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Key Points:6

• The extratropical response to the Madden–Julian Oscillation has changed on decadal7

time scales8
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• Changes on decadal time scales are different to those modulated by the El Niño–11

Southern Oscillation on interannual scales12
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Abstract13

The Madden–Julian Oscillation (MJO) is the leading mode of sub-seasonal vari-14

ability in the tropical atmosphere and is a source of predictability for extratropical weather15

through its teleconnections. MJO teleconnection patterns can be modulated by the El16

Niño–Southern Oscillation (ENSO) on seasonal to interannual time scales. However, changes17

over decadal time scales are less well understood. ERA5 reanalysis data are used to show18

that the boreal winter MJO teleconnection pattern in the Northern Hemisphere has changed19

in recent decades in line with changes in the Pacific Decadal Oscillation and Atlantic Mul-20

tidecadal Variability. Changes are seen in the circulation, temperature and precipitation21

responses. In particular, from 1997, intraseasonal cold anomalies appear over Europe and22

the eastern United States due to MJO convection over the western Pacific; these were23

not present 20 years previously. The decadal variability observed is not the product of24

aliasing of ENSO modulation of the teleconnection.25

Plain Language Summary26

Weather in different regions of the globe can be linked by planetary-scale atmo-27

spheric waves, and these links can help forecasters to predict the weather. One such link,28

or teleconnection pattern, connects changes in rainfall over Indonesia and the tropical29

Pacific (from a weather system called the Madden–Julian Oscillation or MJO) to changes30

in the weather in North America and Europe. This study assesses this teleconnection31

pattern in two separate time periods (roughly the mid-1970s to mid-1990s and mid-1990s32

to late 2010s) to analyse if and how it has changed. We find that the pattern has changed,33

and that this is due to large-scale changes in the background state of the atmosphere.34

These changes in the link between the tropics and extratropics will have implications for35

weather forecasts on weekly to monthly time scales.36

1 Introduction37

As the leading mode of sub-seasonal variability in the tropical atmosphere, the Madden–38

Julian Oscillation (MJO; Madden & Julian, 1971, 1972) can influence weather around39

the globe (Zhang, 2005; Jiang et al., 2020; Lin, 2022; Matthews et al., 2004; Matthews40

& Meredith, 2004). Upper level divergence associated with anomalous MJO heating in-41

teracts with the jet stream to form a Rossby wave source (Sardeshmukh & Hoskins, 1988)42
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in the mid-latitudes. The propagation, and subsequent breaking, of these Rossby waves43

in the extratropics leads to changes in blocking (e.g. Henderson et al., 2016), jet dynam-44

ics (e.g. Bao & Hartmann, 2014; Kang & Tziperman, 2018) and weather regimes (e.g.45

Cassou, 2008; Mori & Watanabe, 2008; Lin et al., 2009, 2010; Riddle et al., 2013; Seo46

& Lee, 2017), which may be interpreted as teleconnection patterns.47

Currently, deterministic weather prediction is skillful up to a lead time of approx-48

imately one to two weeks in the extratropics, however this lead time can be extended49

by considering the effects of modes such as the MJO (Nardi et al., 2020; Kent et al., 2022),50

Quasi-Biennial Oscillation (QBO; Nardi et al., 2020) and El Niño–Southern Oscillation51

(ENSO; Patricola et al., 2020). The signature teleconnection patterns produced by these52

modes provide predictive skill on sub-seasonal to seasonal time scales. This skill, how-53

ever, is dependent on the ability of models to reproduce the mechanisms and variabil-54

ity of teleconnections over a range of time scales.55

At present, even state-of-the-art General Circulation Models (GCMs) struggle to56

fully capture MJO teleconnections in their predictions (e.g. J. Wang et al., 2020b, 2020a).57

Though some are able to recreate the patterns of the teleconnections, these responses58

are almost universally too weak (Vitart, 2017; Lin et al., 2021; Skinner et al., 2022). This59

is a common feature across tropical–extratropical interactions in climate models and sea-60

sonal forecasts (Williams et al., 2023).61

ENSO is able to modulate the MJO (Kessler, 2001; Chen et al., 2016; Hsu & Xiao,62

2017) and its teleconnections (Moon et al., 2011; Lee et al., 2019; Tseng et al., 2020) on63

seasonal to interannual time scales. However, there is little understanding of the vari-64

ability of MJO teleconnections on decadal time scales. Furthermore, the extratropics have65

been shown to respond differently to remote forcing on interannual and decadal time scales66

(Seabrook et al., 2023).67

In this study, evidence of decadal variability in the extratropical response to the68

MJO is presented, using ERA5 reanalysis data from 1974 (the start time of reliable MJO69

indices) to 2018. This variability is then compared with ENSO-modulated interannual70

variability. Finally, we discuss the impacts of changes in the response on the weather ex-71

perienced in the extratropics.72
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2 Data and methodology73

The MJO varies on interannual (Kessler, 2001; Chen et al., 2016; Hsu & Xiao, 2017)74

and decadal (Jones & Carvalho, 2006; Fu et al., 2020; Wu et al., 2021) time scales. The75

extratropical response to the MJO is dependent on the background state of the atmo-76

sphere (Henderson et al., 2017), which can also vary on interannual and decadal time77

scales. These variations can be caused by changes in external forcing or in low-frequency78

modes of internal variability. Two key modes of variability are the Atlantic Multidecadal79

Variability (AMV; Kerr, 2000; Trenberth & Shea, 2006) and the Pacific Decadal Oscil-80

lation (PDO; Mantua et al., 1997; Mantua & Hare, 2002; Newman et al., 2016). Over81

the observational time period of 1974–2018, the AMV switches from its negative phase82

to positive phase around 1997. The PDO displays greater variability but moves from favour-83

ing its positive phase to negative phase, also switching around 1997 (Figure S1).84

This leads us to consider changes in the extratropical response to the MJO between85

two non-overlapping segments: period one from 1974/75 to 1996/97, and period two from86

1997/98 to 2017/18. Subsequent analysis is restricted to boreal winter (November–April)87

as this is when the MJO (and its teleconnections) are at their strongest (Stan et al., 2017;88

Jenney et al., 2019), and only considers full winter seasons. Due to an interruption in89

outgoing longwave radiation (OLR) data availability (Liebmann & Smith, 1996), there90

is no MJO index for 1978, so the 1977/78 and 1978/79 seasons are omitted. Hence our91

two time periods are of equal length at 21 winter seasons.92

200-hPa streamfunction anomalies are derived from ERA5 wind data. Anomalies93

are calculated by removing the mean and first three harmonics of the annual cycle from94

the daily averaged ERA5 data. Annual cycles are calculated and removed separately for95

each time segment, so that the two periods may be considered independent samples. By96

removing separate annual cycles, the changes observed in the extratropical response to97

the MJO are due to changes in the interaction of the MJO with the mean state (i.e., the98

MJO teleconnection patterns), rather than changes in the mean state itself.99

The MJO is diagnosed by the Realtime Multivariate MJO index, described by Wheeler100

and Hendon (2004), which is available from 1974 to present (Australian Bureau of Me-101

teorology, 2021). The RMM index produces two values: a phase and amplitude. The phase,102

given by an integer between 1 and 8, signifies the zonal location of the centres of anoma-103

lous MJO convection. Phase 1 indicates enhanced convection over the western Indian104
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Ocean, then, through eastward motion of the MJO, phases 2–3, 4–5, and 6–7 signify en-105

hanced convection over the eastern Indian Ocean, Maritime Continent and western Pa-106

cific respectively. By phase 8, the enhanced convection has moved into the eastern Pa-107

cific and dissipates, whilst simultaneously reforming in the western Indian Ocean. The108

amplitude indicates the relative strength of this anomalous convection.109

10-day lagged composite maps of 200-hPa streamfunction anomaly are produced110

for each MJO phase, taking only days in which the MJO is ‘active’ (defined as ampli-111

tude greater than 1). Note that all active days are included for each MJO event, not just112

the first day in each phase. Statistical significance in the difference between lagged com-113

posites in the two periods is assessed using a two-tailed, two-sample t-test at the 95%114

significance level.115

To assess the impact of upper tropospheric circulation changes on meteorological116

conditions, 10-day lagged MJO composite maps of 850-hPa temperature and precipita-117

tion anomalies are also created. 850-hPa temperature anomalies are derived from daily-118

averaged ERA5 data. Precipitation anomalies are derived from CMAP pentad-mean data,119

which have been interpolated to daily data.120

MJO teleconnection patterns are strongest in the winter (Northern) Hemisphere,121

so results are presented over this domain. Discussion will be made within the context122

of societal impacts, so will focus on regions which are densely populated, or which im-123

pact on key weather patterns such as the North Atlantic Oscillation (NAO).124

3 Decadal variability of the background state125

Period one is characterised by the negative phase of the AMV and the positive phase126

of the PDO, whilst in period two the reverse is observed. The signatures of the AMV127

and PDO are visible in November–April mean HadISST sea surface temperatures (SSTs;128

Figure 1a). Whilst the change in AMV state is statistically significant at the 95% con-129

fidence level, the PDO SST pattern is only significant in the warm western and central130

North Pacific but not in the cold eastern North Pacific. There are changes in the upper131

tropospheric zonal wind (Figure 1b), where, as expected, there are changes in the sub-132

tropical jets (Matsumura & Horinouchi, 2016; Ruggieri et al., 2021). The northern hemi-133

sphere jet exhibits a general poleward shift in period two, particularly over the North134

Pacific.135
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Figure 1. Change in boreal winter (November–April) mean (a) SST and (b) 200-hPa zonal

wind: period two (1997/98–2017/18) minus period one (1974/75–1996/97). Stippling shows the

regions in which this difference is not significant at the 95% confidence level, based on a two-

sample, two-tailed t-test. Period two mean 200-hPa zonal wind is plotted at 0 m s−1 (dashed

black contour), 20 m s−1 (thin black contour), and 30 m s−1 (thick black contour) in panel (b)

for reference.
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Around the Maritime Continent there is evidence of a strengthened Gill-type re-136

sponse in the period two circulation due to SST warming in the Indian Ocean and west-137

ern Pacific, which in turn leads to enhanced convection. This warming is consistent with138

the negative PDO (western Pacific; Mantua & Hare, 2002) and with a global warming139

signal (Indian Ocean; Ruela et al., 2020). To the west of the Maritime Continent the equa-140

torial easterly anomalies and off-equatorial westerly anomalies are consistent with twin141

anticyclones, indicating an enhanced equatorial Rossby wave response, whilst to the east142

of the Maritime Continent an enhanced equatorial Kelvin wave response can be seen in143

amplified westerlies near the equator.144

Changes in SST patterns, both in the tropics and extratropics, and the correspond-145

ing changes in the upper troposphere together provide a different mean state with which146

the MJO and its teleconnections will interact. These changes are the combined result147

of both internal variability (i.e. the AMV and PDO) and long-term trends. In the present148

study, these changes are treated as a whole, due to the relatively short length of the dataset.149

Future studies, making use of climate models, may have an opportunity to untangle the150

effects of individual mean state variations.151

The stationary Rossby wavenumber, Ks, is defined as152

Ks =

(
β − uyy

u

) 1
2

,153

where u is the time-mean zonal wind, β is the meridional gradient of planetary vortic-154

ity, and uyy is the meridional gradient of time-mean relative vorticity (with the merid-155

ional wind component neglected). Since Rossby waves usually propagate in the upper156

troposphere, the stationary Rossby wavenumber is calculated at 200 hPa. Rossby waves157

are refracted towards regions of high Ks (Hoskins & Ambrizzi, 1993; Dawson et al., 2011),158

so local maxima in Ks can be approximated as Rossby waveguides. This approximation159

relies on the crude assumption that the scale of the Rossby waves is much smaller than160

the scale of changes in the mean state (Hoskins & Karoly, 1981; Karoly, 1983; Hoskins161

& Ambrizzi, 1993), however it works well in a qualitative sense.162

There is relatively little qualitative change in the North Atlantic waveguide (Fig-163

ure 2), however a local minimum in Ks around 30◦N, 140◦W in period two diverts the164

North Pacific waveguide towards British Columbia and central Canada. During period165

one, however, this waveguide merges into the North Atlantic waveguide. The effect of166

–7–



manuscript submitted to Geophysical Research Letters

60 E 120 E 180 120 W 60 W 0
30 S

0

30 N

60 N

(a)

60 E 120 E 180 120 W 60 W 0
30 S

0

30 N

60 N

(b)

0 1 2 3 4 5 6 7 10 25

NP
NA

NP
NA

Figure 2. Boreal winter (November–April) 200-hPa stationary Rossby wavenumber, Ks, for

(a) period one (1974/75–1996/97) and (b) period two (1997/98–2017/18). Regions in which Ks

is undefined, and Rossby waves are evanescent – that is, when u < 0 or β − uyy < 0 – are

denoted by hatching (//// and \\\\ respectively). Rossby waves will tend to follow local maxima

in Ks, hence these maxima can be qualitatively viewed as Rossby waveguides. Two key Rossby

waveguides, the North Pacific (NP), and North Atlantic (NA), are labeled.
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this diversion in the waveguide is an amplified teleconnection over Canada and stronger167

Rossby wave response passing over Greenland into the North Atlantic.168

4 Changes in the upper tropospheric response to the MJO169

4.1 Decadal changes between periods one (1974/75–1996/7) and two (1997/98–170

2017/18)171

Upper tropospheric divergence associated with anomalous MJO convection forms172

an anticyclonic anomaly either side of the equator, spanning the convective centre (Fig-173

ure 3). The vorticity perturbation induced by this anticyclonic anomaly produces a sta-174

tionary Rossby wave, characterised by alternating cyclonic and anticyclonic anomalies175

across the mid-latitudes. These broad features are visible in both period one and two;176

however, the strength and spatial structures of the Rossby wave trains have changed.177

Over western North America there are substantial changes to the upper tropospheric178

circulation 10 days after MJO phases 1–2 and phases 5–6. In period two, the Rossby wave179

train initiated over the central North Pacific after MJO phases 1–2 extends over Canada,180

producing an cyclonic (anticyclonic) anomaly over British Columbia after phases 1–2 (5–181

6). This feature is not observed in period one. This change may be attributed to the de-182

flection of Rossby waves into Canada as discussed in Section 3.183

Continuing the Rossby wave train into the North Atlantic and Europe, we see the184

canonical NAO+ and NAO− responses (Cassou, 2008) after phases 3 and 6 respectively.185

Most notably, we see a strengthened anticyclonic anomaly (corresponding to a weaken-186

ing of the Icelandic Low) in the North Atlantic after phase 6. Whilst a broad cyclonic187

anomaly is present over southern Europe and the North Atlantic in period one, a strength-188

ened and tilted cyclonic anomaly covers the entirety of Europe in period two. This anoma-189

lous low pressure centre (Figure S5) will bring polar air masses across western Europe,190

which are colder than the air advected from eastern Europe in period one. It also rep-191

resents a strengthening of the NAO− response that we would expect to see following phase192

6 (Cassou, 2008). Period two is characterised by AMV+ in the North Atlantic, which193

weakens the meridional temperature gradient across the North Atlantic, favouring NAO−194

conditions. This compounds and amplifies the NAO− response to MJO phase 6.195

Overall, there are a considerable number of changes in the upper tropospheric cir-196

culation response to the MJO between periods 1 and 2. Now we compare these decadal197

–9–



manuscript submitted to Geophysical Research Letters

30 S

0

30 N

60 N

90 N 18% area significant
(a)

Phase 1 18% area significant
(e)

Phase 5

30 S

0

30 N

60 N

90 N 26% area significant
(b)

Phase 2 39% area significant
(f)

Phase 6

30 S

0

30 N

60 N

90 N 24% area significant
(c)

Phase 3 22% area significant
(g)

Phase 7

60 E 120 E 180 120 W 60 W 0
30 S

0

30 N

60 N

90 N 23% area significant
(d)

Phase 4

-10 -8 -6 -4 -2 0 2 4 6 8 10
×106  m2s 1

60 E 120 E 180 120 W 60 W 0

34% area significant
(h)

Phase 8

Figure 3. Lag 10-day composites of boreal winter (November–April) 200-hPa streamfunction

anomaly for each of the eight MJO phases. Thick black contours represent period two, and shad-

ing shows the difference – period two (1997/98–2017/18) minus period one (1974/75–1996/7) –

wherever this difference is significant at the 95% level. The contour interval for both the line and

shaded contours is 2 × 106 m2s−1, and dashed contours represent negative values. The zero con-

tour has been omitted. The percentage of the spatial domain in which the difference is significant

is stated in the top right of each panel.
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variations against known interannual variability (Section 4.2) and assess the impacts of198

these changes (Section 5).199

4.2 Interannual changes associated with ENSO200

Whilst the MJO is the leading mode of tropical variability on sub-seasonal timescales,201

ENSO is the leading mode on interannual time scales. ENSO modulates MJO telecon-202

nection patterns on interannual time scales (Roundy et al., 2010; Moon et al., 2011; Lee203

et al., 2019; Tseng et al., 2020), so it seems natural to compare this variability with the204

changes observed on decadal time scales. We expect to see some agreement because the205

ENSO SST pattern projects heavily onto the PDO SST pattern (the key difference be-206

ing the relative strength of the North and tropical Pacific anomalies). On the other hand,207

there is evidence that the interaction between Pacific SST variability and the extratrop-208

ics can be dependent on time scale (Seabrook et al., 2023). If the decadal variability dis-209

cussed in Section 4.1 is an aliasing of the interannual ENSO variability, similar changes210

to the MJO response between El Niño and La Niña as between period one and two might211

be expected.212

However, the spatial patterns of the decadal variability in the extratropical response213

to the MJO (Figure 3) and the interannual variability in the extratropical response to214

the MJO (Figures S2 and S3) take different forms. Even with the connection between215

the PDO and ENSO, there is no evidence that the observed decadal variability is due216

to aliasing of ENSO-modulated interannual variability.217

5 Impacts of changes to MJO teleconnections218

The observed changes in the upper tropospheric circulation response to the MJO219

between periods one and two will in turn lead to changes in the weather experienced in220

the extratropics. 10-day lagged composites of 850-hPa temperature anomaly are calcu-221

lated using ERA5 data (Figure 4 (a–d)). Similarly, CMAP precipitation data are used222

to create 10-day lagged composites of precipitation anomaly (Figure 4 (e–h)). Due to223

the availability of CMAP data, precipitation composites were calculated from 1979/80224

to 1996/97 for period one and from 1997/98 to 2015/16 for period two.225

The response in lower tropospheric temperature to the MJO in period two (black226

contours in Figure 4 (a–d)) is generally qualitatively consistent with previous studies (e.g.227
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Figure 4. Change in 10-day lagged composites of (a–d) 850-hPa temperature and (e–h) pre-

cipitation anomalies over North America, Europe, and North Africa for MJO phases 1, 2, 5 and

6 (see Figure S4 for remaining phases). Difference – period two (1997/98–2017/18) minus period

one (1974/75–1996/7) – is colour shaded wherever it is significant at the 95% level, with change

in precipitation anomaly plotted on a logarithmic scale. Period two composites are overlaid as

black contours for reference. Solid contours represent positive values, dashed contours represent

negative values and the zero contour has been omitted. Contour levels are the same for the line

contours as they are for the shaded contours.
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Seo et al. (2016) Figure 1, Zhou et al. (2012) Figure 3, accounting for 1–2 phase shift228

as a result of the 10-day lag used here). There are some differences between the exact229

response to each MJO phase in these studies due to differences in the time domains and230

data sets used; however, our results match previous results to leading order.231

There are significant and coherent changes in the lower tropospheric temperature232

response to the MJO from period one to period two. These changes are consistent with233

the differences observed in the upper tropospheric circulation response (and hence with234

the lower tropospheric circulation response, having confirmed equivalent barotropic be-235

haviour in the extratropics). Where responses have changed significantly between pe-236

riods one and two, this usually corresponds to a strengthening of the teleconnection (since237

the shaded difference tends to be of the same sign as the black contours for period two).238

Changes in the temperature response to the MJO over western Canada after MJO239

phases 1 and 5 are consistent with the changes in the upper tropospheric circulation and240

are exacerbated by the presence of the Rocky Mountains. In MJO phase 1 there is a cold241

shift in the response. In period one there is anomalous south-easterly flow from the cen-242

tral United States to western Canada, whereas in period two colder air is advected west-243

ward from northern Canada. Conversely, after MJO phase 5 warming is observed over244

western Canada in period two, as warmer air is transported north-westward from the245

midwestern United States.246

Changes in the response to MJO phase 6 will also have significant impacts on hu-247

man populations across the northern hemisphere. Over eastern North America there is248

a shift to a cold anomaly, from anomalous southward advection from northern Canada249

rather than westward from the Atlantic. Interestingly, this cold anomaly is more often250

associated with the response to later MJO phases (e.g. Schreck et al., 2013), indicating251

a shift in the mechanisms of the response.252

Across Europe, the strengthened and tilted cyclonic anomaly in period two has in-253

duced a strong cold anomaly. This feature is not present in period one but has a strength254

of −1.5 K in period two. The cold anomaly over Europe, paired with the eastern North255

American cold anomaly and warm anomaly over Greenland and Northern Canada bares256

considerable resemblance to the temperature pattern associated with the negative phase257

of the North Atlantic Oscillation (NAO−; C. Wang et al., 2010). Moreover, the average258

NAO index value at 10-day lag after MJO phase 6 has increased in magnitude (i.e. has259
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become more negative) by approximately 33% in period two, compared to period one.260

MJO phase 6 is known to precede NAO− (Cassou, 2008; Lin et al., 2009), so the strength-261

ening of these patterns suggests a strengthened link between MJO phase 6 and the NAO−262

(Figure S5).263

Precipitation anomalies (Figure 4 (e–h)) are less spatially coherent than the cor-264

responding 850-hPa temperature anomalies. Nevertheless, statistically significant changes265

in the extratropical precipitation response to the MJO from period one to period two266

are observed in some locations. In particular, the cold shift over central and southern267

Europe in MJO phase 6 is associated with a wet shift there, which is the opposite of what268

would usually be expected in boreal winter (Madden & Williams, 1978; Crhová & Holtanová,269

2018). Over southern Europe this is due to the formation of a wet anomaly in period270

two, whereas in central/western Europe this is due to a switch from dry to slightly wet271

anomaly. An explanation for the change in southern Europe is that the cyclonic anomaly272

is associated with a low pressure anomaly. The centre of this low pressure covers south-273

ern Europe in period two, whereas in period one the centre is located off the west coast274

of North Africa. The low pressure over Europe will generally lead to cloudier, wetter weather275

and hence the positive precipitation anomaly.276

6 Conclusions277

Evidence has been found in ERA5 reanalysis data, showing that the extratropical278

response to the MJO changes on decadal time scales. ENSO is known to modulate MJO279

teleconnection patterns on interannual time scales, however the decadal variability we280

have observed differs from this ENSO-modulated variability and is not an example of281

aliasing over different time scales.282

With only 4 decades of data, however, we are unable to conclusively attribute these283

changes to either external forcing or internal modes of variability. We hypothesise that284

low-frequency modes such as the AMV and PDO play a role in modulating MJO tele-285

connections, and by using climate models to increase our sample size we hope to exam-286

ine this hypothesis further.287

Changes in teleconnection patterns have impacts on meteorological conditions, par-288

ticularly temperature and precipitation, which will directly affect human populations.289
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These impacts are widespread, covering large portions of the extratropical Northern Hemi-290

sphere.291

Skillful prediction of MJO teleconnections are vital to skillful seasonal forecasting292

in the extratropics (Kent et al., 2022), which in turn impacts on various industries (Palmer,293

2002), including transportation (Palin et al., 2016; Karpechko et al., 2015), agriculture294

(Cantelaube & Terres, 2005; Challinor et al., 2005) and energy (Clark et al., 2017; Bloom-295

field et al., 2021). Finding clear evidence of decadal variability in the extratropical re-296

sponse to the MJO is a key step towards improved MJO-induced predictability in the297

extratropics and opens exciting opportunities for further refinement.298
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