatic177
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since during solar minimum, the corona evolves slowly, and features can last for several178

Carrington rotations (CRs). It is important to mention that some of the above assumptions179

hold less during specific time periods. For example, during solar maximum, the photospheric180

field changes more rapidly, challenging the electrostatic assumption. Additionally, Riley et181

al. (2006) found that the concept of spherical source surface is more reasonable during solar182

maximum than during solar minimum. These assumptions (coupled with Ampère’s law)183

lead to184

∇×B = 0,185

so that the magnetic field can be described by its potential B = −∇Ψ. By combining the186

potential description with Gauss’s law (∇ ·B = 0), we get Laplace’s equation187

∇2Ψ = 0,188

subject to the following boundary conditions189

∂Ψ

∂r
(r = 1RS, θ, ϕ) = g(θ, ϕ),

∂Ψ

∂θ
(r = rSS, θ, ϕ) =

∂Ψ

∂ϕ
(r = rSS, θ, ϕ) = 0,

Ψ(r, θ, ϕ = 0) = Ψ(r, θ, ϕ = 2π),

(1)190

where θ ∈ [0, π] is Carrington colatitude, ϕ ∈ [0, 2π] is Carrington longitude, RS denotes so-191

lar radii unit of distance which is 695,700km, and approximately 1/215th of an astronomical192

unit (AU), r ∈ [1RS, rSS] is the radial distance from the center of the Sun, rSS is the source193

surface height, and g(θ, ϕ) is a given photospheric synoptic map. The PFSS model is typi-194

cally solved via spherical harmonic expansion or numerical discretization methods (Caplan195

et al., 2021; Liu et al., 2022; Stansby et al., 2020). We employ the pfsspy Python package196

(version 1.1.2), developed by Stansby et al. (2020), for solving PFSS via finite-difference197

discretization and for tracing magnetic field lines. The finite-difference discretization is on198

a rectilinear grid equally spaced in sin(colatitude), longitude, and ln(radius) coordinates,199

see Stansby et al. (2020) for more details on the solver. In this study, all simulations are200

performed on a 180× 360× 100 grid resolution in sin(colatitude), longitude, and ln(radius),201

respectively, i.e. we solve for 6.48×106 states. As an illustrative example, Figure 2(a) shows202

the radial magnetic field at the photosphere (inner boundary) for CR 2053 obtained by the203

GONG synoptic maps (see Section 2.4.1) and Figure 1(b) shows the radial magnetic field204

results at the source surface (outer boundary), which is set to rSS = 2.5RS for this example.205

2.2 Wang-Sheeley-Arge (WSA) Model206

The WSA model developed by Arge et al. (2004) is a semi-empirical model of the207

ambient solar wind velocity in the inner-heliosphere, which fuses the Wang-Sheeley (WS)208

model developed by Wang and Sheeley (1990) with the distance to the coronal hole boundary209

(DCHB) model developed by Riley et al. (2001). The WSA model (coupled with the MHD210

Enlil model) is used in operational forecasting at the National Oceanic and Atmospheric211

Administration (NOAA) Space Weather Prediction Center (Parsons et al., 2011). The WSA212

model is given by213

vwsa(fp, d, v0, v1, α, β, γ, w, δ, ψ) = v0 +
v1 − v0
(1 + fp)α

(
β − γ exp

(
−
(
d

w

)δ))ψ
,214

where v0 and v1 correspond to the minimum and maximum solar wind velocities, d is the215

minimum angular distance that an open field footpoint lies from a coronal hole boundary, fp216

is the magnetic field expansion factor, and α, β, γ, δ, w, ψ are additional tunable parameters.217
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The magnetic expansion factor fp is derived from the coronal magnetic field by tracing218

down field lines from the source surface to the photosphere, namely219

fp =

(
1RS

rSS

)2 ∣∣∣∣ Br(1RS, θp, ϕp)

Br(rSS, θSS, ϕSS)

∣∣∣∣ , (2)220

where Br(r, θ, ϕ) is the radial magnetic field component, and the subscripts p and SS refer221

to the field line trace at the photosphere and solar surface, respectively. The distance222

to the coronal hole boundary d is also derived from the coronal magnetic field solution223

via a two-step approach. First, the coronal hole regions are identified by tracing field224

lines from the photosphere to the source surface and detecting the footpoints of all open225

magnetic field lines, i.e. coronal hole regions. Second, the great-circle angular distance d226

is computed between the footprints of the open magnetic field lines to the nearest coronal227

hole boundary. To illustrate these concepts, Figure 2(c) presents the magnetic expansion228

factor for CR 2053, and the black dashed line shows ACE’s spacecraft projected trajectory.229

Similarly, Figure 2(d) shows the coronal hole map for CR 2053 with ACE’s trajectory field230

line traces, which mainly trace down to low-latitude coronal holes.231

2.3 Heliospheric Upwind eXtrapolation (HUX) Model232

The two-dimensional HUX model developed by Riley and Lionello (2011) extrapolates233

the coronal solar wind radial velocity into the heliospheric domain. The HUX model is234

based on simplified physical assumptions of the fluid momentum equation, which reduces235

to the following nonlinear scalar homogeneous time-stationary equation236

−Ωrot(θ = θ̂)
∂v(r, ϕ)

∂ϕ
+ v(r, ϕ)

∂v(r, ϕ)

∂r
= 0, (3)237

where the independent variables are the radial distance from the Sun r and Carrington238

longitude ϕ, and the dependent variable is the solar wind radial velocity v(r, ϕ). The angular239

frequency of the Sun’s rotation is evaluated at a constant Carrington colatitude θ̂ (Riley240

& Issan, 2021), which is estimated by Ωrot(θ) = 2π
25.38 − 2.77π

180 cos
(
π
2 − θ

)2
. The problem241

is subject to the boundary condition v(rSS, ϕ) = vrSS(ϕ) and is defined on the longitudinal242

periodic domain 0 ≤ ϕ ≤ 2π and r ≥ rSS. Riley and Lionello (2011) suggest adding243

an acceleration boost to the boundary condition (before propagation) to account for the244

residual acceleration present in the inner heliosphere, i.e.245

vacc(rSS, vrSS
(ϕ);αacc, rh) = αacc(1− e−rSS/rh)vrSS(ϕ), (4)246

where vrSS(ϕ) is the radial velocity at the source surface (obtained from WSA relation),247

αacc is the acceleration factor, and rh is the radial location at which the acceleration ends.248

We discretize Eq. (3) via finite-differencing on a uniform mesh with 600 × 300 resolution249

in ϕ ∈ [0, 2π] and r ∈ [rSS, rmax], respectively. We set rmax to be ACE’s maximum radial250

distance from the Sun for the considered CR. We solve the equation using the first-order251

upwind scheme, see Issan and Riley (2022) for more details about the numerical scheme and252

stability requirements. Figure 2(e) shows the coupling of PFSS, WSA, and HUX solar wind253

speed predictions in comparison to ACE’s in-situ observations for CR 2053, see Section 2.4.2254

for more details about ACE. We set θ̂ to be ACE’s mean latitude over a CR and obtain255

the inner boundary velocity profile by computing the magnetic field expansion and distance256

to the coronal hole at ACE’s projected trajectory (which are inputs in the WSA model).257

The solar wind velocity at ACE’s trajectory is obtained by linearly interpolating the two-258

dimensional HUX solution along ACE’s trajectory.259
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2.4 Observational Data260

2.4.1 Global Oscillations Network Group (GONG) Synoptic Magnetograms261

Deployed in 1995, the GONG synoptic magnetograms are produced every hour at262

GONG’s six ground-based sites with identical telescopes. The six sites in California, Hawaii,263

Australia, India, Spain, and Chile, are distributed worldwide so that the Sun is visible at264

nearly all times. The line-of-sight full-disk GONG magnetograms are provided every minute265

by its main instrument known as Fourier Tachometer (Hill, 2018; Harvey et al., 1996).266

The magnetic field strength (measured in Gauss) is determined spectroscopically using the267

Zeeman effect. In the presence of a magnetic field, gas spectral lines split into two or more268

components, and the frequency of the spectral lines depends on the strength of the magnetic269

field (Moldwin, 2008).270

In this study, we use the GONG full CR synoptic magnetograms as the photospheric271

radial magnetic field g(θ, ϕ) boundary condition for the PFSS model, see Eq. (1), which272

are publicly available at National Solar Observatory’s website5. The synoptic maps are273

calibrated from roughly 8,000-10,000 input full-disk 10-min average magnetograms (Hill,274

2018) and are provided at 180×360 resolution in Carrington sin(colatitude) and Carrington275

longitude, respectively. These synoptic maps are obtained over a full CR and reasonably276

approximate the solar conditions at quiet times of the cycle when the solar evolution is slow.277

Figure 2(a) above shows the GONG synoptic map for CR 2053.278

2.4.2 Advanced Composition Explorer (ACE) in-situ Solar Wind Measure-279

ments280

The NASA ACE satellite launched in 1997 is in Lissajous orbit around L1 (one of281

Earth-Sun gravitational equilibrium points), located about 1.5× 106 km forward of Earth.282

The location of ACE gives about 1-hour advance warning of the arrival of space weather283

events on Earth. The ACE instruments measure the solar wind, interplanetary magnetic284

field, and high-energy particles. This study uses the solar wind radial velocity in-situ mea-285

surements provided by ACE’s Solar Wind Electron Proton Alpha Monitor (SWEPAM)286

instrument (McComas et al., 1998). To download the radial velocity data and ACE’s287

trajectory at a 1-hour cadence, we used HelioPy, a community-developed Python pack-288

age (Stansby et al., 2021), for retrieving space physics datasets from NASA’s Space Physics289

Data Facility website6.290

2.5 Model Chain Simulations291

The PFSS→WSA→HUX model chain simulations are run on the Alfvén server at the292

University of Colorado SWx-TREC (Space Weather Technology, Research, and Education293

Center), which is equipped with 2x AMD EPYC 74F3 24-Core processors (3.2 GHz) and a294

total 2 Tb of RAM. The model chain takes about 16 seconds to simulate on one CPU. We295

profiled the model chain computations and found that 98% of the total time is spent solving296

the PFSS model and computing the distance to the coronal hole and magnetic expansion,297

1.8% is spent on solving the HUX model and less than a percent is spent on evaluating the298

WSA model.The sensitivity analysis results required 3 × 1.3 × 105 = 3.9 × 105 simulations299

and the MCMC results required 10× 250× 2.6× 104 = 6.5× 107 model simulations, i.e. a300

total of approximately 10,400 CPU hours.301

5 https://gong.nso.edu/data/magmap/crmap.html
6 https://cdaweb.gsfc.nasa.gov/index.html/
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3 Global Sensitivity Analysis302

Variance-based global sensitivity analysis aims to identify the parameters that con-303

tribute the most to a given QoI variability, which can be done quantitatively via comput-304

ing Sobol’ sensitivity indices (Sobol’, 2001). Parameters with high sensitivity indices are305

classified as influential, whereas parameters with low sensitivity indices are classified as306

non-influential. Computing Sobol’ sensitivity indices facilitate a posteriori parameter di-307

mensionality reduction in subsequent inverse UQ tasks (such as Bayesian inference). This308

is established by setting non-influential parameters to their nominal values and only con-309

sidering parametric uncertainty stemming from influential parameters. Parametric dimen-310

sionality reduction is often necessary for computationally demanding models and unbiased311

inverse UQ methods.312

3.1 Uncertain Parameters313

The PFSS→WSA→HUX model chain has many parameters that are uncertain, induc-314

ing uncertainty in the solar wind velocity forecasts near Earth. All uncertain parameters315

in the model chain are mainly non-physical. We identified a total of eleven uncertain con-316

tinuous parameters: one parameter in PFSS (source surface height), eight parameters in317

WSA (numerical parameters), and two parameters in HUX (acceleration parameters). Ta-318

ble 1 lists the uncertain input parameters and their corresponding prior densities. We set319

all prior densities to be uniform with reasonable ranges determined in previous parametric320

studies by Lee et al. (2011, §2), Arden et al. (2014, §2.5), Meadors et al. (2020, Eq. 9),321

Kumar and Srivastava (2022, Table 1), and Riley et al. (2015, Table 1).322

The source surface radial height rSS in the PFSS model has intrinsic uncertainties323

since, in reality, it is non-spherical and is a function of space and time. Lowering the source324

surface results in more coronal holes, open flux, and strong curvature in the heliospheric325

current sheet, whereas raising the source surface height results in the opposite effect. Riley326

et al. (2006) suggested avoiding the strict constraint of a spherical source surface by a327

detailed comparison of PFSS to MHD models, and Kruse et al. (2020) altered the PFSS328

model to employ an oblate or prolate elliptical source surface. Arden et al. (2014) show329

that the source surface has a “breathing” effect of which the canonical 2.5RS source surface,330

originally suggested by Altschuler and Newkirk (1969), matches measured interplanetary331

magnetic field (IMF) open flux near Earth during solar maximum, yet extends up to 4RS332

during solar minimum of solar cycle 23 and the start of cycle 24. A similar study by Lee333

et al. (2011) found that setting the source surface to 1.8RS matched best the IMF strength334

during the minimum of solar cycle 23. The optimal source surface heights determined335

in Arden et al. (2014) and Lee et al. (2011) do not agree and further emphasize the need336

for additional numerical investigation. Additionally, Lee et al. (2011, Figure 14) and Nikolić337

(2019, Figure 3) compared the PFSS coronal holes to observed extreme ultraviolet synoptic338

images, their results suggest 1.5 − 1.8RS for the source surface during CR 2060. Similar339

to our study, Meadors et al. (2020) also considers the source surface as an uncertain input340

parameter and learns its density via particle filtering and WIND spacecraft observations.341

Based on Lee et al. (2011, §2), Arden et al. (2014, §2.5) and Meadors et al. (2020, Eq. 9),342

we allow the source surface to vary from 1.5RS to 4RS.343

The eight numerical parameters of the WSA model, v0, v1, α, β, γ, δ, w, ψ, similar to344

the source surface, cannot be directly measured and are usually adjusted for different ob-345

servatories, e.g. Wilcox solar observatories and GONG (Riley et al., 2015). Additionally,346

Riley et al. (2015) and Kumar and Srivastava (2022) showed that the optimal parameter347

can vary greatly from one CR to the next. It is, therefore, important to understand the348

uncertainties in the WSA parameters and their impact on predicted solar wind speed near349

Earth. We set the eight parameter ranges based on previous parametric studies by Riley et350

al. (2015, Table 1) and Kumar and Srivastava (2022, Table 1).351
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Table 1. The eleven uncertain continuous parameters in the PFSS→WSA→HUX model chain

are modeled with uniform priors with physically meaningful ranges taken from previous parametric

studies by Lee et al. (2011, §2), Arden et al. (2014, §2.5), Meadors et al. (2020, Eq. 9), Kumar and

Srivastava (2022, Table 1), and Riley et al. (2015, Table 1).

Parameter Model Description Prior Range Nominal Value

rSS [RS] PFSS source surface height [1.5, 4] 2.5

v0 [kms ] WSA minimum velocity [200, 400] 250

v1 [kms ] WSA maximum velocity [550, 950] 750

α WSA numerical parameter [0.05, 0.5] 0.1

β WSA numerical parameter [1, 1.75] 1

w [rad] WSA numerical parameter [0.01, 0.4] 0.02

γ WSA numerical parameter [0.06, 0.9] 0.9

δ WSA numerical parameter [1, 5] 1.75

ψ WSA numerical parameter [3, 4] 3

αacc HUX acceleration factor [0, 0.5] 0.15

rh [RS] HUX
radial location at which
the acceleration ends [30, 60] 50

The HUX model has two free parameters αacc and rh in the acceleration boost term,352

see Eq. (4). Riley and Lionello (2011) suggest setting αacc = 0.15 and rh = 50RS. A353

recent study by Riley and Issan (2021) compared HUX to three-dimensional MHD velocity354

predictions and found the optimal αacc and rh via nonlinear least-squares optimization for a355

few CRs spanning from CR 2029 to CR 2231. They found that the average optimal αacc and356

rh are 0.16 and 52.6RS , respectively. Riley and Issan (2021) took a frequentist approach357

to find the optimal HUX parameters. In this study, we formulate the inference problem358

using the Bayesian approach, which provides a complete picture of parametric uncertainty359

in the form of a non-parametric posterior density. From this, one can compute any relevant360

estimates, such as the MAP, mode, etc. We allow the two HUX parameters to vary based361

on physically reasonable ranges specified in Table 1.362

363

3.2 Sobol’ Indices364

To introduce the notion of global sensitivity indices, let (Ω,F ,P) be a probability space365

with sample space Ω, σ-algebra F , and the probability measure P, where X : Ω → X is a366

random vector with its entries being independent random variables Xi for i = 1, . . . d. We367

denote with x = X(ω) a sample (realization) of the random vectorX for a given event ω ∈ Ω.368

From the independence assumption, the joint probability density function (pdf) π(x) is the369

product of the marginals, i.e. π(x) = π1(x1)π2(x2) · · ·πd(xd). We consider a generic model370

f : X → Y that maps a d-dimensional input parameter x = [x1, x2, . . . , xd]
⊤ ∈ X ⊆ Rd371

to a scalar QoI y ∈ Y ⊆ R. We assume that f is square-integrable with respect to π,372

such that the expectation (mean) E[f(X)] =
∫
Rd f(x)π(x)dx and variance Var[f(X)] =373 ∫

Rd (f(x)− E[f(x)])2 π(x)dx of the QoI are both finite.374
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Definition 1 (Sobol’ Indices) The first-order Sobol’ sensitivity indices measure the375

main variance contribution due to the ith random input parameter, such that376

Si :=
VarXi [EX∼i(f(X)|Xi)]

Var[f(X)]
, i = 1, . . . , d, (5)377

where VarXi
denotes the variance with respect to only the Xi random input parameter, Var378

without subscript denotes variance involving all parameters, and X∼i denotes all random379

input parameters but Xi. The second-order Sobol’ sensitivity indices measure the secondary380

variance contribution due to the interaction of the ith and jth parameters (where i ̸= j),381

such that382

Sij :=
VarXi,Xj [EX∼i,j (f(X)|Xi, Xj)]

Var[f(X)]
− Si − Sj .383

The total-order Sobol’ sensitivity indices measure the total variance contributions of the ith384

parameter, such that385

Ti := Si +

d∑
j=1

Sij +H.O.T. = 1− VarX∼i [EXi(f(X)|X∼i)]

Var[f(X)]
=

EX∼i [VarXi(f(X)|X∼i)]

Var[f(X)]
,

(6)

386

where H.O.T. refers to higher-order terms. The first, second, and higher-order indices sum
up to 1, such that

d∑
i=1

Si +

d∑
i=1

d∑
j=2,j>i

Sij + · · ·+ S12...d = 1.

Notice that if the total-order index Ti ≈ 0, then EX∼i
[VarXi

(f(X)|X∼i)] ≈ 0, which,387

by the non-negativity of the variance operator, implies that VarXi
(f(X)|X∼i) ≈ 0. There-388

fore, if Ti ≈ 0, the uncertainty in Xi hardly influences the variance of the QoI, and Xi can389

be deemed as non-influential.390

Sobol’ sensitivity indices can not be computed in closed form except for QoIs that391

are integrable with respect to π (the joint probability of the uncertain parameters X).392

Appendix A shows that the sensitivity indices can be computed analytically for the simple393

Wang-Sheeley model (Wang & Sheeley, 1990). However, the QoIs we consider (like most394

model QoIs arising from simulations of complex systems) are not integrable with respect to395

π. Thus, we need to approximate the indices numerically.396

3.3 Estimating Sobol’ Indices via Monte Carlo Integration397

The first- and total-order Sobol’ sensitivity indices described in Eqns. (5) and (6) can398

be estimated via Monte Carlo (MC) integration, which requires N(d+2) model evaluations,399

where N is the number of independent samples of X and d is the number of uncertain400

parameters. Since each model evaluation is independent of the other, the MC model evalu-401

ations can be easily computed in parallel. The four-step algorithm of Saltelli (2002), which402

is based on Sobol’ (2001) original work, is implemented as follows:403

1. Draw 2N quasi-random samples of the random vector X and store them as404

A =


x
(1)
1 . . . x

(1)
d

...
...

x
(N)
1 . . . x

(N)
d

 ∈ RN×d and B =


x
(N+1)
1 . . . x

(N+1)
d

...
...

x
(2N)
1 . . . x

(2N)
d

 ∈ RN×d,405

where x
(j)
i denotes the ith entry and jth sample of X. Quasi-MC methods gen-406

erate near-random samples that aim to distribute well over the parameter space.407

These sampling strategies usually result in a faster rate of convergence in MC inte-408
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gration. We use Latin hypercube sampling developed by McKay et al. (1979). Other409

common quasi-random low-discrepancy sequences are Sobol’ (Sobol’, 1967) and Hal-410

ton (Halton, 1960).411

2. Define matrices C(i) for i = 1, 2, . . . , d, which are a copy of B except the ith column412

is replaced by A(:, i), the ith column of A, so that413

C(i) =

 | | |
B(:, 1) . . . A(:, i) . . . B(:, d)

| | |

 ∈ RN×d, i = 1, . . . , d.414

3. Evaluate the QoI for each row of the matrices A,B,C(i), denoted as A(j, :), B(j, :),415

C(i)(j, :), i.e.416

y
(j)
A = f(A(j, :)) ∈ R, y

(j)
B = f(B(j, :)) ∈ R and y

(j)

C(i) = f(C(i)(j, :)) ∈ R,417

for j = 1, . . . , N . The evaluation of yA and yB requires 2N model evaluations, whereas418

the evaluation of yC(i) requires d · N model evaluations, which results in a total of419

N(d+ 2) model evaluations.420

4. Estimate using MC integration the first-order Si and total-order Ti sensitivity indices421

for i = 1, . . . , d. We use the unbiased Janon/Monod’s estimator (Janon et al., 2014;422

Monod et al., 2006), such that423

Si ≈
1
N

∑N
j=1 y

(j)
A y

(j)

C(i) −
(

1
N

∑N
j=1 y

(j)
A

)(
1
N

∑N
j=1 y

(j)

C(i)

)
1
N

∑N
j=1

(
y
(j)
A

)2
−
(

1
N

∑N
j=1 y

(j)
A

)2 ,424

Ti ≈ 1−

1
N

∑N
j=1 y

(j)
B y

(j)

C(i) −
(

1
N

∑N
j=1

(
y
(j)
B +y

(j)

C(i)

2

))2

1
2N

∑N
j=1

((
y
(j)
B

)2
+
(
y
(j)

C(i)

)2)
−
(

1
N

∑N
j=1

(
y
(j)
B +y

(j)

C(i)

2

))2 .425

426

The algorithm intuition can be explained as follows. The first-order sensitivity estima-427

tion is based on the product of yA and yC(i) , which multiplies the QoI with input A and the428

QoI with input C(i) where all parameters except Xi have been re-sampled. Intuitively, if Xi429

is influential then yA and yC(i) are correlated and Si is large. We can intuit the estimation430

of the total-order indices Ti in a similar way. The product of yB and yC(i) multiplies the431

QoI with input B and the QoI with input C(i) where we only re-sample Xi. Thus, if Xi is432

influential then yB and yC(i) are not correlated and Ti is large.433

There are many other MC Sobol’ sensitivity indices estimators, see Puy et al. (2022)434

for a comprehensive comparison. Saltelli’s (Saltelli, 2002) and Jansen’s (Jansen, 1999)435

estimators are also commonly used estimators. We compared the three estimators and436

found that Janon/Monod’s estimator resulted in faster convergence for our study.437

3.4 Global Sensitivity Analysis Numerical Results438

We perform global sensitivity analysis using the PFSS→WSA→HUX model chain for439

CR 2048 (September 21st, 2006 to October 18th, 2006), CR 2053 (February 4th, 2007 to440

March 4th, 2007), and CR 2058 (June 21st, 2007 to July 18th, 2007). The three CRs441

occurred during the declining phase of solar cycle 23. The eleven model input parameters442

are listed in Table 1 and are described in Section 3.1. We use N = 104 Latin Hypercube443

samples (McKay et al., 1979) to estimate the Sobol’ sensitivity indices via MC integration444

(Section 3.3), which requires N(d + 2) = 1.3 × 105 model evaluations for each CR. We445

consider two quantities of interest: the RMSE between ACE velocity measurements and the446

model predictions at L1 and longitude-dependent model predictions at L1 (independent of447

ACE observations). The results are discussed in the following subsections.448
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Figure 3. The total-order indices Ti of the RMSE between the model chain and ACE observa-

tions are shown for (a) CR 2048, (b) CR 2053, and (c) CR 2058. The box plot for each index shows

the uncertainty in the index estimate using bootstrapping with N = 3× 103 samples and 100 repli-

cations. The box plots display the range between the first and third quartiles, with a middle line

indicating the median. The whiskers represent the span from the minimum to maximum estimates.

The results show that rSS, ψ, δ, v0, rh, αacc are non-influential as their total-order indices are lower

than 0.05 (shown in dashed black horizontal line).

3.4.1 Sobol’ Indices for RMSE449

The QoI f(X) for which we compute the Sobol’ sensitivity indices is the root mean450

squared error (RMSE) between the model chain solar wind radial velocity prediction at L1451

and ACE at 1-hour cadence observations. Figure 3 shows the total-order indices for CR452

2048, CR 2053, and CR 2058. The total-order indices for all three CRs have the same453

ordering for the five most influential parameters, i.e. β, γ, α, v1, w (listed in descending454

order). The five most influential parameters are all WSA model parameters. The other six455

parameters rSS, ψ, v0, δ, rh, αacc are deemed as non-influential since their total-order indices456

are less than 0.05. We also estimate the uncertainty in the estimated total-order indices by457

using bootstrapping with N = 3× 103 samples and 100 replications. The box plots for each458

index are shown in Figure 3. The uncertainty in the estimated total-order indices does not459

influence the classification between influential and non-influential parameters. The total-460

order indices show that six out of the eleven uncertain parameters are non-influential, and461

subsequently, they hardly contribute to the predicted solar wind radial velocity variability462

at L1. We, therefore, set the six non-influential parameters to their fixed nominal values (see463

Table 1) in the subsequent Bayesian inference, which facilitates a posteriori dimensionality464

reduction and significant computational speed up for performing MCMC.465

Figure 4(a) shows an ensemble of the global sensitivity analysis model evaluations for466

CR 2053. We plot the median and 50% and 95% credible interval of the 1.3 × 105 model467

evaluations used to compute the sensitivity indices (which were constructed via prior density468

samples). A credible interval is an interval within which the ensemble members fall with a469

particular probability. The 95% credible interval shown in Figure 4(a) spans an excessively470

large range and includes non-physical solutions (for example, solar wind radial velocity at471

1800km
s ). This is because the uncertainties in the model chain parameters highly influence472

the solar wind velocity predictions at L1. We aim to reduce such large parametric uncertain-473

ties via Bayesian inference; see Section 4. Figure 4(b) and Figure 4(c) show histograms of474

the RMSE and Pearson correlation coefficient (PCC) between the global sensitivity analysis475

simulations in comparison to ACE observations for CR 2053. The histograms show that the476

RMSE mean is 217.2km
s and the PCC mean is 0.5. Also, the RMSE maximum a posteriori477

(MAP) is 101.5km
s and the PCC MAP is 0.71. By reducing the uncertainty in the model478

parameters, we expect the ensemble to be more accurate.479

3.4.2 Longitude-Dependent Sobol’ Indices480

We define longitude-dependent (or time-dependent) QoIs, which are the solar wind481

radial velocity predictions at L1 at a 1-hour cadence. In contrast to the RMSE indices,482
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Figure 4. (a) Ensemble generated from prior samples of the global sensitivity analysis model

evaluations for CR 2053. The credible interval shows that parametric uncertainty in the model chain

results in very high uncertainty in the solar wind radial velocity predictions at L1. A histogram of

the ensemble RMSE and PCC are shown in (b) and (c), respectively.

defined in Subsection 3.4.1, the longitude-dependent QoIs are independent of ACE obser-483

vations. Figure 5 presents the seven largest first-order Si and total-order Ti indices as a484

function of Carrington longitude for CR 2048, CR 2053, and CR 2058. We do not plot the485

first- and total-order indices of ψ, δ, αacc, rh since their maximum indices (in longitude) are486

less than 0.05. The five most influential parameters during all three CRs are β, γ, α, v1, w,487

which agree with the RMSE indices results, see Figure 3. The first-order indices are signif-488

icantly smaller than the total-order indices, which indicates that higher-order interactions489

between parameters influence the predicted solar wind velocity variability. Additionally, the490

influence of w, the width over which the solar wind ramps up from low- to high-speed flow at491

coronal-hole boundaries, is mainly around a small longitudinal region. For example, during492

CR 2053, w is only influential from approximately 190◦ to 280◦. We suspect this is because493

ACE’s footprints lie closer to the center of a low-latitude coronal hole at approximately 250◦494

to 310◦, see Figure 2(d). The large distance to coronal hole boundary d corresponds to high495

solar wind speed in this region, which is then advected to 190◦ to 280◦ at L1 (at 1
v speed,496

see Eq. (3)). Thus, w seems to be influential only in regions where d, the distance to the497

coronal hole boundary, in the WSA relation is large.498

4 Bayesian Inference via Markov Chain Monte Carlo Sampling499

After identifying the set of influential parameters via variance-based global sensitiv-500

ity analysis, our goal is to learn the uncertainties of such influential parameters, which we501

achieve through Bayesian inference. Bayesian parameter estimation leverages Bayes’ theo-502

rem to learn the pdf of uncertain model parameters given observational data. Samples from503

such pdfs can be directly obtained using Markov chain Monte Carlo (MCMC) algorithms.504

These samples are then used to generate an ensemble prediction to quantify and reduce505

the effect of the parametric uncertainty on the QoI. The following subsections introduce506

Bayesian inference and MCMC sampling.507
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Figure 5. Longitude-dependent (top) first-order Si and (bottom) total-order indices Ti for (a)

CR 2048, (b) CR 2053, and (c) CR 2058. We do not plot the indices of ψ, δ, αacc, rh since their max-

imum first-order and total-order indices (in longitude) are less than 0.05. The parameters β, γ, α, v1

are the most influential across all longitudinal locations, whereas w seems to be more longitudinal

(or time) dependent. For example, during CR 2048, w is only influential from approximately 280◦

to 360◦ in longitude.

4.1 Bayesian Parameter Estimation508

The philosophy behind Bayesian statistics is that the model parameters are random509

variables with an unknown pdf. This differs from the frequentist perspective, where the510

parameters are assumed deterministic but unknown. In the Bayesian setting, we seek to511

estimate the pdf of model influential parameters X given a parameter-dependent QoI f(·)512

(e.g. solar wind radial velocity at L1) and measurements of the QoI z = {z1, z2, . . . , zn}513

(e.g. ACE radial velocity measurements) taken at time instances t1 < t2 < . . . < tn (e.g.,514

at a 1-hour cadence). In other words, we aim to estimate the conditional pdf π(x|z), which515

is referred to as the posterior density or simply posterior. The posterior density can be516

evaluated via Bayes’ rule:517

π(x|z) = π(z|x)π(x)
π(z)

=
π(z|x)π(x)∫

Rd π(z|x)π(x)dx
∝ π(z|x)π(x),518

where π(x) is the prior, π(z|x) is the likelihood, and π(z) is the evidence (also referred519

to as the marginal likelihood or normalizing constant). The parameters x are samples520

of the random variable X, and the observations zi are samples of the random variable521

Zi. Most often, the evidence can not be properly defined, so we estimate the posterior522

up to a normalizing constant. The posterior density can be continuously refined as more523

measurements are included.524

The prior density π(x) is chosen based on physically meaningful ranges and previous525

studies in the literature; see Table 1 for the list of the uniform prior densities used in this526

study. Generally, the priors are not restricted to uniform densities and may weigh favorable527

values more heavily. However, if prior knowledge is of questionable accuracy, it is better to528

use non-informative priors (Smith, 2013, §8.1).529

We assume that the QoI of the model and measurements are related via530

Zi = f(X; ti) + ϵi, i = 1, . . . , n, (7)531
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where Zi is a random variable representing the measurements at time instance ti, f(X; ti)532

is the QoI at time instance ti and ϵi is a random variable representing the discrepancies533

between the QoI and measurements. Here, we model ϵi as a Gaussian random variable534

with zero mean and standard deviation σ ∈ R+. We note that the model discrepancies and535

measurement noise are modeled as additive and mutually independent of X. Thus, by the536

assumption of Gaussian additive error and independence of measurements, we can write the537

likelihood as538

π(z|x) =
n∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
[zi − f(x; ti)]

2

)
∝ exp

(
− 1

2σ2

n∑
i=1

[zi − f(x; ti)]
2

)
.539

Although we derived an expression for the prior and likelihood densities, we can not directly540

sample from the posterior density since the evidence (or normalizing constant) remains541

unknown. To overcome this issue, MCMC algorithms enable sampling from arbitrary pdfs542

and allow for the unbiased estimation of the posterior density, mean, and variance.543

4.2 Markov Chain Monte Carlo Sampling544

MCMC algorithms generate samples from an arbitrary target pdf (such as posterior545

pdf) by generating a random walk in the parameter space that draws a representative set546

of samples from the target pdf. The random walk is a Markov chain, with the property547

that each sample only depends on the position of the previous sample. MCMC algorithms548

converge to the exact target pdf as the number of samples increases. This convergence549

property is established by the ergodicity property of MCMC, which requires the Markov550

chain to be aperiodic, irreducible, and reversible with respect to the target pdf (Roberts &551

Rosenthal, 2004).552

The first and most frequently used MCMC algorithm is the Metropolis-Hastings al-553

gorithm (Metropolis et al., 1953; Hastings, 1970) developed at Los Alamos National Lab-554

oratory. The Metropolis–Hastings algorithm generates samples from an arbitrary pdf it-555

eratively. The samples are drawn from a proposal density which is chosen a priori and556

depends on the position of the previous sample of the Markov chain. A proposed sample557

is then accepted or rejected with some probability. If accepted, the proposed sample is558

appended to the Markov chain and used to generate the next sample; otherwise, if rejected,559

the proposed sample is discarded, and the previous sample is appended to the Markov chain.560

A common choice of proposal density is the Gaussian distribution centered at the previous561

sample location.562

4.2.1 Affine Invariant Ensemble Sampler (AIES)563

In this study, we use the affine invariant ensemble sampler (AIES) developed by (Goodman564

& Weare, 2010), which is an adaptive ensemble extension of the original Metropolis-Hastings565

sampler (Metropolis et al., 1953; Hastings, 1970). Instead of evolving a single Markov chain,566

AIES evolves an ensemble of chains, called walkers, in parameter space. AIES is invari-567

ant under an affine transformation of the parameter space, which is particularly appealing568

for problems where the parameter scales vary by several orders of magnitude, i.e. highly569

anisotropic target pdfs. AIES can transform anisotropic pdfs to isotropic pdfs with an affine570

transformation, which is much easier to sample from. Additionally, other MCMC samplers571

typically require tuning many sampler hyperparameters; for example, Metropolis-Hastings572

has d2 hyperparameters parameters where d is the number of uncertain parameters (entries573

of the Gaussian proposal distribution covariance). Such tuning is often infeasible when the574

posterior evaluations are computationally demanding, as is the case in many space weather575

applications. AIES addresses this challenge by having only two hyperparameters in the576

stretch move (Goodman & Weare, 2010). One hyperparameter in AIES is the number of577

walkers L, which is required to be greater than double the number of uncertain parameters578
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L ≥ 2d + 1, and the other hyperparameter denoted by a is related to the stretch move,579

which we explain next.580

The AIES stretch move is described as follows. Consider an ensemble of walkers581

{Υ1(ℓ), . . . ,ΥL(ℓ)}, where ℓ = 1, . . . ,M is the iteration index and L is the number of582

walkers. The proposed next step for an arbitrary walker Υk(ℓ) is given by583

Υk(ℓ+ 1) = Υj(ℓ) + S (Υk(ℓ)−Υj(ℓ))584

where Υj(ℓ) is a complementary walker in the ensemble chosen at random (where j ̸= k),585

S is a random variable with density g(s) that satisfies g
(
1
s

)
= sg (s). An example of such586

a density, proposed by Goodman and Weare (2010) and implemented in the emcee Python587

package (Foreman-Mackey et al., 2013), is588

g(s) =

{ 1√
s

s ∈ [ 1a , a]

0 otherwise,
(8)589

where a > 1 can be adjusted to improve the sampler’s performance and is typically set to590

a = 2. Thus, the proposed next step for a given walker lies on a straight line connecting591

the walker’s current location and another random walker in the ensemble. The acceptance592

probability of the next proposed step is593

P (Υk(ℓ+ 1)|Υk(ℓ)) = min

(
1, Sd−1π(Υk(ℓ+ 1))

π(Υk(ℓ))

)
,594

where S is the random variable with density defined in Eq. (8), d is the number of uncertain595

parameters, and π is the target pdf. If the proposal is rejected, then Υk(ℓ+ 1) = Υk(ℓ).596

In this study, we use the Python implementation of AIES, i.e. the emcee package597

(version 3.1.4) developed by Foreman-Mackey et al. (2013), with the stretch move, a = 2,598

and L = 250 walkers. We initialize the walkers by randomly sampling a Gaussian density599

with the mean set to the prior mean and standard deviation set to 10−2 times the prior600

range.601

4.2.2 Markov Chain Monte Carlo Burn-in602

MCMC burn-in refers to the period when a Markov chain exhibits initial transient603

behavior unrepresentative of the target pdf. It is therefore recommended to disregard the604

first few iterations at the beginning of the Markov chain (Smith, 2013, §8.4). Burn-in is605

typically an artifact of selecting a low-probability initial condition and can also be thought of606

as a way to find a better initial condition. The burn-in length can be chosen by detecting the607

iteration where the target pdf evaluations start to plateau, which can be assessed visually608

(or statistically) by monitoring the likelihood evaluations and the marginal paths associated609

with each parameter as a function of MCMC iterations. We found that after 103 iterations,610

the likelihood evaluations began to plateau, meaning the Markov chains entered a region611

of high probability. We, therefore, disregard the first 103 samples in each walker, which we612

consider as the burn-in period.613

4.2.3 Markov Chain Monte Carlo Convergence Assessment614

Estimating the mean of a Markov chain (or an ensemble of Markov chains) is chal-615

lenging since its samples are not independent and identically distributed (i.i.d.). This is616

because—by definition—each sample depends on the previous sample in a Markov chain.617

Therefore, samples drawn close to each other tend to be correlated. The MC mean estimator618

of an ensemble of Markov chains with L walkers and M iterations is an unbiased estimator,619
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i.e.620

µ̂ =
1

M

M∑
ℓ=1

 1

L

L∑
j=1

Υj(ℓ)

 with Var[µ̂] =
τ

LM
Var[Υ],621

where τ is the integrated autocorrelation time (IAT)622

τ =

∞∑
ℓ=−∞

C(ℓ)

C(0)
= 1 + 2

∞∑
ℓ=1

C(ℓ)

C(0)
623

and C(ℓ) = limh→∞ Cov[Υ(ℓ + h),Υ(h)] is the lag-ℓ autocovariance function. In practice,624

the IAT and the autocovariance function are estimated using a finite Markov chain of length625

M , see Foreman-Mackey et al. (2013) for a more detailed discussion. The larger the IAT,626

the more samples are needed to converge to the target pdf. In this study, we run the chains627

until their length M is at least 50 times the maximum IAT (which is computed for each628

parameter) as suggested by Foreman-Mackey et al. (2013) and compute the estimated IAT629

using the Python emcee package (Foreman-Mackey et al., 2013).630

4.3 Markov Chain Monte Carlo Numerical Results631

We use the AIES sampler (described in Section 4.2.1) to uncover the posterior density632

of the five most influential parameters β, γ, α, v1, w, for CR 2048 to CR 2058 (spanning633

from September 21st, 2006 to July 18th, 2007). We exclude CR 2051 since, during this634

time period, three CMEs reached L1, and the PFSS→WSA→HUX model chain does not635

account for transient events such as CMEs. We assume in Eq. (7) that the model chain636

solar wind radial velocity predictions at L1 and ACE measurements (at 1-hour cadence) are637

related via Gaussian error with mean zero and standard deviation σ = 80km
s . The standard638

deviation is chosen from previous parametric studies by Reiss et al. (2020, Table 1) and639

Kumar and Srivastava (2022, Figure 8). The posteriors are approximated with 2.6 × 104640

MCMC iterations, 103 iterations excluded for burn-in, and L = 250 walkers, resulting in641

M = 6.25× 106 MCMC posterior samples per CR.642

4.3.1 Markov Chain Monte Carlo Posterior Densities643

The posterior densities for CR 2052 and CR 2053 in one- and two-dimensional pro-644

jected parameter space are shown in Figure 6. It is apparent that the marginal posterior645

of v1 is uniformly distributed (resembling the prior density in Table 1), meaning that v1646

is highly uncertain and can take any value in the prior range with equal probability. This647

means that the likelihood function is flat in the v1 direction, i.e. v1 may not be identifiable648

from ACE observations. The corner plot shows that β and v1 are negatively correlated.649

Note that the marginal posteriors of parameters α and β have little to no support overlap650

in CR 2052 and CR 2053. This suggests that such parameters are difficult to predict in651

advance.652

The marginal posterior densities for CR 2048 to CR 2058 (excluding CR 2051) are653

shown in Figure 7, which indicates that the posterior densities evolve from one CR to the654

next in a non-predictable fashion. For example, the marginalized posterior of α has relatively655

small support that varies randomly from one CR to the next. We also notice that the MAP,656

shown in dashed vertical lines, changes greatly from one CR to the next, which agrees with657

the previous parametric studies by Kumar and Srivastava (2022) and Riley et al. (2015).658

Since the posterior densities vary greatly from one CR to the next, it is not possible to use659

the posterior samples from a given CR to create an accurate ensemble prediction of the next660

CR (in contrast to the adaptive-WSA method proposed by Reiss et al. (2020)). If the model661

chain is used for re-analysis studies, we recommend using the proposed UQ framework to662

generate accurate ensembles. The ensembles generated from the MCMC posterior samples663

will be highly accurate as the parameter posteriors are learned using observational data at L1664
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Figure 6. A corner plot of the posterior density of the five most influential parameters

v1, α, β, w, γ during CR 2052 (blue) and CR 2053 (red). The corner plot shows the MCMC samples

in two-dimensional and one-dimensional projected parameter space. The dashed line shows the

estimated MAP of each parameter.

and will also be able to successfully capture the parametric uncertainty on the predictions.665

The next subsection discusses our ensemble prediction numerical results.666

4.3.2 Ensemble Prediction667

We generate an ensemble prediction based on varying model parameters using MCMC668

posterior samples. The ensemble members are then used to compute ensemble statistics,669

such as the ensemble median and prediction interval. The prediction interval accounts for670

both the propagated parametric uncertainty and assumed model discrepancy errors (Smith,671

2013, §9.4.3). The (1−α)×100% prediction interval for a fixed but unknown new observation672

Zi at time instance ti is the interval [Zl, Zu] such that673

P(Zl ≤ Zi ≤ Zu) = 1− α,674

where Zi is independent of the data used to construct the random variables Zl and Zu (Smith,675

2013, §9.4.1). We estimate the interval [Zl, Zu] via computing the α/2th and 1 − α/2th676

quantiles of the set of ensemble members with added Gaussian model discrepancy errors.677

Figure 8(a) and Figure 9(a) show the median and 50% and 95% prediction interval of the678

5 × 103 ensemble members during CR 2053 and CR 2052, respectively. The ensemble is679

generated using posterior samples trained separately on each CR. Figure 8(b) and Fig-680
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Figure 7. The marginal posterior densities of the five most influential parameters v1, α, β, w, γ

from CR 2048 to CR 2058 (excluding CR 2051). The dashed line shows the estimated MAP of each

parameter. The marginal posteriors change substantially from one CR to the next.
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Figure 8. (a) Ensemble prediction with 5 × 103 ensemble members generated from posterior

samples for CR 2053. The figure shows the ensemble statistics (median and prediction intervals)

and ACE observations. Figures (b) and (c) show the RMSE and PCC of the ensemble in comparison

to ACE observations, respectively.

ure 9(b) show a histogram of the RMSE of the ensemble members for each CR. Figure 8(c)681

and Figure 9(c) show a histogram of the PCC of the ensemble members for each CR. By682

comparing Figures 4(b/c) to Figures 8(b/c), it is apparent that the ensemble generated683

from the posterior density is able to substantially reduce the parametric uncertainty and684

improve the accuracy of the ensemble prediction. Specifically, the mean RMSE is reduced685

from 217.2km
s to 55.7km

s , and the mean PCC is increased from 0.5 to 0.88. The results show686

that the proposed UQ framework is able to successfully reduce the uncertainty of the model687

parameters on the solar wind radial velocity prediction and should be utilized in further688

re-analysis studies.689

5 Conclusions and Discussion690

The PFSS→WSA→HUX model chain is commonly used to predict the ambient solar691

wind radial velocity near Earth. The model chain has eleven uncertain input parameters692

that can not be directly measured since they are mainly non-physical. We, therefore, propose693

a comprehensive UQ framework for quantifying and reducing the parametric uncertainty of694

the model chain. The proposed framework utilizes variance-based global sensitivity analysis695

to reduce the dimensionality of the parameter space, followed by Bayesian inference to learn696

the full parameter pdfs via MCMC. We apply the UQ framework on a time period spanning697

from CR 2048 to CR 2058 during the declining phase of solar cycle 23. The sensitivity698

analysis results show that β, γ, α, v1, w are the five most influential parameters in the model699

chain. These parameters are all WSA parameters. We learned the posterior densities of the700

five most influential parameters using AIES (an MCMC sampler). The posterior samples701

are then used to generate an ensemble prediction and quantify the parametric uncertainty in702

the predicted solar wind velocity. We found that the ensemble results are able to accurately703

quantify the uncertainty in the predictions and thus suggest the proposed UQ framework704

should be utilized in further re-analysis studies employing the model chain.705

The Bayesian inference numerical results also show that the posterior densities vary706

randomly from one CR to the next. This is mainly due to the following reasons: (1) the707
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Figure 9. Same as Figure 8 for CR 2052.

model chain is not robust to the choice of WSA numerical parameters, and (2) the WSA708

model is overparameterized (i.e. needs to be reformulated for forecasting purposes). The709

reformulation of the WSA model will involve searching for a parsimonious model that is710

robust to its choice of parameters. Candidates of models that balance the trade-off between711

accuracy and parsimony can be found using sparse regression techniques with different712

regularization (Brunton et al., 2016). The optimal model can later be selected via the713

Bayesian or Akaike information criterion (Schwarz, 1978; Akaike, 1974). The substantial714

and unpredictable change in the posterior densities from one CR to the next questions the715

applicability of the model chain in operational real-time forecasting.716

We suspect the drastic changes in the posterior densities are also due to the parameters717

trying to overcompensate the intrinsic and “hard-wired” limitations of each of the models718

(i.e. biases due to epistemic uncertainties). We next discuss such limitations. First, we719

do not have an accurate estimate of the photospheric fields (Poduval et al., 2020). There720

are differences between magnetograms from different observatories. There are also different721

saturation levels and noise (Riley et al., 2014). Second, the PFSS solutions rely on the722

existence of a spherical source surface, which does not exist (Riley et al., 2006). The723

sensitivity analysis results show that the choice of the source surface height is non-influential724

on the predicted solar wind velocity at L1, yet in the analysis we assume it exists. Also,725

the fields are not potential, particularly around active regions. Third, the WSA model has726

known inaccuracies, e.g. the expansion factor in the vicinity of pseudostreamers (Riley et727

al., 2015), as well as unknown inaccuracies. Fourth, the HUX model assumes only radial728

propagation and neglects external forces and the pressure gradient (Riley & Lionello, 2011).729

Fifth, time dependence is not included in synoptic maps and all throughout the model730

chain. Thus, the physics simplifications in the model chain introduce model discrepancies731

between the spacecraft observations and model predictions. We assume such discrepancies732

are Gaussian distributed in the Bayesian inference setup. This is generally a reasonable733

assumption, which is necessary in order to formulate the likelihood in the Bayesian setting,734

yet it is important to point out that the model chain discrepancies are structured and are735

not i.i.d.736

Future studies can incorporate the proposed UQ framework for learning the posterior737

densities of uncertain parameters for various (and more complex) space weather models,738

for example, the WSA-Enlil model (Parsons et al., 2011). It will be interesting to ap-739
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Table A1. The analytically computed Sobol’ sensitivity indices of the WS model for fp =

10, 102, 104. The results show that α is the most influential parameter (in comparison to v0 and

v1). Additionally, the indices indicate that v0 is more influential when fp is high and that v1 is

more influential when fp is low.

fp Sv0 Sv1 Sα Sv0,v1 Sv0,α Sv1,α Tv0 Tv1 Tα

10 0.061 0.383 0.512 0 0.008 0.034 0.07 0.417 0.554

102 0.131 0.133 0.679 0 0.011 0.045 0.143 0.178 0.735

104 0.289 0.036 0.623 0 0.01 0.041 0.3 0.077 0.674

ply the proposed UQ framework to WSA-Enlil to make sure the WSA posteriors do not740

change drastically in time and verify that the WSA-Enlil model is reliable for real-time fore-741

casting. Depending on the computational resources and computational complexity of the742

model at hand, one might need to incorporate surrogate models (computationally efficient743

approximate models), such as projection-based reduced-order models (Benner et al., 2015;744

Issan & Kramer, 2022) and interpolatory surrogates (Xiu & Karniadakis, 2002), to compute745

Sobol’ sensitivity indices and run MCMC. If the model is computationally efficient (i.e. or-746

der of seconds/minutes) we recommend using the MC methods presented in this study as747

they are unbiased estimators. Other unbiased estimators include multi-fidelity estimators,748

see Peherstorfer et al. (2018) for a detailed survey.749

Appendix A Global Sensitivity Analysis of the Wang-Sheeley Model:750

Analytic Results751

The Wang-Sheeley (WS) semi-empirical model developed by Wang and Sheeley (1990)752

is based on the inverse relationship between the solar wind speed and the magnetic field753

expansion factor fp (defined in Eq. (2)). The WS model relation is given by754

vws(fp, v0, v1, α) = v0 +
v1 − v0
fαp

755

where v0 and v1 correspond to the minimum and maximum solar wind velocities, fp is the756

magnetic field expansion factor, and α is an additional numerical parameter.757

The Sobol’ sensitivity indices described in Eqns. (5)–(6) for the WS model parameters758

v0, v1, α can be computed analytically (symbolically) if we assume the model parameters are759

independent and have uniform priors. In contrast, for the PFSS, WSA, and HUXmodels, the760

sensitivity indices can only be approximated numerically via MC integration, see Section 3.3.761

We set the priors to be uniform with ranges listed in Table 1. Table A1 shows the Sobol’762

sensitivity indices of the three model parameters v0, v1, α for fp = 10, 102, 104. Larger fp763

corresponds to slower solar wind velocity, in which case v0 becomes more influential, and764

v1 becomes less influential. The second-order indices show that v0 and v1 do not interact765

and that α’s interaction with v0 and v1 is minor compared to the first-order indices. By the766

first- and total-order indices of α, we can conclude that it is the most influential parameter767

independent of fp (in comparison to v0 and v1) which agrees with the ordering in the WSA768

model, see Section 3.4.769

Acronyms770

UQ Uncertainty Quantification771

QoI Quantity of Interest772

MAP Maximum a posteriori773
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MCMC Markov chain Monte Carlo774

PFSS Potential-field Source-surface775

WSA Wang-Sheeley-Arge776

HUX Heliospheric Upwind eXtrapolation777

GONG Global Oscillations Network Group778

ACE Advanced Composition Explorer779

RMSE Root mean squared error780

CR Carrington rotation781

AIES Affine Invariant Ensemble Sampler782

MC Monte Carlo783

pdf probability density function784

Open Research785

The public repository https://github.com/opaliss/Parameter Estimation Solar786

Wind contains a collection of Jupyter notebooks in Python 3.9 containing the code and data787

used in this study. The GONG synoptic maps are retrieved from https://gong.nso.edu/788

data/magmap/crmap.html and the ACE spacecraft observations can be found at https://789

cdaweb.gsfc.nasa.gov/index.html/.790
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fer, U. (2020, March). Forecasting the Ambient Solar Wind with Numerical Models.924

II. An Adaptive Prediction System for Specifying Solar Wind Speed near the Sun.925

The Astrophysical Journal , 891 (2), 165. doi: 10.3847/1538-4357/ab78a0926

Reiss, M. A., Muglach, K., Mullinix, R., Kuznetsova, M. M., Wiegand, C., Temmer, M., . . .927

Samara, E. (2022). Unifying the validation of ambient solar wind models. Advances928

in Space Research. doi: https://doi.org/10.1016/j.asr.2022.05.026929

Richardson, I., Cliver, E., & Cane, H. (2000). Sources of geomagnetic activity over the solar930

cycle: Relative importance of coronal mass ejections, high-speed streams, and slow931

–26–



manuscript submitted to Space Weather

solar wind. Journal of Geophysical Research: Space Physics, 105 (A8), 18203-18213.932
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