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Abstract

Rainfall-runoff models are commonly evaluated against statistical evaluation metrics. However, these metrics do not provide

much insight into what is hydrologically wrong if a model fails to simulate observed streamflow well and they are also not

applicable for ungauged catchments. Here, we propose a signature-based hydrologic efficiency (SHE) metric consisting of

hydrologic signatures that can be regionalized for model evaluation in ungauged catchments. We test our new efficiency metric

across 633 catchments from Great Britain. Strong correlations with Spearman rank and Pearson correlation values around 0.8

are found between our proposed metric and commonly used statistical evaluation metrics (NSE, KGE, NP. . . ) demonstrating

that the proposed SHE metric is related to existing metrics as much as these metrics are related to each other. For ungauged

catchments, we regionalise the three signatures included in SHE and find that 78% of catchments have an absolute difference

of SHE values between gauged and ungauged cases of less than 0.2. This difference increases where the regionalized bias and

variance signature values are different to the observed ones. It means that SHE metric is applicable for model evaluation in

ungauged catchments if its signatures can be regionalized well.
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Key Points: 8 

• The underlying components of widely used efficiency metrics can be represented through 9 
different signatures 10 

• These components can be estimated in ungauged basins and hence the metric itself can be 11 
calculated for ungauged model evaluation/calibration 12 

• Modellers should replace the components of the proposed metric with signatures best 13 
suited to their research domains 14 
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Abstract 16 

Rainfall-runoff models are commonly evaluated against statistical evaluation metrics. However, 17 
these metrics do not provide much insight into what is hydrologically wrong if a model fails to 18 
simulate observed streamflow well and they are also not applicable for ungauged catchments. 19 
Here, we propose a signature-based hydrologic efficiency (SHE) metric consisting of hydrologic 20 
signatures that can be regionalized for model evaluation in ungauged catchments. We test our 21 
new efficiency metric across 633 catchments from Great Britain. Strong correlations with 22 
Spearman rank and Pearson correlation values around 0.8 are found between our proposed metric 23 
and commonly used statistical evaluation metrics (NSE, KGE, NP…) demonstrating that the 24 
proposed SHE metric is related to existing metrics as much as these metrics are related to each 25 
other. For ungauged catchments, we regionalise the three signatures included in SHE and find 26 
that 78% of catchments have an absolute difference of SHE values between gauged and 27 
ungauged cases of less than 0.2. This difference increases where the regionalized bias and 28 
variance signature values are different to the observed ones.  It means that SHE metric is 29 
applicable for model evaluation in ungauged catchments if its signatures can be regionalized 30 
well. 31 
Keywords: Model evaluation, hydrologic signatures, evaluation metric, Great Britain, ungauged 32 
catchment 33 

1 Introduction 34 

Statistical objective functions are widely used to quantify the difference between 35 
observed and simulated streamflow time series for rainfall-runoff model evaluation and 36 
calibration in situations where historical streamflow observations are available. Such objective 37 
functions integrate the differences between observed and simulated time series, i.e. the residuals. 38 
Many metrics are based on the mean squared error (MSE) which can be derived from basic 39 
statistical assumptions about the errors present (Gershenfeld, 1999). In hydrology, Nash and 40 
Sutcliffe (1970) suggested that this metric should be normalized to allow for a better comparison 41 
of model performances across catchments. Their unit-free objective function has become well 42 
known as the Nash Sutcliffe Efficiency (NSE). 43 

Multiple authors subsequently pointed out that metrics based on MSE type assumptions 44 
can be broken up into several constituent components, i.e. bias, standard deviation and 45 
correlation (Murphy, 1988; Weglarczyk, 1998). However, these components are not equally 46 
weighted within the traditional NSE formulation. Gupta et al. (2009) therefore suggested to 47 
combine them using Euclidean distance, which weights them equally in their Kling Gupta 48 
Efficiency (KGE) (see also Kling et al., 2012). This KGE metric has been used widely since its 49 
introduction and some authors have suggested improvements. For example, Pool et al. (2018) 50 
proposed to make the constituent components non-parametric so that they are less dependent on 51 
underlying assumptions. They replaced Pearson’s linear correlation with Spearman rank 52 
correlation, and they assessed discharge variability using a normalized flow duration curve 53 
(FDC) to remove volume information and retain information about distributions only. 54 

These metrics are undoubtedly cornerstones of hydrologic modelling, but some 55 
underlying problems with their use have been the basis for an ongoing debate. First, it is difficult 56 
to interpret them and their constituent components hydrologically (Gupta et al., 2008). For 57 
example, what is hydrologically wrong with my model if the NSE value is only 0.5?  This 58 
problem has led to the use of hydrologic signatures in model evaluation (e.g. Moges et al., 2022). 59 
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Such signatures are indices of hydrologic function, such as the runoff ratio, which is an index 60 
that quantifies the fraction of precipitation that leaves the catchment as streamflow rather than 61 
evapotranspiration (McMillan, 2021). Second, the use of hard performance thresholds, though 62 
promoted by some (e.g. Moriasi et al., 2007; Rogelis et al., 2016; Towner et al., 2019), has been 63 
heavily criticized by others (e.g. Knoben et al., 2019; Clark et al., 2021). Flexible performance 64 
benchmarks have also been suggested to overcome this problem (e.g Seibert, 2001; Schaefli and 65 
Gupta, 2007; Seibert et al., 2018), while a more diagnostic evaluation of the underlying 66 
components has been proposed by others (Schwemmle et al., 2021). 67 

Metrics like NSE and KGE are only applicable to gauged catchments because they 68 
require historical time series of observed streamflow to estimate residuals. However, previous 69 
studies have regionalized hydrologic signatures (e.g. Yadav et al., 2007; Hrachowitz et al., 2014; 70 
Pool and Seibert, 2021; Guo et al., 2021), and the statistical hydrology literature is rich with 71 
examples where streamflow statistics have been regionalized (e.g. Vogel et al., 1999). Therefore, 72 
at least some of the components that make up efficiency metrics, i.e., bias and variance, have 73 
already been estimated in ungauged basins. Indeed, there have been quite a few studies that have 74 
used (uncertain) regionalized hydrologic signatures as constraints for rainfall-runoff model 75 
ensembles (e.g. Zhang et al., 2008; Bulygina et al., 2009; Westerberg et al., 2011). However, 76 
there has been no attempt so far to build an efficiency metric for ungauged basins from these 77 
components. 78 

In this paper, we propose a signature-based hydrologic efficiency metric that builds upon 79 
the work that has been done previously with signatures in both gauged and ungauged 80 
catchments. Integration of hydrologic signatures in an evaluation metric will provide opportunity 81 
for hydrologic interpretation of model performance and being able to regionalize these signatures 82 
will provide hydrologic efficiency evaluation of models for ungauged catchments. We test our 83 
ideas across 633 catchments in Great Britain (GB) by using model simulations in a Monte Carlo 84 
framework for a 10-year time period. 85 

2 Data 86 

In this paper, we analyse 633 catchments spread across Great Britain. Great Britain – 87 
consisting of England, Wales, and Scotland – is characterized by a temperate climate, moderate 88 
topographic variability, and significant geological heterogeneity. Precipitation decreases from 89 
north-west to south-east with a mean annual values ranging from 550 to 3500 mm/year (Coxon 90 
et al., 2020). Conversely, potential evapotranspiration (PET) increases from north-west 91 
(minimum of about 350 mm/year) to south-east (maximum of about 550 mm/day).  Most of 92 
England is dominated by lowland terrain, whereas Wales and Scotland are dominated by more 93 
mountainous regions. Great Britain has a diverse geology including aquifers consisting of more 94 
permeable Chalk, Magnesian, Jurassic, Devonian/Carbonifero limestone and Permo-Triassic 95 
sandstone. 96 

This study uses daily rainfall, streamflow, potential evapotranspiration time series for ten 97 
years (October 1, 1999 – September 30, 2009) and catchment attributes from the CAMELS-GB 98 
dataset to develop and demonstrate the new metric. CAMELS-GB is a large sample, open-99 
source, hydro-meteorological dataset for Great Britain. It includes hydro-meteorological time 100 
series (consisting of rainfall, streamflow, potential evapotranspiration, temperature, radiation and 101 
humidity for 1970-2015 years), catchment attributes (including topography, climate, hydrology, 102 
land cover, soils, hydrogeology and human influences) (see Table S1) and catchment boundaries 103 
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for 671 catchments across Great Britain (Coxon et al., 2020).  Considering climatic variability 104 
(i.e. wet and dry periods), ten-years of data is assumed to be sufficient to capture long-term 105 
climatic and hydrologic characteristics of our catchments for the purpose of this study. About 106 
96% of the 671 catchments have >90% complete streamflow data in this 10-year period (i.e. 107 
1999-2009).  From the 671 CAMELS-GB catchments, we exclude 12 catchments from the 108 
analysis where (1) the runoff ratio or variance ratio value is higher than 1 – suggesting 109 
significant and unexplained water balance issues, (2) there is no available BFI-HOST data or (3) 110 
there is insufficient streamflow data for the specified study years. In addition, we also exclude 26 111 
catchments where water balance analysis (see Section S3 in supplemental information) shows 112 
that they are significantly losing water most likely through subsurface processes which is not 113 
captured by the hydrological model used in this study. Hence, 633 GB catchments are used in the 114 
subsequent analysis. 115 

3 Methodology 116 

3.1 A Signature-based Hydrologic Efficiency (SHE) metric 117 

We follow previous work discussed in the introduction section by adding a particular 118 
focus on signatures representing different hydrological dynamics as the individual components 119 
underlying hydrological efficiency metrics, as well as our ability to regionalize them (see Table 120 
1). 121 

a) Bias term: Runoff ratio 122 

Runoff ratio (RR) is defined as the ratio of long-term average streamflow to long-term 123 
average precipitation. It is the long-term water balance separation between water being released 124 
from the catchment as streamflow and as evapotranspiration (Milly, 1994; Sankarasubramanian 125 
et al., 2001; Olden and Poff, 2003; Yadav, 2007). Higher runoff ratios identify catchments where 126 
a large amount of water leaves the catchment as streamflow with respect to precipitation and vice 127 
versa. 128 

b) Variance (i.e. amplitude) term: Variance ratio 129 

We define variance ratio as the ratio of standard deviation of streamflow to standard 130 
deviation of precipitation. The signature shows how variable (i.e. flashy) streamflow is with 131 
respect to precipitation drivers and is as such an indicator of the damping of precipitation 132 
variability through the catchment (a lower value indicating more damping). 133 

c) Correlation term 134 

Correlation is an aspect that is more difficult to capture in a signature. It could be 135 
represented as a function of the catchment response in relation to precipitation using the time of 136 
concentration of a catchment. However, estimates of time of concentration using the daily data 137 
we use in this study do not work very well for small and fast responding catchments in Great 138 
Britain (Giani et al., 2021). While exploration of this signature is beyond this technical note, we 139 
will return to the issue when we discussed ungauged basins. For now, we decided to use 140 
Spearman rank correlation between observed and simulated streamflow values as the correlation 141 
term of SHE like the non-parametric form of KGE developed by Pool et al. (2018). The 142 
components and formulation of SHE for gauged cases (i.e. SHEg) are given in Table 1. 143 
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 144 
Table 1. Bias, variance and correlation components and formulations of evaluation metrics. 145 

Objective 
function 

Bias 
(𝛃) 

Variance 
(α) 

Corre-
lation 

(r) 
Combination 

NSE 
(Nash and 
Sutcliffe, 
1970; Gupta 
et al., 2009) 

(µ − µ )σ  ( σ )( σ )  

rpearson 

2 ∗ α ∗ r − α − β  

KGE 
(Gupta et al., 
2009) 

(µ )(µ )  

1 −  (α − 1) + (β − 1) + (r − 1)  

KGE* 
(modified 
version in 
Kling et al., 
2012) 

[( 𝜎 )/(µ )][( 𝜎 )/(µ )]  
NP 
(Pool et al., 
2018) 

1 −  ½ x , ( ) nµ − x ,  ( ) nµ  

rspearman 

SHEg 
(gauged 
situation) 

[(µ )/(µ )][(µ )/(µ )]  [( 𝜎 )/( 𝜎 )][( 𝜎 )/( 𝜎 )] 
SHEu 
(ungauged 
situation with 
regionalized 
signatures) 

[(µ )/(µ )][RR ]  
[( 𝜎 )/( 𝜎 )][VR ]  r*

spearman 

• S, O and P are simulated streamflow, and observed streamflow and precipitation, respectively.  146 
• µ is the mean and σ is the standard deviation of streamflow. 147 
• x , ( )  is the simulated streamflow value where I(i) is the time step when the ith largest flow occurs within simulated time series and  148 x ,  ( )  is the observed streamflow value of target catchment where J(i) is the time step when the ith largest flow occurs within 149 

observed time series. 150 
• VRPred and RRPred are regionalized variance ratio and runoff ratio for the target catchment derived using stepwise linear regression. 151 

Predictors of VRPred are aridity index, BFI-HOST and inland water percentage. Predictor of RRPred is only aridity index. Variance ratio 152 
is the ratio of standard deviation of streamflow to standard deviation of precipitation. Runoff ratio is the ratio of long-term mean of 153 
streamflow to long-term mean of precipitation. 154 

• rPearson = Pearson correlation between simulated and the observed streamflow in the target catchment 155 
• rSpearman = Spearman rank correlation between simulated and the observed streamflow in the target catchment 156 

r'Spearman= Spearman rank correlation between simulated streamflow of a catchment which is assumed to be ungauged and the streamflow values 157 
obtained by inverse distance weighting interpolation of this catchment’s three closest catchments’ observed streamflow. 158 

3.2 Application of SHE metric in ungauged catchments 159 

Applying the SHE metric in ungauged situations requires estimates all of three metric 160 
components for ungauged basins. We perform this regionalization step in two different ways. 161 
Bias and variance components, i.e. runoff ratio and variance ratio, or related signatures have 162 
been widely regionalized using different types of regressions (e.g. Yadav et al., 2007; for GB). 163 
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We use the simplest and widely used strategy, stepwise linear regression, to establish the 164 
relationships between the catchment attributes and signatures (e.g. Almeida et al., 2016). We 165 
regionalize bias and variance signatures for 633 GB catchments testing 54 catchment attributes 166 
from CAMELS-GB representing topography, climate, hydrology, land cover, soils, 167 
hydrogeology and human influences (see Table S1 in supplemental information). Regionalized 168 
signatures are estimated using following procedure (see details in the supplementary material 169 
S1): (1) Stepwise regression is applied to each signature independently. Predictors are selected 170 
according to their p-values and the R2 value of the resulting regression model. (2) 633 171 
catchments are randomly divided into 5 groups. One group is left out each time and the 172 
remaining ones are used in the fitting of regression models for each signature (5-fold cross-173 
validation). (3) After obtaining regression models in step 2 (see Table S2 and S3 in supplemental 174 
information), the signature values are estimated for the catchments in the group omitted during 175 
regression model development. 176 

The correlation term is more complicated, given that we have no simple approach to 177 
regionalize a single value as is the case with the other two signatures. However, Archfield and 178 
Vogel (2010) have demonstrated that it is feasible to estimate correlation for ungauged locations 179 
using a geostatistical strategy. They introduced their map correlation method which selects the 180 
strongest correlated gauge as the reference gauge for an ungauged catchment, given that the 181 
nearest gauge was not always the most correlated one in their study of US catchments. The 182 
approach by Archfield and Vogel (2010) follows the basic idea of directly transferring 183 
streamflow from gauged to ungauged locations (see wider review of such approaches by He et 184 
al., 2011). Drogue and Plasse (2014) tested four different distance-based regionalization methods 185 
including the strategy by Archfield and Vogel (2010) for European catchments. They found that 186 
using multiple reference catchments rather than one is preferrable for assessing daily streamflow 187 
hydrographs in a densely gauged study domain. The simplest strategy to directly transfer 188 
streamflow is likely the one by Patil and Stieglitz (2012), who used inverse distance weighted 189 
(IDW) interpolation to transfer daily streamflow from multiple neighbouring gauged catchments 190 
to ungauged catchments in the US. Their approach is formulated as follows: 191 𝑞(𝑥) =  ∑ ( )∑ ( ) ∗ 𝑞(𝑥𝑘) and wk(x)  =  ( , )   192 

where q(x) is daily streamflow (mm/day) at the ungauged catchment that is located at point x in 193 
the region, q(xk) is the daily streamflow of neighbouring reference catchment k located at point 194 
xk in the region and N is the total number of neighbouring reference catchments for the 195 
interpolation. d is the distance between gauges of catchments and w is the interpolation weights 196 
of reference catchments. The exponent p is a positive real number, called a power parameter. 197 

We adopt this approach for estimating streamflow to ungauged locations within our GB 198 
dataset because it works surprisingly well and because optimizing the regionalization 199 
performance is not our main concern. To identify a suitable number of reference catchments, we 200 
assume each catchment in turn to be ungauged, estimate the streamflow time series using IDW 201 
interpolation with different numbers of reference catchments (1-5 reference catchments), and 202 
calculate the Spearman Rank Correlation (SRC) between transferred and observed streamflow 203 
time series. We find that using three reference catchments provides optimum SRC estimate for 204 
the ungauged catchments in our sample (Figure S1 in supplemental information). We could 205 
actually use a similar streamflow transfer strategy to estimate the bias and variance terms but 206 
found this strategy to perform less well (see Figure S2 in supplemental information). 207 
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3.3 Rainfall-Runoff Model Implementation 208 

We use a typical lumped parsimonious model structure widely used in Great Britain. The 209 
model structure, implemented in the Rainfall-Runoff Modelling Toolbox (RRMT; Wagener et 210 
al., 2001) combines a probability-distributed soil moisture accounting component (i.e. PDM), 211 
which represents the variability in soil moisture storage across a typical humid catchment using a 212 
distribution of storage depths (Moore, 2007), and a combination of two linear reservoirs in 213 
parallel for routing, one representing fast flow and the other representing slow flow (i.e. 2PAR), 214 
with a fixed split between them. Effective rainfall is produced as overflow from the PDM stores 215 
which are described as Pareto distribution based on two parameters, the maximum storage 216 
capacity, Cmax, and parameter, b, describing the shape of the distribution. The effective rainfall 217 
(ER) is split with respect to parameter a describing the fraction of flow through the fast reservoir, 218 
while both reservoirs are defined by a single time constant (Wagener et al., 2001). The reason of 219 
choosing PDM is that it represents a flexibility in soil moisture accounting through its 220 
distribution function to influence the runoff response and combining it with 2PAR flow routing 221 
module provides different flow pathways for catchments across GB with different levels of 222 
baseflow contribution. 223 

To calibrate the model, 10,000 parameter sets are independently sampled using uniform 224 
random sampling. The first 5% of the ten-year study period is used as a warm-up period. The 225 
parameter set producing the best performance according to SHE metric is used to obtain 226 
simulated streamflow. These numbers have been widely used in previous studies. 227 

4 Results 228 

First, we compare the values estimated for our SHE metric in gauged situations with 229 
previous efficiency metric implementations, i.e. KGE (Kling et al., 2012), NSE (Gupta et al., 230 
2009) and NP (Pool et al., 2018). Figure 1 shows scatter plots where SHE values are correlated 231 
with KGE, NSE and NP values with Pearson correlation (i.e. PC) and Spearman rank correlation 232 
(i.e. SRC) values to varying degrees. Correlations are highest for SHE-NP (above 0.8), then 233 
SHE-KGE (around 0.8) and then SHE-NSE (0.6 to 0.67). Our formulation is most closely related 234 
to that of Pool et al. (2018) and Gupta et al (2009) due to the equal weighting of the terms within 235 
the efficiency metric. 236 

 237 

Figure 1. Scatter plots for (a) KGE vs. SHE, (b) NP vs. SHE and (c) NSE vs. SHE. x and y axes 238 
are limited to [0 1]. KGE, NP and NSE values are calculated using the best simulation values 239 
based on SHE metric values. 240 
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Second, we estimate the components of our metric for ungauged locations. The scatter 241 
plots in Figures 2a and 2b show that the predicted RR and VR using stepwise linear regression 242 
correlate well with observed RR and VR values. We find PC and SRC correlation values above 243 
0.9. The maps indicate that predicted RR and VR values have similar patterns with decreases 244 
from the north-west to south-east of GB. As shown in Figure 2c for an estimate of correlation for 245 
ungauged locations, SRC values between observed and transferred streamflow values are above 246 
0.8 for 94% of all catchments (77% above 0.9), even when using the simple inverse distance 247 
method with the three closest catchments. All components of our SHE metric can therefore be 248 
estimated individually in ungauged catchments within our study domain. 249 

 250 

Figure 2. (a) Predicted RR map and scatter plot for predicted vs. observed RR, (b) predicted VR 251 
map and scatter plot for predicted vs. observed VR and (c) map illustrating SRC values between 252 
observed streamflow of catchments and the streamflow values calculated by taking inverse 253 
distance interpolation of their closest three catchments’ observed streamflows and its histogram 254 
plot. Predictor of RR is aridity index and predictors of VR are aridity index, BFI-HOST and 255 
inland water percentage. 256 

And third, we calculate the differences between SHE values for gauged and ungauged 257 
cases to evaluate how well we can estimate the performance of a model for ungauged 258 
catchments, in contrast to gauged catchments. Figures 3a, 3b and 3c shows histograms of the 259 
differences between SHE values for gauged and ungauged cases (i.e.  SHEg – SHEu). Cumulative 260 
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distribution functions (CDF) plots of the individual difference values are color-coded by (a) bias 261 
component difference (i.e. Δβ), (b) variance component difference (i.e. Δα) and (c) correlation 262 
component difference (i.e. Δr). The histograms (all three are identical) show that more than 50% 263 
of 633 catchments have difference values between -0.1 and 0.1, while 78% of them have 264 
difference values between -0.2 and 0.2. Low values of SHE difference are associated with small 265 
differences in the bias, variance, and correlation terms (see CDF plots in Figure 3). CDF plots 266 
also show that catchments with high positive differences (i.e. >0.3) have the highest positive and 267 
the lowest negative values of the bias and variance component differences, respectively, 268 
suggesting the poor regionalization is a problem there. Figure 3c shows that correlation 269 
component differences are overall very small across catchments except for very few catchments 270 
with high positive differences. In summary, the results imply that when the regionalization of the 271 
bias and variance signatures works, we can obtain similar SHE values for both gauged and 272 
ungauged cases. 273 

 274 

Figure 3. Cumulative distribution function (i.e. cdf) plot and histogram plot of difference 275 
between SHE for gauged and ungauged cases (i.e. SHEg – SHEu). Cdf plot is color-coded by (a) 276 
bias component difference (Δβ), (b) variance component difference (Δα) and (c) correlation 277 
component difference (Δr) between SHE formulations for gauged and ungauged cases 278 
summarized in Table 1. 279 

5 Discussion and Conclusions 280 

In summary, we introduced a new signature-based hydrologic efficiency (SHE) metric 281 
based on the idea that a model’s fit to signatures will be easier to interpret hydrologically, and 282 
more importantly, that we can estimate it directly in ungauged basins.  The SHE metric is 283 
correlated to different degree with existing metrics, and we show how its components, and hence 284 
the metric itself, can be estimated in ungauged catchments. 285 

A flexible efficiency metric based on signatures provides significant opportunity for 286 
hydrologically relevant diagnostic model calibration and evaluation (Yadav et al., 2007; Yilmaz 287 
et al., 2008; Shafii and Tolson, 2015). Here, we simply replace the statistical components of the 288 
KGE (Gupta et al., 2009) with signatures suitable for our study domain, Great Britain. We chose 289 
to use runoff ratio and variance ratio as our signatures to represent bias and variance aspects of 290 
the hydrograph. However, other signatures could and should be considered for different study 291 
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domains. Hydrologists have investigated many signatures and found different ones to be useful 292 
to characterize major hydrologic functions or hydrograph aspects of catchments depending on 293 
the study domain (McMillan, 2020). Different aspects of the flow duration curve have for 294 
example been used to characterize the variability of flow through different signatures (e.g. 295 
Yilmaz et al., 2008; Sawicz et al., 2011; Westerberg et al., 2011; Pool et al., 2018; McMillan, 296 
2021). It might be useful to use different signatures depending on whether study domains for 297 
example contain catchments with significant snow or those in arid domains. 298 

We do not believe that SHE would be universally applicable in this form everywhere in 299 
the world. Actually, we believe that the different components should be replaced by appropriate 300 
signatures of a catchment’s, water balance, its damping, and its translation of precipitation 301 
variability into streamflow variability and timing. Different signatures might be best suited to 302 
represent these components depending on whether the study domain is for example located in a 303 
temperate, dry or cold part of the world. Equally, existing regionalized streamflow indices 304 
correlated with these components might provide a baseline from which such a metric can be 305 
estimated in both gauged and ungauged catchments. An advantage of this opportunity and need 306 
for tailoring is that making these choices puts the discussion about suitable objective functions 307 
into the realm of hydrology, rather than just statistics. 308 

The issue of signature choice is also linked to the ability for regionalising signatures or 309 
indices correlated with the components of the efficiency metric. Many regionalisation studies 310 
exist (e.g. He et al., 2011; Wagener and Montanari, 2011), though in how far these studies 311 
provide a regional basis to calculate efficiency metrics from in ungauged locations has so far 312 
been unexplored. One issue we did not tackle here in this context is that of uncertainty in these 313 
regionalisation estimates (e.g. Zhang et al., 2008; Kapangaziwiri et al., 2012; Westerberg et al., 314 
2014). Uncertainties originate from the underlying measurements of physical catchment 315 
properties and of hydro-meteorological variables, from processing of the original observations, 316 
and from choices made regarding space-time averaging etc. (McMillan et al., 2022; Westerberg 317 
et al., 2016). There is opportunity for integrating uncertainty in a coherent statistical framework 318 
covering both gauged and ungauged situations, which should significantly increase the value of 319 
available regionalised information in the context of model calibration and evaluation. 320 
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dataset (Coxon et al., 2020) and available at https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-331 
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86d2987543a9. BFI-HOST of each catchment is obtained from NRFA website 332 

(https://nrfa.ceh.ac.uk/data/search) where detailed information of each stream gauges is given. 333 

SHE (for both gauged and ungauged conditions), KGE, NP and NSE values obtained for 659 GB 334 

catchments and their simulated streamflow values for the best simulations obtained by this study 335 

will also be made available in the Bristol data repository.  336 
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