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Abstract

Quantifying the contributions of distinct mineral populations in bulk magnetic experiments greatly enhances the analysis of

environmental and rock magnetism studies. Here we develop a new method of parametric unmixing of susceptibility components

in hysteresis loops. Our approach is based on a modified Gamma-Cauchy exponential model, that accounts for variable skewness

and kurtosis. The robustness of the model is tested with synthetic curves that examine the effects of noise, sampling, and

proximity of susceptibility components. We provide a Python-based script, the Hist-unmix package, which allows the user to

adjust a direct model of up to three ferromagnetic components as well as a dia/paramagnetic contribution. Optimization of

all the parameters is achieved through least squares fit (Levenberg-Marquardt method), with uncertainties of each inverted

parameter calculated through a Monte Carlo error propagation approach. For each ferromagnetic component, it is possible

to estimate the magnetization saturation (Ms), magnetization saturation of remanence (Mrs) and the mean coercivity (Bc).

Finally, Hist-unmix was applied to a set of weakly magnetic carbonate rocks from Brazil, which typically show distorted

hysteresis cycles (wasp-waisted and potbellied loops). For these samples, we resolved two components with distinct coercivities.

These results are corroborated by previous experimental data, showing that the lower branch of magnetic hysteresis can be

modeled by the presented approach and might offer important mineralogical information for rock magnetic and paleomagnetic

studies.
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Key Points: 10 

 A new method for the parametric unmixing of magnetic hysteresis data based on 11 

modified Gamma-Cauchy exponential model is presented  12 

 The model accounts for curves with variable skewness/kurtosis, allowing the separation 13 

of dia/para and ferromagnetic contributions  14 

 An open-sourced Python script (Hist-unmix) allows the users to import, process and 15 

model their data on a friendly interface. 16 
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Abstract 18 

Quantifying the contributions of distinct mineral populations in bulk magnetic experiments 19 

greatly enhances the analysis of environmental and rock magnetism studies. Here we develop a 20 

new method of parametric unmixing of susceptibility components in hysteresis loops. Our 21 

approach is based on a modified Gamma-Cauchy exponential model, that accounts for variable 22 

skewness and kurtosis. The robustness of the model is tested with synthetic curves that examine 23 

the effects of noise, sampling, and proximity of susceptibility components. We provide a Python-24 

based script, the Hist-unmix package, which allows the user to adjust a direct model of up to 25 

three ferromagnetic components as well as a dia/paramagnetic contribution. Optimization of all 26 

the parameters is achieved through least squares fit (Levenberg-Marquardt method), with 27 

uncertainties of each inverted parameter calculated through a Monte Carlo error propagation 28 
approach. For each ferromagnetic component, it is possible to estimate the magnetization 29 

saturation (Ms), magnetization saturation of remanence (Mrs) and the mean coercivity (𝐵 ). 30 

Finally, Hist-unmix was applied to a set of weakly magnetic carbonate rocks from Brazil, which 31 

typically show distorted hysteresis cycles (wasp-waisted and potbellied loops). For these 32 

samples, we resolved two components with distinct coercivities. These results are corroborated 33 

by previous experimental data, showing that the lower branch of magnetic hysteresis can be 34 

modeled by the presented approach and might offer important mineralogical information for rock 35 

magnetic and paleomagnetic studies. 36 

Keywords: Unmixing magnetic hysteresis, Python package, Magnetic mineralogy, 37 
Palaeomagnetism, Rock and mineral magnetism, Inverse theory 38 

 39 

Plain Language Summary 40 

Rocks contain magnetic minerals that record Earth’s varying magnetic field shape and intensity, 41 

and provide information about our planets evolution, as well as the ancient environmental 42 

conditions where the rocks formed. To study these magnetic minerals, we need to identify and 43 

quantify them, but this is challenging because of the complex mixture of such minerals that a 44 

rock may contain. Magnetic hysteresis curves are a simple and quick measurement that provides 45 

information on the magnetic properties of a rock, reflecting the combined effects of different 46 

minerals. In this paper, we propose a mathematical model that can separate the individual 47 

contributions of each magnetic population. We also provide an open-source python application 48 

for users to apply our model to their own data.  49 

1 Introduction 50 

Magnetic minerals are used in many fields of science as important indicators of physical, 51 

chemical and biological processes (Butler, 1992; J. Dunlop & Özdemir, 1997; Liu et al., 2012; 52 
Tauxe, 2005). Typically, magnetic measurements are time and cost-effective, and can detect 53 

magnetic particles even at trace levels. Usually, natural samples will contain a mixture of 54 

magnetic mineral populations, such as oxides (e.g, magnetite and hematite), hydroxides (e.g., 55 

goethite and limonite) and iron sulphides (e.g., pyrrhotite and greigite), each with different 56 

ranges of grain-sizes. Distinguishing between these populations is not a simple task, since these 57 

properties are nonlinear functions of grain size and composition (Robertson & France, 1994).  58 

The investigation of magnetic properties in natural samples often requires the combination of 59 

many techniques, including thermomagnetic observations, such as variations of magnetic 60 
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susceptibility or magnetic induction with temperature, thermal demagnetization, magnetic 61 
hysteresis, first order reversal curves (FORCs), and alternating field demagnetization (AF), or 62 

the acquisition of artificial remanences, such as the anhysteretic remanent magnetization (ARM) 63 

and the isothermal remanent magnetization (IRM). Magnetic hysteresis and IRM acquisition 64 

measurements are quickly achieved using modern vibrating sample magnetometers (VSM), and 65 

their advantage lies on their ability to examine a wide range of coercivities, offering a quick 66 

response to the bulk magnetic properties of a rock or sediment even with small amounts of 67 

sample. For magnetic hysteresis, the shape of some curves typically suggests the presence of 68 

more than one magnetic component. These include: wasp-waisted (constricted middles, near the 69 

origin of the coercivity axis), potbellies (spreading middles near the origin and slouching 70 

shoulders) and goose-necked (constricted middles and spreading shoulders) (Tauxe et al., 1996). 71 

In some cases, these hysteresis shapes have been considered as a fingerprint of some geological 72 

processes, such as remagnetization of carbonate rocks (Jackson & Swanson-Hysell, 2012). This 73 

evaluation, however, is usually done qualitatively, without quantitative identification and 74 

separation of magnetic components. 75 

To deal with magnetic hysteresis data, there are free-access interfaces that allow 76 

advanced processing of data like HystLab of Paterson et al. (2018), but unmixing of distorted 77 
curves is not a focus on their work. There are several ways to unmixing magnetic mineral 78 

populations from magnetic hysteresis, Some authors model the magnetic properties of natural 79 

materials by assuming end members in a mixture, which could be either pure magnetic phases 80 
with different grain sizes, or typical mineral sources in the study area or region, or yet end 81 

members identified from the data itself  (Jackson & Solheid, 2010; Thompson, 1986). Another 82 

approach requires the fitting of basis functions to the hysteresis loops. In this case, the linear 83 

combination of different basis functions representing the different magnetic populations should 84 

represent the bulk behavior of the magnetic assemblage (Heslop, 2015). The advantage of this 85 

approach is that it requires little to no a priori information, relying on the ability of a 86 

mathematical model to represent a physical phenomenon (von Dobeneck, 1996; Vasquez & 87 

Fazzito, 2020).  88 

Recently, a simple solution for the unmixing of magnetic components by fitting 89 

Lorentzian curves to the lower branch of magnetic hysteresis loops was proposed (Vasquez & 90 

Fazzito, 2020). It considers the magnetization (M) acquired through the induction of an applied 91 

field (𝐵) as expressed by:  92 

𝑀(𝑥) = (𝜅 ∙ 𝐵) +
𝐴

𝜋
∙ 𝑎𝑟𝑐𝑡𝑎𝑛

2 ∙ (𝐵 − 𝐵 )

𝜃
 93 

Eq. 1 94 

The first term of the Eq. 1 describes a linear magnetization acquired through an inducing 95 

field 𝐵, which is the dia/paramagnetic contribution to  𝑀(𝐵). Consequently, the second (and 96 

non-linear) term represents the ferromagnetic contribution, while A is the total area under the 97 

𝑀(𝑥) curve. If 𝐵  is equal to 𝐵, the ferromagnetic contribution will be zero, which is the very 98 

definition of coercive force. If 𝐵 approaches the infinity, Eq. 1 will tend to 𝐴/2 , which is the 99 

magnetization saturation (𝑀 ) of 𝑀(𝐵). Now, if  Eq. 1 is evaluated at zero field (𝐵 = 0), then 100 

saturation remanence (𝑀 ) is also easily calculated. The magnetic susceptibility (κ) is 101 

sequentially computed as: 102 
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𝜅(𝐵) =
𝜕

𝜕𝐵
𝑀(𝐵) = 𝜅 +

2 ∙ 𝐴

𝜋
∙

𝜃

(4 ∙ (𝐵 − 𝐵 ) ) + 𝜃
 103 

Eq. 2 104 

 105 

In order to model the susceptibility components, one of the branches of a magnetic 106 

hysteresis (covering both the reversible and irreversible segments) is used to calculate a 107 

numerical derivative. Vasquez and Fazzito (2020) fitted the parameters of Eq. 2 using a generic 108 

inversion routine through commercial and/or free-software and  report coherent results in the 109 

unmixing of components from previously published data (Roberts et al., 1995) and from their 110 
own synthetic samples, but acknowledge that the simplicity of the model might fail to cover 111 

more complex scenarios. Such a case could arise from the contribution of fine SD-like particles 112 

(e.g., a Stoner-Wohlfarth assemblage - Stoner and Wohlfarth, 1991). A distribution of such 113 

grains might cause the reversible and irreversible segments of a lower branched magnetic 114 

hysteresis to be very different, which will originate an asymmetry. Furthermore, for viscous SD-115 

like particles, the irreversible segment may abruptly start at 𝐵 = 0, leading to a discontinuous 116 

derivative (Egli, 2021). Neither of these cases can be explained by a symmetrical Lorentzian 117 

curve of the form of Eq. 2, and would require a skewness’ control parameter, similar to the 118 

coercivity analysis of Egli (2003). Finally, it is also important to consider that Eq. 2 does not 119 

account for the approach-to-saturation behavior expected in high-fields (Fabian, 2006) and so an 120 
additional parameter is required to account for a variable kurtosis and susceptibility components 121 

with different tails.  122 

To achieve a more robust phenomenological model to unmix susceptibility components 123 

from magnetic hysteresis data, we introduce the use of generalized gamma-Cauchy exponential 124 

distributions (Alzaatreh et al., 2016). We present a Python-based (ipynb-file) open-source 125 

application (Hist-unmix) that can be used to perform unmixing of hysteresis curves (Bellon et al., 126 

2023). A forward model of up to three susceptibility components is demonstrated, as well as the 127 
mathematical formulation to optimize initial parameters in our inverse model, with uncertainty 128 

estimates of the parameters determined through a Monte-Carlo error propagation. We also 129 

perform numerical tests on synthetic data to assess the sensibility of a modified Gamma-Cauchy 130 

Exponential fit (mGC), evaluating the effect of (i) sampling, (ii) signal/noise ratio, (iii) similarity 131 

of components and the (iv) ambiguity of the model. Finally, we test the Hist-unmix application 132 

on distorted hysteresis loops of Neoproterozoic remagnetized rocks from São Francisco craton 133 

(Brazil), comparing the information recovered from the Hist-unmix package with previous rock-134 

magnetism/paleomagnetic data 135 

2 Materials and Methods 136 

2.1 Forward model 137 
 138 

Cauchy distributions have many applications in mechanical and electrical theory, often 139 

referred to as Lorentzian distributions in the physics literature. To achieve a forward model for 140 

the first derivative of a lower branched magnetic hysteresis, we propose the use of the probability 141 

density function of a gamma-Cauchy exponential distribution (GC(α, β, θ)). In such, if a random 142 

variable follows a gamma distribution with parameters α and β, a GC(α, β, θ)’s probability 143 

density function is defined as (Alzaatreh et al., 2016): 144 
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𝑓(𝐵) =
− 𝑙𝑜𝑔 0.5 − 𝜋 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛

𝐵
𝜃 ∙ 0.5 − 𝜋 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛

𝐵
𝜃

𝜋 ∙ 𝜃 ∙ 𝛽 ∙ Г(𝛼) ∙ 1 +
𝐵
𝜃

, 𝑥 ∈ ℝ 145 

Eq. 3 146 

In Eq. 3, 𝜃 has the role of a dispersion parameter (such as in the symmetrical Lorentzian 147 

functions) and Г(𝛼) is the gamma function of 𝛼. The advantage of using functions of the from 148 

GC(α, β, θ) lies in the fact that their morphology can be symmetrical, right or left skewed, and 149 

cover a wide range of kurtosis (Alzaatreh et al., 2016). Since Eq. 3 will peak in the arithmetic 150 

mean of 𝐵, we added a term to represent the coercivity (𝐵 ) in a gamma-Cauchy distribution. To 151 
improve convergence, a scale factor (I) is further included, which represents the contribution 152 

ratio of each ferromagnetic component. Our modified gamma-Cauchy exponential function, 153 

𝑚𝐺𝐶(𝐵 , 𝛼, 𝛽, 𝜃, 𝐼) for magnetic susceptibility becomes:  154 

𝜅 =

⎣
⎢
⎢
⎢
⎡ − 𝑙𝑜𝑔 0.5 − 𝜋 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛

𝐵 − 𝐵
𝜃

∙ 0.5 − 𝜋 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛
𝐵 − 𝐵

𝜃

𝜋 ∙ 𝜃 ∙ 𝛽 ∙ Г(𝛼) ∙ 1 +
𝐵 − 𝐵

𝜃 ⎦
⎥
⎥
⎥
⎤

∙ 𝐼  155 

Eq. 4 156 

Eq. 4 accounts for the ferromagnetic contribution to the susceptibility 𝜅. We call this a 157 

ferromagnetic susceptibility component (C). A para/diamagnetic contribution (𝜅 ) to the 158 

magnetic susceptibility given by N-ferromagnetic components (𝐶 ) can be calculated, for a 1D-159 

array containing the applied field values (𝐵, 𝐵 ∈ ℝ ), by linearly adding 𝜅  to 𝐶 . The 160 

para/diamagnetic contribution can be simply estimated from a linear regression of the high-field 161 

susceptibility. However, as the numerical gradient is subjected to high-frequency noise, 162 

estimating 𝜅  from the magnetic hysteresis’ high-field irreversible segment is less susceptible to 163 

the influence of noise. If we remove 𝜅  to work directly with the ferromagnetic contribution, a 164 

forward model is then simply given as: 165 

�̅� = C   166 

Eq. 5 167 

2.2 Inverse model 168 
 169 

Whilst we have arbitrarily chosen to model the lower branch, it is of course assumed that 170 

the lower and upper branches are symmetrical and centered. If not, some preprocessing must be 171 

performed to achieve more coherent results. Given a 1-D array of susceptibility data (�̅�) derived 172 

from the lower branch of a magnetic hysteresis curve, and a model (�̅� ) calculated with Eq. 5, 173 

(‖we expect to minimize the Euclidean norm of a squared weighted error 𝑒 ‖ ) function as: 174 
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‖𝑒 ‖ =
�̅�[ ] − �̅� [ ]

𝜎
, 175 

Eq. 6 176 

 177 

where 𝜎  is measurement error for �̅�[ ] and 𝑚 is the size of the array. Since Eq. 5 includes 178 

non-linear terms, we cannot simply minimize Eq. 6 through a least squares fit. Finding �̅� (a 1D 179 

array of the parameters) that minimizes the objective function requires an iterative process. For 180 

any initial guess of the parameters (�̅�( )), correction factors (∆𝑝 ) for the next iteration �̅�
( )

=181 

�̅� p( ) + ∆p( )  are determined using the Levenberg-Marquardt method (Aster et al., 2013; 182 

Gavin, 2022), as: 183 

∆𝑝( ) = 𝐽̿ ∙ 𝐽 ̿ + 𝜔( ) ∙ 𝐼 ̿  ∙ 𝐽 ̿ ∙ ∆𝜅( ) 184 

Eq. 7 185 

where 𝐽 ̿is the Jacobian matrix of  �̅� �̅�( ) + ∆𝑝( ) ;  I̿   is an identity matrix with the 186 

same dimensions as 𝐽 ̿ ∙ 𝐽 ̿  ; ω( ) is a damping factor and ∆κ( ) is calculated as: 187 

∆κ( ) = �̅� − �̅� p( )  188 

Eq. 8 189 

Where the first iteration begins by adjusting the parameters so that �̅�( ) = �̅�( ) + ∆𝑝( ). 190 

Obtaining 𝐽 ̿analytically might result in singular matrixes, which is a problem that can be avoided 191 

when these derivatives (𝜕�̅� /𝜕𝑝 ) are here computed by causing small disturbances (ε) to each 192 

parameter, and evaluating their effect through a numerical central difference finite approach. We 193 

define a correction criterion (𝜌 ) in order to evaluate if the adjusted parameters �̅�( ) better 194 

explain the observed model �̅� than �̅�( ): 195 

𝜌( ) = ‖𝑒 ‖( ) − ‖𝑒 ‖( )  196 

Eq. 9 197 

If 𝜌( ) >  𝜀: 198 

i. 𝐽 ̿is updated using the corrected parameters �̅�( ) ; 199 

ii. 𝜔( ) is updated as: 𝛾 ∙ 𝜔( ) ; where 𝜁 =
( )∙ ( )

( ) ∙ ( )

, as in Kwak et al., (2011); 200 

iii. The input for the next iteration is: �̅�( ) = �̅�( ) + ∆𝑝( ) 201 

If 𝜌( ) <  𝜀: 202 

i. 𝐽 ̿is not updated; 203 

ii. 𝜔( ) is updated as: 𝛾 ∙ 𝜔( ) ; 204 

iii. The input for the next iteration is: �̅�( ) = �̅�( ) 205 

In the criteria above, 𝜔 is the damping factor that will be updated by step scaling factor 𝛾. 206 

Both of these start with the same initial value of 0.1, as in the fixed approached of Hagan and 207 

Menhaj (1994). Iterations (i) will proceed until a convergence criterion is reached: 208 
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𝐽 ̿ ∙ ∆𝜅 ≤  𝜀 209 

Eq. 10 210 

 211 

If the user has previous knowledge of the coercivity components values in the sample 212 

(i.e. from other magnetic experiments), it might be useful to constrain these 𝐵  values. When 213 

dealing with more than one component, the user might constrain one of two of the coercivities 214 

and let the other optimize (or even constraint them all, if necessary). Care in this approach is 215 

required since the model may produce biased results due to the constraints. Inverting a 216 

component with 𝐵 = 0 (i.e., a superparamagnetic population) might also cause numerical issues 217 

when calculating the Jacobian matrix (such as singular matrixes), so it is useful to constrain the 218 
solutions in this case.  219 

The separation of components can be tested statistically by a Two-Tailed F-test, 220 

considering a null hypothesis that the variance of the data and the variance of the calculated 221 
(model �̅� +𝜅 ) can be distinguished at a 95% confidence interval. 222 

2.3 Monte Carlo error propagation 223 
 224 

With the considerable number of model parameters related to each ferromagnetic 225 

component it is useful to simulate a collection of disturbed solutions to evaluate the statistical 226 

confidence of the model solutions. In our approach, we use a Monte Carlo error propagation 227 

method (Aster et al., 2013). We assume that our final inverted model produces parameters �̅�  228 

that faithfully represent the ferromagnetic data and introduce random noise (𝜂)  drawn from a 229 

normal distribution centered in �̅�  and a given standard deviation. The disturbed models are 230 

calculated through Eq. 5 with a new set of disturbed parameters (�̅� ) by adding 𝜂 to �̅� n-times. 231 

Sequentially running the inversion procedure (Section 2.2) allows to optimize (�̅� ). If this 232 

procedure is repeated n times, we can produce an average model of disturbed solutions (𝑃𝑎 ) and 233 

then compare its difference with �̅� by calculating an empirical covariance estimate: 234 

𝐶𝑂𝑉 (�̅� ) =
𝑃𝑎 − �̅� ∙ 𝑃𝑎 − �̅�

𝑞
 235 

Eq. 11 236 

Where q is the number of parameters. Finally, the 95% confidence interval of �̅�  is 237 

computed as (Aster et al., 2013): 238 

�̅� ± 1.96 ∙ 𝑑𝑖𝑎𝑔 𝐶𝑂𝑉(�̅� )  239 

Eq. 12 240 

2.4 Workflow 241 
 242 

Figure 1 shows the general workflow for the Hist-unmix package. The first step 243 

comprises the filtering of the lower branch of the hysteresis loop. We note that numerical 244 

derivatives through finite-differences method are strongly affected by noise, in a way that even 245 
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small disturbances can cause large spikes. To reduce these effects, we apply a simple moving 246 

average (�̅� ) filter to the lower branch hysteresis curve: 247 

�̅� =
1

𝐿
∙ 𝑀( ) 248 

Eq. 13 249 

where (L) is the interval used to calculate the mean. This value will depend, logically, on 250 

the choice of the user and on the size of the sample and it is applied on the input data (the lower 251 

branch hysteresis) itself. The low-pass filter of Eq. 13 avoids possible introduction of bias 252 

sometimes associated with polynomial/gaussian filtering. The para/diamagnetic component  𝜅  is 253 

sequentially estimated from a linear regression of the high-field irreversible section of the 254 

smoothed lower branch hysteresis. The gradient of the smoothed curve is normalized by its 255 

maximum value (𝑓) and subtracted from 𝜅 /𝑓 to facilitate the adjustment of the curves. 256 

Sequentially, the user should choose how many ferromagnetic components (C) will be fit to the 257 

data.  258 

The path 1 in the workflow of Figure 1 requires the estimation of a forward model, by 259 

providing the mean coercivity (𝐵 ), the deviation (𝜃), the parameters α and β, and the scale 260 

factor (I). The coercivity (𝐵 )  must be specified within the values of the applied field (𝐵), while 261 

𝜃 of most of the curves will vary from zero to one (𝑚𝐺𝐶 functions, however, allow larger values 262 

to be tested). 𝑚𝐺𝐶 functions can yield a large range of α and β values, but we set their initial 263 

input equal to 1 (a symmetrical approach). 𝐼 parameter will normalize the contribution of the 264 

different components and its first estimation is performed automatically when the user selects the 265 

number of components. Path 2 determines a straightforward inverse model where the user simple 266 

give initial guesses without adjusting a forward model first. 267 

To avoid getting stuck in local minima, the user can create n new array of inputs (�̅� ) that 268 

each vary randomly up to ±20% of the standard deviation (𝜂) of the inverted parameters �̅� . 269 

The inverted parameters (�̅� ) with the smallest residue (‖𝑒 ‖) are then used to calculate the 270 

final optimized model, which is further added to 𝜅  to produce a model that represents the 271 

observed data.  272 
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 273 

Figure 1 - Hist-unmixing workflow. �̅�  is the moving average filter; �̅�  is an array with the 274 

initial guesses for the inversion protocol; 𝐼  is the total area of the ferromagnetic contributions; 275 

�̅�  is an array with the optimized parameters; and �̅�  is an array containing a set of disturbed 276 

parameters. 277 

 278 

A Monte Carlo error propagation is carried on to obtain the covariance of the inverted 279 
parameters and their 95% confidence interval, as well as the determination coefficient (R²) and 280 

F-test. The creation of the set of disturbed solutions in the Monte Carlo routine follows the 281 

method described  Aster et al. (2013) carried as described for �̅� , changing  𝜂 ‘s standard 282 

deviation to make it following a reduced chi-squared statistic of the model produced with the 283 

inverted parameters: 284 

𝜒 =
∑ �̅�[ ] − �̅� [ ]

𝑁 − 𝑞
, 285 

Eq. 14 286 

Where q is the number of parameters. 287 
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2.5 Magnetization saturation (Ms) and saturation remanent magnetization (Mrs) 288 
 289 

To calculate the magnetization saturation (Ms) and saturation remanent magnetization 290 

(Mrs) we rely on the definite integral of the susceptibility �̅� with respect to 𝐵. Since the primitive 291 

function of �̅�(𝐵) is the magnetization 𝑀(𝐵) we can approximate Ms and Mrs of a given 292 

ferromagnetic component 𝐶 through a numerical integration using Simpson’s rule (Otto & 293 

Denier, 2005) as: 294 

𝑀 = 𝐶 (𝐵) 𝑑𝐵 ≈
𝐵 − 𝐵

6
∙ 𝐶 + 4 ∙

𝐵 + 𝐵

2
+ 𝐶( )  295 

Eq. 15 296 

𝑀 = 𝐶 (𝐵) 𝑑𝐵 ≈
𝐵

6
∙ 𝐶( ) + 4 ∙

𝐵

2
+ 𝐶( )  297 

Eq. 16 298 

Where 𝐵 is the maximum positive applied field. Because the quality of numerical 299 

integration strongly depends on the horizontal spacing (dB), a one-dimensional cubic 300 

interpolation is applied to the gradient data prior the application of Eq. 15 and Eq. 16.  301 

The maximum field applied during a hysteresis procedure might not be enough to 302 

saturate a samples’ magnetization. The magnetization in high-fields 𝑀  can be expressed as 303 

(Fabian, 2006): 304 

𝑀 = 𝑀 + (𝜅 ∙ 𝐵) + 𝜆 ∙ 𝐵Փ , 305 

Eq. 17 306 

where 𝜆 and Փ are negative constants (called alpha and beta in Fabian’s work), for 307 

which: i) Փ = -2 in homogeneously magnetized defect free-materials; ii) Փ = -1 for 308 

superparamagnetic particles; and iii) −1 < Փ ≤ 0 for assemblages of particles with closely 309 

spaced defects (Fabian, 2006 and references therein). Susceptibility components of Eq. 2 are 310 

classified as Փ = -1 curves, which is not ideal for most of the natural samples. If the maximum 311 

applied field is enough to achieve an approach to saturation regime, Փ  must be smaller than zero 312 

(Fabian, 2006).  As Eq. 4 results in ferromagnetic susceptibility components, we remove the 313 

induced magnetization of dia/paramagnetic contribution of Eq. 17 (𝜅 ∙ 𝐵) and sequentially 314 

perform its analytic derivative to obtain the high-field ferromagnetic susceptibility (𝜅 ) as: 315 

𝜅 =
𝜕𝑀

𝜕𝐵
= 𝜆 ∙ Փ ∙ 𝐵(Փ ) 316 

Eq. 18 317 

To obtain 𝜆 and Փ, we can follow the same inversion routine described in Section 2.2 by 318 
simply changing the susceptibility terms of Eq. 6. For example, we calculate a synthetic model 319 

with Eq. 18, while considering an applied field going from 0.6 to 7T and Փ = −2 and 𝜆 = −2.6 320 

(N=100). These parameters are similar to those modelled in one of the curves of  Fabian (2006), 321 
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where he experimentally observes that magnetization reaches saturation near 5T. By using Eq. 322 

18, we observe the same as 𝜅  tends to zero in the same field values (Figure 2a). In our 323 

inversion procedure, Փ and 𝜆 converge to the same values either for a model with the whole 324 

curve (100 points), or, limiting the field values between 0.6-1T (N=7, Figure 2b), showing that 325 

the lower field values within the saturation approach domain strongly might control these 326 
parameters.  327 

 328 

Figure 2 – Synthetic high-field susceptibility curves. a) The inversion procedure recovers mostly 329 

identical parameters for the whole synthetic curve (going from 0.6 to 7T, N=100). b) 330 

Optimization of parameters using only a small portion of the synthetic curve (bluish area in a, 331 

N=7) efficiently recovers the same parameters, which indicates that 𝜆 𝑎𝑛𝑑 Փ strongly controlled 332 

by lower field values within the saturation approach domain. 333 

Nevertheless, if one decides to use this approach in the observed data, noise might 334 

decrease the effectiveness of the optimization of 𝜆 and Փ. However, as we apply this high-335 

susceptibility validation test in the unmixed components of obtained from Eq. 6, that is not an 336 

overall issue. For a given ferromagnetic component, if Փ < 0, we consider the 𝑀  obtained from 337 

Eq. 15 a valid saturation magnetization. If not, we can correct it using the respective inverted 𝜆 338 

and Փ parameters. 339 

3 Model sensitivity 340 

We tested sensitivity of our model by creating a series of synthetic curves. Five  base 341 

curves were generated (C1 to C5 in Figure 3a) with distinct parameters (Table 1), as well as a 342 

number of bimodal combinations, each with 1000 field values (𝐵) between -1T to 1T. Coercivity 343 

values were simulated within known ranges of typical magnetic minerals (O’Reilly, 1984). We 344 

have varied α, β, 𝜃 and I to produce curves with distinct tails and symmetry. Since these 345 

parameters represent only ferromagnetic components, we neglect the dia/paramagnetic slope 346 

(𝜅 ).  347 

A random noise with a normal distribution (𝐵 =0.0 Am², 𝜎 =±5 ∙ 10 Am²) was added to 348 

the synthetic curves, to simulate real measurements. Measurement errors might vary according to 349 
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the measurement routine, the sensitivity of the equipment as well as the intensity of the 350 
magnetization. First, we optimized parameters of the synthetic models with one ferromagnetic 351 

component following the methodological Path 1 (Figure 1), and sequentially did the same for the 352 

bimodal curves as well. For the latter, we have added a small dia/paramagnetic component (𝜅 ). 353 

For both cases, the inversion approach produced optimized parameters whose forward 354 

model result in coefficients of determination (𝑹𝟐) greater than 0.9 (Table 2, and Figure 4) and 355 

indistinguishable variances at 95% confidence (Two-tailed F-test). Inversion of 𝜿𝟎 for the 356 

unimodal curves return non-zero values, but their magnitude compared to the ferromagnetic 357 

susceptibility is negligible. 358 

Table 1 – Synthetic ferromagnetic components (C). Coercivities 𝐵  (T) ranging within known 359 

values for terrestrial magnetic minerals. 360 

 𝑩𝒄 (T) θ 𝜶 𝜷 𝑰 Coercivity range 

𝑪  1.0 ∙ 10  1.0 ∙ 10  1.0 ∙ 10  2.2 ∙ 10  1.0 ∙ 10  Magnetite 

𝑪  8.0 ∙ 10  1.0 ∙ 10  1.0 ∙ 10  6.0 ∙ 10  5.0 ∙ 10  Pyrrhotite/ Magnetite 

𝑪  2.0 ∙ 10  7.0 ∙ 10  7.0 ∙ 10  2.0 ∙ 10  5.0 ∙ 10  Pyrrhotite/Hematite 

𝑪  5.0 ∙ 10  3.0 ∙ 10  6.0 ∙ 10  1.4 ∙ 10  1.0 ∙ 10  Hematite 

𝑪  7.0 ∙ 10  2.0 ∙ 10  3.0 ∙ 10  9 ∙ 10  1.0 ∙ 10  Hematite 

 361 

For the bimodal models (the curves with more than one ferromagnetic component), 362 

inverted curves successfully represent the synthetic data as well. The dia/paramagnetic 363 

contribution for the high-field irreversible segment explain very well the displacement of the 364 

base level either for a strong paramagnetic (e.g., coming from a fabric enriched in biotite) or 365 

diamagnetic influences (e.g., coming from a calcium carbonate matrix).  366 

To further test our model sensitivity, we examined the influence of the i) signal-noise 367 

ratio, ii) sampling of the hysteresis curves, iii) the level of contribution to the total magnetic 368 

susceptibility and the proximity and dispersion of components to be inverted affect the inversion. 369 
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 370 

Figure 3 – Synthetic models produced using Eq. 4. In the case of a single ferromagnetic 371 
component (a), dia/paramagnetic slope was zeroed (check Table 1). Further examples are linear 372 

combinations of these into bimodal (c) and three-modal curves (d). A random noise was added to 373 

all the curves to represent error-measurements of real experiments.  374 

 375 
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 376 

Figure 4 – Unmixing of susceptibility curves with more than one ferromagnetic component. The 377 

inversion procedure was carried by firstly adjusting a forward model to be used as input for the 378 

optimization step. 𝐶  𝑎𝑛𝑑 𝐶 are the models calculated from the inverted parameters. Model 379 

parameters are given in Table 2.  380 
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Table 2 – Optimized parameters obtained for the unimodal and bimodal scenarios. For mixtures, the parameters of 𝐶  and 𝐶  components 381 

are separated by a vertical bar. 𝜅 ( ) is the dia/paramagnetic susceptibility imposed to the synthetic models and 𝜅  is the same parameter 382 

recovered from the inversion.  383 

 384 

 385 

 386 

 387 

 𝜿𝟎
(𝒔) 𝜿𝟎 𝑩𝒄𝒂

 (𝑻)| 𝑩𝒄𝒃
 (T) 𝜽𝒂 | 𝜽𝒃 𝜶𝒂 | 𝜶𝒃 𝜷𝒂 | 𝜷𝒃 𝑰𝒂 | 𝑰𝒃 𝐑² 𝒆𝟐

𝟐
 

𝑪𝟏 - - 1.02∙10-2 9.96∙10-2 9.5∙10-1 2.37∙100 9.99∙10-2 0.998 1.93∙10-4 

𝑪𝟐 - - 7.98∙10-2 9.90∙10-2 9.68∙10-1 7.17∙10  4.91∙10-2 0.998 1.88∙10-4 

𝑪𝟑 - - 1.99∙10-1 7.00∙10-2 6.97∙10-1 2.30∙10  3.92∙10-2 0.997 1.56∙10-4 

𝑪𝟒 - - 5.01∙10-1 2.98∙10-1 5.80∙10-1 1.67∙10  7.15∙10-2 0.995 1.49∙10-4 

𝑪𝟓 - - 6.96∙10-1 1.96∙10-1 2.57∙10-1 1.04∙10  5.88∙10-2 0.992 1.85∙10-4 

𝑪𝟏 + 𝑪𝟐 1.00∙10-2 1.07∙10-2 5.94∙10-3 | 8.99∙10-2 1.11∙10-1 | 1.12∙10-1 1.60∙10  | 1.08∙10  1.20∙10  | 4.39∙10  1.44∙10-1 | 5.54∙10-2 0.999 2.11∙10-4 

𝑪𝟏 + 𝑪𝟑 -1.00∙10-2 -9.02∙10-3 1.21∙10-2 | 1.97∙10-1 1.03∙10-1 | 7.00∙10-2 1.07∙10  | 7.06∙10  1.72∙10  | 2.37∙10  9.56∙10-2 | 3.06∙10-2 0.999 2.09∙10-4 

𝑪𝟏 + 𝑪𝟒 5.00∙10-2 4.00∙10-2 7.30∙10-3 | 5.05∙10-1 1.13∙10-1 | 3.75∙10-1 1.76∙10  | 4.43∙10  7.29∙10  | 1.83∙10  1.13∙10-1 | 1.18∙10-1 0.998 2.20∙10-4 

𝑪𝟏 + 𝑪𝟓 -1.00∙10-2 -8.00∙10-3 8.95∙10-3 | 7.18∙10-1 1.03∙10-1 | 2.23∙10-1 1.11∙10  | 6.61∙10  1.76∙10  | 4.89∙10  9.97∙10-2 | 4.88∙10-2 0.998 1.79∙10-4 

𝑪𝟑 + 𝑪𝟓 - 1.00∙10-5 1.99∙10-1 | 6.66∙10-1 6.98∙10-2 | 1.98∙10-1 7.02∙10  | 1.98∙10  2.29∙10  | 9.62∙10  3.88∙10-2 | 5.76∙10-2 0.997 1.69∙10-4 

𝑪𝟒 + 𝑪𝟓 -5.00∙10-2 -4.94∙10-2 4.87∙10-1 | 7.24∙10-1 3.46∙10-1 | 2.12∙10-1 1.08∙10  | 2.54∙10  1.04∙10  | 6.02∙10  8.72∙10-2 | 7.65∙10-2 0.998 1.75∙10-4 
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Since the data used to fit the 𝑚𝐺𝐶 functions are the gradient of the magnetization, small 388 

perturbations might strongly affect the dispersion data. In order to test the sensitivity of the 389 

models to the proximity of different magnetic components, we can use the 𝐶 + 𝐶  case (Table 390 

2), where the two components are so close that susceptibility appears as a single peak.  391 

In this case, even curves with a high signal/noise ratio (≈0.95) can lead to a high 392 

dispersion (compare 𝜂-values in A and B scenarios, Figure 5a). However, a moving average 393 

filter seems to be very effective to remove random noise, in a way that simply choosing the L-394 

value of five (L=5, Eq. 13) resulted in a good fit, with R²>0.9, although the error of the less 395 

noisy data is smaller. We used the same 𝐶 + 𝐶  case to investigate if the two components would 396 

still be detected by reducing the sample size from 1000 points to 500 points and then to 200 397 
points (Figure 5b). The errors increase as the number of points decrease, even though the 398 

inversion procedure satisfactorily recovered the parameters in all cases, with R²> 0.9 in all cases 399 

(Figure 5a,b). 400 

 401 

Figure 5 - Sensitivity tests in synthetic models. (a) Varying the contribution of the random noise 402 

and (b) the size of the sample for the 𝐶 + 𝐶  case (when parameters of the 𝑚𝐺𝐶 curve are 403 
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considerably different). In scenarios A and B, the noise scale (𝜂) or the number of samples (N) is 404 

varied. 𝐴  and 𝐵  are the resulted models for each of these. For the 𝐶 + 𝐶  case, the same tests 405 

are performed (c and d), where constraining the coercivity of one of the components using a 406 

priori information will produce very similar models to the observed data.  407 

For the 𝐶 + 𝐶  case, the parameters are very distinct. However, in mixing cases like 408 

𝐶 + 𝐶  (Figure 5c, d) where there are overlapping of distributions similar parameters, the 409 

ambiguity of the model would allow other solutions with similar residuals. This is a recurrent 410 

problem that arises with basis function’ solutions to the unmixing problem, and that also affects 411 

generalized gaussian approaches to IRM unmixing (Egli, 2003; Maxbauer et al., 2016). In our 412 

case, constraining the coercivity of the  𝐶  component allowed us to obtain good estimates of the 413 

two distributions   with little residuals in the sensitivity test for noise similar to that obtain for the 414 

𝐶 + 𝐶  mixture. Without a priori information that would allow constraining the coercivity value 415 

of a particular component would just be justified if is available. Otherwise, we would 416 

recommend the simplest model to explain the observed data.  Similar issues as seen as we 417 

increase the number of components in the sample, exemplified by the two cases shown in Figure 418 

3c. In the case of the 𝐶 + 𝐶 + 𝐶  mixture, the resulting morphology of the curve allows a clear 419 

distinction of at least three components and inversion of 𝐶 , 𝐶  𝑎𝑛𝑑 𝐶  curves result in a fitting 420 

with indistinguishable parameters of those that form the original data (Figure 6a). 421 

For the 𝐶 + 𝐶 + 𝐶  case, the mixing of the most coercive fractions produces a broad 422 

peak. Since the position of the component of smaller coercivity is more evident, one could adjust 423 

two other components to explain the rest of the spectrum (Figure 6b) with an almost negligible 424 

residual. However, it is also possible to explain the same curve with a composition of only two 425 

components (Figure 6c) with similar quality of fit. Still in this case, increasing the number of 426 

components to three (considering 𝐶  component fixed) will limit the coercivity of the other two 427 

components to a single minimum region (Figure 6b’). However, the objective function of the 428 

𝐶 + 𝐶 + 𝐶  case with only two components (fixing the other parameters) shows that local 429 

minima might be present (Figure 6c’). Still, our procedure to calculate a �̅�  vector (revisit section 430 

2.4) allowed us to avoid the local minimum in Figure 6c’). Nevertheless, assuming that more 431 

than two components explain the susceptibility data should only be considered in cases where a 432 
priori information is available, or if the shape of the curve clearly indicates their respective 433 

contributions. 434 
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 435 

Figure 6 – Three-component case inversion. a) the shape of the curve indicates the presence of at 436 

least three different components, which are easily inverted through Hist-unmix package. 437 

However, for the 𝐶 + 𝐶 + 𝐶  case, three (b) or two components (c) explain can explain the 438 

data. When plotting the log of the objective function for variable coercivities (𝐵  and 𝐵 ) while 439 

fixing 𝜇  and the other parameters (b’) shows that a single minimum can explain the data. 440 

However, by assuming a two-component case for the 𝐶 + 𝐶 + 𝐶  curve and fixing all of the 441 

other parameters with exception of the coercivities (𝐵  and 𝐵 ), a local minimum arises. 442 

Nevertheless, our inversion procedure reaches the global minimum in both explored cases (white 443 

square).  444 

Finally, we will evaluate the presence of superparamagnetic particles (SP) as one of the 445 

susceptibility components. As shown by Tauxe et al. (1996), potbellied and wasp-waisted 446 

magnetic hysteresis can be generated by mixing SP with stable SD particles.  To examine this, 447 

we construct a ferromagnetic mixture as the sum of an assemblage of superparamagnetic 448 

particles (𝐵 = 0 𝑇) with a higher coercive fraction (i. e.  𝑆𝐷 magnetite, 𝐵 = 0.07 𝑇), and 449 

another one with a ferromagnetic low coercive fraction (𝑖. 𝑒. , 𝑀𝐷 magnetite, 𝐵 = 0.002 𝑇), all 450 

with the same dispersion. This is the most extreme scenario for, since reproducing the same 451 

parameters only varying the coercivity will make the identification of a superparamagnetic 452 

fraction a hard task because the difference in coercivity is very small. 453 
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We can evaluate the distortion of the curves with two components by varying their 454 

contributions (by adjusting I) to the final synthetic curve. As the contribution of CSD increases, 455 

the SP particles becomes less significant (Figure 7a) but one can still identify that such curve is 456 

not perfectly matching the purely SP component. The same is valid if CSP is mixed with the less 457 

coercive component in the same proportions (Figure 7c), but in this case it becomes intrinsically 458 

hard to distinguish the SP component even if its contribution is equal to the CMD.  459 

 460 

Figure 7 – Testing the sensitivity of the model for mixtures of superparamagnetic fractions with 461 

more coercive populations. When simulating the same properties of SP fraction as those of SD 462 

and MD fraction (only varying 𝐵 ), it becomes difficult to distinguish the SP contribution for 463 

both cases. Constraining the coercivity of one of the components to zero allow the user to test if 464 

(mathematically) a SP population can explain part of the observed curve. For the SP populations, 465 

𝐼 is fixed at 1. 466 
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When we calculate the second derivative of the lower branch of these hysteresis curves, 467 
this observation becomes even clearer. For CSP+ CSD mixing cases, the derivative curve will not 468 

cross at zero field (Figure 7b), indicating the presence of a magnetic population with larger 469 

coercivity. Meanwhile, because CSP and CMD components coercivities are very close, the second 470 

derivative of their mixture crosses zero much closer to the origin (Figure 7d). Nevertheless, if 471 

there is a priori information of the presence of SP particles then constraining the one component 472 

to have zero coercivity enhances the correct identification of the remaining fractions 473 

4 A case study on Neoproterozoic remagnetized carbonate rocks 474 

4.1 The Sete Lagoas and Salitre formations and their magnetic signature  475 

Remagnetized carbonate rocks are long known for their anomalous hysteresis ratios 476 

(Banerjee et al., 1997; Jackson & Swanson-Hysell, 2012; McCabe & Channell, 1994), the wasp-477 

waisted hysteresis loops being usually considered as one of the fingerprints of remagnetization 478 

(Jackson & Swanson-Hysell, 2012) In Brazil, remagnetized Neoproterozoic carbonates typically 479 

exhibit such deformed hysteresis loops (D’Agrella-filho et al., 2000; Trindade et al., 2004). The 480 

São Francisco craton comprises two shallow-marine carbonate units, Sete Lagoas Formation and 481 

Salitre Formation, that occur in two different basins overlapping glacial diamictite successions, 482 

whose detrital zircons provided maximum ages of ~850 Ma (Babinski et al., 2012). The age of 483 

the carbonate units is estimated on the basis of detrital zircons (maximum ages of 670 and 557 484 

Ma) (Paula-Santos et al., 2015; Santana et al., 2021) and the presence of the Cloudina fossil 485 

index in Sete Lagoas, which constrain the age of the unit to between 580 and 550 Ma. 486 

Magnetic properties of Sete Lagoas and Salitre formations are very similar (D’Agrella-487 

filho et al., 2000; Trindade et al., 2004): (i) wasp-waisted magnetic hysteresis, (ii) contradictory 488 

Lowrie-Fuller/Cisowski tests (Cisowski, 1981; Jackson, 1990), (iii) anomalously high hysteresis 489 

ratios, and (iv) tri-axial thermal demagnetization (Lowrie tests) with similarly behaved 490 

components. Although these formations belong to different basins and their sampling sites are 491 

separated by almost 600 km, they bear very similar paleomagnetic directions. Thermal 492 
demagnetization of these samples commonly yields up to three components (A, B and C) with 493 

very similar unblocking intervals (Figure 8a, e). 494 

Each magnetic component can be correlated to a particular mineral assemblage depicted 495 

in the Lowrie test. The Lowrie test consists of the stepwise thermal demagnetization of three 496 

IRM acquisitions along three orthogonal axes: hard (1.3 T), intermediate (0.3 T) and soft (0.1 T). 497 
Samples from both Sete Lagoas and Salitre formations show a similar behavior in these diagrams 498 

(Figure 8d, h). The soft component shows a sluggish decay up to 400°C, a common behavior for 499 

multidomain magnetite. However, there is a steep decay of the soft component at 500°C, 500 

probably associated to the C-component of the thermal demagnetization which can be attributed 501 

to stable PSD/SD magnetite. Contrastingly, medium, and hard components of the Lowrie test are 502 

stable up to 250°C (Figure 8d), and rapidly decay at 320°C. This is close to the Curie 503 

temperature of monoclinic pyrrhotite. This mineral is correlated to the B-component disclosed 504 

for the Sete Lagoas and Salitre formations. 505 
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 506 

Figure 8 - Paleomagnetism and magnetic mineralogy of Sete Lagoas (BB) and Salitre (IR) 507 

formations. (a) Zijderveld diagram of a thermally demagnetized sample from the Sete Lagoas 508 

Formation, (b) the mean-site directions of C-component and (c) B-component. In (d) Lowrie-test 509 

results for a sample from the Bambuí formation. (e), (f), (g) and (h) are the equivalents for the 510 

Salitre Formation. Data acquired from D’Agrella et al (2000) and Trindade et al (2004). 511 
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The magnetic signature of these carbonates is interpreted, as suggested from Pb isotopic 512 
data (D’Agrella-filho et al., 2000; Trindade et al., 2004), as a result of a large-scale 513 

remagnetization throughout the São Francisco Craton, as caused by the percolation of orogenic 514 

fluids during the final stages of the Gondwana assembling. In this way, the B and C-components 515 

of both basins would be contemporary and result of craton wide chemical remagnetization. The 516 

fact that these rocks present more than one stable component, likely carried by different 517 

magnetic minerals with contrasting magnetic properties, makes them an interesting case study to 518 

apply the Hist-unmix package. In this section, we have selected samples of each of these 519 

formations (Sete Lagoas and Salitre) and performed the acquisition of magnetic hysteresis curves 520 

to test the Hist-unmix package. 521 

4.2 Experimental methodology 522 

Eight samples of the Sete-Lagoas (BB) and Salitre (IR) formations (each) were separated 523 

for the experimental procedure. Firstly, small fragments (≈1cm³) were cut from the typical 524 

cylindric samples used in paleomagnetic investigations, using a non-magnetic saw. Then, each 525 

sample was bathed-in an acid solution (HCl, 10%) for about 5 seconds to get rid of any 526 

superficial contamination, put into an ultrasonic bath (20 min) with ultra-pure water to neutralize 527 

any remaining reaction and/or get rid of impurities incrusted in its surface. Samples were 528 

consecutively dried in a silica desiccator (at 25°C) until humidity was lost. A precision balance 529 

was used to measure the mass of the samples, in order to normalize the subsequent magnetic 530 

measurements. 531 

Magnetic hysteresis was performed with a vibrating sample magnetometer (MicroMag 532 

3900 Series VSM), using a discrete sampling approach from -1T to 1T, totaling 1000 data points 533 

for each sample. Processing followed the steps provided in Section 2.4 (Path 1), not constraining 534 

the coercivity for any of the curves and allowing 300 models (�̅� ) to run for each of the 535 

hysteresis loops. 536 

4.3 Modelling with Hist-unmixing  537 
 538 

Data from both Sete Lagoas and Salitre formations have typical signatures of mixing 539 

components in magnetic hysteresis. Samples from Sete Lagoas present constricted middles 540 

(wasp-waisted, Figure 9a, b) while Salitre samples show spreading middles (potbellies, Figure 541 

9c, d). It is worth to note that although these are carbonate rocks, the paramagnetic contribution 542 

completely overcomes the diamagnetic response of calcite and dolomite. This paramagnetic 543 

contribution (Figure 9e) is probably caused by the presence of terrigenous (essentially Fe-544 

bearing clay-minerals) in these rocks. To avoid any bias, the lower branches of the hysteresis 545 

curves were smoothed using small L-values (Eq. 13, L<5). None of the samples could be simply 546 

fitted by a single susceptibility component without inducing large errors. The models were 547 

calculated assuming of two magnetic components (e.g., Figure 11a, b) and resulted in R² > 0.98 548 

with indistinguishable variances from a two-tailed F-test. 549 
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 550 

Figure 9 - Characteristic magnetic hysteresis of carbonate samples for Sete Lagoas (a and b, BB 551 

samples), and Salitre (c and d, IR samples) formations. Samples are not corrected for 552 

diamagnetic/paramagnetic contributions, since these are accounted for in our model. Boxplots (e 553 

and f) indicate the modelled contributions of paramagnetic (𝜅 )and ferromagnetic (𝜅 ) 554 

fractions, respectively for Sete Lagoas and Salitre formations. 555 

Boxplots distributions compiling the results of the inversions are shown in Figure 10. 556 

Both Sete Lagoas and Salitre samples show magnetic components with very distinct coercivities 557 

(𝐵 -values). For the Sete Lagoas formation, the component with the lowest coercivity (Ca) has a 558 

median ≈ 1.7 mT, with minimum and maximum values of ≈1.0 and 11.0 mT (Figure 10a), with 559 
an asymmetric distribution. For the component with the highest coercivity (Cb), the median is 50 560 
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mT, with maximum and lower values of 260 mT and 15 mT respectively (Figure 10a). Saturation 561 

magnetization (Ms, Figure 10b) is similar for both components, which implies that they 562 

contribute almost equally to the whole susceptibility spectrum. The shape of the susceptibility 563 

curves, however, are quite distinct. Ca components have a small dispersion (θ), being constricted 564 

to the region around the median, while Cb components have greater dispersion, spreading 565 

throughout a wide range of coercivities. For Salitre formation samples, the Ca components also 566 

have an asymmetric distribution, with median coercivity value of ≈ 0.6 mT and minimum and 567 

maximum values ≈ 0.098 and 11 mT, respectively (Figure 10d). Bulk coercivities of Cb 568 

components are mostly higher than those of the Sete Lagoas samples. Minimum and maximum 569 

values are ≈95 and 244 mT, respectively and the median is 200 mT (Figure 10d). 570 

 571 

Figure 10 - Boxplots distributions of the low (Ca) and high (Cb) susceptibility components of 572 

samples from the Sete Lagoas (a to c) and Salitre (d to f) formations, obtained after modelling 573 

with Hist-unmix. Diamonds are statistical outliers.  574 

For both Sete Lagoas and Irecê formations, coercivity boxplots of Ca are quite short and 575 

match the expected values for magnetite. We suspect that the smallest coercivity values may 576 

arise from a population of near superparamagnetic grains. Although the Cb component could be 577 

related to more than one high coercivity mineral, such as hematite or pyrrhotite, the contribution 578 

to remanence is comparable or higher than that of Ca (Figure 10c, f). Since the remanence of 579 
hematite is much smaller than that of magnetite,  it must exceed 95 wt% of the magnetic 580 

population of magnetite to influence the magnetic parameters of an assemblage formed by the 581 

hematite+magnetite mixing (Frank & Nowaczyk, 2008). Such a high proportion of hematite in 582 

these samples would contradict previously published thermal demagnetization data (Figure 8a, b) 583 

as well as the Lowrie tests shown in  Figure 8d, h. this implies that the higher coercivity phase is 584 

likely to be monoclinic pyrrhotite.  585 

Most of the modelled curves did not yield a significant asymmetry, so that a simple 586 

Lorentzian model (such as those from Vasquez and Fazzito, 2020) could have successfully 587 

explained the observed data as well. Nevertheless, some curves (e.g., Figure 11a) might require a 588 
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more complex model that accounts for distinct degrees of kurtosis and skewness, which is better 589 
accommodated by the modified gamma-Cauchy exponential function.  590 
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 591 

Figure 11 – Examples of the inversion procedure for samples of the Sete Lagoas (a and a’) and 592 

Salitre (b and b’) formations, showing the lower and higher coercive components (Ca and Cb, 593 
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respectively). The paramagnetic contribution is represented by the separation of the 594 
ferromagnetic components (blue and green lines) from the whole susceptibility spectrum. (c) and 595 

(d) are the Mrs/Ms ratios (calculated) for the Ca and Cb components. 596 

 597 

Both Ca and Cb components of  the two sets of samples plot mainly between the SD and 598 

MD fields of the Day plot diagram (Day et al., 1977; D. J. Dunlop, 2002). In this diagram, 599 

smaller grain sizes tend to have higher Mrs/Ms ratios. Ca component (whose Mrs/Ms ratios are 600 

below 0.2 and are greater than 0.02) would be represented by larger grain sizes within the PSD 601 

threshold (the yet poorly understood multivortex state) or in within the mixing trends of MD+SP 602 
particles. The Mrs/Ms ratios of both components vary widely because of the authigenic origin of 603 

these particles. The compositional heterogeneities in the sedimentary column affects how much 604 

iron is available within a region. This leads to different sizes of particles in different locations 605 

(depending on how fast the chemical reactions occur and the thermodynamic favorability of their 606 

growth). If Ca component is a mixture between MD+SP particles of magnetite, the presence of 607 

coarser grains (MD) is supported by the small 𝐵  values modelled for this component, which 608 

could explain the viscous component observed in the thermal demagnetization procedures 609 

(Component A, Figure 8a, e). 610 

Cb component (whose Mrs/Ms ratios are usually greater than 0.2) would correspond to 611 

either a mixture of SP+SD particles (following the SP+SD mixing trends) or could represent a 612 

population with a mixture between equidimensional SD particles + the thinnest particles in the 613 

PSD range. Therefore, the assemblage of particles forming the Cb component are probablythe 614 

most stable carries of remanence in these carbonate rocks. Some of the ratios of Cb component 615 

tresspass the 0.5 threshold of the Dayplot diagram. In non-equidimensional grains, where the 616 

magnetization is strongly controlled by uniaxial shape anisotropy, the Mrs/Ms ratio for an SD 617 

particle is 0.5. But in equidimensional particles, whose magnetization is controlled by 618 

magnetocrystalline anisotropy, the Mrs/Ms ratio can be significantly higher (e.g., 0.866 for 619 

magnetite - Dunlop, 2002). 620 

Remagnetized carbonate rocks usually plot along the power law trend controlled by cubic 621 

magnetocrystalline anisotropy (Jackson & Swanson-Hysell, 2012). This behavior was originally 622 

attributed to an authigenic origin for magnetite resulting in equidimensional grains lacking 623 
significant shape anisotropy (Jackson, 1990). Jackson and Swanson-Hysell (2012) have shown, 624 

however, that such interpretation is not necessarily correct. They attribute Mrs/Ms ratios above 625 

the 0.5 threshold in previous work of Jackson (1990) as experimental bias caused by a maximum 626 

applied field not being enough to saturate the samples (which was around 0.3 T in most of the 627 

samples) and experimentally show that shape anisotropy was actually dominant in their 628 

remagnetized carbonate samples. Furthermore, these power law trends (when bellow the 0.5 629 

threshold) might as well match with SD+SP mixture trends (as compared with Dunlop, 2002). 630 

However, in our work, we apply a maximum field of 1T and provide a high-field saturation test 631 

following Fabian (2006) to attest that both Ca and Cb components are saturated in our maximum 632 

applied field. Euhedral and spheroidal iron oxides have been detected in our samples through 633 

previous SEM-EDS studies (D’Agrella-filho et al., 2000), so we suggest that a considerable 634 

amount of these could indeed contribute to the anomalous Mrs/Ms ratios calculated for the Cb 635 

component.  636 
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The magnetic data suggest that the major cause in the distorted hysteresis loops in the 637 
Sete Lagoas and Salitre formations are populations of magnetic minerals with distinct 638 

coercivities. These different populations can be different magnetic minerals, for example 639 

magnetite and pyrrhotite, or different grain sizes of magnetite. For instance, high frequency 640 

dependent susceptibilities reported by previous works suggest that superparamagnetic particles 641 

likely contribute to the magnetic mineralogy of these rocks. But as argued in section 3.0, the 642 

hysteresis loops are disturbed only when the fraction of superparamagnetic particles is 643 

significantly high, which might be the case for Ca components with the lowest coercivity values. 644 

An important clue to understanding the remagnetization in these carbonate rocks comes 645 

from further information obtained from the modeling with Hist-unmixing: the significant 646 

paramagnetic component apparent in samples from both the Sete-Lagoas and Salitre formations, 647 

which surpass the ferromagnetic contribution. This paramagnetic contribution is likely due to a 648 

high content of clay-minerals in these rocks (Callaway & McAtee, 1985; Potter et al., 2004). 649 

Clay-transformations (smectite-to-illite) are known to release Fe-ions in the medium, which 650 

might allow the growth of authigenic ferromagnetic phases (Katz et al., 1998; Tohver et al., 651 

2008) responsible for chemical remagnetization. Therefore, investigating the origin of this large 652 

paramagnetic response might help to better constrain the geological processes responsible for the 653 

large scale remagnetization in these two basins of the São Francisco Craton.  654 

 655 
 656 

5 Conclusions 657 

We have presented a python-based open-source code to perform a parametric unmixing 658 
of magnetization curves, in order to separate susceptibility components of distorted hysteresis 659 

curves. Our phenomenological model is based on a modified gamma-Cauchy exponential 660 

function, whose advantage lies in their capacity to explain variable morphologies, from 661 

symmetrical, right or left skewed curves, and covering a wide range of kurtosis.  662 

The Hist-unmix is an easy to use python application includes a pre-processing interface, 663 
where the lower branch hysteresis data is filtered through a moving average. Forward models 664 

allow the user to adjust up to three ferromagnetic components and to estimate dia/paramagnetic 665 

contributions. The parameters controlling each component can be subsequently optimized 666 

through a Levenberg-Marquardt method. The mean coercivity of ferromagnetic components can 667 

be fixed using a priori information, in order to constrain the solutions. Uncertainty of each 668 

optimized parameter is estimated for the final inverse model using a Monte Carlo error 669 

propagation (following the reduced chi-squared statistic of the inversion procedure) and its 670 

variance is compared to the observed data in order to verify if they are distinguishable at 95% 671 

confidence level (Two-tailed F-test). We also implement a test to verify (and correct, if 672 

necessary) the magnetization saturation values of each component, by modifying the high-field 673 

saturation approach of Fabian (2006). 674 

Hist-unmix was applied to separate susceptibility components from wasp-waisted and 675 

potbellied curves from real data from Neoproterozoic remagnetized carbonate rocks. The 676 

inversion results clearly distinguished two ferromagnetic components: a less coercive (Ca) and a 677 

more coercive (Cb) one. Together with the results of Lowrie tests, we attribute these components, 678 
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respectively to magnetite and monoclinic pyrrhotite, with different grain sizes. Our unmixing 679 
results contribute to the understanding of the natural remanence bearing of these rocks. The 680 

inversion also shows an important paramagnetic influence that completely overcomes the 681 

diamagnetic carbonate matrix and even the ferromagnetic components. The latter possibly offers 682 

a new hint that the large-scale magnetization event in the São Francisco Craton may have 683 

involved clay-transformations as sources of iron to authigenic minerals. 684 
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Key Points: 10 

 A new method for the parametric unmixing of magnetic hysteresis data based on 11 

modified Gamma-Cauchy exponential model is presented  12 

 The model accounts for curves with variable skewness/kurtosis, allowing the separation 13 

of dia/para and ferromagnetic contributions  14 

 An open-sourced Python script (Hist-unmix) allows the users to import, process and 15 

model their data on a friendly interface. 16 
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Abstract 18 

Quantifying the contributions of distinct mineral populations in bulk magnetic experiments 19 

greatly enhances the analysis of environmental and rock magnetism studies. Here we develop a 20 

new method of parametric unmixing of susceptibility components in hysteresis loops. Our 21 

approach is based on a modified Gamma-Cauchy exponential model, that accounts for variable 22 

skewness and kurtosis. The robustness of the model is tested with synthetic curves that examine 23 

the effects of noise, sampling, and proximity of susceptibility components. We provide a Python-24 

based script, the Hist-unmix package, which allows the user to adjust a direct model of up to 25 

three ferromagnetic components as well as a dia/paramagnetic contribution. Optimization of all 26 

the parameters is achieved through least squares fit (Levenberg-Marquardt method), with 27 

uncertainties of each inverted parameter calculated through a Monte Carlo error propagation 28 
approach. For each ferromagnetic component, it is possible to estimate the magnetization 29 

saturation (Ms), magnetization saturation of remanence (Mrs) and the mean coercivity (𝐵 ). 30 

Finally, Hist-unmix was applied to a set of weakly magnetic carbonate rocks from Brazil, which 31 

typically show distorted hysteresis cycles (wasp-waisted and potbellied loops). For these 32 

samples, we resolved two components with distinct coercivities. These results are corroborated 33 

by previous experimental data, showing that the lower branch of magnetic hysteresis can be 34 

modeled by the presented approach and might offer important mineralogical information for rock 35 

magnetic and paleomagnetic studies. 36 

Keywords: Unmixing magnetic hysteresis, Python package, Magnetic mineralogy, 37 
Palaeomagnetism, Rock and mineral magnetism, Inverse theory 38 

 39 

Plain Language Summary 40 

Rocks contain magnetic minerals that record Earth’s varying magnetic field shape and intensity, 41 

and provide information about our planets evolution, as well as the ancient environmental 42 

conditions where the rocks formed. To study these magnetic minerals, we need to identify and 43 

quantify them, but this is challenging because of the complex mixture of such minerals that a 44 

rock may contain. Magnetic hysteresis curves are a simple and quick measurement that provides 45 

information on the magnetic properties of a rock, reflecting the combined effects of different 46 

minerals. In this paper, we propose a mathematical model that can separate the individual 47 

contributions of each magnetic population. We also provide an open-source python application 48 

for users to apply our model to their own data.  49 

1 Introduction 50 

Magnetic minerals are used in many fields of science as important indicators of physical, 51 

chemical and biological processes (Butler, 1992; J. Dunlop & Özdemir, 1997; Liu et al., 2012; 52 
Tauxe, 2005). Typically, magnetic measurements are time and cost-effective, and can detect 53 

magnetic particles even at trace levels. Usually, natural samples will contain a mixture of 54 

magnetic mineral populations, such as oxides (e.g, magnetite and hematite), hydroxides (e.g., 55 

goethite and limonite) and iron sulphides (e.g., pyrrhotite and greigite), each with different 56 

ranges of grain-sizes. Distinguishing between these populations is not a simple task, since these 57 

properties are nonlinear functions of grain size and composition (Robertson & France, 1994).  58 

The investigation of magnetic properties in natural samples often requires the combination of 59 

many techniques, including thermomagnetic observations, such as variations of magnetic 60 
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susceptibility or magnetic induction with temperature, thermal demagnetization, magnetic 61 
hysteresis, first order reversal curves (FORCs), and alternating field demagnetization (AF), or 62 

the acquisition of artificial remanences, such as the anhysteretic remanent magnetization (ARM) 63 

and the isothermal remanent magnetization (IRM). Magnetic hysteresis and IRM acquisition 64 

measurements are quickly achieved using modern vibrating sample magnetometers (VSM), and 65 

their advantage lies on their ability to examine a wide range of coercivities, offering a quick 66 

response to the bulk magnetic properties of a rock or sediment even with small amounts of 67 

sample. For magnetic hysteresis, the shape of some curves typically suggests the presence of 68 

more than one magnetic component. These include: wasp-waisted (constricted middles, near the 69 

origin of the coercivity axis), potbellies (spreading middles near the origin and slouching 70 

shoulders) and goose-necked (constricted middles and spreading shoulders) (Tauxe et al., 1996). 71 

In some cases, these hysteresis shapes have been considered as a fingerprint of some geological 72 

processes, such as remagnetization of carbonate rocks (Jackson & Swanson-Hysell, 2012). This 73 

evaluation, however, is usually done qualitatively, without quantitative identification and 74 

separation of magnetic components. 75 

To deal with magnetic hysteresis data, there are free-access interfaces that allow 76 

advanced processing of data like HystLab of Paterson et al. (2018), but unmixing of distorted 77 
curves is not a focus on their work. There are several ways to unmixing magnetic mineral 78 

populations from magnetic hysteresis, Some authors model the magnetic properties of natural 79 

materials by assuming end members in a mixture, which could be either pure magnetic phases 80 
with different grain sizes, or typical mineral sources in the study area or region, or yet end 81 

members identified from the data itself  (Jackson & Solheid, 2010; Thompson, 1986). Another 82 

approach requires the fitting of basis functions to the hysteresis loops. In this case, the linear 83 

combination of different basis functions representing the different magnetic populations should 84 

represent the bulk behavior of the magnetic assemblage (Heslop, 2015). The advantage of this 85 

approach is that it requires little to no a priori information, relying on the ability of a 86 

mathematical model to represent a physical phenomenon (von Dobeneck, 1996; Vasquez & 87 

Fazzito, 2020).  88 

Recently, a simple solution for the unmixing of magnetic components by fitting 89 

Lorentzian curves to the lower branch of magnetic hysteresis loops was proposed (Vasquez & 90 

Fazzito, 2020). It considers the magnetization (M) acquired through the induction of an applied 91 

field (𝐵) as expressed by:  92 

𝑀(𝑥) = (𝜅 ∙ 𝐵) +
𝐴

𝜋
∙ 𝑎𝑟𝑐𝑡𝑎𝑛

2 ∙ (𝐵 − 𝐵 )

𝜃
 93 

Eq. 1 94 

The first term of the Eq. 1 describes a linear magnetization acquired through an inducing 95 

field 𝐵, which is the dia/paramagnetic contribution to  𝑀(𝐵). Consequently, the second (and 96 

non-linear) term represents the ferromagnetic contribution, while A is the total area under the 97 

𝑀(𝑥) curve. If 𝐵  is equal to 𝐵, the ferromagnetic contribution will be zero, which is the very 98 

definition of coercive force. If 𝐵 approaches the infinity, Eq. 1 will tend to 𝐴/2 , which is the 99 

magnetization saturation (𝑀 ) of 𝑀(𝐵). Now, if  Eq. 1 is evaluated at zero field (𝐵 = 0), then 100 

saturation remanence (𝑀 ) is also easily calculated. The magnetic susceptibility (κ) is 101 

sequentially computed as: 102 
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𝜅(𝐵) =
𝜕

𝜕𝐵
𝑀(𝐵) = 𝜅 +

2 ∙ 𝐴

𝜋
∙

𝜃

(4 ∙ (𝐵 − 𝐵 ) ) + 𝜃
 103 

Eq. 2 104 

 105 

In order to model the susceptibility components, one of the branches of a magnetic 106 

hysteresis (covering both the reversible and irreversible segments) is used to calculate a 107 

numerical derivative. Vasquez and Fazzito (2020) fitted the parameters of Eq. 2 using a generic 108 

inversion routine through commercial and/or free-software and  report coherent results in the 109 

unmixing of components from previously published data (Roberts et al., 1995) and from their 110 
own synthetic samples, but acknowledge that the simplicity of the model might fail to cover 111 

more complex scenarios. Such a case could arise from the contribution of fine SD-like particles 112 

(e.g., a Stoner-Wohlfarth assemblage - Stoner and Wohlfarth, 1991). A distribution of such 113 

grains might cause the reversible and irreversible segments of a lower branched magnetic 114 

hysteresis to be very different, which will originate an asymmetry. Furthermore, for viscous SD-115 

like particles, the irreversible segment may abruptly start at 𝐵 = 0, leading to a discontinuous 116 

derivative (Egli, 2021). Neither of these cases can be explained by a symmetrical Lorentzian 117 

curve of the form of Eq. 2, and would require a skewness’ control parameter, similar to the 118 

coercivity analysis of Egli (2003). Finally, it is also important to consider that Eq. 2 does not 119 

account for the approach-to-saturation behavior expected in high-fields (Fabian, 2006) and so an 120 
additional parameter is required to account for a variable kurtosis and susceptibility components 121 

with different tails.  122 

To achieve a more robust phenomenological model to unmix susceptibility components 123 

from magnetic hysteresis data, we introduce the use of generalized gamma-Cauchy exponential 124 

distributions (Alzaatreh et al., 2016). We present a Python-based (ipynb-file) open-source 125 

application (Hist-unmix) that can be used to perform unmixing of hysteresis curves (Bellon et al., 126 

2023). A forward model of up to three susceptibility components is demonstrated, as well as the 127 
mathematical formulation to optimize initial parameters in our inverse model, with uncertainty 128 

estimates of the parameters determined through a Monte-Carlo error propagation. We also 129 

perform numerical tests on synthetic data to assess the sensibility of a modified Gamma-Cauchy 130 

Exponential fit (mGC), evaluating the effect of (i) sampling, (ii) signal/noise ratio, (iii) similarity 131 

of components and the (iv) ambiguity of the model. Finally, we test the Hist-unmix application 132 

on distorted hysteresis loops of Neoproterozoic remagnetized rocks from São Francisco craton 133 

(Brazil), comparing the information recovered from the Hist-unmix package with previous rock-134 

magnetism/paleomagnetic data 135 

2 Materials and Methods 136 

2.1 Forward model 137 
 138 

Cauchy distributions have many applications in mechanical and electrical theory, often 139 

referred to as Lorentzian distributions in the physics literature. To achieve a forward model for 140 

the first derivative of a lower branched magnetic hysteresis, we propose the use of the probability 141 

density function of a gamma-Cauchy exponential distribution (GC(α, β, θ)). In such, if a random 142 

variable follows a gamma distribution with parameters α and β, a GC(α, β, θ)’s probability 143 

density function is defined as (Alzaatreh et al., 2016): 144 
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𝑓(𝐵) =
− 𝑙𝑜𝑔 0.5 − 𝜋 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛

𝐵
𝜃 ∙ 0.5 − 𝜋 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛

𝐵
𝜃

𝜋 ∙ 𝜃 ∙ 𝛽 ∙ Г(𝛼) ∙ 1 +
𝐵
𝜃

, 𝑥 ∈ ℝ 145 

Eq. 3 146 

In Eq. 3, 𝜃 has the role of a dispersion parameter (such as in the symmetrical Lorentzian 147 

functions) and Г(𝛼) is the gamma function of 𝛼. The advantage of using functions of the from 148 

GC(α, β, θ) lies in the fact that their morphology can be symmetrical, right or left skewed, and 149 

cover a wide range of kurtosis (Alzaatreh et al., 2016). Since Eq. 3 will peak in the arithmetic 150 

mean of 𝐵, we added a term to represent the coercivity (𝐵 ) in a gamma-Cauchy distribution. To 151 
improve convergence, a scale factor (I) is further included, which represents the contribution 152 

ratio of each ferromagnetic component. Our modified gamma-Cauchy exponential function, 153 

𝑚𝐺𝐶(𝐵 , 𝛼, 𝛽, 𝜃, 𝐼) for magnetic susceptibility becomes:  154 

𝜅 =

⎣
⎢
⎢
⎢
⎡ − 𝑙𝑜𝑔 0.5 − 𝜋 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛

𝐵 − 𝐵
𝜃

∙ 0.5 − 𝜋 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛
𝐵 − 𝐵

𝜃

𝜋 ∙ 𝜃 ∙ 𝛽 ∙ Г(𝛼) ∙ 1 +
𝐵 − 𝐵

𝜃 ⎦
⎥
⎥
⎥
⎤

∙ 𝐼  155 

Eq. 4 156 

Eq. 4 accounts for the ferromagnetic contribution to the susceptibility 𝜅. We call this a 157 

ferromagnetic susceptibility component (C). A para/diamagnetic contribution (𝜅 ) to the 158 

magnetic susceptibility given by N-ferromagnetic components (𝐶 ) can be calculated, for a 1D-159 

array containing the applied field values (𝐵, 𝐵 ∈ ℝ ), by linearly adding 𝜅  to 𝐶 . The 160 

para/diamagnetic contribution can be simply estimated from a linear regression of the high-field 161 

susceptibility. However, as the numerical gradient is subjected to high-frequency noise, 162 

estimating 𝜅  from the magnetic hysteresis’ high-field irreversible segment is less susceptible to 163 

the influence of noise. If we remove 𝜅  to work directly with the ferromagnetic contribution, a 164 

forward model is then simply given as: 165 

�̅� = C   166 

Eq. 5 167 

2.2 Inverse model 168 
 169 

Whilst we have arbitrarily chosen to model the lower branch, it is of course assumed that 170 

the lower and upper branches are symmetrical and centered. If not, some preprocessing must be 171 

performed to achieve more coherent results. Given a 1-D array of susceptibility data (�̅�) derived 172 

from the lower branch of a magnetic hysteresis curve, and a model (�̅� ) calculated with Eq. 5, 173 

(‖we expect to minimize the Euclidean norm of a squared weighted error 𝑒 ‖ ) function as: 174 
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‖𝑒 ‖ =
�̅�[ ] − �̅� [ ]

𝜎
, 175 

Eq. 6 176 

 177 

where 𝜎  is measurement error for �̅�[ ] and 𝑚 is the size of the array. Since Eq. 5 includes 178 

non-linear terms, we cannot simply minimize Eq. 6 through a least squares fit. Finding �̅� (a 1D 179 

array of the parameters) that minimizes the objective function requires an iterative process. For 180 

any initial guess of the parameters (�̅�( )), correction factors (∆𝑝 ) for the next iteration �̅�
( )

=181 

�̅� p( ) + ∆p( )  are determined using the Levenberg-Marquardt method (Aster et al., 2013; 182 

Gavin, 2022), as: 183 

∆𝑝( ) = 𝐽̿ ∙ 𝐽 ̿ + 𝜔( ) ∙ 𝐼 ̿  ∙ 𝐽 ̿ ∙ ∆𝜅( ) 184 

Eq. 7 185 

where 𝐽 ̿is the Jacobian matrix of  �̅� �̅�( ) + ∆𝑝( ) ;  I̿   is an identity matrix with the 186 

same dimensions as 𝐽 ̿ ∙ 𝐽 ̿  ; ω( ) is a damping factor and ∆κ( ) is calculated as: 187 

∆κ( ) = �̅� − �̅� p( )  188 

Eq. 8 189 

Where the first iteration begins by adjusting the parameters so that �̅�( ) = �̅�( ) + ∆𝑝( ). 190 

Obtaining 𝐽 ̿analytically might result in singular matrixes, which is a problem that can be avoided 191 

when these derivatives (𝜕�̅� /𝜕𝑝 ) are here computed by causing small disturbances (ε) to each 192 

parameter, and evaluating their effect through a numerical central difference finite approach. We 193 

define a correction criterion (𝜌 ) in order to evaluate if the adjusted parameters �̅�( ) better 194 

explain the observed model �̅� than �̅�( ): 195 

𝜌( ) = ‖𝑒 ‖( ) − ‖𝑒 ‖( )  196 

Eq. 9 197 

If 𝜌( ) >  𝜀: 198 

i. 𝐽 ̿is updated using the corrected parameters �̅�( ) ; 199 

ii. 𝜔( ) is updated as: 𝛾 ∙ 𝜔( ) ; where 𝜁 =
( )∙ ( )

( ) ∙ ( )

, as in Kwak et al., (2011); 200 

iii. The input for the next iteration is: �̅�( ) = �̅�( ) + ∆𝑝( ) 201 

If 𝜌( ) <  𝜀: 202 

i. 𝐽 ̿is not updated; 203 

ii. 𝜔( ) is updated as: 𝛾 ∙ 𝜔( ) ; 204 

iii. The input for the next iteration is: �̅�( ) = �̅�( ) 205 

In the criteria above, 𝜔 is the damping factor that will be updated by step scaling factor 𝛾. 206 

Both of these start with the same initial value of 0.1, as in the fixed approached of Hagan and 207 

Menhaj (1994). Iterations (i) will proceed until a convergence criterion is reached: 208 
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𝐽 ̿ ∙ ∆𝜅 ≤  𝜀 209 

Eq. 10 210 

 211 

If the user has previous knowledge of the coercivity components values in the sample 212 

(i.e. from other magnetic experiments), it might be useful to constrain these 𝐵  values. When 213 

dealing with more than one component, the user might constrain one of two of the coercivities 214 

and let the other optimize (or even constraint them all, if necessary). Care in this approach is 215 

required since the model may produce biased results due to the constraints. Inverting a 216 

component with 𝐵 = 0 (i.e., a superparamagnetic population) might also cause numerical issues 217 

when calculating the Jacobian matrix (such as singular matrixes), so it is useful to constrain the 218 
solutions in this case.  219 

The separation of components can be tested statistically by a Two-Tailed F-test, 220 

considering a null hypothesis that the variance of the data and the variance of the calculated 221 
(model �̅� +𝜅 ) can be distinguished at a 95% confidence interval. 222 

2.3 Monte Carlo error propagation 223 
 224 

With the considerable number of model parameters related to each ferromagnetic 225 

component it is useful to simulate a collection of disturbed solutions to evaluate the statistical 226 

confidence of the model solutions. In our approach, we use a Monte Carlo error propagation 227 

method (Aster et al., 2013). We assume that our final inverted model produces parameters �̅�  228 

that faithfully represent the ferromagnetic data and introduce random noise (𝜂)  drawn from a 229 

normal distribution centered in �̅�  and a given standard deviation. The disturbed models are 230 

calculated through Eq. 5 with a new set of disturbed parameters (�̅� ) by adding 𝜂 to �̅� n-times. 231 

Sequentially running the inversion procedure (Section 2.2) allows to optimize (�̅� ). If this 232 

procedure is repeated n times, we can produce an average model of disturbed solutions (𝑃𝑎 ) and 233 

then compare its difference with �̅� by calculating an empirical covariance estimate: 234 

𝐶𝑂𝑉 (�̅� ) =
𝑃𝑎 − �̅� ∙ 𝑃𝑎 − �̅�

𝑞
 235 

Eq. 11 236 

Where q is the number of parameters. Finally, the 95% confidence interval of �̅�  is 237 

computed as (Aster et al., 2013): 238 

�̅� ± 1.96 ∙ 𝑑𝑖𝑎𝑔 𝐶𝑂𝑉(�̅� )  239 

Eq. 12 240 

2.4 Workflow 241 
 242 

Figure 1 shows the general workflow for the Hist-unmix package. The first step 243 

comprises the filtering of the lower branch of the hysteresis loop. We note that numerical 244 

derivatives through finite-differences method are strongly affected by noise, in a way that even 245 
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small disturbances can cause large spikes. To reduce these effects, we apply a simple moving 246 

average (�̅� ) filter to the lower branch hysteresis curve: 247 

�̅� =
1

𝐿
∙ 𝑀( ) 248 

Eq. 13 249 

where (L) is the interval used to calculate the mean. This value will depend, logically, on 250 

the choice of the user and on the size of the sample and it is applied on the input data (the lower 251 

branch hysteresis) itself. The low-pass filter of Eq. 13 avoids possible introduction of bias 252 

sometimes associated with polynomial/gaussian filtering. The para/diamagnetic component  𝜅  is 253 

sequentially estimated from a linear regression of the high-field irreversible section of the 254 

smoothed lower branch hysteresis. The gradient of the smoothed curve is normalized by its 255 

maximum value (𝑓) and subtracted from 𝜅 /𝑓 to facilitate the adjustment of the curves. 256 

Sequentially, the user should choose how many ferromagnetic components (C) will be fit to the 257 

data.  258 

The path 1 in the workflow of Figure 1 requires the estimation of a forward model, by 259 

providing the mean coercivity (𝐵 ), the deviation (𝜃), the parameters α and β, and the scale 260 

factor (I). The coercivity (𝐵 )  must be specified within the values of the applied field (𝐵), while 261 

𝜃 of most of the curves will vary from zero to one (𝑚𝐺𝐶 functions, however, allow larger values 262 

to be tested). 𝑚𝐺𝐶 functions can yield a large range of α and β values, but we set their initial 263 

input equal to 1 (a symmetrical approach). 𝐼 parameter will normalize the contribution of the 264 

different components and its first estimation is performed automatically when the user selects the 265 

number of components. Path 2 determines a straightforward inverse model where the user simple 266 

give initial guesses without adjusting a forward model first. 267 

To avoid getting stuck in local minima, the user can create n new array of inputs (�̅� ) that 268 

each vary randomly up to ±20% of the standard deviation (𝜂) of the inverted parameters �̅� . 269 

The inverted parameters (�̅� ) with the smallest residue (‖𝑒 ‖) are then used to calculate the 270 

final optimized model, which is further added to 𝜅  to produce a model that represents the 271 

observed data.  272 
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 273 

Figure 1 - Hist-unmixing workflow. �̅�  is the moving average filter; �̅�  is an array with the 274 

initial guesses for the inversion protocol; 𝐼  is the total area of the ferromagnetic contributions; 275 

�̅�  is an array with the optimized parameters; and �̅�  is an array containing a set of disturbed 276 

parameters. 277 

 278 

A Monte Carlo error propagation is carried on to obtain the covariance of the inverted 279 
parameters and their 95% confidence interval, as well as the determination coefficient (R²) and 280 

F-test. The creation of the set of disturbed solutions in the Monte Carlo routine follows the 281 

method described  Aster et al. (2013) carried as described for �̅� , changing  𝜂 ‘s standard 282 

deviation to make it following a reduced chi-squared statistic of the model produced with the 283 

inverted parameters: 284 

𝜒 =
∑ �̅�[ ] − �̅� [ ]

𝑁 − 𝑞
, 285 

Eq. 14 286 

Where q is the number of parameters. 287 
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2.5 Magnetization saturation (Ms) and saturation remanent magnetization (Mrs) 288 
 289 

To calculate the magnetization saturation (Ms) and saturation remanent magnetization 290 

(Mrs) we rely on the definite integral of the susceptibility �̅� with respect to 𝐵. Since the primitive 291 

function of �̅�(𝐵) is the magnetization 𝑀(𝐵) we can approximate Ms and Mrs of a given 292 

ferromagnetic component 𝐶 through a numerical integration using Simpson’s rule (Otto & 293 

Denier, 2005) as: 294 

𝑀 = 𝐶 (𝐵) 𝑑𝐵 ≈
𝐵 − 𝐵

6
∙ 𝐶 + 4 ∙

𝐵 + 𝐵

2
+ 𝐶( )  295 

Eq. 15 296 

𝑀 = 𝐶 (𝐵) 𝑑𝐵 ≈
𝐵

6
∙ 𝐶( ) + 4 ∙

𝐵

2
+ 𝐶( )  297 

Eq. 16 298 

Where 𝐵 is the maximum positive applied field. Because the quality of numerical 299 

integration strongly depends on the horizontal spacing (dB), a one-dimensional cubic 300 

interpolation is applied to the gradient data prior the application of Eq. 15 and Eq. 16.  301 

The maximum field applied during a hysteresis procedure might not be enough to 302 

saturate a samples’ magnetization. The magnetization in high-fields 𝑀  can be expressed as 303 

(Fabian, 2006): 304 

𝑀 = 𝑀 + (𝜅 ∙ 𝐵) + 𝜆 ∙ 𝐵Փ , 305 

Eq. 17 306 

where 𝜆 and Փ are negative constants (called alpha and beta in Fabian’s work), for 307 

which: i) Փ = -2 in homogeneously magnetized defect free-materials; ii) Փ = -1 for 308 

superparamagnetic particles; and iii) −1 < Փ ≤ 0 for assemblages of particles with closely 309 

spaced defects (Fabian, 2006 and references therein). Susceptibility components of Eq. 2 are 310 

classified as Փ = -1 curves, which is not ideal for most of the natural samples. If the maximum 311 

applied field is enough to achieve an approach to saturation regime, Փ  must be smaller than zero 312 

(Fabian, 2006).  As Eq. 4 results in ferromagnetic susceptibility components, we remove the 313 

induced magnetization of dia/paramagnetic contribution of Eq. 17 (𝜅 ∙ 𝐵) and sequentially 314 

perform its analytic derivative to obtain the high-field ferromagnetic susceptibility (𝜅 ) as: 315 

𝜅 =
𝜕𝑀

𝜕𝐵
= 𝜆 ∙ Փ ∙ 𝐵(Փ ) 316 

Eq. 18 317 

To obtain 𝜆 and Փ, we can follow the same inversion routine described in Section 2.2 by 318 
simply changing the susceptibility terms of Eq. 6. For example, we calculate a synthetic model 319 

with Eq. 18, while considering an applied field going from 0.6 to 7T and Փ = −2 and 𝜆 = −2.6 320 

(N=100). These parameters are similar to those modelled in one of the curves of  Fabian (2006), 321 
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where he experimentally observes that magnetization reaches saturation near 5T. By using Eq. 322 

18, we observe the same as 𝜅  tends to zero in the same field values (Figure 2a). In our 323 

inversion procedure, Փ and 𝜆 converge to the same values either for a model with the whole 324 

curve (100 points), or, limiting the field values between 0.6-1T (N=7, Figure 2b), showing that 325 

the lower field values within the saturation approach domain strongly might control these 326 
parameters.  327 

 328 

Figure 2 – Synthetic high-field susceptibility curves. a) The inversion procedure recovers mostly 329 

identical parameters for the whole synthetic curve (going from 0.6 to 7T, N=100). b) 330 

Optimization of parameters using only a small portion of the synthetic curve (bluish area in a, 331 

N=7) efficiently recovers the same parameters, which indicates that 𝜆 𝑎𝑛𝑑 Փ strongly controlled 332 

by lower field values within the saturation approach domain. 333 

Nevertheless, if one decides to use this approach in the observed data, noise might 334 

decrease the effectiveness of the optimization of 𝜆 and Փ. However, as we apply this high-335 

susceptibility validation test in the unmixed components of obtained from Eq. 6, that is not an 336 

overall issue. For a given ferromagnetic component, if Փ < 0, we consider the 𝑀  obtained from 337 

Eq. 15 a valid saturation magnetization. If not, we can correct it using the respective inverted 𝜆 338 

and Փ parameters. 339 

3 Model sensitivity 340 

We tested sensitivity of our model by creating a series of synthetic curves. Five  base 341 

curves were generated (C1 to C5 in Figure 3a) with distinct parameters (Table 1), as well as a 342 

number of bimodal combinations, each with 1000 field values (𝐵) between -1T to 1T. Coercivity 343 

values were simulated within known ranges of typical magnetic minerals (O’Reilly, 1984). We 344 

have varied α, β, 𝜃 and I to produce curves with distinct tails and symmetry. Since these 345 

parameters represent only ferromagnetic components, we neglect the dia/paramagnetic slope 346 

(𝜅 ).  347 

A random noise with a normal distribution (𝐵 =0.0 Am², 𝜎 =±5 ∙ 10 Am²) was added to 348 

the synthetic curves, to simulate real measurements. Measurement errors might vary according to 349 
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the measurement routine, the sensitivity of the equipment as well as the intensity of the 350 
magnetization. First, we optimized parameters of the synthetic models with one ferromagnetic 351 

component following the methodological Path 1 (Figure 1), and sequentially did the same for the 352 

bimodal curves as well. For the latter, we have added a small dia/paramagnetic component (𝜅 ). 353 

For both cases, the inversion approach produced optimized parameters whose forward 354 

model result in coefficients of determination (𝑹𝟐) greater than 0.9 (Table 2, and Figure 4) and 355 

indistinguishable variances at 95% confidence (Two-tailed F-test). Inversion of 𝜿𝟎 for the 356 

unimodal curves return non-zero values, but their magnitude compared to the ferromagnetic 357 

susceptibility is negligible. 358 

Table 1 – Synthetic ferromagnetic components (C). Coercivities 𝐵  (T) ranging within known 359 

values for terrestrial magnetic minerals. 360 

 𝑩𝒄 (T) θ 𝜶 𝜷 𝑰 Coercivity range 

𝑪  1.0 ∙ 10  1.0 ∙ 10  1.0 ∙ 10  2.2 ∙ 10  1.0 ∙ 10  Magnetite 

𝑪  8.0 ∙ 10  1.0 ∙ 10  1.0 ∙ 10  6.0 ∙ 10  5.0 ∙ 10  Pyrrhotite/ Magnetite 

𝑪  2.0 ∙ 10  7.0 ∙ 10  7.0 ∙ 10  2.0 ∙ 10  5.0 ∙ 10  Pyrrhotite/Hematite 

𝑪  5.0 ∙ 10  3.0 ∙ 10  6.0 ∙ 10  1.4 ∙ 10  1.0 ∙ 10  Hematite 

𝑪  7.0 ∙ 10  2.0 ∙ 10  3.0 ∙ 10  9 ∙ 10  1.0 ∙ 10  Hematite 

 361 

For the bimodal models (the curves with more than one ferromagnetic component), 362 

inverted curves successfully represent the synthetic data as well. The dia/paramagnetic 363 

contribution for the high-field irreversible segment explain very well the displacement of the 364 

base level either for a strong paramagnetic (e.g., coming from a fabric enriched in biotite) or 365 

diamagnetic influences (e.g., coming from a calcium carbonate matrix).  366 

To further test our model sensitivity, we examined the influence of the i) signal-noise 367 

ratio, ii) sampling of the hysteresis curves, iii) the level of contribution to the total magnetic 368 

susceptibility and the proximity and dispersion of components to be inverted affect the inversion. 369 
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 370 

Figure 3 – Synthetic models produced using Eq. 4. In the case of a single ferromagnetic 371 
component (a), dia/paramagnetic slope was zeroed (check Table 1). Further examples are linear 372 

combinations of these into bimodal (c) and three-modal curves (d). A random noise was added to 373 

all the curves to represent error-measurements of real experiments.  374 

 375 
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 376 

Figure 4 – Unmixing of susceptibility curves with more than one ferromagnetic component. The 377 

inversion procedure was carried by firstly adjusting a forward model to be used as input for the 378 

optimization step. 𝐶  𝑎𝑛𝑑 𝐶 are the models calculated from the inverted parameters. Model 379 

parameters are given in Table 2.  380 
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Table 2 – Optimized parameters obtained for the unimodal and bimodal scenarios. For mixtures, the parameters of 𝐶  and 𝐶  components 381 

are separated by a vertical bar. 𝜅 ( ) is the dia/paramagnetic susceptibility imposed to the synthetic models and 𝜅  is the same parameter 382 

recovered from the inversion.  383 

 384 

 385 

 386 

 387 

 𝜿𝟎
(𝒔) 𝜿𝟎 𝑩𝒄𝒂

 (𝑻)| 𝑩𝒄𝒃
 (T) 𝜽𝒂 | 𝜽𝒃 𝜶𝒂 | 𝜶𝒃 𝜷𝒂 | 𝜷𝒃 𝑰𝒂 | 𝑰𝒃 𝐑² 𝒆𝟐

𝟐
 

𝑪𝟏 - - 1.02∙10-2 9.96∙10-2 9.5∙10-1 2.37∙100 9.99∙10-2 0.998 1.93∙10-4 

𝑪𝟐 - - 7.98∙10-2 9.90∙10-2 9.68∙10-1 7.17∙10  4.91∙10-2 0.998 1.88∙10-4 

𝑪𝟑 - - 1.99∙10-1 7.00∙10-2 6.97∙10-1 2.30∙10  3.92∙10-2 0.997 1.56∙10-4 

𝑪𝟒 - - 5.01∙10-1 2.98∙10-1 5.80∙10-1 1.67∙10  7.15∙10-2 0.995 1.49∙10-4 

𝑪𝟓 - - 6.96∙10-1 1.96∙10-1 2.57∙10-1 1.04∙10  5.88∙10-2 0.992 1.85∙10-4 

𝑪𝟏 + 𝑪𝟐 1.00∙10-2 1.07∙10-2 5.94∙10-3 | 8.99∙10-2 1.11∙10-1 | 1.12∙10-1 1.60∙10  | 1.08∙10  1.20∙10  | 4.39∙10  1.44∙10-1 | 5.54∙10-2 0.999 2.11∙10-4 

𝑪𝟏 + 𝑪𝟑 -1.00∙10-2 -9.02∙10-3 1.21∙10-2 | 1.97∙10-1 1.03∙10-1 | 7.00∙10-2 1.07∙10  | 7.06∙10  1.72∙10  | 2.37∙10  9.56∙10-2 | 3.06∙10-2 0.999 2.09∙10-4 

𝑪𝟏 + 𝑪𝟒 5.00∙10-2 4.00∙10-2 7.30∙10-3 | 5.05∙10-1 1.13∙10-1 | 3.75∙10-1 1.76∙10  | 4.43∙10  7.29∙10  | 1.83∙10  1.13∙10-1 | 1.18∙10-1 0.998 2.20∙10-4 

𝑪𝟏 + 𝑪𝟓 -1.00∙10-2 -8.00∙10-3 8.95∙10-3 | 7.18∙10-1 1.03∙10-1 | 2.23∙10-1 1.11∙10  | 6.61∙10  1.76∙10  | 4.89∙10  9.97∙10-2 | 4.88∙10-2 0.998 1.79∙10-4 

𝑪𝟑 + 𝑪𝟓 - 1.00∙10-5 1.99∙10-1 | 6.66∙10-1 6.98∙10-2 | 1.98∙10-1 7.02∙10  | 1.98∙10  2.29∙10  | 9.62∙10  3.88∙10-2 | 5.76∙10-2 0.997 1.69∙10-4 

𝑪𝟒 + 𝑪𝟓 -5.00∙10-2 -4.94∙10-2 4.87∙10-1 | 7.24∙10-1 3.46∙10-1 | 2.12∙10-1 1.08∙10  | 2.54∙10  1.04∙10  | 6.02∙10  8.72∙10-2 | 7.65∙10-2 0.998 1.75∙10-4 
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Since the data used to fit the 𝑚𝐺𝐶 functions are the gradient of the magnetization, small 388 

perturbations might strongly affect the dispersion data. In order to test the sensitivity of the 389 

models to the proximity of different magnetic components, we can use the 𝐶 + 𝐶  case (Table 390 

2), where the two components are so close that susceptibility appears as a single peak.  391 

In this case, even curves with a high signal/noise ratio (≈0.95) can lead to a high 392 

dispersion (compare 𝜂-values in A and B scenarios, Figure 5a). However, a moving average 393 

filter seems to be very effective to remove random noise, in a way that simply choosing the L-394 

value of five (L=5, Eq. 13) resulted in a good fit, with R²>0.9, although the error of the less 395 

noisy data is smaller. We used the same 𝐶 + 𝐶  case to investigate if the two components would 396 

still be detected by reducing the sample size from 1000 points to 500 points and then to 200 397 
points (Figure 5b). The errors increase as the number of points decrease, even though the 398 

inversion procedure satisfactorily recovered the parameters in all cases, with R²> 0.9 in all cases 399 

(Figure 5a,b). 400 

 401 

Figure 5 - Sensitivity tests in synthetic models. (a) Varying the contribution of the random noise 402 

and (b) the size of the sample for the 𝐶 + 𝐶  case (when parameters of the 𝑚𝐺𝐶 curve are 403 
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considerably different). In scenarios A and B, the noise scale (𝜂) or the number of samples (N) is 404 

varied. 𝐴  and 𝐵  are the resulted models for each of these. For the 𝐶 + 𝐶  case, the same tests 405 

are performed (c and d), where constraining the coercivity of one of the components using a 406 

priori information will produce very similar models to the observed data.  407 

For the 𝐶 + 𝐶  case, the parameters are very distinct. However, in mixing cases like 408 

𝐶 + 𝐶  (Figure 5c, d) where there are overlapping of distributions similar parameters, the 409 

ambiguity of the model would allow other solutions with similar residuals. This is a recurrent 410 

problem that arises with basis function’ solutions to the unmixing problem, and that also affects 411 

generalized gaussian approaches to IRM unmixing (Egli, 2003; Maxbauer et al., 2016). In our 412 

case, constraining the coercivity of the  𝐶  component allowed us to obtain good estimates of the 413 

two distributions   with little residuals in the sensitivity test for noise similar to that obtain for the 414 

𝐶 + 𝐶  mixture. Without a priori information that would allow constraining the coercivity value 415 

of a particular component would just be justified if is available. Otherwise, we would 416 

recommend the simplest model to explain the observed data.  Similar issues as seen as we 417 

increase the number of components in the sample, exemplified by the two cases shown in Figure 418 

3c. In the case of the 𝐶 + 𝐶 + 𝐶  mixture, the resulting morphology of the curve allows a clear 419 

distinction of at least three components and inversion of 𝐶 , 𝐶  𝑎𝑛𝑑 𝐶  curves result in a fitting 420 

with indistinguishable parameters of those that form the original data (Figure 6a). 421 

For the 𝐶 + 𝐶 + 𝐶  case, the mixing of the most coercive fractions produces a broad 422 

peak. Since the position of the component of smaller coercivity is more evident, one could adjust 423 

two other components to explain the rest of the spectrum (Figure 6b) with an almost negligible 424 

residual. However, it is also possible to explain the same curve with a composition of only two 425 

components (Figure 6c) with similar quality of fit. Still in this case, increasing the number of 426 

components to three (considering 𝐶  component fixed) will limit the coercivity of the other two 427 

components to a single minimum region (Figure 6b’). However, the objective function of the 428 

𝐶 + 𝐶 + 𝐶  case with only two components (fixing the other parameters) shows that local 429 

minima might be present (Figure 6c’). Still, our procedure to calculate a �̅�  vector (revisit section 430 

2.4) allowed us to avoid the local minimum in Figure 6c’). Nevertheless, assuming that more 431 

than two components explain the susceptibility data should only be considered in cases where a 432 
priori information is available, or if the shape of the curve clearly indicates their respective 433 

contributions. 434 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

 435 

Figure 6 – Three-component case inversion. a) the shape of the curve indicates the presence of at 436 

least three different components, which are easily inverted through Hist-unmix package. 437 

However, for the 𝐶 + 𝐶 + 𝐶  case, three (b) or two components (c) explain can explain the 438 

data. When plotting the log of the objective function for variable coercivities (𝐵  and 𝐵 ) while 439 

fixing 𝜇  and the other parameters (b’) shows that a single minimum can explain the data. 440 

However, by assuming a two-component case for the 𝐶 + 𝐶 + 𝐶  curve and fixing all of the 441 

other parameters with exception of the coercivities (𝐵  and 𝐵 ), a local minimum arises. 442 

Nevertheless, our inversion procedure reaches the global minimum in both explored cases (white 443 

square).  444 

Finally, we will evaluate the presence of superparamagnetic particles (SP) as one of the 445 

susceptibility components. As shown by Tauxe et al. (1996), potbellied and wasp-waisted 446 

magnetic hysteresis can be generated by mixing SP with stable SD particles.  To examine this, 447 

we construct a ferromagnetic mixture as the sum of an assemblage of superparamagnetic 448 

particles (𝐵 = 0 𝑇) with a higher coercive fraction (i. e.  𝑆𝐷 magnetite, 𝐵 = 0.07 𝑇), and 449 

another one with a ferromagnetic low coercive fraction (𝑖. 𝑒. , 𝑀𝐷 magnetite, 𝐵 = 0.002 𝑇), all 450 

with the same dispersion. This is the most extreme scenario for, since reproducing the same 451 

parameters only varying the coercivity will make the identification of a superparamagnetic 452 

fraction a hard task because the difference in coercivity is very small. 453 
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We can evaluate the distortion of the curves with two components by varying their 454 

contributions (by adjusting I) to the final synthetic curve. As the contribution of CSD increases, 455 

the SP particles becomes less significant (Figure 7a) but one can still identify that such curve is 456 

not perfectly matching the purely SP component. The same is valid if CSP is mixed with the less 457 

coercive component in the same proportions (Figure 7c), but in this case it becomes intrinsically 458 

hard to distinguish the SP component even if its contribution is equal to the CMD.  459 

 460 

Figure 7 – Testing the sensitivity of the model for mixtures of superparamagnetic fractions with 461 

more coercive populations. When simulating the same properties of SP fraction as those of SD 462 

and MD fraction (only varying 𝐵 ), it becomes difficult to distinguish the SP contribution for 463 

both cases. Constraining the coercivity of one of the components to zero allow the user to test if 464 

(mathematically) a SP population can explain part of the observed curve. For the SP populations, 465 

𝐼 is fixed at 1. 466 
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When we calculate the second derivative of the lower branch of these hysteresis curves, 467 
this observation becomes even clearer. For CSP+ CSD mixing cases, the derivative curve will not 468 

cross at zero field (Figure 7b), indicating the presence of a magnetic population with larger 469 

coercivity. Meanwhile, because CSP and CMD components coercivities are very close, the second 470 

derivative of their mixture crosses zero much closer to the origin (Figure 7d). Nevertheless, if 471 

there is a priori information of the presence of SP particles then constraining the one component 472 

to have zero coercivity enhances the correct identification of the remaining fractions 473 

4 A case study on Neoproterozoic remagnetized carbonate rocks 474 

4.1 The Sete Lagoas and Salitre formations and their magnetic signature  475 

Remagnetized carbonate rocks are long known for their anomalous hysteresis ratios 476 

(Banerjee et al., 1997; Jackson & Swanson-Hysell, 2012; McCabe & Channell, 1994), the wasp-477 

waisted hysteresis loops being usually considered as one of the fingerprints of remagnetization 478 

(Jackson & Swanson-Hysell, 2012) In Brazil, remagnetized Neoproterozoic carbonates typically 479 

exhibit such deformed hysteresis loops (D’Agrella-filho et al., 2000; Trindade et al., 2004). The 480 

São Francisco craton comprises two shallow-marine carbonate units, Sete Lagoas Formation and 481 

Salitre Formation, that occur in two different basins overlapping glacial diamictite successions, 482 

whose detrital zircons provided maximum ages of ~850 Ma (Babinski et al., 2012). The age of 483 

the carbonate units is estimated on the basis of detrital zircons (maximum ages of 670 and 557 484 

Ma) (Paula-Santos et al., 2015; Santana et al., 2021) and the presence of the Cloudina fossil 485 

index in Sete Lagoas, which constrain the age of the unit to between 580 and 550 Ma. 486 

Magnetic properties of Sete Lagoas and Salitre formations are very similar (D’Agrella-487 

filho et al., 2000; Trindade et al., 2004): (i) wasp-waisted magnetic hysteresis, (ii) contradictory 488 

Lowrie-Fuller/Cisowski tests (Cisowski, 1981; Jackson, 1990), (iii) anomalously high hysteresis 489 

ratios, and (iv) tri-axial thermal demagnetization (Lowrie tests) with similarly behaved 490 

components. Although these formations belong to different basins and their sampling sites are 491 

separated by almost 600 km, they bear very similar paleomagnetic directions. Thermal 492 
demagnetization of these samples commonly yields up to three components (A, B and C) with 493 

very similar unblocking intervals (Figure 8a, e). 494 

Each magnetic component can be correlated to a particular mineral assemblage depicted 495 

in the Lowrie test. The Lowrie test consists of the stepwise thermal demagnetization of three 496 

IRM acquisitions along three orthogonal axes: hard (1.3 T), intermediate (0.3 T) and soft (0.1 T). 497 
Samples from both Sete Lagoas and Salitre formations show a similar behavior in these diagrams 498 

(Figure 8d, h). The soft component shows a sluggish decay up to 400°C, a common behavior for 499 

multidomain magnetite. However, there is a steep decay of the soft component at 500°C, 500 

probably associated to the C-component of the thermal demagnetization which can be attributed 501 

to stable PSD/SD magnetite. Contrastingly, medium, and hard components of the Lowrie test are 502 

stable up to 250°C (Figure 8d), and rapidly decay at 320°C. This is close to the Curie 503 

temperature of monoclinic pyrrhotite. This mineral is correlated to the B-component disclosed 504 

for the Sete Lagoas and Salitre formations. 505 
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 506 

Figure 8 - Paleomagnetism and magnetic mineralogy of Sete Lagoas (BB) and Salitre (IR) 507 

formations. (a) Zijderveld diagram of a thermally demagnetized sample from the Sete Lagoas 508 

Formation, (b) the mean-site directions of C-component and (c) B-component. In (d) Lowrie-test 509 

results for a sample from the Bambuí formation. (e), (f), (g) and (h) are the equivalents for the 510 

Salitre Formation. Data acquired from D’Agrella et al (2000) and Trindade et al (2004). 511 
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The magnetic signature of these carbonates is interpreted, as suggested from Pb isotopic 512 
data (D’Agrella-filho et al., 2000; Trindade et al., 2004), as a result of a large-scale 513 

remagnetization throughout the São Francisco Craton, as caused by the percolation of orogenic 514 

fluids during the final stages of the Gondwana assembling. In this way, the B and C-components 515 

of both basins would be contemporary and result of craton wide chemical remagnetization. The 516 

fact that these rocks present more than one stable component, likely carried by different 517 

magnetic minerals with contrasting magnetic properties, makes them an interesting case study to 518 

apply the Hist-unmix package. In this section, we have selected samples of each of these 519 

formations (Sete Lagoas and Salitre) and performed the acquisition of magnetic hysteresis curves 520 

to test the Hist-unmix package. 521 

4.2 Experimental methodology 522 

Eight samples of the Sete-Lagoas (BB) and Salitre (IR) formations (each) were separated 523 

for the experimental procedure. Firstly, small fragments (≈1cm³) were cut from the typical 524 

cylindric samples used in paleomagnetic investigations, using a non-magnetic saw. Then, each 525 

sample was bathed-in an acid solution (HCl, 10%) for about 5 seconds to get rid of any 526 

superficial contamination, put into an ultrasonic bath (20 min) with ultra-pure water to neutralize 527 

any remaining reaction and/or get rid of impurities incrusted in its surface. Samples were 528 

consecutively dried in a silica desiccator (at 25°C) until humidity was lost. A precision balance 529 

was used to measure the mass of the samples, in order to normalize the subsequent magnetic 530 

measurements. 531 

Magnetic hysteresis was performed with a vibrating sample magnetometer (MicroMag 532 

3900 Series VSM), using a discrete sampling approach from -1T to 1T, totaling 1000 data points 533 

for each sample. Processing followed the steps provided in Section 2.4 (Path 1), not constraining 534 

the coercivity for any of the curves and allowing 300 models (�̅� ) to run for each of the 535 

hysteresis loops. 536 

4.3 Modelling with Hist-unmixing  537 
 538 

Data from both Sete Lagoas and Salitre formations have typical signatures of mixing 539 

components in magnetic hysteresis. Samples from Sete Lagoas present constricted middles 540 

(wasp-waisted, Figure 9a, b) while Salitre samples show spreading middles (potbellies, Figure 541 

9c, d). It is worth to note that although these are carbonate rocks, the paramagnetic contribution 542 

completely overcomes the diamagnetic response of calcite and dolomite. This paramagnetic 543 

contribution (Figure 9e) is probably caused by the presence of terrigenous (essentially Fe-544 

bearing clay-minerals) in these rocks. To avoid any bias, the lower branches of the hysteresis 545 

curves were smoothed using small L-values (Eq. 13, L<5). None of the samples could be simply 546 

fitted by a single susceptibility component without inducing large errors. The models were 547 

calculated assuming of two magnetic components (e.g., Figure 11a, b) and resulted in R² > 0.98 548 

with indistinguishable variances from a two-tailed F-test. 549 
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 550 

Figure 9 - Characteristic magnetic hysteresis of carbonate samples for Sete Lagoas (a and b, BB 551 

samples), and Salitre (c and d, IR samples) formations. Samples are not corrected for 552 

diamagnetic/paramagnetic contributions, since these are accounted for in our model. Boxplots (e 553 

and f) indicate the modelled contributions of paramagnetic (𝜅 )and ferromagnetic (𝜅 ) 554 

fractions, respectively for Sete Lagoas and Salitre formations. 555 

Boxplots distributions compiling the results of the inversions are shown in Figure 10. 556 

Both Sete Lagoas and Salitre samples show magnetic components with very distinct coercivities 557 

(𝐵 -values). For the Sete Lagoas formation, the component with the lowest coercivity (Ca) has a 558 

median ≈ 1.7 mT, with minimum and maximum values of ≈1.0 and 11.0 mT (Figure 10a), with 559 
an asymmetric distribution. For the component with the highest coercivity (Cb), the median is 50 560 
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mT, with maximum and lower values of 260 mT and 15 mT respectively (Figure 10a). Saturation 561 

magnetization (Ms, Figure 10b) is similar for both components, which implies that they 562 

contribute almost equally to the whole susceptibility spectrum. The shape of the susceptibility 563 

curves, however, are quite distinct. Ca components have a small dispersion (θ), being constricted 564 

to the region around the median, while Cb components have greater dispersion, spreading 565 

throughout a wide range of coercivities. For Salitre formation samples, the Ca components also 566 

have an asymmetric distribution, with median coercivity value of ≈ 0.6 mT and minimum and 567 

maximum values ≈ 0.098 and 11 mT, respectively (Figure 10d). Bulk coercivities of Cb 568 

components are mostly higher than those of the Sete Lagoas samples. Minimum and maximum 569 

values are ≈95 and 244 mT, respectively and the median is 200 mT (Figure 10d). 570 

 571 

Figure 10 - Boxplots distributions of the low (Ca) and high (Cb) susceptibility components of 572 

samples from the Sete Lagoas (a to c) and Salitre (d to f) formations, obtained after modelling 573 

with Hist-unmix. Diamonds are statistical outliers.  574 

For both Sete Lagoas and Irecê formations, coercivity boxplots of Ca are quite short and 575 

match the expected values for magnetite. We suspect that the smallest coercivity values may 576 

arise from a population of near superparamagnetic grains. Although the Cb component could be 577 

related to more than one high coercivity mineral, such as hematite or pyrrhotite, the contribution 578 

to remanence is comparable or higher than that of Ca (Figure 10c, f). Since the remanence of 579 
hematite is much smaller than that of magnetite,  it must exceed 95 wt% of the magnetic 580 

population of magnetite to influence the magnetic parameters of an assemblage formed by the 581 

hematite+magnetite mixing (Frank & Nowaczyk, 2008). Such a high proportion of hematite in 582 

these samples would contradict previously published thermal demagnetization data (Figure 8a, b) 583 

as well as the Lowrie tests shown in  Figure 8d, h. this implies that the higher coercivity phase is 584 

likely to be monoclinic pyrrhotite.  585 

Most of the modelled curves did not yield a significant asymmetry, so that a simple 586 

Lorentzian model (such as those from Vasquez and Fazzito, 2020) could have successfully 587 

explained the observed data as well. Nevertheless, some curves (e.g., Figure 11a) might require a 588 
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more complex model that accounts for distinct degrees of kurtosis and skewness, which is better 589 
accommodated by the modified gamma-Cauchy exponential function.  590 
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 591 

Figure 11 – Examples of the inversion procedure for samples of the Sete Lagoas (a and a’) and 592 

Salitre (b and b’) formations, showing the lower and higher coercive components (Ca and Cb, 593 
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respectively). The paramagnetic contribution is represented by the separation of the 594 
ferromagnetic components (blue and green lines) from the whole susceptibility spectrum. (c) and 595 

(d) are the Mrs/Ms ratios (calculated) for the Ca and Cb components. 596 

 597 

Both Ca and Cb components of  the two sets of samples plot mainly between the SD and 598 

MD fields of the Day plot diagram (Day et al., 1977; D. J. Dunlop, 2002). In this diagram, 599 

smaller grain sizes tend to have higher Mrs/Ms ratios. Ca component (whose Mrs/Ms ratios are 600 

below 0.2 and are greater than 0.02) would be represented by larger grain sizes within the PSD 601 

threshold (the yet poorly understood multivortex state) or in within the mixing trends of MD+SP 602 
particles. The Mrs/Ms ratios of both components vary widely because of the authigenic origin of 603 

these particles. The compositional heterogeneities in the sedimentary column affects how much 604 

iron is available within a region. This leads to different sizes of particles in different locations 605 

(depending on how fast the chemical reactions occur and the thermodynamic favorability of their 606 

growth). If Ca component is a mixture between MD+SP particles of magnetite, the presence of 607 

coarser grains (MD) is supported by the small 𝐵  values modelled for this component, which 608 

could explain the viscous component observed in the thermal demagnetization procedures 609 

(Component A, Figure 8a, e). 610 

Cb component (whose Mrs/Ms ratios are usually greater than 0.2) would correspond to 611 

either a mixture of SP+SD particles (following the SP+SD mixing trends) or could represent a 612 

population with a mixture between equidimensional SD particles + the thinnest particles in the 613 

PSD range. Therefore, the assemblage of particles forming the Cb component are probablythe 614 

most stable carries of remanence in these carbonate rocks. Some of the ratios of Cb component 615 

tresspass the 0.5 threshold of the Dayplot diagram. In non-equidimensional grains, where the 616 

magnetization is strongly controlled by uniaxial shape anisotropy, the Mrs/Ms ratio for an SD 617 

particle is 0.5. But in equidimensional particles, whose magnetization is controlled by 618 

magnetocrystalline anisotropy, the Mrs/Ms ratio can be significantly higher (e.g., 0.866 for 619 

magnetite - Dunlop, 2002). 620 

Remagnetized carbonate rocks usually plot along the power law trend controlled by cubic 621 

magnetocrystalline anisotropy (Jackson & Swanson-Hysell, 2012). This behavior was originally 622 

attributed to an authigenic origin for magnetite resulting in equidimensional grains lacking 623 
significant shape anisotropy (Jackson, 1990). Jackson and Swanson-Hysell (2012) have shown, 624 

however, that such interpretation is not necessarily correct. They attribute Mrs/Ms ratios above 625 

the 0.5 threshold in previous work of Jackson (1990) as experimental bias caused by a maximum 626 

applied field not being enough to saturate the samples (which was around 0.3 T in most of the 627 

samples) and experimentally show that shape anisotropy was actually dominant in their 628 

remagnetized carbonate samples. Furthermore, these power law trends (when bellow the 0.5 629 

threshold) might as well match with SD+SP mixture trends (as compared with Dunlop, 2002). 630 

However, in our work, we apply a maximum field of 1T and provide a high-field saturation test 631 

following Fabian (2006) to attest that both Ca and Cb components are saturated in our maximum 632 

applied field. Euhedral and spheroidal iron oxides have been detected in our samples through 633 

previous SEM-EDS studies (D’Agrella-filho et al., 2000), so we suggest that a considerable 634 

amount of these could indeed contribute to the anomalous Mrs/Ms ratios calculated for the Cb 635 

component.  636 
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The magnetic data suggest that the major cause in the distorted hysteresis loops in the 637 
Sete Lagoas and Salitre formations are populations of magnetic minerals with distinct 638 

coercivities. These different populations can be different magnetic minerals, for example 639 

magnetite and pyrrhotite, or different grain sizes of magnetite. For instance, high frequency 640 

dependent susceptibilities reported by previous works suggest that superparamagnetic particles 641 

likely contribute to the magnetic mineralogy of these rocks. But as argued in section 3.0, the 642 

hysteresis loops are disturbed only when the fraction of superparamagnetic particles is 643 

significantly high, which might be the case for Ca components with the lowest coercivity values. 644 

An important clue to understanding the remagnetization in these carbonate rocks comes 645 

from further information obtained from the modeling with Hist-unmixing: the significant 646 

paramagnetic component apparent in samples from both the Sete-Lagoas and Salitre formations, 647 

which surpass the ferromagnetic contribution. This paramagnetic contribution is likely due to a 648 

high content of clay-minerals in these rocks (Callaway & McAtee, 1985; Potter et al., 2004). 649 

Clay-transformations (smectite-to-illite) are known to release Fe-ions in the medium, which 650 

might allow the growth of authigenic ferromagnetic phases (Katz et al., 1998; Tohver et al., 651 

2008) responsible for chemical remagnetization. Therefore, investigating the origin of this large 652 

paramagnetic response might help to better constrain the geological processes responsible for the 653 

large scale remagnetization in these two basins of the São Francisco Craton.  654 

 655 
 656 

5 Conclusions 657 

We have presented a python-based open-source code to perform a parametric unmixing 658 
of magnetization curves, in order to separate susceptibility components of distorted hysteresis 659 

curves. Our phenomenological model is based on a modified gamma-Cauchy exponential 660 

function, whose advantage lies in their capacity to explain variable morphologies, from 661 

symmetrical, right or left skewed curves, and covering a wide range of kurtosis.  662 

The Hist-unmix is an easy to use python application includes a pre-processing interface, 663 
where the lower branch hysteresis data is filtered through a moving average. Forward models 664 

allow the user to adjust up to three ferromagnetic components and to estimate dia/paramagnetic 665 

contributions. The parameters controlling each component can be subsequently optimized 666 

through a Levenberg-Marquardt method. The mean coercivity of ferromagnetic components can 667 

be fixed using a priori information, in order to constrain the solutions. Uncertainty of each 668 

optimized parameter is estimated for the final inverse model using a Monte Carlo error 669 

propagation (following the reduced chi-squared statistic of the inversion procedure) and its 670 

variance is compared to the observed data in order to verify if they are distinguishable at 95% 671 

confidence level (Two-tailed F-test). We also implement a test to verify (and correct, if 672 

necessary) the magnetization saturation values of each component, by modifying the high-field 673 

saturation approach of Fabian (2006). 674 

Hist-unmix was applied to separate susceptibility components from wasp-waisted and 675 

potbellied curves from real data from Neoproterozoic remagnetized carbonate rocks. The 676 

inversion results clearly distinguished two ferromagnetic components: a less coercive (Ca) and a 677 

more coercive (Cb) one. Together with the results of Lowrie tests, we attribute these components, 678 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

respectively to magnetite and monoclinic pyrrhotite, with different grain sizes. Our unmixing 679 
results contribute to the understanding of the natural remanence bearing of these rocks. The 680 

inversion also shows an important paramagnetic influence that completely overcomes the 681 

diamagnetic carbonate matrix and even the ferromagnetic components. The latter possibly offers 682 

a new hint that the large-scale magnetization event in the São Francisco Craton may have 683 

involved clay-transformations as sources of iron to authigenic minerals. 684 
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