
P
os
te
d
on

25
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
68
50
03
31
.1
88
68
87
6/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

The Global Distribution and Drivers of Grazing Dynamics

Estimated from Inverse Modelling

Tyler Weaver Rohr1, Anthony Richardson2, Andrew Allan Lenton3, Matthew A
Chamberlain4, and Elizabeth H. Shadwick5

1University of Tasmania
2University of Queensland, Australia
3Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and
Atmosphere
4CSIRO Marine and Atmospheric Research
5CSIRO Oceans & Atmosphere

May 25, 2023

Abstract

We use inverse modelling to infer the distribution and drivers of community-integrated zooplankton grazing dynamics based on

the skill with which different grazing formulations recreate the satellite-observed seasonal cycle in phytoplankton biomass. We

find that oligotrophic and eutrophic biomes require more and less efficient grazing dynamics, respectively. This is characteristic

of micro- and mesozooplankton, respectively, and leads to a strong sigmoidal relationship between observed mean-annual

phytoplankton biomass and the optimal grazing parameterization required to simulate its seasonal cycle. Globally, we find

Type III rather than Type II functional response curves consistently exhibit higher skill. These new observationally-based

distributions can help constrain, validate and develop next-generation biogeochemical models.
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Key Points:12

• Oligotrophic (eutrophic) biomes exhibit more (less) efficient community-integrated13

grazing, characteristic of micro- (meso-) zooplankton.14

• We find a strong link between observed mean-annual phytoplankton biomass and15

the grazing dynamics required to recreate its seasonal cycle.16

• A type III functional response does a consistently better job recreating observed17

phytoplankton seasonal cycles than a type II response.18
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Abstract19

We use inverse modelling to infer the distribution and drivers of community-integrated20

zooplankton grazing dynamics based on the skill with which different grazing formula-21

tions recreate the satellite-observed seasonal cycle in phytoplankton biomass. We find22

that oligotrophic and eutrophic biomes require more and less efficient grazing dynam-23

ics, respectively. This is characteristic of micro- and mesozooplankton, respectively, and24

leads to a strong sigmoidal relationship between observed mean-annual phytoplankton25

biomass and the optimal grazing parameterization required to simulate its seasonal cy-26

cle. Globally, we find type III rather than type II functional response curves consistently27

exhibit higher skill. These new observationally-based distributions can help constrain,28

validate and develop next-generation biogeochemical models.29

Plain Language Summary30

To improve predictions of our ocean’s ability to feed a growing human population31

and buffer a changing climate, we need to improve our understanding of what happens32

to carbon once it is absorbed into the ocean. One of the largest gaps in marine carbon33

cycling is the role of zooplankton grazing. The rate at which zooplankton graze phyto-34

plankton modifies the size and seasonal evolution of phytoplankton populations and in35

turn the associated rates of net primary production at the base of the food web, secondary36

production of grazers (an indicator of fisheries potential) and export production (the bi-37

ological sequestration of carbon). However, regional differences in grazing, which are dif-38

ficult to measure outside of a laboratory setting, remain poorly constrained by obser-39

vations and thus difficult to model. Here, we run a suite of model simulations, each of40

which simulate grazing in a different way, then compare the results to infer which type41

of grazing dynamics match observations. We find that there is dramatic spatial variabil-42

ity in how zooplankton, as a community, appear to be grazing and that this variability43

maps well onto observed phytoplankton concentrations, suggesting that the type of zoo-44

plankton present may be determined by the amount of prey available.45

1 Introduction46

Marine net primary production (NPP) supports the biological export (EP) of car-47

bon (de la Rocha, 2006) and forms the base of the marine food web (Armengol et al.,48

2019). Although oceanographers have historically focused on light (Sverdrup, 1953) and49

nutrients (Howarth, 1988), increasing experimental (Lima-Mendez et al., 2015; Guidi et50

al., 2016), observational (Behrenfeld et al., 2013) and modelling (Hashioka et al., 2013;51

Prowe et al., 2012; Laufkötter et al., 2015; Vallina & Le Quéré, 2011; Chenillat et al.,52

2021) work has highlighted zooplankton grazing as a critical control on NPP. However,53

grazing dynamics remain poorly constrained across modern biogeochemical (BGC) mod-54

els, including those used by the IPCC in climate projections (Rohr et al., 2023). This55

likely contributes to persisting uncertainty in projections of NPP (Tagliabue et al., 2021;56

Laufkötter et al., 2015), EP (Laufkötter et al., 2016; Fu et al., 2016), zooplankton biomass57

(Petrik et al., 2022) and fisheries catch (Tittensor et al., 2021).58

The parameterization of relatively coarse global models implicitly requires an un-59

derstanding of the mean dynamics of many species averaged across a patchy ocean, which60

may diverge dramatically from the dynamics of individual zooplankton (Rohr et al., 2022;61

Morozov, 2010). Although empirical laboratory experiments have shown that grazing62

dynamics (i.e. the manner in which zooplankton-specific grazing rates increase with prey63

concentration) vary substantially across zooplankton species, ages, and sizes (Hansen et64

al., 1997; Hirst & Bunker, 2003), most laboratory studies consider the idealized behav-65

ior of a single species in a well-mixed environment.66
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Field-based dilution experiments help average across some of this variability (Morrow67

et al., 2018; Landry et al., 2009, 2008; Landry et al., 2000) and have been used to esti-68

mate grazing dynamics in natural microzooplankton assemblages (Chen et al., 2014). How-69

ever, these experiments are limited in their spatial scope and resolution (Schmoker et70

al., 2013) and can be biased by trophic cascades (Calbet et al., 2011), the presence of71

mixotrophs (Calbet et al., 2012) and the exclusion of mesozooplankton and macrozoo-72

plankton (Schmoker et al., 2013).73

In the absence of direct, global, high-resolution measurements, community-integrated74

grazing rates and dynamics could theoretically be backed-out from zooplankton biomass75

budgets. However, disparate methods for shipboard observation make it difficult to de-76

scribe time-evolving global distributions without large levels of statistical inference (Everett77

et al., 2017; Heneghan et al., 2020; Ratnarajah et al., 2023) and algorithms for satellite78

observation are limited (Druon et al., 2019; Strömberg et al., 2009).79

Yet, while zooplankton grazing dynamics and biomass are difficult to observe di-80

rectly, phytoplankton loss rates (Mojica et al., 2021; Deppeler & Davidson, 2017) and81

population dynamics (Gentleman & Neuheimer, 2008; Truscott et al., 1994; Steele, 1974)82

are largely driven by grazing. Thus the most viable option to estimate community-integrated83

grazing dynamics at scale may be inference from the remote sensing record of phytoplank-84

ton biomass (Westberry et al., 2008).85

Here, we infer the global distribution of community-integrated grazing dynamics86

using an inverse modelling approach. We run a suite of simulations in a coupled ocean-87

BGC model, parameterized with a wide range of grazing dynamics, and determine the88

optimal parameters required to recreate the observed phytoplankton seasonal cycle. We89

map the distribution of optimal parameters, examine how they appear driven by regional90

variability in phytoplankton biomass (Sec. 3.1), and explain mechanistically how graz-91

ing dynamics can shape the seasonal cycle (Sec. 3.2). Finally, we discuss the limitations92

of this work (Sec. 4.1), as well its potential utility from a ecological (Sec. 4.2) and mod-93

elling perspective (Sec. 4.3).94

2 Materials and methods95

2.1 Grazing in BGC models96

The simplest BGC models include one zooplankton grazing on one phytoplankton.97

The relationship between specific grazing rates (g; d−1) and prey abundance is typically98

described by a type II or III functional response curve (Gentleman & Neuheimer, 2008;99

Rohr et al., 2022). The primary difference between response curves is that the type II100

response increases linearly at low phytoplantkon concentrations ([Cphyto]; mmolC m−3),101

while the type III increases quadratically (Figure 1). Both curves, g([Cphyto]), can be102

parameterized with a saturation grazing rate (gmax; d
−1), which describes the rate when103

prey is non-limiting, and a half saturation concentration (K1/2; mmolC m−3), which de-104

scribes how much prey is required to get there (i.e. g([K1/2]) = 0.5 ∗ gmax). Here we105

focus on K1/2 because it has been shown to have a stronger influence on population dy-106

namics (Rohr et al., 2022) and marine carbon cycling (Rohr et al., 2023) than gmax.107

2.2 Grazing and population dynamics108

Grazing dynamics can influence the seasonal cycle of phytoplankton biomass via109

the curvature of the functional response, which has either a stabilizing or destabilising110

influence on phytoplankton population dynamics depending on its concavity (Steele, 1974;111

Truscott et al., 1994; Gentleman & Neuheimer, 2008; Rohr et al., 2022). If the functional112

response is concave upward, then phytoplankton-specific loss rates to grazing increase113

with the size of the phytoplankton population. This creates a negative feedback loop which114
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dampens changes in the size of the phytoplankton population, thereby exerting a sta-115

bilizing influence. Alternatively, downward concavity means phytoplankton-specific loss116

rates to grazing decline with population growth, creating a destabilizing, positive feed-117

back which amplifies changes in the size of the phytoplankton population.118

The shape and stabilizing influence of the functional response is determined by its119

response type (II or III) and parameters (particularly K1/2). While the parameter val-120

ues determine the magnitude of curvature and thus the strength of the stabilizing influ-121

ence, the response type determines the direction. A type II response is always concave122

downward and thus always destabilizing. A type III response has upward concavity be-123

low K1/2 and thus stabilizing properties at low phytoplankton concentrations. In turn,124

the grazing formulation exerts a strong influence on the size, shape, and propensity of125

phytoplankton blooms, sub-seasonal oscillations, and extinction events (Dunn & Hovel,126

2020; Adjou et al., 2012; Hernández-Garćıa & López, 2004; Malchow et al., 2005; Rohr127

et al., 2022).128

While a type II response is typically found in laboratory experiments (Hansen et129

al., 1997), a type III response can be justified as the implicit representation of more com-130

plex behavior such as active prey switching (Prowe et al., 2012; Vallina et al., 2014) or131

the mean state of a patchy ocean (Morozov & Arashkevich, 2010; Rohr et al., 2022). Thus,132

in any given region, the true shape of the apparent functional response (i.e. the spatially-133

integrated relationship between total prey and community-averaged zooplankton-specific134

grazing rates) is determined by the community-composition, prey preferences, spatial dis-135

tributions and physiology of resident zooplankton. Using inverse modelling to match the136

spatially-averaged and community-integrated phytoplankton record observed from satel-137

lites helps average out spatial, species-level, and behavioral complexities that many global138

models do not explicitly resolve.139

2.3 Model configuration140

We use a global, ocean-BGC model to determine which K1/2 values and response141

types are required to best match the observed phytoplankton seasonal cycle. Simulations142

are run with the Whole Ocean Model of Biogeochemistry and Trophic-dynamics (WOM-143

BAT) (Law et al., 2017), part of the Australian Earth Systems Model (ACCESS-ESM1.5)144

(Ziehn et al., 2020), which has been studied and validated extensively (Mortenson et al.,145

2021; Kwiatkowski et al., 2020; Ziehn et al., 2017; Oke et al., 2013). The ocean model146

is the global configuration of Modular Ocean Model version 5 (Griffies, 2012). WOM-147

BAT has a relatively simple structure, with one phytoplankton and one zooplankton group.148

While more complex models include multiple zooplankton grazing on multiple phyto-149

plankton (Rohr et al., 2023), we are interested here in estimating community-integrated150

grazing dynamics. These can be inferred most directly by tuning WOMBAT’s single-prey151

grazing formulation, which implicitly represents the community-integrated behavior of152

all zooplankton groups, towards the satellite-observed phytoplankton seasonal cycle, which153

explicitly integrates across all phytoplankton groups.154

2.4 Model experiments155

We ran a total of 36 global simulations, each with a different grazing formulation.156

To isolate the influence of grazing, all simulations were initialized from the same state,157

embedded in an identical repeat-climatological physical ocean, and forced with identi-158

cal surface flux and freshwater runoff from the Japanese 55-year atmospheric reanaly-159

sis surface dataset (Tsujino et al., 2020). After initialisation, each run was spun up for160

5 years to a quasi-steady state, long enough to equilibrate with changes to the grazing161

formulation. Output is reported from the fifth year and can be considered climatolog-162

ical.163
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We ran two suites of experiments, using a type II and III functional response. Within164

each suite, we tested 18 different parameters combination: K1/2 = 0.5, 1, 2, 4, 8, 16165

(mmolC m−3) and gmax = 0.5, 1, 2 (d−1). These values are consistent with the range166

that has been derived empirically and used in models historically (Rohr et al., 2022). All167

other parameters were kept constant and identical to Law et al. (2017).168

2.5 Model skill assessment169

We used two metrics to evaluate the model’s ability to recreate the observed phy-170

toplankton seasonal cycle: the correlation coefficient (CC ) and the coefficient of vari-171

ation (CV ). The CC measures the co-variability between the simulated and observed172

climatologies, while the CV measures the magnitude of variability separately in each cli-173

matology relative to its annual mean (CV = std
mean ). Together they capture the shape174

(CC ) and strength (CV ) of the seasonal cycle. Both metrics are largely agnostic to the175

size of mean-annual phytoplankton population (i.e. CC independent to mean; CV nor-176

malized by mean). This is to help isolate the influence of grazing dynamics on the qual-177

itative shape of the seasonal cycle rather than mean-state NPP which could be biased178

by many other model attributes.179

For each metric, the seasonal cycle of simulated surface phytoplankton biomass was180

compared to an 18-year remote sensing climatology (July 2002 - April 2021) from the181

Carbon-based Productivity Model (CbPM) (Westberry et al., 2008). The remote sens-182

ing record was interpolated onto the model grid and all time series were centered on the183

summer solstice. We use the observed carbon product, which is derived from back-scatter,184

instead chlorophyll because WOMBAT does not resolve chlorophyll. However, we repeated185

the analysis comparing model carbon to satellite chlorophyll (Sathyendranath et al., 2019)186

and found similar results (Supporting Text 1).187

The cost function for model skill was quantified for each run in each grid-cell by188

subtracting the absolute difference between the modelled (CVmod) and observed (CVobs)189

coefficient of variation from the correlation coefficient (CCmod,obs),190

Model Skill = norm(CCmod,obs)− norm(|CVmod − CVobs|) (1)

Both metrics are normalized across all grid cells from all 36 model runs, such that they191

are equally weighted and cost function scores can be directly compared across all exper-192

iments.193

For each response type, we considered three sets of six runs. Each run in a set used194

a different K1/2 value but constant gmax value. Within each set, the cost function score195

was interpolated between K1/2 values at each grid cell using a piece-wise cubic polyno-196

mial (Figure 2). The K1/2 value with the maximum score was identified and averaged197

across all three sets to infer the optimal value. Regions below 55◦S or above 55◦N with198

limited remote sensing coverage were excluded.199

3 Results200

3.1 Global distribution and drivers of grazing dynamics201

The distribution of observed mean-annual surface phytoplankton biomass estimated202

from CbPM (Figure 1A) has a striking co-variability with the distribution of grazing203

dynamics inferred by the optimal K1/2 value required to match the observed seasonal204

cycle (Figure 1B, C). We find that more oligotrophic regions with mean-annual phy-205

toplankton biomass lower than the global median require smaller K1/2 values to best match206

the observed phenology (Figure 1A-C; more blue). Alternatively, eutrophic regions207

with mean-annual phytoplankton biomass above the global median, including HNLC re-208
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gions, require larger K1/2 values (Figure 1A-C; more green). Qualitatively, this pat-209

tern generally holds regardless of whether a type II (Figure 1B) or III (Figure 1C)210

functional response is used to described grazing dynamics and whether biomass (Figure211

1A) or chlorophyll (Supporting Figure 1) is used to described the observed seasonal212

cycle.213

Plotting the optimal K1/2 value against the corresponding observed mean-annual214

surface biomass reveals a clear sigmoidal relationship (Figure 1D, E). Regardless of func-215

tional response type, larger K1/2 values are required to recreate the seasonal cycle of biomes216

with higher mean-annual phytoplankton biomass, but appear to be bound asymptoti-217

cally by a minimum and maximum viable K1/2 value. Switching from a type II (Figure218

1D) to type III (Figure 1E) response or decreasing gmax (Supporting Figure 2) de-219

creases the value of both asymptotes, but neither substantively influence the shape of220

the curve. Thus, while other assumptions about the grazing formulation influence the221

specific quantitative estimates of the optimal K1/2 (Supporting Table 1), the qual-222

itative relationship is consistent: higher biomass regions appear to be populated with223

zooplankton with higher community-integrated K1/2 values.224

Finally, regardless of biome, using a type III response consistently recreates the ob-225

served phytoplankton seasonal cycle better than a type II response, with 30% more model226

skill on average (Figure 1). Moreover, the type III response performs better regardless227

of whether the observed seasonal cycle is quantified with carbon or chlorophyll or which228

gmax value is used (Supporting Figures 1, 2).229

3.2 Mechanistic influence of the grazing dynamics230

Importantly, our estimations of model skill do not include any metric for mean model231

bias. Thus, the correct interpretation of these results is not that more or less grazing leads232

to less or more phytoplankton biomass, respectively, but rather that the dynamical prop-233

erties of the functional response curve can shape of the seasonal evolution of phytoplank-234

ton accumulation in a way that appears more or less consistent with observations.235

For example, when K1/2 is large, phytoplankton tend to exhibit a stronger, well-236

defined seasonal cycle with less high frequency variability (Figure 2; green lines). This237

is because the grazing formulation does not heavily influence the stability of the system,238

allowing bloom dynamics to be driven primarily by bottom-up controls, such as light and239

nutrients, which generally exhibit strong seasonality following seasonal cycles in verti-240

cal mixing and day length. In turn, phytoplankton population dynamics are not as sen-241

sitive to the whether a type II (Figure 2C, D) or III (Figure 2A, B) response is used.242

However, as K1/2 decreases, the grazing formulation has a stronger influence on the sta-243

bility on the system. This influence is stabilizing if a type III response is used but desta-244

bilizing if a type II response is used (Supporting Text 2; Supporting Figure 3), re-245

sulting in substantively different seasonal cycles (Figure 2; blue tracers). We consider246

two case studies, in the Subantarctic zone (SAZ) and Sargasso sea, which are generally247

representative of the seasonal variability in more eutrophic and oligotrophic biomes, re-248

spectively.249

In the SAZ (Figure 2A, C) the observed evolution of biomass (black line) exhibits250

a strong seasonal cycle with an amplitude ∼ 20% greater than its mean and relatively251

little sub-seasonal variability. It is best recreated using larger K1/2 values and exhibits252

slightly more model skill when a type III response is used. With a type III response (Figure253

2A), lower K1/2 values reduce the mean biomass but do not systematically modify the254

CV , leaving the ratio of summer to winter biomass roughly proportional. Alternatively,255

with a type II response (Figure 2C), decreasing K1/2 delays bloom initiation but am-256

plifies its acceleration once initiated, leading to smaller, shorter, sharper features and sys-257

tematically higher CV s. The initiation is delayed because the type II response dispro-258

portionately increases grazing rates at low biomass concentrations compared to a type259
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Figure 1. The distribution and drivers of grazing dynamics. A) The observed climatologi-

cal mean-annual phytoplankton biomass concentration plotted as a percentile of the full spatial

distribution. Below, the corresponding optimal K1/2 parameter required to best recreate the ob-

served phytoplankton seasonal cycle using a B) type II or C) type III response function plotted

as a percentile for direct qualitative comparison. Beside each is an example functional response

curve for their respective (bolded) response types, both parameterized with the same K1/2 and

gmax. Below A) a schematic of the characteristic phytoplankton associated with low and high

biomass waters and below C) a schematic of zooplankton associated with low and high K1/2

values. The optimal K1/2 found with a D) type II and E) type III response are plotted against

the observed mean-annual phytoplankton biomass. Each point represents the mean of roughly

30 grid cells, binned based on their percentile biomass, with the top and bottom 5% percent

removed. Points are colored by their mean cost function score, with red indicating more model

skill. All values are averaged across three experiment suites, with each using a different gmax

value. Results from individual experiment suites are shown in Supporting Figure 2. Data is fit

to a sigmoidal curve (solid blue), shown with 95% confidence bounds (dashed blue).
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Figure 2. Influence of K1/2 and response type on phytoplankton seasonal cycle. Phytoplank-

ton biomass climatologies and model skill evaluations are provided from A, C the SAZ and B,

D Sargasso Sea, showing the emergent seasonal cycle from runs using six K1/2 values with a

A, B Type III and C, D type II functional response. All simulations shown use identical gmax

values (1 d−1). In the upper panel of each subplot, the observed (black) and simulated (blue-

green) seasonal cycles are plotted with the simulation that best matches the observed phenology

in bold. In the lower panel, the cost function scoring is demonstrated for each simulation, with

the corresponding CC and CV shown above the total cost function score. Red and blue shading

indicates better and worse model skill, respectively. The optimal K1/2 value is determined by

the maximum (red line) interpolated model skill (black line). In the inset map (top-right corner)

the distribution of optimal K1/2 values is shown with the example location marked in red. Note,

these distributions are qualitatively identical to Figure 1, with the same percentile-based color-

bar. However, they only consider runs with gmax = 1 to be consistent with the traces, rather

than the mean of all three gmax sets.
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III response. The bloom is a sharper because lowering K1/2 in a type II response desta-260

bilizes the system, allowing phytoplankton biomass to accumulate rapidly until bottom-261

up factors respond (i.e. nutrient limitation, self-shading) and rapidly terminate the bloom.262

In the Sargasso Sea (Figure 2B, D), the observed evolution of biomass (black line)263

exhibits a weaker seasonal cycle, with an amplitude less than half the size of its mean.264

It is best recreated using smaller K1/2 values and a type III response. With a type III265

response (Figure 2B), highly-stable lower K1/2 values dampen seasonality in bottom-266

up controls and prevent a bloom. Increasing K1/2 allows an unrealistic late-winter/early-267

spring bloom to emerge, systematically increasing the CV and decreasing model skill.268

While the emergent seasonal cycle is nearly identical between response curves when us-269

ing high K1/2 values (Figure 2D), the Type II response diverges substantially when us-270

ing low K1/2 values. Here, decreasing stability introduces unstable predator-prey dynam-271

ics which drive higher-frequency oscillations. Thus, the model cannot eliminate the un-272

natural early-spring bloom without inducing unnatural sub-seasonal spikes, neither of273

which are observed.274

4 Discussion275

4.1 Limitations276

The largest limitation of these results likely stems from the accuracy of non-grazing277

attributes in the BGC-ocean model we have optimized. Despite running experiments in278

an identical physical ocean, if their is a systematic bias in the simulated seasonal light279

and nutrient cycle, then it is possible that the ‘wrong’ grazing dynamics could combine280

with the ‘wrong’ bottom-up controls to produce the correct seasonal cycle, leading us281

to infer unnatural grazing dynamics. This could be the case along the equator where there282

is a disproportionately large bias in phytoplankton biomass relative to NPP (Supporting283

Figure 4), suggesting simulated phytoplankton-specific growth rates are systematically284

low. This may explain why we inferred higher K1/2 values in the equatorial Indian, At-285

lantic, and Pacific basins (Figure 1B; greener) than we would have expected from the286

low mean-annual phytoplankton biomass observed there (Figure 1A; bluer). If the model287

is misrepresenting the seasonal cycle in bottom-up controls as too weak, it makes sense288

that higher K1/2 values are needed to not damp out all seasonal variability and recre-289

ate the observed seasonal cycle. Additional biases may stem from the remote sensing prod-290

ucts, which are limited by clouds and the solar inclination angle, the exact nature of the291

link between trophic controls and bloom phenology (Behrenfeld et al., 2013; Rohr et al.,292

2017), and our ability to accurately quantify the fidelity of the seasonal cycle. Collec-293

tively then, our results our best understood qualitatively, rather than as specific quan-294

titative predictions of the apparent K1/2 value in any specific location.295

4.2 Ecological Perspectives296

Nevertheless, our inferred distribution of community-integrated grazing dynamics297

is consistent with the biogeography of community composition which we would expect298

to inhabit each respective biome (Barton et al., 2013; Heneghan et al., 2020; Décima, 2022;299

Brandão et al., 2021). Ecologically, the value of K1/2 at a fixed gmax is related to the300

rate at which zooplankton can capture (rather than consume) prey (Rohr et al., 2022).301

Physiologically, the zooplankton with fastest prey capture rates are typically rapidly-grazing302

microzooplankton and filter feeders (Hansen et al., 1997). However, these zooplankton303

species are generally unable to consume anything larger than small flagellates, ciliates304

and cyanobacteria, exactly the sort of phytoplankton that tend to dominate more olig-305

otrophic regions such as the gyres (Calbet & Landry, 2004). On the other hand, slowly-306

grazing euphausiids, copepods and macrozooplankton tend to have much slower capture307

rates but are capable of consuming much larger prey, such as dinoflagellates and diatom308
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assemblages, which tend to dominate more eutrophic coastal and higher-latitude regions309

(San Martin et al., 2006).310

The sigmoidal relationship between phytoplankton biomass and inferred community-311

integrated K1/2 values implies the importance of two end-member communities in the312

most oligotrophic and eutrophic regions. The location of each asymptotes implies a com-313

munity integrated K1/2 value of 3 mmolC m−3 for ecosystems dominated by faster-grazing314

microzooplankton and filter feeders and 8.3 mmolC m−3 for ecosystems dominated by315

slower-grazing mesozooplankton and macrozooplantkon. While these values are lower316

than the median empirical K1/2 values measured by Hansen et al. (1997) in individual317

microzooplankton (8.9 mmolC m−3) and mesozooplantkon (18 mmolC m−3), the appar-318

ent K1/2 of spatially-averaged, community-integrated dynamics is expected to be much319

lower than that of any individual species measured in well-mixed laboratory medium (Rohr320

et al., 2022).321

However, despite two prominent asymptotes, the region of monotonically increas-322

ing K1/2 values between them (∼.85-1.2 mmolC m−3) encompasses over 50% of the ocean323

area in our domain (55◦S-55◦N) and 43% of the global ocean. This suggests a critical324

role for more heterogeneous zooplankton communities and the co-existance of diverse func-325

tional groups therein. This steady increase in K1/2 across intermediate mean-annual phy-326

toplankton concentrations is consistent with the positive relationship between empiri-327

cally estimated microzooplankton K1/2 values and in-situ chlorophyll concentrations mea-328

sured across shipboard dilution experiments (Chen et al., 2014). Note, while these re-329

sults strongly imply slower zooplankton-specific grazing rates in more productive biomes,330

they can be consistent with observations of bulk ingestion rates and phytoplankton-specific331

grazing mortality increasing with primary productivity (Schmoker et al., 2013; Calbet,332

2001) due to differences in phytoplankton and zooplankton abundance.333

Finally, while community-integrated K1/2 values exhibit large regional variability,334

the spatially integrated dynamics of all biomes are consistently best described by a type335

III versus type II response (Figure 1, Supporting Table 1). Although dynamic instabil-336

ities are not necessarily unnatural (McCauley & Murdoch, 1987), when averaged across337

a relatively large area the destabilizing properties of a type II response appear to lead338

to sharper, more delayed blooms than observed in eutrophic regions and more sub-seasonal339

variability than observed in eutrophic regions (Figure 2). This is consistent with obser-340

vational (Morozov et al., 2008; Kiørboe, 2018), modelling (Nissen et al., 2018; Prowe et341

al., 2012; Chenillat et al., 2021), and theoretical (Rohr et al., 2022; Morozov, 2010) work342

suggesting that the downward concavity, prey refuge, and stabilizing properties associ-343

ated with a type III response may be a better empirical representation of the mean state344

of a patchy ocean and complex food web, even if a type II response is typically measured345

for individual species in a well-mixed laboratory medium (Hansen et al., 1997; Hirst &346

Bunker, 2003).347

4.3 Modelling Perspectives348

Considering the sensitivity of simulated carbon cycling to the representation of zoo-349

plankton grazing dynamics (Rohr et al., 2023; Chenillat et al., 2021; Prowe et al., 2012;350

Laufkötter et al., 2015, 2016; Dupont et al., 2023), it is critical for models to accurately351

recreate the distribution community-integrated grazing dynamics and allow it to respond352

to environmental change. As warming, stratification, and stronger winds transform the353

surface ocean, the ensuing balance of light and nutrients may reshape marine ecosystems354

(Pörtner et al., 2019), favouring different zooplankton species, in different places, with355

vastly different grazing dynamics. For instance, a shift toward smaller phytoplankton,356

which have higher light but lower nutrient requirements (Pörtner et al., 2019; Bopp et357

al., 2005) would precipitate a shift towards microzooplankton, salps and larvaceans. Al-358

ready a southward shift of salps into regions previously dominated by euphausiids has359
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been observed (Henschke & Pakhomov, 2019; Steinberg & Landry, 2017). Such shifts should360

be captured in BGC models if Earth system and ecosystem models hope to predict changes361

in the oceans capacity to buffer a changing climate and feed a growing population.362

Fortunately, the validation of zooplankton biomass in BGC models is receiving in-363

creasing attention (Petrik et al., 2022; McGinty et al., 2023). However, given large un-364

certainties in the parameterization of grazing within ostensibly similar zooplankton func-365

tional groups across models (Rohr et al., 2022, 2023), a further validation of zooplankton-366

specific grazing rates is required to determine if a model is accurately simulating graz-367

ing pressure (i.e. the phytoplankton-specific mortality rate to grazing), which may be368

the single largest source of uncertainty in CMIP6 representations of marine carbon cy-369

cling (Rohr et al., 2023). While direct field measurements of grazing rates are typically370

limited to the role of microzooplankton (Schmoker et al., 2013; Calbet & Landry, 2004;371

Landry & Calbet, 2004) our results implicitly reflect the integrated grazing dynamics372

of the entire zooplankton community, averaging over the distribution and behavior of373

individual species.374

First off, it appears clear that modellers should use a type III over type II response,375

especially if explicitly resolving a limited food web with relatively coarse spatial reso-376

lution. Further, although our exact quantitative estimates of K1/2 are limited and vary377

with other model parameters (Supporting Table 1), there is a consistent qualitative378

pattern in apparent K1/2 values which models ought to recreate. At minimum, it is clear379

a priori that models with a single zooplankton and prey option (e.g. Tjiputra et al. (2020);380

Zahariev et al. (2008); Law et al. (2017)) cannot simulate the established spatial vari-381

ability in community-integrated grazing dynamics (as the single zooplankton will graze382

with the same K1/2 everywhere). In turn, bottom-up controls are likely over-tuned to383

compensate for unrealistic top-down homogeneity. While many CMIP6-class models in-384

clude 2-3 zooplankton groups (Kearney et al., 2021; Rohr et al., 2023), it is critical to385

know if competition between them is sufficient to drive a realistic emergent distribution386

in community-integrated grazing dynamics. Thus, we encourage modellers to confirm387

whether the distribution of community-integrated K1/2 values is qualitatively consistent388

with Figure 1. This can be done by fitting a curve between the mean zooplankton-specific389

grazing rate and total prey concentration in different regions or grid cells to diagnosti-390

cally compute the apparent functional response and associated community-integrated391

K1/2 value. Significant disagreement from Figure 1 would likely imply that additional392

zooplankton groups, such as macrozooplankton (Le Quéré et al., 2016), salps (Luo et al.,393

2020), larvaceans, euphausiids, chaetognaths, jellyfish (Heneghan et al., 2020, 2023) may394

be required.395

Finally, if explicit competition between limited functional groups is insufficient to396

resolve the emergent distribution of community-integrated grazing dynamics and a suf-397

ficiently complex food web is not computationally tractable with high-resolution projec-398

tions (Neelin et al., 2010), then modellers might consider parameterizing zooplankton399

community composition using the relationship described in Figure 1. That is, modellers400

could implicitly represent changes in zooplankton community composition by modify-401

ing K1/2 of a single group as a function of phytoplankton abundance (Supporting Ta-402

ble 1). This could allow allow the mean attributes of the zooplankton community to re-403

spond dynamically to changing environmental conditions without explicitly resolving each404

of its constituent species. While potentially powerful, implementing such a parameter-405

ization would require several important assumptions and careful calibrations (Supporting406

Text 3).407

5 Conclusions408

These results present a novel, observationally-informed, map of global community-409

integrated grazing dynamics (i.e K1/2 values). Further refining the observed distribu-410
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tion and drivers of grazing, and how to replicate them in models, will require close col-411

laboration with zooplankton ecologists, but presents an exciting new frontier in oceanog-412

raphy focused on a rigorous understanding of how NPP is controlled from the top-down.413

Moreover, improving the representation of zooplankton could realize dramatic improve-414

ments in marine BGC models and our predictions of future ocean states.415
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Key Points:12

• Oligotrophic (eutrophic) biomes exhibit more (less) efficient community-integrated13

grazing, characteristic of micro- (meso-) zooplankton.14

• We find a strong link between observed mean-annual phytoplankton biomass and15

the grazing dynamics required to recreate its seasonal cycle.16

• A type III functional response does a consistently better job recreating observed17

phytoplankton seasonal cycles than a type II response.18
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Abstract19

We use inverse modelling to infer the distribution and drivers of community-integrated20

zooplankton grazing dynamics based on the skill with which different grazing formula-21

tions recreate the satellite-observed seasonal cycle in phytoplankton biomass. We find22

that oligotrophic and eutrophic biomes require more and less efficient grazing dynam-23

ics, respectively. This is characteristic of micro- and mesozooplankton, respectively, and24

leads to a strong sigmoidal relationship between observed mean-annual phytoplankton25

biomass and the optimal grazing parameterization required to simulate its seasonal cy-26

cle. Globally, we find type III rather than type II functional response curves consistently27

exhibit higher skill. These new observationally-based distributions can help constrain,28

validate and develop next-generation biogeochemical models.29

Plain Language Summary30

To improve predictions of our ocean’s ability to feed a growing human population31

and buffer a changing climate, we need to improve our understanding of what happens32

to carbon once it is absorbed into the ocean. One of the largest gaps in marine carbon33

cycling is the role of zooplankton grazing. The rate at which zooplankton graze phyto-34

plankton modifies the size and seasonal evolution of phytoplankton populations and in35

turn the associated rates of net primary production at the base of the food web, secondary36

production of grazers (an indicator of fisheries potential) and export production (the bi-37

ological sequestration of carbon). However, regional differences in grazing, which are dif-38

ficult to measure outside of a laboratory setting, remain poorly constrained by obser-39

vations and thus difficult to model. Here, we run a suite of model simulations, each of40

which simulate grazing in a different way, then compare the results to infer which type41

of grazing dynamics match observations. We find that there is dramatic spatial variabil-42

ity in how zooplankton, as a community, appear to be grazing and that this variability43

maps well onto observed phytoplankton concentrations, suggesting that the type of zoo-44

plankton present may be determined by the amount of prey available.45

1 Introduction46

Marine net primary production (NPP) supports the biological export (EP) of car-47

bon (de la Rocha, 2006) and forms the base of the marine food web (Armengol et al.,48

2019). Although oceanographers have historically focused on light (Sverdrup, 1953) and49

nutrients (Howarth, 1988), increasing experimental (Lima-Mendez et al., 2015; Guidi et50

al., 2016), observational (Behrenfeld et al., 2013) and modelling (Hashioka et al., 2013;51

Prowe et al., 2012; Laufkötter et al., 2015; Vallina & Le Quéré, 2011; Chenillat et al.,52

2021) work has highlighted zooplankton grazing as a critical control on NPP. However,53

grazing dynamics remain poorly constrained across modern biogeochemical (BGC) mod-54

els, including those used by the IPCC in climate projections (Rohr et al., 2023). This55

likely contributes to persisting uncertainty in projections of NPP (Tagliabue et al., 2021;56

Laufkötter et al., 2015), EP (Laufkötter et al., 2016; Fu et al., 2016), zooplankton biomass57

(Petrik et al., 2022) and fisheries catch (Tittensor et al., 2021).58

The parameterization of relatively coarse global models implicitly requires an un-59

derstanding of the mean dynamics of many species averaged across a patchy ocean, which60

may diverge dramatically from the dynamics of individual zooplankton (Rohr et al., 2022;61

Morozov, 2010). Although empirical laboratory experiments have shown that grazing62

dynamics (i.e. the manner in which zooplankton-specific grazing rates increase with prey63

concentration) vary substantially across zooplankton species, ages, and sizes (Hansen et64

al., 1997; Hirst & Bunker, 2003), most laboratory studies consider the idealized behav-65

ior of a single species in a well-mixed environment.66
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Field-based dilution experiments help average across some of this variability (Morrow67

et al., 2018; Landry et al., 2009, 2008; Landry et al., 2000) and have been used to esti-68

mate grazing dynamics in natural microzooplankton assemblages (Chen et al., 2014). How-69

ever, these experiments are limited in their spatial scope and resolution (Schmoker et70

al., 2013) and can be biased by trophic cascades (Calbet et al., 2011), the presence of71

mixotrophs (Calbet et al., 2012) and the exclusion of mesozooplankton and macrozoo-72

plankton (Schmoker et al., 2013).73

In the absence of direct, global, high-resolution measurements, community-integrated74

grazing rates and dynamics could theoretically be backed-out from zooplankton biomass75

budgets. However, disparate methods for shipboard observation make it difficult to de-76

scribe time-evolving global distributions without large levels of statistical inference (Everett77

et al., 2017; Heneghan et al., 2020; Ratnarajah et al., 2023) and algorithms for satellite78

observation are limited (Druon et al., 2019; Strömberg et al., 2009).79

Yet, while zooplankton grazing dynamics and biomass are difficult to observe di-80

rectly, phytoplankton loss rates (Mojica et al., 2021; Deppeler & Davidson, 2017) and81

population dynamics (Gentleman & Neuheimer, 2008; Truscott et al., 1994; Steele, 1974)82

are largely driven by grazing. Thus the most viable option to estimate community-integrated83

grazing dynamics at scale may be inference from the remote sensing record of phytoplank-84

ton biomass (Westberry et al., 2008).85

Here, we infer the global distribution of community-integrated grazing dynamics86

using an inverse modelling approach. We run a suite of simulations in a coupled ocean-87

BGC model, parameterized with a wide range of grazing dynamics, and determine the88

optimal parameters required to recreate the observed phytoplankton seasonal cycle. We89

map the distribution of optimal parameters, examine how they appear driven by regional90

variability in phytoplankton biomass (Sec. 3.1), and explain mechanistically how graz-91

ing dynamics can shape the seasonal cycle (Sec. 3.2). Finally, we discuss the limitations92

of this work (Sec. 4.1), as well its potential utility from a ecological (Sec. 4.2) and mod-93

elling perspective (Sec. 4.3).94

2 Materials and methods95

2.1 Grazing in BGC models96

The simplest BGC models include one zooplankton grazing on one phytoplankton.97

The relationship between specific grazing rates (g; d−1) and prey abundance is typically98

described by a type II or III functional response curve (Gentleman & Neuheimer, 2008;99

Rohr et al., 2022). The primary difference between response curves is that the type II100

response increases linearly at low phytoplantkon concentrations ([Cphyto]; mmolC m−3),101

while the type III increases quadratically (Figure 1). Both curves, g([Cphyto]), can be102

parameterized with a saturation grazing rate (gmax; d
−1), which describes the rate when103

prey is non-limiting, and a half saturation concentration (K1/2; mmolC m−3), which de-104

scribes how much prey is required to get there (i.e. g([K1/2]) = 0.5 ∗ gmax). Here we105

focus on K1/2 because it has been shown to have a stronger influence on population dy-106

namics (Rohr et al., 2022) and marine carbon cycling (Rohr et al., 2023) than gmax.107

2.2 Grazing and population dynamics108

Grazing dynamics can influence the seasonal cycle of phytoplankton biomass via109

the curvature of the functional response, which has either a stabilizing or destabilising110

influence on phytoplankton population dynamics depending on its concavity (Steele, 1974;111

Truscott et al., 1994; Gentleman & Neuheimer, 2008; Rohr et al., 2022). If the functional112

response is concave upward, then phytoplankton-specific loss rates to grazing increase113

with the size of the phytoplankton population. This creates a negative feedback loop which114
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dampens changes in the size of the phytoplankton population, thereby exerting a sta-115

bilizing influence. Alternatively, downward concavity means phytoplankton-specific loss116

rates to grazing decline with population growth, creating a destabilizing, positive feed-117

back which amplifies changes in the size of the phytoplankton population.118

The shape and stabilizing influence of the functional response is determined by its119

response type (II or III) and parameters (particularly K1/2). While the parameter val-120

ues determine the magnitude of curvature and thus the strength of the stabilizing influ-121

ence, the response type determines the direction. A type II response is always concave122

downward and thus always destabilizing. A type III response has upward concavity be-123

low K1/2 and thus stabilizing properties at low phytoplankton concentrations. In turn,124

the grazing formulation exerts a strong influence on the size, shape, and propensity of125

phytoplankton blooms, sub-seasonal oscillations, and extinction events (Dunn & Hovel,126

2020; Adjou et al., 2012; Hernández-Garćıa & López, 2004; Malchow et al., 2005; Rohr127

et al., 2022).128

While a type II response is typically found in laboratory experiments (Hansen et129

al., 1997), a type III response can be justified as the implicit representation of more com-130

plex behavior such as active prey switching (Prowe et al., 2012; Vallina et al., 2014) or131

the mean state of a patchy ocean (Morozov & Arashkevich, 2010; Rohr et al., 2022). Thus,132

in any given region, the true shape of the apparent functional response (i.e. the spatially-133

integrated relationship between total prey and community-averaged zooplankton-specific134

grazing rates) is determined by the community-composition, prey preferences, spatial dis-135

tributions and physiology of resident zooplankton. Using inverse modelling to match the136

spatially-averaged and community-integrated phytoplankton record observed from satel-137

lites helps average out spatial, species-level, and behavioral complexities that many global138

models do not explicitly resolve.139

2.3 Model configuration140

We use a global, ocean-BGC model to determine which K1/2 values and response141

types are required to best match the observed phytoplankton seasonal cycle. Simulations142

are run with the Whole Ocean Model of Biogeochemistry and Trophic-dynamics (WOM-143

BAT) (Law et al., 2017), part of the Australian Earth Systems Model (ACCESS-ESM1.5)144

(Ziehn et al., 2020), which has been studied and validated extensively (Mortenson et al.,145

2021; Kwiatkowski et al., 2020; Ziehn et al., 2017; Oke et al., 2013). The ocean model146

is the global configuration of Modular Ocean Model version 5 (Griffies, 2012). WOM-147

BAT has a relatively simple structure, with one phytoplankton and one zooplankton group.148

While more complex models include multiple zooplankton grazing on multiple phyto-149

plankton (Rohr et al., 2023), we are interested here in estimating community-integrated150

grazing dynamics. These can be inferred most directly by tuning WOMBAT’s single-prey151

grazing formulation, which implicitly represents the community-integrated behavior of152

all zooplankton groups, towards the satellite-observed phytoplankton seasonal cycle, which153

explicitly integrates across all phytoplankton groups.154

2.4 Model experiments155

We ran a total of 36 global simulations, each with a different grazing formulation.156

To isolate the influence of grazing, all simulations were initialized from the same state,157

embedded in an identical repeat-climatological physical ocean, and forced with identi-158

cal surface flux and freshwater runoff from the Japanese 55-year atmospheric reanaly-159

sis surface dataset (Tsujino et al., 2020). After initialisation, each run was spun up for160

5 years to a quasi-steady state, long enough to equilibrate with changes to the grazing161

formulation. Output is reported from the fifth year and can be considered climatolog-162

ical.163
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We ran two suites of experiments, using a type II and III functional response. Within164

each suite, we tested 18 different parameters combination: K1/2 = 0.5, 1, 2, 4, 8, 16165

(mmolC m−3) and gmax = 0.5, 1, 2 (d−1). These values are consistent with the range166

that has been derived empirically and used in models historically (Rohr et al., 2022). All167

other parameters were kept constant and identical to Law et al. (2017).168

2.5 Model skill assessment169

We used two metrics to evaluate the model’s ability to recreate the observed phy-170

toplankton seasonal cycle: the correlation coefficient (CC ) and the coefficient of vari-171

ation (CV ). The CC measures the co-variability between the simulated and observed172

climatologies, while the CV measures the magnitude of variability separately in each cli-173

matology relative to its annual mean (CV = std
mean ). Together they capture the shape174

(CC ) and strength (CV ) of the seasonal cycle. Both metrics are largely agnostic to the175

size of mean-annual phytoplankton population (i.e. CC independent to mean; CV nor-176

malized by mean). This is to help isolate the influence of grazing dynamics on the qual-177

itative shape of the seasonal cycle rather than mean-state NPP which could be biased178

by many other model attributes.179

For each metric, the seasonal cycle of simulated surface phytoplankton biomass was180

compared to an 18-year remote sensing climatology (July 2002 - April 2021) from the181

Carbon-based Productivity Model (CbPM) (Westberry et al., 2008). The remote sens-182

ing record was interpolated onto the model grid and all time series were centered on the183

summer solstice. We use the observed carbon product, which is derived from back-scatter,184

instead chlorophyll because WOMBAT does not resolve chlorophyll. However, we repeated185

the analysis comparing model carbon to satellite chlorophyll (Sathyendranath et al., 2019)186

and found similar results (Supporting Text 1).187

The cost function for model skill was quantified for each run in each grid-cell by188

subtracting the absolute difference between the modelled (CVmod) and observed (CVobs)189

coefficient of variation from the correlation coefficient (CCmod,obs),190

Model Skill = norm(CCmod,obs)− norm(|CVmod − CVobs|) (1)

Both metrics are normalized across all grid cells from all 36 model runs, such that they191

are equally weighted and cost function scores can be directly compared across all exper-192

iments.193

For each response type, we considered three sets of six runs. Each run in a set used194

a different K1/2 value but constant gmax value. Within each set, the cost function score195

was interpolated between K1/2 values at each grid cell using a piece-wise cubic polyno-196

mial (Figure 2). The K1/2 value with the maximum score was identified and averaged197

across all three sets to infer the optimal value. Regions below 55◦S or above 55◦N with198

limited remote sensing coverage were excluded.199

3 Results200

3.1 Global distribution and drivers of grazing dynamics201

The distribution of observed mean-annual surface phytoplankton biomass estimated202

from CbPM (Figure 1A) has a striking co-variability with the distribution of grazing203

dynamics inferred by the optimal K1/2 value required to match the observed seasonal204

cycle (Figure 1B, C). We find that more oligotrophic regions with mean-annual phy-205

toplankton biomass lower than the global median require smaller K1/2 values to best match206

the observed phenology (Figure 1A-C; more blue). Alternatively, eutrophic regions207

with mean-annual phytoplankton biomass above the global median, including HNLC re-208

–5–



manuscript submitted to Geophysical Research Letters

gions, require larger K1/2 values (Figure 1A-C; more green). Qualitatively, this pat-209

tern generally holds regardless of whether a type II (Figure 1B) or III (Figure 1C)210

functional response is used to described grazing dynamics and whether biomass (Figure211

1A) or chlorophyll (Supporting Figure 1) is used to described the observed seasonal212

cycle.213

Plotting the optimal K1/2 value against the corresponding observed mean-annual214

surface biomass reveals a clear sigmoidal relationship (Figure 1D, E). Regardless of func-215

tional response type, larger K1/2 values are required to recreate the seasonal cycle of biomes216

with higher mean-annual phytoplankton biomass, but appear to be bound asymptoti-217

cally by a minimum and maximum viable K1/2 value. Switching from a type II (Figure218

1D) to type III (Figure 1E) response or decreasing gmax (Supporting Figure 2) de-219

creases the value of both asymptotes, but neither substantively influence the shape of220

the curve. Thus, while other assumptions about the grazing formulation influence the221

specific quantitative estimates of the optimal K1/2 (Supporting Table 1), the qual-222

itative relationship is consistent: higher biomass regions appear to be populated with223

zooplankton with higher community-integrated K1/2 values.224

Finally, regardless of biome, using a type III response consistently recreates the ob-225

served phytoplankton seasonal cycle better than a type II response, with 30% more model226

skill on average (Figure 1). Moreover, the type III response performs better regardless227

of whether the observed seasonal cycle is quantified with carbon or chlorophyll or which228

gmax value is used (Supporting Figures 1, 2).229

3.2 Mechanistic influence of the grazing dynamics230

Importantly, our estimations of model skill do not include any metric for mean model231

bias. Thus, the correct interpretation of these results is not that more or less grazing leads232

to less or more phytoplankton biomass, respectively, but rather that the dynamical prop-233

erties of the functional response curve can shape of the seasonal evolution of phytoplank-234

ton accumulation in a way that appears more or less consistent with observations.235

For example, when K1/2 is large, phytoplankton tend to exhibit a stronger, well-236

defined seasonal cycle with less high frequency variability (Figure 2; green lines). This237

is because the grazing formulation does not heavily influence the stability of the system,238

allowing bloom dynamics to be driven primarily by bottom-up controls, such as light and239

nutrients, which generally exhibit strong seasonality following seasonal cycles in verti-240

cal mixing and day length. In turn, phytoplankton population dynamics are not as sen-241

sitive to the whether a type II (Figure 2C, D) or III (Figure 2A, B) response is used.242

However, as K1/2 decreases, the grazing formulation has a stronger influence on the sta-243

bility on the system. This influence is stabilizing if a type III response is used but desta-244

bilizing if a type II response is used (Supporting Text 2; Supporting Figure 3), re-245

sulting in substantively different seasonal cycles (Figure 2; blue tracers). We consider246

two case studies, in the Subantarctic zone (SAZ) and Sargasso sea, which are generally247

representative of the seasonal variability in more eutrophic and oligotrophic biomes, re-248

spectively.249

In the SAZ (Figure 2A, C) the observed evolution of biomass (black line) exhibits250

a strong seasonal cycle with an amplitude ∼ 20% greater than its mean and relatively251

little sub-seasonal variability. It is best recreated using larger K1/2 values and exhibits252

slightly more model skill when a type III response is used. With a type III response (Figure253

2A), lower K1/2 values reduce the mean biomass but do not systematically modify the254

CV , leaving the ratio of summer to winter biomass roughly proportional. Alternatively,255

with a type II response (Figure 2C), decreasing K1/2 delays bloom initiation but am-256

plifies its acceleration once initiated, leading to smaller, shorter, sharper features and sys-257

tematically higher CV s. The initiation is delayed because the type II response dispro-258

portionately increases grazing rates at low biomass concentrations compared to a type259
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Figure 1. The distribution and drivers of grazing dynamics. A) The observed climatologi-

cal mean-annual phytoplankton biomass concentration plotted as a percentile of the full spatial

distribution. Below, the corresponding optimal K1/2 parameter required to best recreate the ob-

served phytoplankton seasonal cycle using a B) type II or C) type III response function plotted

as a percentile for direct qualitative comparison. Beside each is an example functional response

curve for their respective (bolded) response types, both parameterized with the same K1/2 and

gmax. Below A) a schematic of the characteristic phytoplankton associated with low and high

biomass waters and below C) a schematic of zooplankton associated with low and high K1/2

values. The optimal K1/2 found with a D) type II and E) type III response are plotted against

the observed mean-annual phytoplankton biomass. Each point represents the mean of roughly

30 grid cells, binned based on their percentile biomass, with the top and bottom 5% percent

removed. Points are colored by their mean cost function score, with red indicating more model

skill. All values are averaged across three experiment suites, with each using a different gmax

value. Results from individual experiment suites are shown in Supporting Figure 2. Data is fit

to a sigmoidal curve (solid blue), shown with 95% confidence bounds (dashed blue).
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Figure 2. Influence of K1/2 and response type on phytoplankton seasonal cycle. Phytoplank-

ton biomass climatologies and model skill evaluations are provided from A, C the SAZ and B,

D Sargasso Sea, showing the emergent seasonal cycle from runs using six K1/2 values with a

A, B Type III and C, D type II functional response. All simulations shown use identical gmax

values (1 d−1). In the upper panel of each subplot, the observed (black) and simulated (blue-

green) seasonal cycles are plotted with the simulation that best matches the observed phenology

in bold. In the lower panel, the cost function scoring is demonstrated for each simulation, with

the corresponding CC and CV shown above the total cost function score. Red and blue shading

indicates better and worse model skill, respectively. The optimal K1/2 value is determined by

the maximum (red line) interpolated model skill (black line). In the inset map (top-right corner)

the distribution of optimal K1/2 values is shown with the example location marked in red. Note,

these distributions are qualitatively identical to Figure 1, with the same percentile-based color-

bar. However, they only consider runs with gmax = 1 to be consistent with the traces, rather

than the mean of all three gmax sets.
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III response. The bloom is a sharper because lowering K1/2 in a type II response desta-260

bilizes the system, allowing phytoplankton biomass to accumulate rapidly until bottom-261

up factors respond (i.e. nutrient limitation, self-shading) and rapidly terminate the bloom.262

In the Sargasso Sea (Figure 2B, D), the observed evolution of biomass (black line)263

exhibits a weaker seasonal cycle, with an amplitude less than half the size of its mean.264

It is best recreated using smaller K1/2 values and a type III response. With a type III265

response (Figure 2B), highly-stable lower K1/2 values dampen seasonality in bottom-266

up controls and prevent a bloom. Increasing K1/2 allows an unrealistic late-winter/early-267

spring bloom to emerge, systematically increasing the CV and decreasing model skill.268

While the emergent seasonal cycle is nearly identical between response curves when us-269

ing high K1/2 values (Figure 2D), the Type II response diverges substantially when us-270

ing low K1/2 values. Here, decreasing stability introduces unstable predator-prey dynam-271

ics which drive higher-frequency oscillations. Thus, the model cannot eliminate the un-272

natural early-spring bloom without inducing unnatural sub-seasonal spikes, neither of273

which are observed.274

4 Discussion275

4.1 Limitations276

The largest limitation of these results likely stems from the accuracy of non-grazing277

attributes in the BGC-ocean model we have optimized. Despite running experiments in278

an identical physical ocean, if their is a systematic bias in the simulated seasonal light279

and nutrient cycle, then it is possible that the ‘wrong’ grazing dynamics could combine280

with the ‘wrong’ bottom-up controls to produce the correct seasonal cycle, leading us281

to infer unnatural grazing dynamics. This could be the case along the equator where there282

is a disproportionately large bias in phytoplankton biomass relative to NPP (Supporting283

Figure 4), suggesting simulated phytoplankton-specific growth rates are systematically284

low. This may explain why we inferred higher K1/2 values in the equatorial Indian, At-285

lantic, and Pacific basins (Figure 1B; greener) than we would have expected from the286

low mean-annual phytoplankton biomass observed there (Figure 1A; bluer). If the model287

is misrepresenting the seasonal cycle in bottom-up controls as too weak, it makes sense288

that higher K1/2 values are needed to not damp out all seasonal variability and recre-289

ate the observed seasonal cycle. Additional biases may stem from the remote sensing prod-290

ucts, which are limited by clouds and the solar inclination angle, the exact nature of the291

link between trophic controls and bloom phenology (Behrenfeld et al., 2013; Rohr et al.,292

2017), and our ability to accurately quantify the fidelity of the seasonal cycle. Collec-293

tively then, our results our best understood qualitatively, rather than as specific quan-294

titative predictions of the apparent K1/2 value in any specific location.295

4.2 Ecological Perspectives296

Nevertheless, our inferred distribution of community-integrated grazing dynamics297

is consistent with the biogeography of community composition which we would expect298

to inhabit each respective biome (Barton et al., 2013; Heneghan et al., 2020; Décima, 2022;299

Brandão et al., 2021). Ecologically, the value of K1/2 at a fixed gmax is related to the300

rate at which zooplankton can capture (rather than consume) prey (Rohr et al., 2022).301

Physiologically, the zooplankton with fastest prey capture rates are typically rapidly-grazing302

microzooplankton and filter feeders (Hansen et al., 1997). However, these zooplankton303

species are generally unable to consume anything larger than small flagellates, ciliates304

and cyanobacteria, exactly the sort of phytoplankton that tend to dominate more olig-305

otrophic regions such as the gyres (Calbet & Landry, 2004). On the other hand, slowly-306

grazing euphausiids, copepods and macrozooplankton tend to have much slower capture307

rates but are capable of consuming much larger prey, such as dinoflagellates and diatom308
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assemblages, which tend to dominate more eutrophic coastal and higher-latitude regions309

(San Martin et al., 2006).310

The sigmoidal relationship between phytoplankton biomass and inferred community-311

integrated K1/2 values implies the importance of two end-member communities in the312

most oligotrophic and eutrophic regions. The location of each asymptotes implies a com-313

munity integrated K1/2 value of 3 mmolC m−3 for ecosystems dominated by faster-grazing314

microzooplankton and filter feeders and 8.3 mmolC m−3 for ecosystems dominated by315

slower-grazing mesozooplankton and macrozooplantkon. While these values are lower316

than the median empirical K1/2 values measured by Hansen et al. (1997) in individual317

microzooplankton (8.9 mmolC m−3) and mesozooplantkon (18 mmolC m−3), the appar-318

ent K1/2 of spatially-averaged, community-integrated dynamics is expected to be much319

lower than that of any individual species measured in well-mixed laboratory medium (Rohr320

et al., 2022).321

However, despite two prominent asymptotes, the region of monotonically increas-322

ing K1/2 values between them (∼.85-1.2 mmolC m−3) encompasses over 50% of the ocean323

area in our domain (55◦S-55◦N) and 43% of the global ocean. This suggests a critical324

role for more heterogeneous zooplankton communities and the co-existance of diverse func-325

tional groups therein. This steady increase in K1/2 across intermediate mean-annual phy-326

toplankton concentrations is consistent with the positive relationship between empiri-327

cally estimated microzooplankton K1/2 values and in-situ chlorophyll concentrations mea-328

sured across shipboard dilution experiments (Chen et al., 2014). Note, while these re-329

sults strongly imply slower zooplankton-specific grazing rates in more productive biomes,330

they can be consistent with observations of bulk ingestion rates and phytoplankton-specific331

grazing mortality increasing with primary productivity (Schmoker et al., 2013; Calbet,332

2001) due to differences in phytoplankton and zooplankton abundance.333

Finally, while community-integrated K1/2 values exhibit large regional variability,334

the spatially integrated dynamics of all biomes are consistently best described by a type335

III versus type II response (Figure 1, Supporting Table 1). Although dynamic instabil-336

ities are not necessarily unnatural (McCauley & Murdoch, 1987), when averaged across337

a relatively large area the destabilizing properties of a type II response appear to lead338

to sharper, more delayed blooms than observed in eutrophic regions and more sub-seasonal339

variability than observed in eutrophic regions (Figure 2). This is consistent with obser-340

vational (Morozov et al., 2008; Kiørboe, 2018), modelling (Nissen et al., 2018; Prowe et341

al., 2012; Chenillat et al., 2021), and theoretical (Rohr et al., 2022; Morozov, 2010) work342

suggesting that the downward concavity, prey refuge, and stabilizing properties associ-343

ated with a type III response may be a better empirical representation of the mean state344

of a patchy ocean and complex food web, even if a type II response is typically measured345

for individual species in a well-mixed laboratory medium (Hansen et al., 1997; Hirst &346

Bunker, 2003).347

4.3 Modelling Perspectives348

Considering the sensitivity of simulated carbon cycling to the representation of zoo-349

plankton grazing dynamics (Rohr et al., 2023; Chenillat et al., 2021; Prowe et al., 2012;350

Laufkötter et al., 2015, 2016; Dupont et al., 2023), it is critical for models to accurately351

recreate the distribution community-integrated grazing dynamics and allow it to respond352

to environmental change. As warming, stratification, and stronger winds transform the353

surface ocean, the ensuing balance of light and nutrients may reshape marine ecosystems354

(Pörtner et al., 2019), favouring different zooplankton species, in different places, with355

vastly different grazing dynamics. For instance, a shift toward smaller phytoplankton,356

which have higher light but lower nutrient requirements (Pörtner et al., 2019; Bopp et357

al., 2005) would precipitate a shift towards microzooplankton, salps and larvaceans. Al-358

ready a southward shift of salps into regions previously dominated by euphausiids has359
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been observed (Henschke & Pakhomov, 2019; Steinberg & Landry, 2017). Such shifts should360

be captured in BGC models if Earth system and ecosystem models hope to predict changes361

in the oceans capacity to buffer a changing climate and feed a growing population.362

Fortunately, the validation of zooplankton biomass in BGC models is receiving in-363

creasing attention (Petrik et al., 2022; McGinty et al., 2023). However, given large un-364

certainties in the parameterization of grazing within ostensibly similar zooplankton func-365

tional groups across models (Rohr et al., 2022, 2023), a further validation of zooplankton-366

specific grazing rates is required to determine if a model is accurately simulating graz-367

ing pressure (i.e. the phytoplankton-specific mortality rate to grazing), which may be368

the single largest source of uncertainty in CMIP6 representations of marine carbon cy-369

cling (Rohr et al., 2023). While direct field measurements of grazing rates are typically370

limited to the role of microzooplankton (Schmoker et al., 2013; Calbet & Landry, 2004;371

Landry & Calbet, 2004) our results implicitly reflect the integrated grazing dynamics372

of the entire zooplankton community, averaging over the distribution and behavior of373

individual species.374

First off, it appears clear that modellers should use a type III over type II response,375

especially if explicitly resolving a limited food web with relatively coarse spatial reso-376

lution. Further, although our exact quantitative estimates of K1/2 are limited and vary377

with other model parameters (Supporting Table 1), there is a consistent qualitative378

pattern in apparent K1/2 values which models ought to recreate. At minimum, it is clear379

a priori that models with a single zooplankton and prey option (e.g. Tjiputra et al. (2020);380

Zahariev et al. (2008); Law et al. (2017)) cannot simulate the established spatial vari-381

ability in community-integrated grazing dynamics (as the single zooplankton will graze382

with the same K1/2 everywhere). In turn, bottom-up controls are likely over-tuned to383

compensate for unrealistic top-down homogeneity. While many CMIP6-class models in-384

clude 2-3 zooplankton groups (Kearney et al., 2021; Rohr et al., 2023), it is critical to385

know if competition between them is sufficient to drive a realistic emergent distribution386

in community-integrated grazing dynamics. Thus, we encourage modellers to confirm387

whether the distribution of community-integrated K1/2 values is qualitatively consistent388

with Figure 1. This can be done by fitting a curve between the mean zooplankton-specific389

grazing rate and total prey concentration in different regions or grid cells to diagnosti-390

cally compute the apparent functional response and associated community-integrated391

K1/2 value. Significant disagreement from Figure 1 would likely imply that additional392

zooplankton groups, such as macrozooplankton (Le Quéré et al., 2016), salps (Luo et al.,393

2020), larvaceans, euphausiids, chaetognaths, jellyfish (Heneghan et al., 2020, 2023) may394

be required.395

Finally, if explicit competition between limited functional groups is insufficient to396

resolve the emergent distribution of community-integrated grazing dynamics and a suf-397

ficiently complex food web is not computationally tractable with high-resolution projec-398

tions (Neelin et al., 2010), then modellers might consider parameterizing zooplankton399

community composition using the relationship described in Figure 1. That is, modellers400

could implicitly represent changes in zooplankton community composition by modify-401

ing K1/2 of a single group as a function of phytoplankton abundance (Supporting Ta-402

ble 1). This could allow allow the mean attributes of the zooplankton community to re-403

spond dynamically to changing environmental conditions without explicitly resolving each404

of its constituent species. While potentially powerful, implementing such a parameter-405

ization would require several important assumptions and careful calibrations (Supporting406

Text 3).407

5 Conclusions408

These results present a novel, observationally-informed, map of global community-409

integrated grazing dynamics (i.e K1/2 values). Further refining the observed distribu-410
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tion and drivers of grazing, and how to replicate them in models, will require close col-411

laboration with zooplankton ecologists, but presents an exciting new frontier in oceanog-412

raphy focused on a rigorous understanding of how NPP is controlled from the top-down.413

Moreover, improving the representation of zooplankton could realize dramatic improve-414

ments in marine BGC models and our predictions of future ocean states.415

6 Open Research416

All relevant model output and documentation can be found at https://doi.org/10.25919/wn09-417

6j31. Remote sensing products were downloaded at http://orca.science.oregonstate418

.edu/2160.by.4320.8day.hdf.carbon2.m.php. Please address any questions to Tyler419
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Supporting Text 1. Distribution and drivers of grazing dynamics using the

VIIRS chlorophyll record

In Figure 1 we use phytoplankton carbon biomass estimated remotely from the Carbon-

based Productivity Model (Westberry et al., 2008) to compare directly to prognostic

phytoplankton biomass resolved in the simulation. However, estimating carbon biomass

from space using particle back-scattering involves a di↵erent set of assumptions than

traditional estimates of phytoplankton abundance which infer chlorophyll concentrations

from ocean color. To confirm these di↵erences did not influence our results we repeated

the analysis comparing the seasonal cycle of modelled phytoplankton carbon to that of

remotely sensed chlorophyll from VIIRS (Sathyendranath et al., 2019). The results were

largely consistent (Supporting Figure 1).

The primary di↵erence is that the two clear asymptotes apparent when using CbPM

biomass as an indicator of phytoplankton abundance are now not as well defined, with the

lower asymptote disappearing entirely. Note, while we use a sigmoidal function to fit the

relationship for consistency and direct comparison, it may be better described with a rect-

angular hyperbole. It is not entirely clear why there is no lower asymptote for chlorophyll

but it may have to do with the detection threshold for ocean colour versus backscatter,

the fact that at low phytoplankton concentrations the particle back scatter signal may no

longer be dominated by phytoplankton, or variability in the carbon to chlorophyll ratio

as a result of community composition or photo-adaptation. Never the less, our two most

important results remain consitent: 1. The type III response consistently outperforms

the type II response (Supporting Figure 2, Supporting Table 1) and 2. the seasonal
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cycle in more eutrophic regions is better described using larger K1/2 values (Supporting

Figures 1, 2)

Note, model skill scores appear higher for VIIRS than CbPM (Supporting Table 1);

however, model skill was normalized across all runs using chlorophyll (VIIRS) and all run

using carbon (CbPM) independently. Thus, the higher scores for VIIRS do not necessar-

ily mean the modelled seasonal phytoplankton cycle better reflects observed chlorophyll

compared to carbon, but rather that the di↵erence between the model skill achieved with

the optimal K1/2 values compared to sub-optimal K1/2 values is larger when comparing

to observed chlorophyll.

Supporting Text 2. First order stability of the functional response

The shape of the functional response curve, g([Cphyto]), influences the shape of the

seasonal cycle of phytoplankton biomass primarily through its stabilizing or desta-

bilizing influence on phytoplankton population dynamics (Gentleman & Neuheimer,

2008). The stabilizing influence of grazing is determined by how clearance rates (Cl =

g([Cphyto])/[Cphyto]) change in response to changing phytoplankton biomass. If phyto-

plankton accumulation decreases clearance rates, thereby promoting further population

growth, that is a positive feed back with a destabilizing influence. Alternatively, if phy-

toplankton accumulation increases clearance rates, thereby damping further population

growth, that is a negative feed back with stabilizing influence. The stabilizing influence of

the functional response at a given phytoplankton concentration can thereby be quantified

by the first derivation of the clearance rate with respect to the phytoplankton concentra-

tion (i.e. dCl
d[Cphyto]

). The value of dCl
d[Cphyto]

is determined both the shape of g([Cphyto]) as
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well as the prognostic phytoplankton concentration which determines where on the curve

dCl
d[Cphyto]

is evaluated.

To capture a mean sense of the stabilizing influence of the functional response across

a complete model run and many di↵erent phytoplankton concentrations, we define the

mean first order stability as the value of dCl
d[Cphyto]

at the mean annual [Cphyto] in a given

grid cell of a given run. The mean first order stability of our experiments was consistently

negative (destabilizing) when a type II response was employed (Figure S3B) and positive

(stabilizing) when a type III response was employed (Figure S3A). Note, while it is not

possible to have positive first order stability when a type II response is used, it is possible

to have negative first order stability stability when a type III response is used. The latter

is possible in model configurations with a very low gmax or very strong bottom-up growth

conditions that could buoy phytoplankton populations above K1/2.

Regardless of response type, large K1/2 values stretch out the response curve, leading

to the depression and linearization of the functional response at low (but common) prey

concentrations, slow and steady clearance rates, and very little influence on the stability

of the system. Decreasing K1/2 with a type II response monotonically decreases the

first order stability by both directly altering the shape of the functional response curve

and indirectly decreasing the prognostic phytoplankton population via increased grazing

pressure. Decreasing K1/2 with a type III response monotonically increases the first order

stability of the system. This occurs because decreasing K1/2 increases grazing pressure

and, without suitably strong bottom-controls, keeps the annually-averaged phytoplankton

concentration below K1/2, where the first order stability increases as K1/2 decreases.
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Supporting Text 3. Challenges and potential of parameterizing zooplankton

community composition

By invoking the equations descried in Figure 1 or Supporting Table 1 mod-

ellers could implicitly resolve changes in zooplankton community composition by driv-

ing changes in the community-integrated functional attributes (i.e. K1/2) of a single

zooplankton group with changes in prey abundance. However, experimenting with this

parameterization warrants careful consideration of several factors.

Ecologically, such a parameterization requires assuming that a) bulk phytoplankton

biomass co-varies with phytoplankton community composition in a systematic way, with

less productive waters inhabited by smaller phytoplankton (Roy et al., 2013), and b)

zooplankton community composition is determined by the composition of the prey field

in a systematic way, with more e�cient grazing able to dominate when prey options are

smaller (Kiørboe & Hirst, 2014). While both assumptions are generally well supported by

observations and together are consistent with the emergent relationship between observed

phytoplankton biomass and the inferred grazing dynamics required to best recreate its

seasonal cycle (Figure 1), implementing the associated relationship introduces additional

challenges.

First o↵, the specific parameters listed in Supporting Table 1 and Figure 1 would

likely need to be tuned-up to the bottom-up configuration and physical dynamics of each

particular model in which they are embedded. Secondly, it is not obvious what space and

time scales one should assume that specific grazing rates should change due to the influence

of food scarcity on individual zooplankton versus the influence of zooplankton community
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composition on mean grazing dynamics. That is, while the value of K1/2 determines

the instantaneous response of zooplankton grazing rates to food scarcity, it should take

longer for K1/2 itself to evolve. This is because K1/2 reflects the mean physiological

characteristics of the entire zooplankton community and can only change at the rate with

which community composition can evolve. This timescale likely varies globally and as

a function of other environmental drivers such as temperature (Richardson, 2008). For

example, much shorter time periods are needed in communities dominated by asexually-

reproducing zooplankton such as salps compared to those dominated by zooplankton with

complex, multi-year, life histories, such as euphausiids (Steinberg et al., 2015). Finally,

the best implementation of this parameterization would require further constraining the

relationship between phytoplankton biomass and K1/2 in addition to the strength and co-

variability of other drivers of zooplankton bio-geogrpahy such as temperature (Brandão

et al., 2021) or the relative distribution of prey in models with multiple phytoplankton

groups.

Despite the challenges, properly implementing such a parameterization could realize

dramatic improvements in BGC models and our predictions of changes to marine carbon

cycling. Extending from the assumption that a given optimal K1/2 reflects the mean be-

havior of a particular zooplankton community, other attributes of that community could

be additionally parameterized. For instance, crustaceans associated with slower grazing

(and larger K1/2 values) are typically stronger swimmers. They tend to vertically mi-

grate on daily and seasonal timescales, allowing them to actively transport carbon much

faster than microzooplantkon (Steinberg & Landry, 2017). This could be represented by
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increasing the flux of carbon from zooplankton into the sinking detritus pool (i.e. POC)

at low K1/2 values, without explicitly including the important role of Diel-vertical migra-

tion in carbon transport (Archibald et al., 2019). Other important BGC attributes that

vary with zooplankton community composition include the recalcitrance of their detritus

and thus the remineralization rates of what they contribute to export production, their

sensitivity to temperature, their stoichiometry and carbon content, and their response to

seasonal change in the depth of the surface mixed layer.
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Figure S1. Identical to Figure 1, except using VIIRS chlorophyll instead of CbPM

carbon biomass to track the observed phytoplankton phenology.
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Figure S2. Identical to Figure 1 D, E and Supporting Figure 2 D, E, expect

now showing results from individual experiment suites (each using a di↵erent gmax value)

instead of averaging optimal values across experiment suites.
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A B C

Figure S4. The mean annual model bias is plotted for the A) mixed layer depth

(MLD) relative to HYCOM reanalysis, B) Phytoplankton biomass relative to CbPM and

C) NPP relative to CbPM.
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Response 
Type 

gmax 
(d-1)

Parameters of Sigmoidal Fit (95% Confidence)

!!/# = # + %− #
' + ()* +!"#$% − ,

-

Mean 
Model 
Skill

# % , -

Type II 0.5 4.89 
(4.77-5.00)

11.17  
(11.05-11.29)

1.10  
(1.09-1.10)

0.30
(0.28-0.33) 0.57

Type II 1 6.19 
(6.10-6.28)

13.98
(13.88-14.09)

1.07
(1.06-1.08)

0.20
(0.18-0.21) 0.61

Type II 2 8.479 
(8.24-8.7)

14.53  
(14.36-14.69)

1.076  
(1.06-1.09)

0.5  
(0.45-0.57) 0.56

Type II Mean 6.68
(6.59-6.76)

13.16  
(13.07-13.24)

1.08 
(1.08-1.09)

0.28 
(0.27-0.30) 0.57

Type III 0.5 1.96 
(1.86-2.04)

6.65
(6.57-6.78)

1.06
(1.05-1.06)

0.26
(0.23-0.28) 0.75

Type III 1 2.90 
(2.80-3.00)

6.65
(8.18-8.35)

1.034 
(1.03- 1.04)

0.23 
(0.21- 0.25) 0.74

Type III 2 4.20  
(4.11-4.29)

9.91 
(9.8-10.00)

1.027 
(1.02-1.03)

0.16
(0.14-0.17) 0.73

Type III Mean 3.0
(2.92-3.10)

8.279 
(8.20-8.36)

1.038
(1.03-1.04)

0.22
(0.20-0.23) 0.74

A Optimal K1/2 (mmolC m-3) vs. Mean-annual Observed Phytoplankton Biomass (mmolC m-3)

Response 
Type 

gmax 
(d-1)

Parameters of Sigmoidal Fit (95% Confidence)

!!/# = # + %− #
' + ()* +,- − .

/

Mean 
Model 
Skill

# % . /

Type II
0.5 -1.01  

(-3.55-1.54)
10.54  

(10.35-10.73)
0.06  

(0.04-0.09)
0.25  

(0.2102, 
0.2897)

0.65

Type II 1 0.23  
(-6.58-7.04)

12.2  
(12.04-12.36)

12.2 
(12.04-12.36)

0.20 
(0.15-0.24) 0.64

Type II 2
-855 

(-1.4e+06-
1.48e+06)

11.61  
(10.74-12.47)

-0.81  
(-240-240)

0.60
(-1.14-2.34) 0.47

Type II Mean -3.446  
(-16.04-9.15)

11.34  
(11.19-11.49)

0.00  
(-0.09-0.08)

0.27  
(0.20-0.33) 0.59

Type III 0.5 1.10 
(0.43-1.77)

5.78 
(5.66-5.90)

0.10  
(0.08-0.11)

0.17 
(0.14-0.20) 0.79

Type III 1 2.378  
(1.74-3.01)

7.42  
(7.29-7.55)

0.10  
(0.09-0.11)

0.15 
(0.12-0.17) 0.81

Type III 2 2.28 
(0.73-3.83)

8.84  
(8.69-8.98)

0.08  
(0.06-0.09)

0.15  
(0.12-0.18) 0.85

Type III Mean 2.00
(1.21-2.79)

7.34  
(7.21-7.45)

0.09  
(0.08-0.10)

0.15
(0.12-0.18) 0.82

B Optimal K1/2 (mmolC m-3) vs. Mean-annual Observed Chlorophyl (mg m-3)

Table S1. The relationship between mean annual phytoplankton abundance and the

K1/2 parameter required to best recreate its seasonal cycle. Di↵erent relationships refer

to di↵erent response functions (II,III), gmax values (0.5,1,2) and observed phytoplankton

variables (Carbon, Chlorophyll). Mean model skill refers to the average cost function

score of the optimal K1/2 across all grid cells in a given configuration
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