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Abstract

Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quantifying their financial impacts remains

a significant methodological challenge. It is therefore of high societal value to synthetically simulate TC tracks and winds to

assess potential impacts along with their probability distributions for e.g., land use planning and financial risk management.

A common approach to generate TC tracks is to apply storm detection methodologies to climate model output, but such an

approach is sensitive to the method and parameterization used and tends to underestimate intense TCs. We present a global

TC model that melds statistical modeling, to capture historical risk features, with a climate model large ensemble, to generate

large samples of physically-coherent TC seasons. Integrating statistical and physical methods, the model is probabilistic and

consistent with the physics of how TCs develop. The model includes frequency and location of cyclogenesis, full trajectories with

maximum sustained winds and the entire wind structure along each track for the six typical cyclogenesis basins from IBTrACS.

Being an important driver of TCs globally, we also integrate ENSO effects in key components of the model. The global TC

model thus belongs to a recent strand of literature that combines probabilistic and physical approaches to TC track generation.

As an application of the model, we show global risk maps for direct and indirect hits expressed in terms of return periods. The

global TC model can be of interest to climate and environmental scientists, economists and financial risk managers.
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Key Points:9

• We present a global tropical cyclone (TC) risk model built upon a climate model10

large ensemble that can be used for risk analysis.11

• We integrate ENSO into our model since it is a strong driver of storm annual fre-12

quency, cyclogenesis, trajectories, and intensity.13

• We present global risk maps consistent with statistical features of TC components14

and coherent with a global climate model.15
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Abstract16

Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quan-17

tifying their financial impacts remains a significant methodological challenge. It is there-18

fore of high societal value to synthetically simulate TC tracks and winds to assess po-19

tential impacts along with their probability distributions for e.g., land use planning and20

financial risk management. A common approach to generate TC tracks is to apply storm21

detection methodologies to climate model output, but such an approach is sensitive to22

the method and parameterization used and tends to underestimate intense TCs. We present23

a global TC model that melds statistical modeling, to capture historical risk features,24

with a climate model large ensemble, to generate large samples of physically-coherent25

TC seasons. Integrating statistical and physical methods, the model is probabilistic and26

consistent with the physics of how TCs develop. The model includes frequency and lo-27

cation of cyclogenesis, full trajectories with maximum sustained winds and the entire wind28

structure along each track for the six typical cyclogenesis basins from IBTrACS. Being29

an important driver of TCs globally, we also integrate ENSO effects in key components30

of the model. The global TC model thus belongs to a recent strand of literature that com-31

bines probabilistic and physical approaches to TC track generation. As an application32

of the model, we show global risk maps for direct and indirect hits expressed in terms33

of return periods. The global TC model can be of interest to climate and environmen-34

tal scientists, economists and financial risk managers.35

Plain Language Summary36

Tropical cyclones (TCs) are among the most destructive natural hazards and yet,37

quantifying their financial impacts remains a difficult task. Being able to randomly sim-38

ulate TCs and their features (such as wind speed) with mathematical models is there-39

fore critical to build scenarios (and their corresponding probability) for land use plan-40

ning and financial risk management. A common approach is to simulate TCs by track-41

ing them directly in climate model outputs but this often underestimates the frequency42

of intense TCs while being computationally costly overall to generate a large number of43

events. For these reasons, many authors have looked into alternative approaches that44

replicate key physical features of TCs but rather using statistical models that are much45

less computationally demanding. This paper therefore presents a global TC model that46

leverages the strengths of both statistical and climate models to simulate a large num-47

ber of TCs whose features are consistent with the physics and observations. As an im-48

portant global phenomenon that affects TCs globally, we also integrate in our model the49

effects of El Niño. The paper focuses on the methodology and validation of each model50

component and concludes with global risk maps for direct and indirect hits.51

1 Introduction52

Tropical cyclones (TCs) consistently rank as one of the most significant climate ex-53

tremes (Easterling et al., 2000), both in terms of casualties and economic losses (CRED,54

2021; UNDRR, 2020). Coastal communities, local and regional stakeholders, and the in-55

surance and reinsurance industry have first-hand experience of the adverse effects of trop-56

ical cyclones. However, modelling the impacts of TCs remains an important challenge57

for risk management (UNEP, 2019; Fiedler et al., 2021). Natural patterns of interannual58

climate variability, such as the El Niño-Southern Oscillation (ENSO), modulate TC fea-59

tures such as annual frequency, cyclogenesis, intensity, and duration over basins world-60

wide (Lin et al., 2020). The short observational records, the rarity of storms, and sig-61

nificant global variability in vulnerability and exposure contribute to large and complex62

uncertainties in global risk analyses. Moreover, climate change has the potential to per-63

turb atmospheric and oceanic features that drive tropical cyclone activity (Knutson et64

al., 2020). In fact, a consensus is growing towards an increased likelihood of more intense65
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and rainy storms, as well as an increased risk of flooding due to sea level rise (Seneviratne66

et al., 2021).67

Climate impacts are commonly studied through the lens of general circulation mod-68

els (GCMs) (Warszawski et al., 2013). However, when using climate model output, the69

frequency of tropical storms is sensitive to the method used to detect storm tracks (Roberts70

et al., 2020), and intensities are typically weaker than observed, with very intense storms71

being difficult to reproduce (Knutson et al., 2020). Although these issues improve with72

increasing model resolution (Caron et al., 2011; Strachan et al., 2013; Kreussler et al.,73

2021), climate models still have biases in their cyclogenesis locations, which, when com-74

bined with biases in the steering flows, make it difficult to reproduce observed landfalling75

statistics and thus render them unsuitable for risk modeling (Roberts et al., 2020). As76

such, purely physical approaches are not currently used in risk modeling applications,77

which require an accurate representation of observed tropical cyclone risk, and the abil-78

ity to replicate the impact of extreme events, the latter necessitating a large number of79

simulations.80

Risk modeling of tropical cyclone activity strives to provide an accurate represen-81

tation of the potential damage associated with TCs over a given period of time. This82

can range from one year for underwriting in the (re)insurance industry, to years and decades83

for land use planning, and strategic policy- and decision-making. To maintain fidelity84

to historical observations, in particular for challenging features such as extreme winds85

and landfall rates, statistical models of storm frequency, cyclogenesis location, trajec-86

tory, intensity (maximum sustained winds and/or pressure), and size, are typically com-87

bined to represent the risk-driving components (Lee et al., 2018; Bloemendaal et al., 2020).88

This approach expands upon the historical record by generating a large number of trop-89

ical cyclone events over multiple years. Beginning with Vickery et al. (2000), studies have90

included environmental information from observational or reanalysis products as predic-91

tor variables to better represent the spatiotemporal variability of tropical cyclone com-92

ponents. Atmospheric reanalysis products in particular are increasingly used to build93

statistical and prognostic models (Emanuel, 2017; Lee et al., 2018; Bloemendaal et al.,94

2020).95

TC risk models have long been developed by the catastrophe modelling industry,96

but a few of these models have appeared recently in the scientific literature. An ambi-97

tious intercomparison project of such TC models has emerged lately in Meiler et al. (2022).98

The authors analyzed the MIT (Emanuel et al., 2006, 2008), CHAZ (Lee et al., 2018),99

and STORM (Bloemendaal et al., 2020) models coupled with CLIMADA (Aznar-Siguan100

& Bresch, 2019) with the goal to simulate and compare economic damage due to winds101

under the present climate. The intercomparison found large variability between the par-102

ticipating models, and highlighted differences of approximately an order of magnitude103

in dollar-value impacts for low probability storms (1 in 10 years and rarer) and storms104

in basins with low annual frequency. We can also find applications of MIT, CHAZ and105

STORM models with CMIP5/6 climate models under both present and future climates106

in Emanuel (2013); Lee et al. (2020); Bloemendaal et al. (2022).107

Here, we present a global TC wind risk model with statistical-dynamical compo-108

nents that is used in conjunction with a climate model large ensemble to generate large109

samples of TC seasons. Built using both statistical and physical methods, the model is110

probabilistic, consistent with the physics of tropical cyclones, and therefore highly flex-111

ible in nature. ENSO, which has a strong influence on TC activity in multiple basins,112

is used to define several model components and link statistical approaches to the envi-113

ronmental variables provided by a climate model (Bell et al., 2014). We connect the sta-114

tistical and climate-driven aspects of our model by building statistically-generated tra-115

jectories and then calculating the intensity by means of Emanuel (2017). This approach116

couples TC model behaviour to the climate model’s environment, while remaining faith-117

ful to the features of observed tracks. We also apply a post-processing methodology to118
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Figure 1: Global tropical cyclone model schematic detailing the components of the (1)
the event set generation (left-hand side) and (2) the catalog generation (right-hand side).

the resulting storm intensity values to correct biases induced by the climate model. Fi-119

nally, we calibrate the Willoughby et al. (2006) wind structure model for each cycloge-120

nesis basin, thus providing a complete tropical cyclone wind model consistent with the121

present climate.122

The output from our TC model consists of two components: 1) the event sets, and123

2) the annual catalogs. Each event set is a fixed set of trajectories, with one set for ev-124

ery member and year of the climate model large ensemble. Annual catalogs are obtained125

by randomly sampling the trajectories from the event sets in accordance with the an-126

nual frequency of TCs in any given basin. Our overall model is in line with those anal-127

ysed in Meiler et al. (2022) (MIT, CHAZ and STORM) and we will therefore borrow their128

nomenclature to compare each of our model’s components with the latter. The model129

components and key steps are summarized in Figure 1.130

The paper is structured as follows. Section 2 describes each model component, in-131

cluding statistical fits and simulations steps, leading to the generation of event sets (as132

shown on the left-hand side of Figure 1). Section 3 presents the annual frequency com-133

ponent and algorithm to generate annual catalogs (as shown on the right-hand side of134

Figure 1). We provide results and assess the quality of the global TC model in Section135

4. Finally, we present risk maps expressed in terms of return periods in Section 5, and136

summarize key findings and conclude the paper in Section 6.137

2 Event sets138

This section focuses on the methodological steps leading to the construction of one139

event set per member and year (member-year or MY) of the climate model large ensem-140

ble. The underlying GCM is first presented in Section 2.1. Then, we present the mod-141

elling assumptions and fitting steps for each of the cyclogenesis (Section 2.2), trajectory142

(Section 2.3), intensity (Section 2.4), and size and radial profile (Section 2.5) components.143

We conclude this section with the simulation algorithm (Section 2.6) and the post-processing144

steps (Section 2.7) that reduce biases in the event sets. Whereas this section solely fo-145
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cuses on model features, calibration and simulation, we present in Section 4 model val-146

idation and evaluation results for the components or combination thereof.147

2.1 Climate forcing148

The global TC model is forced by the climate model output from the NCAR Com-149

munity Earth System Model Large Ensemble (NCAR CESM-LE) (Kay et al., 2015) (K2015150

from here on). As such, for a given MY (1600 or 40 members of 40 years in total tak-151

ing model years between 1981 and 2020), we use the simulated atmospheric conditions152

to generate a specific event set and annual catalog over each basin. The climate model153

output therefore influences cyclogenesis location (through the corresponding ENSO phase),154

the trajectory (using the corresponding ENSO index) and wind speed (using the out-155

put of the CESM to feed the FAST model from Emanuel (2017), see Section 2.4). As156

a result, we are not trying to detect tropical cyclones from a GCM but are instead us-157

ing the output from the NCAR CESM-LE to identify environments favorable to TC de-158

velopment and simulate how a TC would evolve and propagate in this environment.159

This approach of forcing a climate model into a set of statistical models is simi-160

lar to the original CHAZ model (Lee et al., 2018) which was forced with the ERA5 re-161

analysis, and Lee et al. (2020) which used CMIP5 models. The methodology is however162

significantly different from the STORM model which is fully stochastic and has no ex-163

plicit forcing from climate models, and from the MIT model which is mostly physically164

driven.165

2.2 Cyclogenesis location166

Cyclogenesis location is defined as the first point of each trajectory as provided in167

the IBTrACS 4.0 database (Knapp et al., 2010, 2018). We consider all trajectories from168

the 1981 season to the present (IBTrACS dataset accessed June 27, 2021) with a life-169

time maximum intensity (LMI) of at least tropical storm intensity (18 ms−1). We fol-170

low the basin definitions from IBTrACS; that is, we analyze cyclogenesis locations for171

the North Atlantic (NA), Eastern North Pacific (EP, which includes the Central Pacific172

region), Western North Pacific (WP), North Indian (NI), South Pacific (SP) and South173

Indian (SI). The South Atlantic (SA) basin is therefore excluded.174

We assume cyclogenesis is influenced by ENSO and use the ENSO phase (El Niño,175

Neutral and La Niña) as a driver of cyclogenesis location. We employ the Japan Mete-176

orological Agency Sea Surface Temperature Anomaly index (ENSO JMA SSTA) because177

it performs well in selecting known ENSO phases. The index is defined in terms of the178

monthly average sea surface temperature anomaly over the Niño 3 region (4°N to 4°S,179

150°W to 90°W). The anomaly index must be more (less) than 0.5°C (-0.5°C) over 6 con-180

secutive 5-month periods to identify an El Niño (La Niña) (Bove et al., 1998).181

Cyclogenesis locations are modeled using an inhomogeneous spatial Poisson point182

process. The spatial rate of cyclogenesis events is first calibrated to IBTrACS (longitude183

and latitude coordinates) for each phase and basin. It is computed as the generation rate184

of storms over a 2D (latitude-longitude) grid representing the basin, and is smoothed us-185

ing a Gaussian kernel with a large bandwidth to allow for the potential formation of cy-186

clones in rarer regions (standard deviation used as bandwidth of 5). Figure 2 (in Sec-187

tion 4) shows the generation rate for the North Atlantic and West Pacific for each ENSO188

phase (a similar plot is provided for each basin in the Supporting Information).189

To simulate cyclogenesis locations, we first determine the ENSO phases in the CESM-190

LE. We follow the methodology of Bove et al. (1998), using sea surface temperature out-191

put from the CESM-LE to calculate the monthly ENSO JMA SSTA index and deter-192

mine the ENSO phase for each MY. We apply the composite approach of Bell et al. (2014),193

which associates tropical cyclone seasons in the Northern Hemisphere (May-November)194
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to the following ENSO event, and Southern Hemisphere seasons (October-May) to the195

ongoing ENSO event. Given the ENSO phase, we sample from an inhomogeneous spa-196

tial Poisson point process whose generation rate is that which was calibrated empirically.197

Cyclogenesis in the original MIT model is based upon a random seeding approach198

which randomly draws locations in each cyclogenesis basin. To improve acceptance rates199

of cyclones, the CHAZ model therefore integrates the Tropical Cyclone Genesis Index200

(TCGI). The STORM cyclogenesis component is entirely empirical, randomly sampling201

in each grid cell according to observed monthly cyclogenesis rates. Our cyclogenesis com-202

ponent is therefore a hybrid between CHAZ and STORM whose cyclogenesis rate is spa-203

tially smoothed based upon observations for each ENSO phase and simulated locations204

are continuous in space, rather than fixed at the center of grid cells.205

2.3 Trajectory206

Storm trajectories are defined in terms of their zonal (easterly or westerly) and merid-207

ional (northerly or southerly) components for each trajectory segment. The trajectory208

model is built upon an inhomogeneous two-dimensional (2-D) Brownian motion. This209

approach generalizes trajectory models based on Markov chains on a 2-D grid (Emanuel210

et al., 2006; Nederhoff et al., 2021) while providing a stochastic representation of the beta211

and advection model (MIT, CHAZ). The underlying Brownian motion needs to be in-212

homogeneous to capture the Coriolis effect and steering winds, while being influenced213

by ENSO. We therefore model meridional and zonal displacements (or equivalently the214

angle and speed) of tropical cyclones using correlated normal distributions whose means215

and standard deviations are different per latitudinal band and ENSO index.216

Fitting of the trajectory component is based upon IBTrACS using the same un-217

derlying tracks as in Section 2.2. The dataset represents storm movement over time steps218

of 6 hours. To capture the latitude-dependent structural features of tropical cyclone tra-219

jectories, displacements are first divided into latitudinal bands of at least 2 degrees, such220

that there are at least 30 data points (30 6-hour segments in IBTrACS) in each band.221

For each latitudinal band, we run linear regression models for both the meridional and222

zonal displacements whose sole predictor variable is the observed monthly ENSO JMA223

SSTA index (Bove et al., 1998). Standard deviations and correlations are then obtained224

from the residuals of the regressions. The overall approach is therefore rooted in James225

and Mason (2005) and similar to STORM, but instead we use smaller latitudinal bins,226

integrate ENSO in the regression equations and include correlations in the innovations227

to replicate the speed and angle structure.228

To simulate a full trajectory, we first compute the ENSO index taken from the cho-229

sen MY of the NCAR CESM-LE and randomly sample cyclogenesis location knowing230

the ENSO phase and basin. Based on the corresponding latitudinal band and ENSO in-231

dex, we sample meridional and zonal displacements from the corresponding bivariate nor-232

mal distribution. This therefore provides a new location for the storm 6 hours later, and233

based on the latter, we sample new meridional and zonal displacements, and so on.234

2.4 Intensity235

The intensity model is based on the FAST (Emanuel, 2017) tropical cyclone wind236

simulator, which was designed to simulate large samples of tropical cyclone events. The237

model is defined by a set of 2 coupled nonlinear ordinary differential equations with sur-238

face circular wind speed and inner core moisture as prognostic variables. The two equa-239

tions describe their evolution in terms of ocean interaction, ventilation, dissipative heat-240

ing, and the pressure dependence of the surface saturation mixing ratio. These processes241

are not constructed from first principles but founded on empirical developments (Schade242

& Emanuel, 1999; Emanuel & Zhang, 2017) with the CHIPS ocean-atmosphere tropi-243
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cal cyclone model (Emanuel et al., 2004). FAST runs at speeds comparable to statisti-244

cal models and has a performance comparable to the CHIPS model (Emanuel, 2017) which245

was used in the MIT model.246

FAST requires potential intensity, vertical wind shear, storm translation speed, mixed247

layer depth, sub-mixed layer thermal stratification, and ocean bathymetry as input vari-248

ables to represent tropical cyclone wind speed evolution. The atmospheric and oceanic249

input quantities determine the surface circular wind speed, whereas the bathymetry is250

used to represent interaction with the coast and landfall. Here, we use the output from251

each MY of the NCAR CESM-LE to compute maximum sustained wind speed along each252

simulated trajectory (the previous two steps). Table 1 shows the NCAR-CESM1 vari-253

ables from the CESM-LE experiment used to calculate these forcing quantities.254

Component Variable Reference

Vertical wind shear
Zonal wind (U, 250 hPa and 850 hPa) K2015
Meridional wind (V, 250 hPa and 850 hPa) K2015

Potential Intensity
Atmospheric temperature (T) K2015
Sea surface temperature (T) K2015
Specific humidity (Q) K2015
Surface pressure (PS) K2015

Mixed Layer Depth
Ocean temperature (TEMP) K2015

Sub-Mixed Layer Thermal Stratification
Ocean temperature (TEMP) K2015

Bathymetry
ETOPO1 Global Relief Model Amante and Eakins (2009); NGDC (2009)

Table 1: Datasets used for tropical cyclone intensity component.

We follow Bister and Emanuel (2002) to calculate monthly maps of potential in-255

tensity. Mixed layer depth is taken to be the depth at which temperature is 1◦C less than256

the sea surface temperature (Wagner, 1996; Kara et al., 2000) and sub-mixed layer ther-257

mal stratification is calculated from Emanuel (2015) by taking the vertical temperature258

gradient between the mixed layer depth and 100 meters below it. We use the ETOPO1259

Global Relief Model (Amante & Eakins, 2009; NGDC, 2009) to represent bathymetry260

on a 1 arc-minute (∼1.8 km) grid. This allows us to model the TC interaction with the261

coast and landfall at sufficiently high resolution, instead of using the CESM-LE bathymetry262

which is at a nominal resolution of ∼100 km. When the center of a tropical cyclone is263

located over the ocean based on the ETOPO1 grid but is over land based on the lower-264

resolution CESM grid, the oceanic CESM quantities (mixed layer depth and sub-mixed265

layer thermal stratification) are not defined. In this case, we calculate tropical cyclone266

intensity by using the most recent values of mixed layer depth and sub-mixed layer ther-267

mal stratification.268

Time series of vertical shear, potential intensity, mixed layer depth, and sub-mixed269

layer thermal stratification are determined from their monthly grids depending on the270

location of the center of the storm and the day of year. For vertical shear and potential271

intensity, we apply a multilinear interpolation in space and time. Mixed layer depth and272

sub-mixed layer thermal stratification for each point of the storm track take the monthly273

mean value of the grid point of the storm center, since they change little from day to day274
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(Emanuel, 2017). For bathymetry, we also apply a multilinear interpolation in space to275

determine the bathymetry at the storm center.276

Storm translation speed is calculated from the displacement components of the sim-277

ulated trajectory. We follow Demaria and Kaplan (1994) to compute the zonal (U) and278

meridional (V ) components of winds at 850 and 250 hPa and the magnitude of the ver-279

tical wind shear.280

To run the FAST model, we interpolate linearly from the 6-hour trajectory timestep281

to the 4-minute timestep required for FAST. Following Emanuel (2017), we add 60% of282

the simulated translation velocity (from the trajectory component) to the storm-relative283

maximum intensity to arrive at the ground-relative peak wind speed (Emanuel & Jag-284

ger, 2010). The intensity model is applied to every trajectory of the event set based on285

the prevailing conditions of the corresponding MY. This physics-based component is there-286

fore deterministic in the sense that two identical trajectories will yield identical winds287

along their tracks, but a slightly different trajectory might be enough to yield different288

winds.289

The models from the intercomparison project of Meiler et al. (2022) each use dif-290

ferent approaches to represent TC intensity. The MIT wind model is based upon the afore-291

mentioned CHIPS model. The CHAZ TC intensity is built on autoregressive models (Lee292

et al., 2015, 2016) whose predictors are derived from environmental conditions (includ-293

ing e.g., potential intensity, vertical wind shear, and mid-level relative humidity). In this294

case, simulated intensity is obtained by forcing the autoregressive models with a reanal-295

ysis or climate model. STORM randomly generates pressure change along the track with296

an autoregressive model similar to James and Mason (2005). Over the ocean, an empir-297

ical wind-pressure relationship is used to deduce wind speed, whereas overland, wind de-298

cays according to Kaplan and DeMaria (1995). The relationships for the STORM inten-299

sity component are fitted with observations (IBTrACS and reanalysis).300

2.5 Size and radial profile301

Important progress has been made in the state of knowledge of tropical cyclone size302

on both the empirical (Dean et al., 2009) and theoretical (Chavas & Emanuel, 2014) fronts,303

but key challenges remain to improve the understanding of its environmental determi-304

nants (Kilroy et al., 2016). Considering this, we take an empirical approach to represent305

tropical cyclone size and radial profiles. Given empirical differences in the distributions306

of size and radial profile in different basins, such as storms being largest in the West Pa-307

cific and smallest in the East Pacific (Chan & Chan, 2015), we recalibrate Willoughby308

et al. (2006) for each basin using IBTrACS’ wind radii data available since approximately309

2000.310

Willoughby et al. (2006) assume that the log radius of maximum sustained wind311

(log(Rmax) or RMW) is a linear function of maximum sustained winds (Vmax) and lat-312

itude (φ). The latter three variables are directly available in IBTrACS, which allows a313

linear regression model to be fit in each basin.314

The next step is the calibration of the radial profile. Willoughby et al. (2006) showed315

that for many tropical cyclones, there might be a different rate of decay in the radial pro-316

file, especially away from the center. The radial profile component of our global model317

borrows the dual-exponential functional form from Willoughby et al. (2006) (Eq. 4). But318

given that IBTrACS only provides wind radii at 34, 50, and 60 kt for the NE, NW, SE,319

SW quadrants, not all parameters could be calibrated. As such, we fixed X1 = 300 and320

X2 = 30 and defined A as321

A = Φ(β0 + β1Vmax + β2φ) (1)

where Φ is the cumulative normal distribution function (probit function) that transforms322

an input in R to a value within [0, 1]. Both exponential decaying functions are therefore323
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used and given a weight of A (that cannot be negative or above 1 in our model) that varies324

according to wind speed and latitude. To find the parameters β0, β1 and β2 we then min-325

imized the squared errors between Eq. 4 of Willoughby et al. (2006) and the IBTrACS326

profiles. Each observation of the radial profile takes the maximum radius over the four327

quadrants available. This process is repeated for each basin.328

Simulation of the radial wind profile at a given location begins by computing the329

prediction of Rmax from the linear regression using the simulated maximum winds from330

the intensity component, and latitude from the location of the trajectory. We then sam-331

ple one normal random variable for the entire track and add noise to Rmax. This will sim-332

ulate a radius for an entire track that is consistently above or below the mean, depend-333

ing on the normal variate. This is done to avoid an accordion effect where the radius con-334

stantly increases or decreases around its predicted value over the track. Then, based upon335

the sampled Rmax, in addition to maximum winds and latitude, we deduce the entire wind336

profile from the dual-exponential function.337

Modeling of the radial wind profile differs significantly across the models of the in-338

tercomparison project. Whereas the entire wind profile is provided by CHIPS in the MIT339

model, no wind profile is included by default with CHAZ. STORM simulates the RMW340

by sampling from observations depending on pressure in each of three stages: at gene-341

sis, peak intensity and dissipation. To overcome the discrepancies in available wind pro-342

files, Meiler et al. (2022) couple each model with the same parametric wind field model343

from Holland (2008).344

2.6 Algorithm345

We now describe how the components are combined to generate event sets for each346

MY of the CESM-LE (see the left-hand side of Figure 1). When used in conjunction with347

vulnerability and exposure information, each event set thus forms the basis of event loss348

tables (ELTs) used in catastrophe modelling (Mitchell-Wallace et al., 2017).349

For each basin and each of the 1600 CESM-LE member-years, we use the model350

to construct a set of accepted tropical cyclone trajectories that are consistent with the351

environmental conditions of the year in question. We refer to each of these as event sets352

that are connected by the following components:353

1. Climate forcing: Based on the environmental conditions in the selected MY and354

basin, determine the ENSO phase and index;355

2. Cyclogenesis location: Based on Step 1, simulate one cyclogenesis location from356

the ENSO-dependent cyclogenesis generation rate;357

3. Trajectory: Based on Step 1 and the simulated cyclogenesis location from Step358

2, simulate the entire trajectory (meridional and zonal displacements every 6 hours);359

4. Intensity: Initialize trajectory intensity at the cyclogenesis location with a wind360

speed of 10 ms−1, and calculate the intensity every 4 minutes using the FAST model361

over the entire trajectory with the climate model variables for the MY in ques-362

tion (Step 1). Add 60% of the translation velocity to the intensity to calculate the363

ground-relative intensity from the storm-relative intensity (Emanuel & Jagger, 2010);364

5. Acceptance/Rejection: Retain trajectory if the lifetime maximum intensity (LMI)365

is 18 ms−1 or larger. End trajectory where the storm intensity falls below 2.5 ms−1.366

If the storm is too weak and is therefore rejected, then repeat Steps 2-5;367

6. Size and wind profiles: If the trajectory has a LMI above 30 ms−1 (Cat1+ storm),368

simulate the radius of maximum wind and radial profile. We use this threshold369

since wind damage is generally negligible for storm with intensity below 30 ms−1
370

(Emanuel, 2011).371
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To yield a sufficient number of tracks in each event set for the annual catalogs of372

Section 3, we want for the typical event set to contain as many trajectories as were ob-373

served from 1981 to 2020. The number of accepted tracks in each event set is random,374

and depends on the number of cyclogenesis locations simulated (which is random and375

simulated from the cyclogenesis density per ENSO phase), the trajectory paths (which376

are random but depend on the ENSO index), and on the favorability of the environmen-377

tal conditions over the trajectories (which depend on the MY of the CESM-LE). Although378

the number of tracks is random for a given cyclogenesis density, we can increase or de-379

crease the number of accepted tracks and preserve the spatial structure of the cycloge-380

nesis densities by applying a constant multiplier. We determine the baseline number of381

accepted tracks, using the empirical cyclogenesis densities described in Section 2.2 with382

a sample of 50 event sets. Using such a multiplier, we can adjust the number of accepted383

tracks over all the event sets to be consistent with the number of observed tracks. For384

the North Atlantic basin, for example, we run the steps described above for 50 ensem-385

ble members and generate 50 event sets, and find that the mean number of accepted tra-386

jectories is 315. To therefore arrive at a mean number of tracks that is consistent with387

the 475 observed tracks over 1981-2020, we multiply the North Atlantic cyclogenesis den-388

sities by 1.5. With this adjusted cyclogenesis density, we find that the mean number of389

tracks over all of the event sets is 500.390

2.7 Post-processing391

Once we simulate full tracks for each of the 1600 MY, we observe that the global392

TC model tends to either underestimate or overestimate the relative proportions of stronger393

or weaker storms (e.g., proportion of Cat4-5 vs Cat1-3 storms when compared to obser-394

vations over 1981-2020 in Figure 9). Section 4.5 provides a detailed account of these bi-395

ases. Such biases are to be expected because the FAST intensity model is physically-based396

and of general applicability, but was forced and validated with output from the NCEP/NCAR397

Reanalysis (Kalnay et al., 1996), which by construction represents observed historical398

weather and climate conditions. The NCAR CESM-LE, on the other hand, is an ensem-399

ble of simulations from the NCAR Community Earth System model operating at a nom-400

inal resolution of ∼100 km. The NCAR CESM-LE, like other climate models, carries in-401

herent biases (Moreno-Chamarro et al., 2022), and some of these biases will impact the402

downscaled TC activity. We do not expect the intensity biases to originate from the cy-403

clogenesis and trajectory components of the model because they do not rely on output404

from CESM-LE.405

To improve simulated intensities relative to observations, we adjusted the simulated406

lifetime maximum intensity (LMI) distribution. We suggest scaling simulated tropical407

cyclone wind speeds such that the quantiles of the simulated LMI distribution (over the408

1600 MY) match observed quantiles (from IBTrACS). Such a correction is computed and409

applied in each basin using both the overall empirical LMI distribution or the empiri-410

cal LMI distribution per ENSO phase. Throughout the paper, we used both approaches,411

depending on whether the focus is on the overall TC behavior or that per ENSO phase.412

A comparison is provided in Section 4.5 (and in Figure 9).413

We opted for this uniquely post-processing approach as opposed to applying a bias-414

correction to the NCAR CESM-LE output (pre-processing) that is used as input. Bias415

corrections of climate data are widely applied, though have typically been conducted for416

a single variable and location, and as such are one-dimensional. Our use of the NCAR417

CESM-LE output, however, is highly multivariate (many climate variables) and multi-418

dimensional (many grid cells), and one-dimensional bias corrections of each climate vari-419

able required would not preserve the spatial and temporal dependence of the variables420

required.421
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Multivariate bias correction methods are gaining use, though challenges in appli-422

cability remain (François et al., 2020). The comparison of multivariate bias correction423

approaches by François et al. (2020) found that the methods did not represent tempo-424

ral properties and performed increasingly poorly for increasingly large spatial domains425

(due to the higher dimensionality of the problem). Since the relevant spatial domain for426

representing the development of TC intensity, the basin, is large and high dimensional427

(i.e., it contains a large number of grid cells), and that the temporal dependence of the428

forcing climate variables is key to the FAST model, we did not rely on a pre-processing429

approach.430

3 Annual catalogs431

Because it provides a fixed number of tracks per MY, the information provided by432

an event set is rarely enough for socioeconomic studies or for risk management applica-433

tions. The purpose of the catalog is therefore to provide a plausible representation of a434

tropical cyclone season for a given year. For each basin, member and year of the NCAR435

CESM-LE, we simulate the annual frequency of tropical cyclones based upon the con-436

ditions that prevail in the climate model output for that year and randomly sample the437

events from the corresponding event set. Repeating this process a large number of times438

creates a synthetic TC dataset whose structure replicates that of IBTrACS.439

This section focuses on the key methodological aspects of generating annual cat-440

alogs as depicted on the right-hand side of Figure 1 whereas Section 4 evaluates and val-441

idates the components (or combination thereof) of the global TC model.442

3.1 Frequency443

The annual frequency represents the number of storms whose LMI reaches at least444

18 ms−1 in a given year and basin. It is modeled with a negative binomial random vari-445

able whose mean depends upon the ENSO index. The negative binomial distribution gen-446

eralizes the Poisson distribution by allowing overdispersion; that is, the variance of the447

counts can be larger than its mean. The Poisson distribution is a special case of the neg-448

ative binomial distribution.449

For each basin, we fit a negative binomial regression with the annual JMA SSTA450

index (JMAm) (Bove et al., 1998) as the single predictor variable. For basins in the North-451

ern and Southern Hemisphere, we take the observed JMAm to be the August-September-452

October and January-February-March mean, respectively, since these months cover the453

seasonal activity peaks (Bell et al., 2014). Although the Southern Hemisphere TC sea-454

sons take place from November-April, from here on we use the term annual to describe455

TC frequency. To simulate the annual frequency, we calculate the JMAm index from the456

CESM-LE sea surface temperature, compute the parameters of the negative binomial457

distribution from the fit, and then sample from the distribution.458

Cyclogenesis location and frequency are typically intertwined components in the459

TC models of the intercomparison project. STORM sequentially samples the number460

of storms from a Poisson distribution with fixed mean, then simulates the cyclogenesis461

location of each storm. This differs however from the MIT and CHAZ models that both462

rely on randomly spatially distributed TC seeds while sampling storms until a desired463

number is attained. Whereas TC seeds are uniformly sampled in the MIT model which464

could lead to a small acceptance rate, the CHAZ model relies on the TCGI which im-465

proves its rate of acceptance. In the MIT approach, we typically aim to reach a fixed num-466

ber of storms, which is important for the production of ELTs, but in the CHAZ model,467

frequency results from the accepted number of storms which is driven by the the TCGI.468

But as Meiler et al. (2022) remark, post-processing CHAZ’s frequency of events is still469

required. In our paper, we borrow the MIT approach to generate a fixed number of storms470
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in the event set production (left-hand side of Figure 1), whereas we use a typical count471

distribution to generate consistent seasonal frequency (right-hand side of Figure 1).472

3.2 Algorithm473

To build an annual catalog, we need to follow these steps. For each MY and basin:474

1. Climate forcing: Based upon the environmental conditions observed in the selected475

MY and basin, determine the ENSO index;476

2. (Annual) Frequency: Sample the number N of tropical cyclones that reach at least477

18 ms−1 from a negative binomial distribution whose mean is based upon the ENSO478

index observed in Step 1;479

3. Resampling: Randomly select N trajectories from the corresponding event set.480

Using e.g., N = 625 simulations from the negative binomial distribution per MY,481

we get a combined number of 1 million years of events (625 times 1600) allowing for a482

better understanding of extremes. One year is made of a random number of tracks with483

their corresponding characteristics drawn from the event sets. Applying this algorithm484

thus provides the basis for year loss tables (YLTs) in typical catastrophe models (Mitchell-485

Wallace et al., 2017).486

One can also organize catalogs differently to build synthetic IBTrACS-like datasets487

of 40 years of length. Indeed, each year from the CESM has 40 different members with488

625 replications each and therefore, we get 25,000 synthetic IBTrACS-like (40 members489

times 625 simulations) datasets consistent with the climate of 1981-2020.490

4 Model evaluation and results491

In this section, we analyze the various features of the model. The analyses provided492

cover all six basins but for conciseness we only include the figures for the North Atlantic493

and West Pacific basins. The Supporting Information, provided as an interactive HTML494

document, allows the reader to view the same figures for all basins.495

4.1 Cyclogenesis Location496

Figure 2 shows the probability of cyclogenesis for tropical cyclones (with minimum497

wind speed of 18 ms−1) by ENSO phase (La Niña on the left, Neutral in the middle, El498

Niño on the right) over the North Atlantic (top row) and West Pacific basins (bottom499

row). The shades of color represent the spatial probability density conditional upon hav-500

ing cyclogenesis. The darker the color, the more likely cyclogenesis is to occur at that501

particular location. The bandwidth chosen in the kernel density smoothing allows cy-502

clogenesis in realistic but unobserved areas.503

Based on Figure 2 and the Supporting Information, we find that cyclogenesis is more504

likely to occur over the East Coast of the US during El Niño, while cyclogenesis stretches505

westward in the Eastern Pacific and eastward in the West Pacific. Although there are506

important uncertainties since there are few TCs by ENSO phase in the North Indian basin,507

we find that cyclogenesis is more likely along the East Coast of India, and that TCs on508

the West Coast of India are more likely to emerge during El Niño. Cyclogenesis moves509

away from Australia during El Niño in the South Pacific and South Indian basins. The510

model therefore simulates cyclogenesis locations in accordance with the colored densi-511

ties shown in Figure 2. It is important to note however the sample size spans only 40512

years (study period over 1981-2020), with a relatively limited number of years in each513

El Niño or La Niña events.514
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Figure 2: Probability of cyclogenesis in the North Atlantic (top) and West Pacific (bot-
tom) per ENSO phase (Left: La Niña; Center: Neutral; Right: El Niño)

4.2 Trajectory515

The zonal and meridional displacements in each latitudinal band are fitted with516

linear regressions, each with the ENSO index as predictor. The left-hand side of Figure517

3 (Figure 4) shows the coefficients of the regressions (y-axis, km per degree C of ENSO518

anomaly) for each latitudinal band (x-axis, degrees, relative to the Equator) in the North519

Atlantic (West Pacific) basin for zonal (top row) and meridional (bottom row) displace-520

ments. The right-hand side of Figure 3 (Figure 4) shows the p-value of the ENSO pre-521

dictor for each latitudinal band in the North Atlantic (West Pacific). The red horizon-522

tal lines are fixed at 10% (plain red line) and 5% (dotted red line) to determine over which523

latitudinal band ENSO exerts an influence.524

For the North Atlantic, Figure 3 shows that during El Niño (high ENSO index) years525

there is a negative relationship on meridional displacements north of 23°N, indicating526

less northerly displacements (Figure 3c). Note that the mean meridional displacement527

in the North Atlantic is northerly, but during El Niño our fits show that the displace-528

ment is less northerly (not southerly) north of 23°N. Between 11 and 19°N, the relation-529

ship is instead positive, resulting in more northerly displacements during El Niño. Zonal530

displacements in most latitudinal bands are not statistically significant (Figure 3b), in-531

dicating a weak relationship to the ENSO index.532

In the Supporting Information, we show that during El Niño years zonal and merid-533

ional displacements are less westerly and more northerly in the East Pacific between ap-534

proximately 10 and 25°N. In the North Indian basin, El Niño years have less westerly535
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Figure 3: Summary results from statistical fits for zonal and meridional displacements in
terms of the ENSO JMA index. Coefficients (left) and statistical significance (right) of the
impact of ENSO on zonal (top) and meridional (below) displacements for each latitudinal
band in the North Atlantic.
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Figure 4: Summary results from statistical fits for zonal and meridional displacements in
terms of the ENSO JMA index. Coefficients (left) and statistical significance (right) of the
impact of ENSO on zonal (top) and meridional (below) displacements for each latitudinal
band in the West Pacific.
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displacement in many latitudinal bins, but the relationship between ENSO and merid-536

ional displacements appears weak. In the South Indian, there is a strong impact during537

El Niño rendering zonal displacements less westerly between approximately 10 and 25°S,538

whereas the link between ENSO and displacements in the South Pacific appears weaker.539

4.3 Track densities540

We compute the spatial probability density of tropical cyclone tracks, which we re-541

fer to as track densities. Such spatial densities allow us to assess the location and inten-542

sity of storms in the event sets. It corresponds to the probability that the center of the543

TC passes over a grid cell, given that the TC has an intensity greater than a pre-specified544

minimum at that grid cell. Figure 5 shows the observed and simulated track densities545

for TCs with near-surface winds of least 18 ms−1. The top row shows the track density546

for model simulations with post-processing based upon the overall distribution of the LMI,547

the middle row shows the observed track density from IBTrACS, whereas the bottom548

row shows the simulated bias (red means the model overestimates track density, blue the549

opposite). The left and right columns display results for the North Atlantic and West550

Pacific, respectively.551

In all basins, the track densities from the model are similar to the observed track552

densities, thus showing the capability of the model to simulate a realistic tropical cyclone553

climatology. In the North Atlantic, the model slightly overestimates track density on the554

East Coast of the U.S. and slightly underestimates track density in the Gulf of Mexico,555

Caribbean Sea and along the main development region. Over the West Pacific, the model556

tends to slightly overestimate track density over the Philippines, Brunei and Indonesia,557

and slightly underestimate track density over Japan and China. Elsewhere, the model558

underestimates track density on the West Coast of Mexico, on the East Coast of India559

and Pakistan, over Australia and Papua New Guinea.560

We repeated this exercise for Cat4-5 storms in Figure 6. Given the anomalies are561

small relative to observations (Figure 6, bottom row), the model slightly underestimates562

observations over the Caribbean Sea, and overestimates observations along the East Coast563

of the U.S. and the Northern tip of South America. Over the West Pacific, Southern Japan,564

Coast of China and Northern Philippines, tracks are slightly underestimated whereas they565

are overestimated over Southern Philippines, Malaysia (Sarawak) and part of Indone-566

sia. Elsewhere, the model underestimates track density on the West Coast of Mexico and567

overestimates in Central America, underestimates on the East Coast of India and Pak-568

istan, over Australia and Papua New Guinea.569

We end this subsection by analyzing and comparing ENSO anomalies in track den-570

sities. Figure 7 (Figure 8) shows plots of simulated and observed anomalies for the North571

Atlantic (West Pacific) basin. For the North Atlantic, we find a clear opposite signal be-572

tween the tropics and extra-tropics, which is consistent with Goldenberg and Shapiro573

(1996), and note symmetrical patterns between La Niña and El Niño (particularly in the574

simulations). There is a positive (negative) anomaly associated with El Niño (La Niña)575

events along the East Coast of the U.S., and a positive (negative) anomaly associated576

with La Niña (El Niño) events along the Gulf of Mexico and the Caribbean seas. Although577

the simulated patterns mostly match observations during La Niña, the observed El Niño578

anomaly stretches along the East Coast, which is not the case in the simulations. The579

shape of the observed El Niño anomaly on the right with a red spot over land however580

suggests the simulations have an adequate behavior but observations may have been in-581

fluenced by a few outliers.582

The simulated positive anomaly over the Caribbean and negative anomaly in the583

extratropical North Atlantic during La Niña, and negative anomaly over the Caribbean584

during El Niño, are generally consistent with Baudouin et al. (2018). However, for the585

extratropics during El Niño, our positive anomaly is more consistent with the Modoki586
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Figure 5: Track probability density over the North Atlantic (left) and West Pacific
(right) for storms that reach at least 18 ms−1 (Tropical Storms+). Top row (a): simu-
lations from the model; Middle row (b): observations from IBTrACS; Bottom row (c):
difference between simulations and observations. The positive and negative limits of the
scale for the differences (bottom row) are the same as the maximum limit for the simula-
tions (top row) and observations (middle row). Units are probabilities and add to 1 in the
panels in the top two rows.

El Niño (Central Pacific Warming) case from Baudouin et al. (2018). This is reasonable587

since that study used over two times more tracks from Modoki El Niño years than typ-588

ical El Niño years.589

Over the West Pacific (Figure 8), anomalies highlight an eastward shift during El590

Niño and westward shift during La Niña. This is well captured by the model. The La591

Niña signal appears stronger in the observations over South East Asia and the observed592

anomaly is negative over Japan in both phases. With forty years of data and given the593

natural variability within each phase, it is likely we observe positive or negative anoma-594

lies in both phases in the observations, which is unlikely in the model.595
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Figure 6: Track probability density over the North Atlantic (left) and West Pacific
(right) for storms that reach at least 58 ms−1 (Cat4-5). Top row (a): simulations from
the model; Middle row (b): observations from IBTrACS; Bottom row (c): difference be-
tween simulations and observations. The positive and negative limits of the scale for the
differences (bottom row) are the same as the maximum limit for the simulations (top row)
and observations (middle row). Units are probabilities and add to 1 in the panels in the
top two rows.

Over the other four basins, we also observe approximate symmetrical spatial pat-596

terns in the ENSO anomalies. However, we find many areas where observed anomalies597

are positive (or negative) in both phases that are not replicated in the model: Baja Cal-598

ifornia (Eastern Pacific), Pakistan and parts of India (North Indian), East Coast of Africa599

(South Indian), North Eastern Australia (South Pacific). The sample of El Niño and La600

Niña events is relatively small, and so for basins where the ENSO signal is not as dom-601

inant, such as the South Indian and East Pacific basins, the signal will be noisy.602

Comparing spatial patterns of observed and simulated ENSO anomalies in track603

densities is a challenging exercise, heavily dependent upon the short observational record604

and the capacity of the CESM of simulating realistic spatial ENSO patterns. Although605

not shown, we also analysed the track densities using a post-processing based upon the606
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Figure 7: ENSO anomalies in track probability densities for track locations with a mini-
mum speed of 18 ms−1 over the North Atlantic.
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Figure 8: ENSO anomalies in track probability densities for track locations with a mini-
mum speed of 18 ms−1 over the West Pacific.

–20–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Basin Intercept Wind speed Latitude sigma

SI 3.9508 -0.0135 -0.0032 0.3739
SP 3.8951 -0.0138 -0.0087 0.3944
WP 3.9155 -0.0118 0.0037 0.4125
NA 3.9358 -0.0154 0.0163 0.5452
EP 3.9731 -0.0133 0.0018 0.4511
NI 4.1406 -0.0148 -0.0077 0.4136

(a) Panel A : Radius of maximum winds

Basin Intercept Wind speed Latitude RMSE

SI -1.2014 0.0172 0.0252 8.2167
SP -1.3312 0.0174 0.0195 8.7479
WP -1.1821 0.0139 -0.0143 8.7047
NA -1.1766 0.0161 -0.0221 8.3480
EP -0.9365 0.0180 -0.0325 8.6994
NI -1.3083 0.0164 -0.0139 7.8734

(b) Panel B : Dual-exponential profile

Table 2: Parameter estimates of the Willoughby model in each basin. Panel A: RMW
regression model. The columns Intercept, Wind speed and Latitude represent the corre-
sponding coefficients in the regression equation whereas sigma is the residual standard
deviation. Panel B: Dual-exponential profile. The columns Intercept, Wind speed and
Latitude represent the corresponding parameters of the dual-exponential profile and
RMSE is the root-mean-square error of the fit.

LMI distribution for each ENSO phase independently. We found that the differences be-607

tween the post-processing methods are marginal because the simulated tracks remain608

the same. The post-processing only influences the likelihood of a track of being accepted609

or rejected (minimum speed of 18 ms−1). In other words, the post-processing method610

impacts the intensity distribution (as shown in Section 4.5) but not the spatial patterns611

of ENSO anomalies, which is clearly driven by the CESM.612

4.4 Size and radial profile613

Following the methodology described in Section 2.5, we calibrated the size and ra-614

dial profile components of the model. Table 2 - Panel A shows the parameter estimates615

for the RMW model (Eq. 7a in Willoughby et al. (2006)) and the sigma from the regres-616

sions (columns) for each basin (rows). In Panel B we provide the parameters (columns)617

for Equation 1 and the root mean square error for each basin (rows) .618

We find that the ”Wind speed” coefficient is negative and statistically significant619

(p-value below 0.1%) in all basins, meaning that: (1) wind speed is a significant driver620

of RMW, and that (2) RMW tends to decrease with stronger winds. In the North At-621

lantic basin, this value is consistent with Willoughby et al. (2006) Eq. 7a (-0.0155 in the622

latter and -0.0154 in our model). The effect of latitude is negative in the two Southern623

Hemisphere basins (both strongly statistically significant), and positive in the Northern624

Hemisphere with the exception of the North Indian (all statistically significant with the625

exception of the Eastern Pacific). From a physical standpoint, this means that RMW626

increases when tropical cyclones move away from the Equator (or approach the poles).627

Again, the values are comparable with Willoughby et al. (2006) Eq. 7a (0.0169 in the628
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latter and 0.0163 in our model). The intercepts are also comparable with Willoughby629

et al. (2006). The residual standard deviations (sigmas) however indicate a large amount630

of uncertainty in the predictions. The predicted RMW can hence be multiplied by 1.5-631

2.5 (1-2 sigmas above or below the mean).632

The calibrated wind profiles are presented in Panel B. We cannot easily compare633

coefficients from our model with Willoughby et al. (2006) Eq. 10c since we forced A to634

remain in the range [0, 1]. However, we see the coefficients for the wind speed are pos-635

itive for all basins and those for the latitude are negative (positive) in the Northern (South-636

ern) Hemisphere, as expected. The signs obtained in the North Atlantic are coherent with637

those in Willoughby et al. (2006) Eq. 10c. Moreover, the RMSE is about 8 knots for all638

basins, which is relatively small considering the radii provided in IBTrACS are for 34,639

50, and 60 knots.640

4.5 Event sets641

Once all 1600 event sets are fully simulated, we have a complete set of tropical cy-642

clone tracks with their corresponding intensity. We now aim to measure the intensity dis-643

tribution; that is, the proportion of simulated tropical cyclones that reach a given Saffir-644

Simpson category.645

Figure 9 shows the proportion of tropical cyclones that reach each Saffir-Simpson646

category in IBTrACS and in the simulations, without or with post-processing. The top647

(bottom) row corresponds to the North Atlantic (West Pacific) basin. The first column648

corresponds to the empirical frequency in IBTrACS, whereas the second represents the649

model without any post-processing of the LMI. The third and fourth columns show the650

simulated relative frequencies with two variants of post-processing based upon the over-651

all basin-scale LMI distribution (3rd column) and by the LMI distribution for each ENSO652

phase (4th column). Exploring two variants of post-processing allows for the sensitiv-653

ity of the post-processing technique to be tested and allows for users to be able to choose654

event sets and catalogs that are tuned to either a general year or a particular ENSO phase.655

We observe that the model overestimates tropical storms but underestimates stronger656

storms in the North Atlantic. Applying either post-processing method significantly im-657

proves the overall intensity distribution, especially the correction method based upon the658

overall distribution of the LMI. In the Western Pacific, the model without post-processing659

behaves well but the overall post-processing method results in the best fit overall. Else-660

where, the model tends to underestimate Cat4-5 storms, but again, the bias correction661

based upon the overall LMI distribution does best at replicating observed intensities.662

4.6 Annual catalogs663

In this last subsection, we analyze the behavior of annual catalogs, which there-664

fore include the frequency component and the resampling step. We have organized the665

1 million years of events into 25,000 IBTrACS-like synthetic datasets to study the vari-666

ability that naturally occurs over 40-year histories.667

Each panel of Figure 10 provides an histogram of simulated proportions of storms668

per category as measured in each of the 25,000 synthetic datasets, whereas the vertical669

line provides the historical proportion observed in IBTrACS. For example, in the North670

Atlantic basin, approximately 25% (10%) of historical tropical cyclones have reached max-671

imum intensity of Cat1 (Cat4). However, accounting for the natural variability, the share672

of Cat1 (Cat4) storms in a 40-year history could have been 13% to 38% (0% to 25%).673

The location of the vertical lines, derived from the observed 40-year history in IBTrACS674

falls within the realistic range, which is close to the statistical mode in each category.675

This is expected given how each component has been calibrated and given the post-processing676

applied. We obtain similar results in the other five basins.677
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Figure 9: Simulated and observed intensity distribution in the North Atlantic (top)
and West Pacific (bottom). Panel 1: Observations. Panel 2: Simulations without post-
processing (p-p). Panel 3: Simulations with post-processing based upon overall distribu-
tion of LMI. Panel 4: Simulations with post-processing based upon distribution of LMI
per ENSO phase.

5 Risk Maps678

The annual catalogs can be used to produce landfall risk maps which are extremely679

useful for socioeconomic studies and financial risk management. In this section, we pro-680

vide risk maps from simulations for Cat1+ and Cat4-5 tropical cyclones. As in Section681

4, the maps shown cover the North Atlantic and West Pacific basins, whereas maps for682

all basins are provided in the Supporting Information.683

For each 2-km grid cell of land, we have computed the average annual hit rate, in-684

cluding direct and indirect hits, from Cat1+ and Cat4-5 tropical cyclones. We have used685

1 million years of events to compute return periods, as the inverse of the average annual686

hit rate. The left (right) panel of Figure 11 shows a risk map for the North Atlantic (West687

Pacific) basin for Cat1+ tropical cyclones whereas Figure 12 is similar but for Cat4-5688
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Figure 10: Relative storm frequency over 40-year ensemble members per Saffir-Simpson
category (TS to Cat5) in the North Atlantic (top) and West Pacific (bottom). The verti-
cal lines represent the observed proportions for each category (IBTrACS).

tropical cyclones. We compare Cat1+ to results from Bloemendaal et al. (2020) since689

that study is of comparable resolution and integrated storm size and a model for the ra-690

dial wind profile.691

The left panel of Figure 11 shows that the riskiest locations for landfalling Cat1+692

tropical cyclones are expectedly the American and Mexican coasts of the Gulf of Mex-693

ico, the Antilles, the U.S. coasts of Virginia and North Carolina. These regions of low694

return period (high risk) are generally comparable to Bloemendaal et al. (2020), as are695

the general reduction in risk in the coastal U.S. north of Delaware. However, our rare696

storms (return periods of 1 in 1000 to 1 in 10000 years) of Cat1+ intensity penetrate fur-697

ther into the coast, and return periods are lower (more risk) in Nova Scotia and New-698

foundland than shown in Bloemendaal et al. (2020). The riskiest locations for Cat4-5699

hurricanes (Figure 12) in the North Atlantic are the American Coast of the Gulf of Mex-700

ico, Florida and the East Coast of the U.S.701
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Figure 11: Average annual number of hits (expressed in return period) for Cat1+ storms
over the North Atlantic (left) and West Pacific (right)

In the West Pacific, the riskiest locations for Cat1+ typhoons (right panel of Fig-702

ure 11) are Southern Japan, Taiwan, East Coast of mainland China, Philippines, Viet-703

nam and Cambodia. The high risk regions are generally consistent with Bloemendaal704

et al. (2020), and we produce a similar footprint of storms’ entry into the coast from Viet-705

nam to the Chinese coast to 35°N. Our model results in higher return periods (less risk)706

in central Japan than Bloemendaal et al. (2020), and Cat1+ storms do not reach North-707

ern Japan, and Northeastern China via the Yellow Sea and Sea of Japan. Though, Cat1+708

storms in these areas are rare Cat4-5 typhoons (right panel of Figure 12), show highest709

risk in the Northeastern Philippines, the Okinawa Japanese prefecture and Taiwan.710

6 Discussion and Conclusion711

We presented a global modelling framework to randomly generate tropical cyclones712

(tracks, size and radial profile) based upon the environmental conditions simulated by713

the CESM Large Ensemble over the present climate. This framework provides a unique714

and flexible approach for studying risk management of tropical cyclones by generating715

a large ensemble of TC trajectories that are statistically coherent with observations yet716

also consistent with interannual climate variability and historical climate change.717

The model will be of value to climate and environmental scientists investigating718

interannual climate variability, event attribution, and downscaling techniques. The hit719

rates presented and supplemented by impact measures can be of use in socioeconomic720

and impact research investigating risk mitigation and trends in affected population or721

financial losses. The modeling framework is also of particular interest to the insurance722

and reinsurance industry due to its global perspective and direct link to climate mod-723

els. These two aspects will allow the insurance industry to better constrain the impacts724

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 12: Average annual number of hits (expressed in return period) for Cat4 and
above storms over the North Atlantic (left) and West Pacific (right)

of ENSO and other teleconnections on their global portfolios, which can in turn affect725

pricing, setting of reserves, and the diversification of tropical cyclone risk. The approach726

presented here also lays the required foundations for physical risk assessments of TC im-727

pacts under projected climate scenarios as will soon be required by regulating and ac-728

counting bodies globally (Financial Stability Board, 2017; Bank of England, 2019).729

The CESM Large Ensemble has proven to be an important tool to expand the short730

observational record of reliable tropical cyclone measurements. As such, it can improve731

our understanding of the effects of ENSO on tropical cyclones, and their interactions with732

the seasonal frequency, cyclogenesis and track locations, wind speeds and radii. By cal-733

ibrating the model and post-processing the outputs to past observations, it allows a faith-734

ful representation of key dynamics of tropical cyclones while leaving enough room to repli-735

cate the large spatial and temporal variability inherent to tropical cyclones. By directly736

connecting the components of tropical cyclones to the CESM Large Ensemble, the mod-737

eling framework therefore provides the appropriate foundations to assess the impacts of738

climate change on each of the tropical cyclone components. We leave such analysis for739

future research.740

Data Availability Statement741

The International Best Track Archive for Climate Stewardship (IBTrACS) dataset742

is available at: https://www.ncei.noaa.gov/products/international-best-track743

-archive (Knapp et al., 2018). The CESM Large Ensemble dataset is available at https://744

www.earthsystemgrid.org/ and the authors acknowledge CESM Large Ensemble Com-745

munity Project and supercomputing resources provided by NSF/CISL/Yellowstone (Kay746
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et al., 2015). The ETOPO1 Global Relief Model was accessed at https://www.ngdc.noaa747

.gov/mgg/global/relief/ (Amante & Eakins, 2009; NGDC, 2009).748

The Supporting Information is available on Zenodo at https://doi.org/10.5281/749

zenodo.7832839 and consists of 1) supporting figures and 2) supporting data (Carozza750

et al., 2023). The supporting figures are two HTML files that interactively display the751

figures for all basins. The supporting data contains event sets, catalogs, and an exam-752

ple analysis using the catalogs.753

Acknowledgments754

This work was supported by Mitacs through the Mitacs Accelerate program. This755

work was partially funded by AXA XL, the property & casualty and specialty risk di-756

vision of AXA. We acknowledge the support of the Fonds de recherche du Québec – Na-757
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Abstract16

Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quan-17

tifying their financial impacts remains a significant methodological challenge. It is there-18

fore of high societal value to synthetically simulate TC tracks and winds to assess po-19

tential impacts along with their probability distributions for e.g., land use planning and20

financial risk management. A common approach to generate TC tracks is to apply storm21

detection methodologies to climate model output, but such an approach is sensitive to22

the method and parameterization used and tends to underestimate intense TCs. We present23

a global TC model that melds statistical modeling, to capture historical risk features,24

with a climate model large ensemble, to generate large samples of physically-coherent25

TC seasons. Integrating statistical and physical methods, the model is probabilistic and26

consistent with the physics of how TCs develop. The model includes frequency and lo-27

cation of cyclogenesis, full trajectories with maximum sustained winds and the entire wind28

structure along each track for the six typical cyclogenesis basins from IBTrACS. Being29

an important driver of TCs globally, we also integrate ENSO effects in key components30

of the model. The global TC model thus belongs to a recent strand of literature that com-31

bines probabilistic and physical approaches to TC track generation. As an application32

of the model, we show global risk maps for direct and indirect hits expressed in terms33

of return periods. The global TC model can be of interest to climate and environmen-34

tal scientists, economists and financial risk managers.35

Plain Language Summary36

Tropical cyclones (TCs) are among the most destructive natural hazards and yet,37

quantifying their financial impacts remains a difficult task. Being able to randomly sim-38

ulate TCs and their features (such as wind speed) with mathematical models is there-39

fore critical to build scenarios (and their corresponding probability) for land use plan-40

ning and financial risk management. A common approach is to simulate TCs by track-41

ing them directly in climate model outputs but this often underestimates the frequency42

of intense TCs while being computationally costly overall to generate a large number of43

events. For these reasons, many authors have looked into alternative approaches that44

replicate key physical features of TCs but rather using statistical models that are much45

less computationally demanding. This paper therefore presents a global TC model that46

leverages the strengths of both statistical and climate models to simulate a large num-47

ber of TCs whose features are consistent with the physics and observations. As an im-48

portant global phenomenon that affects TCs globally, we also integrate in our model the49

effects of El Niño. The paper focuses on the methodology and validation of each model50

component and concludes with global risk maps for direct and indirect hits.51

1 Introduction52

Tropical cyclones (TCs) consistently rank as one of the most significant climate ex-53

tremes (Easterling et al., 2000), both in terms of casualties and economic losses (CRED,54

2021; UNDRR, 2020). Coastal communities, local and regional stakeholders, and the in-55

surance and reinsurance industry have first-hand experience of the adverse effects of trop-56

ical cyclones. However, modelling the impacts of TCs remains an important challenge57

for risk management (UNEP, 2019; Fiedler et al., 2021). Natural patterns of interannual58

climate variability, such as the El Niño-Southern Oscillation (ENSO), modulate TC fea-59

tures such as annual frequency, cyclogenesis, intensity, and duration over basins world-60

wide (Lin et al., 2020). The short observational records, the rarity of storms, and sig-61

nificant global variability in vulnerability and exposure contribute to large and complex62

uncertainties in global risk analyses. Moreover, climate change has the potential to per-63

turb atmospheric and oceanic features that drive tropical cyclone activity (Knutson et64

al., 2020). In fact, a consensus is growing towards an increased likelihood of more intense65
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and rainy storms, as well as an increased risk of flooding due to sea level rise (Seneviratne66

et al., 2021).67

Climate impacts are commonly studied through the lens of general circulation mod-68

els (GCMs) (Warszawski et al., 2013). However, when using climate model output, the69

frequency of tropical storms is sensitive to the method used to detect storm tracks (Roberts70

et al., 2020), and intensities are typically weaker than observed, with very intense storms71

being difficult to reproduce (Knutson et al., 2020). Although these issues improve with72

increasing model resolution (Caron et al., 2011; Strachan et al., 2013; Kreussler et al.,73

2021), climate models still have biases in their cyclogenesis locations, which, when com-74

bined with biases in the steering flows, make it difficult to reproduce observed landfalling75

statistics and thus render them unsuitable for risk modeling (Roberts et al., 2020). As76

such, purely physical approaches are not currently used in risk modeling applications,77

which require an accurate representation of observed tropical cyclone risk, and the abil-78

ity to replicate the impact of extreme events, the latter necessitating a large number of79

simulations.80

Risk modeling of tropical cyclone activity strives to provide an accurate represen-81

tation of the potential damage associated with TCs over a given period of time. This82

can range from one year for underwriting in the (re)insurance industry, to years and decades83

for land use planning, and strategic policy- and decision-making. To maintain fidelity84

to historical observations, in particular for challenging features such as extreme winds85

and landfall rates, statistical models of storm frequency, cyclogenesis location, trajec-86

tory, intensity (maximum sustained winds and/or pressure), and size, are typically com-87

bined to represent the risk-driving components (Lee et al., 2018; Bloemendaal et al., 2020).88

This approach expands upon the historical record by generating a large number of trop-89

ical cyclone events over multiple years. Beginning with Vickery et al. (2000), studies have90

included environmental information from observational or reanalysis products as predic-91

tor variables to better represent the spatiotemporal variability of tropical cyclone com-92

ponents. Atmospheric reanalysis products in particular are increasingly used to build93

statistical and prognostic models (Emanuel, 2017; Lee et al., 2018; Bloemendaal et al.,94

2020).95

TC risk models have long been developed by the catastrophe modelling industry,96

but a few of these models have appeared recently in the scientific literature. An ambi-97

tious intercomparison project of such TC models has emerged lately in Meiler et al. (2022).98

The authors analyzed the MIT (Emanuel et al., 2006, 2008), CHAZ (Lee et al., 2018),99

and STORM (Bloemendaal et al., 2020) models coupled with CLIMADA (Aznar-Siguan100

& Bresch, 2019) with the goal to simulate and compare economic damage due to winds101

under the present climate. The intercomparison found large variability between the par-102

ticipating models, and highlighted differences of approximately an order of magnitude103

in dollar-value impacts for low probability storms (1 in 10 years and rarer) and storms104

in basins with low annual frequency. We can also find applications of MIT, CHAZ and105

STORM models with CMIP5/6 climate models under both present and future climates106

in Emanuel (2013); Lee et al. (2020); Bloemendaal et al. (2022).107

Here, we present a global TC wind risk model with statistical-dynamical compo-108

nents that is used in conjunction with a climate model large ensemble to generate large109

samples of TC seasons. Built using both statistical and physical methods, the model is110

probabilistic, consistent with the physics of tropical cyclones, and therefore highly flex-111

ible in nature. ENSO, which has a strong influence on TC activity in multiple basins,112

is used to define several model components and link statistical approaches to the envi-113

ronmental variables provided by a climate model (Bell et al., 2014). We connect the sta-114

tistical and climate-driven aspects of our model by building statistically-generated tra-115

jectories and then calculating the intensity by means of Emanuel (2017). This approach116

couples TC model behaviour to the climate model’s environment, while remaining faith-117

ful to the features of observed tracks. We also apply a post-processing methodology to118
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Figure 1: Global tropical cyclone model schematic detailing the components of the (1)
the event set generation (left-hand side) and (2) the catalog generation (right-hand side).

the resulting storm intensity values to correct biases induced by the climate model. Fi-119

nally, we calibrate the Willoughby et al. (2006) wind structure model for each cycloge-120

nesis basin, thus providing a complete tropical cyclone wind model consistent with the121

present climate.122

The output from our TC model consists of two components: 1) the event sets, and123

2) the annual catalogs. Each event set is a fixed set of trajectories, with one set for ev-124

ery member and year of the climate model large ensemble. Annual catalogs are obtained125

by randomly sampling the trajectories from the event sets in accordance with the an-126

nual frequency of TCs in any given basin. Our overall model is in line with those anal-127

ysed in Meiler et al. (2022) (MIT, CHAZ and STORM) and we will therefore borrow their128

nomenclature to compare each of our model’s components with the latter. The model129

components and key steps are summarized in Figure 1.130

The paper is structured as follows. Section 2 describes each model component, in-131

cluding statistical fits and simulations steps, leading to the generation of event sets (as132

shown on the left-hand side of Figure 1). Section 3 presents the annual frequency com-133

ponent and algorithm to generate annual catalogs (as shown on the right-hand side of134

Figure 1). We provide results and assess the quality of the global TC model in Section135

4. Finally, we present risk maps expressed in terms of return periods in Section 5, and136

summarize key findings and conclude the paper in Section 6.137

2 Event sets138

This section focuses on the methodological steps leading to the construction of one139

event set per member and year (member-year or MY) of the climate model large ensem-140

ble. The underlying GCM is first presented in Section 2.1. Then, we present the mod-141

elling assumptions and fitting steps for each of the cyclogenesis (Section 2.2), trajectory142

(Section 2.3), intensity (Section 2.4), and size and radial profile (Section 2.5) components.143

We conclude this section with the simulation algorithm (Section 2.6) and the post-processing144

steps (Section 2.7) that reduce biases in the event sets. Whereas this section solely fo-145
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cuses on model features, calibration and simulation, we present in Section 4 model val-146

idation and evaluation results for the components or combination thereof.147

2.1 Climate forcing148

The global TC model is forced by the climate model output from the NCAR Com-149

munity Earth System Model Large Ensemble (NCAR CESM-LE) (Kay et al., 2015) (K2015150

from here on). As such, for a given MY (1600 or 40 members of 40 years in total tak-151

ing model years between 1981 and 2020), we use the simulated atmospheric conditions152

to generate a specific event set and annual catalog over each basin. The climate model153

output therefore influences cyclogenesis location (through the corresponding ENSO phase),154

the trajectory (using the corresponding ENSO index) and wind speed (using the out-155

put of the CESM to feed the FAST model from Emanuel (2017), see Section 2.4). As156

a result, we are not trying to detect tropical cyclones from a GCM but are instead us-157

ing the output from the NCAR CESM-LE to identify environments favorable to TC de-158

velopment and simulate how a TC would evolve and propagate in this environment.159

This approach of forcing a climate model into a set of statistical models is simi-160

lar to the original CHAZ model (Lee et al., 2018) which was forced with the ERA5 re-161

analysis, and Lee et al. (2020) which used CMIP5 models. The methodology is however162

significantly different from the STORM model which is fully stochastic and has no ex-163

plicit forcing from climate models, and from the MIT model which is mostly physically164

driven.165

2.2 Cyclogenesis location166

Cyclogenesis location is defined as the first point of each trajectory as provided in167

the IBTrACS 4.0 database (Knapp et al., 2010, 2018). We consider all trajectories from168

the 1981 season to the present (IBTrACS dataset accessed June 27, 2021) with a life-169

time maximum intensity (LMI) of at least tropical storm intensity (18 ms−1). We fol-170

low the basin definitions from IBTrACS; that is, we analyze cyclogenesis locations for171

the North Atlantic (NA), Eastern North Pacific (EP, which includes the Central Pacific172

region), Western North Pacific (WP), North Indian (NI), South Pacific (SP) and South173

Indian (SI). The South Atlantic (SA) basin is therefore excluded.174

We assume cyclogenesis is influenced by ENSO and use the ENSO phase (El Niño,175

Neutral and La Niña) as a driver of cyclogenesis location. We employ the Japan Mete-176

orological Agency Sea Surface Temperature Anomaly index (ENSO JMA SSTA) because177

it performs well in selecting known ENSO phases. The index is defined in terms of the178

monthly average sea surface temperature anomaly over the Niño 3 region (4°N to 4°S,179

150°W to 90°W). The anomaly index must be more (less) than 0.5°C (-0.5°C) over 6 con-180

secutive 5-month periods to identify an El Niño (La Niña) (Bove et al., 1998).181

Cyclogenesis locations are modeled using an inhomogeneous spatial Poisson point182

process. The spatial rate of cyclogenesis events is first calibrated to IBTrACS (longitude183

and latitude coordinates) for each phase and basin. It is computed as the generation rate184

of storms over a 2D (latitude-longitude) grid representing the basin, and is smoothed us-185

ing a Gaussian kernel with a large bandwidth to allow for the potential formation of cy-186

clones in rarer regions (standard deviation used as bandwidth of 5). Figure 2 (in Sec-187

tion 4) shows the generation rate for the North Atlantic and West Pacific for each ENSO188

phase (a similar plot is provided for each basin in the Supporting Information).189

To simulate cyclogenesis locations, we first determine the ENSO phases in the CESM-190

LE. We follow the methodology of Bove et al. (1998), using sea surface temperature out-191

put from the CESM-LE to calculate the monthly ENSO JMA SSTA index and deter-192

mine the ENSO phase for each MY. We apply the composite approach of Bell et al. (2014),193

which associates tropical cyclone seasons in the Northern Hemisphere (May-November)194
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to the following ENSO event, and Southern Hemisphere seasons (October-May) to the195

ongoing ENSO event. Given the ENSO phase, we sample from an inhomogeneous spa-196

tial Poisson point process whose generation rate is that which was calibrated empirically.197

Cyclogenesis in the original MIT model is based upon a random seeding approach198

which randomly draws locations in each cyclogenesis basin. To improve acceptance rates199

of cyclones, the CHAZ model therefore integrates the Tropical Cyclone Genesis Index200

(TCGI). The STORM cyclogenesis component is entirely empirical, randomly sampling201

in each grid cell according to observed monthly cyclogenesis rates. Our cyclogenesis com-202

ponent is therefore a hybrid between CHAZ and STORM whose cyclogenesis rate is spa-203

tially smoothed based upon observations for each ENSO phase and simulated locations204

are continuous in space, rather than fixed at the center of grid cells.205

2.3 Trajectory206

Storm trajectories are defined in terms of their zonal (easterly or westerly) and merid-207

ional (northerly or southerly) components for each trajectory segment. The trajectory208

model is built upon an inhomogeneous two-dimensional (2-D) Brownian motion. This209

approach generalizes trajectory models based on Markov chains on a 2-D grid (Emanuel210

et al., 2006; Nederhoff et al., 2021) while providing a stochastic representation of the beta211

and advection model (MIT, CHAZ). The underlying Brownian motion needs to be in-212

homogeneous to capture the Coriolis effect and steering winds, while being influenced213

by ENSO. We therefore model meridional and zonal displacements (or equivalently the214

angle and speed) of tropical cyclones using correlated normal distributions whose means215

and standard deviations are different per latitudinal band and ENSO index.216

Fitting of the trajectory component is based upon IBTrACS using the same un-217

derlying tracks as in Section 2.2. The dataset represents storm movement over time steps218

of 6 hours. To capture the latitude-dependent structural features of tropical cyclone tra-219

jectories, displacements are first divided into latitudinal bands of at least 2 degrees, such220

that there are at least 30 data points (30 6-hour segments in IBTrACS) in each band.221

For each latitudinal band, we run linear regression models for both the meridional and222

zonal displacements whose sole predictor variable is the observed monthly ENSO JMA223

SSTA index (Bove et al., 1998). Standard deviations and correlations are then obtained224

from the residuals of the regressions. The overall approach is therefore rooted in James225

and Mason (2005) and similar to STORM, but instead we use smaller latitudinal bins,226

integrate ENSO in the regression equations and include correlations in the innovations227

to replicate the speed and angle structure.228

To simulate a full trajectory, we first compute the ENSO index taken from the cho-229

sen MY of the NCAR CESM-LE and randomly sample cyclogenesis location knowing230

the ENSO phase and basin. Based on the corresponding latitudinal band and ENSO in-231

dex, we sample meridional and zonal displacements from the corresponding bivariate nor-232

mal distribution. This therefore provides a new location for the storm 6 hours later, and233

based on the latter, we sample new meridional and zonal displacements, and so on.234

2.4 Intensity235

The intensity model is based on the FAST (Emanuel, 2017) tropical cyclone wind236

simulator, which was designed to simulate large samples of tropical cyclone events. The237

model is defined by a set of 2 coupled nonlinear ordinary differential equations with sur-238

face circular wind speed and inner core moisture as prognostic variables. The two equa-239

tions describe their evolution in terms of ocean interaction, ventilation, dissipative heat-240

ing, and the pressure dependence of the surface saturation mixing ratio. These processes241

are not constructed from first principles but founded on empirical developments (Schade242

& Emanuel, 1999; Emanuel & Zhang, 2017) with the CHIPS ocean-atmosphere tropi-243
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cal cyclone model (Emanuel et al., 2004). FAST runs at speeds comparable to statisti-244

cal models and has a performance comparable to the CHIPS model (Emanuel, 2017) which245

was used in the MIT model.246

FAST requires potential intensity, vertical wind shear, storm translation speed, mixed247

layer depth, sub-mixed layer thermal stratification, and ocean bathymetry as input vari-248

ables to represent tropical cyclone wind speed evolution. The atmospheric and oceanic249

input quantities determine the surface circular wind speed, whereas the bathymetry is250

used to represent interaction with the coast and landfall. Here, we use the output from251

each MY of the NCAR CESM-LE to compute maximum sustained wind speed along each252

simulated trajectory (the previous two steps). Table 1 shows the NCAR-CESM1 vari-253

ables from the CESM-LE experiment used to calculate these forcing quantities.254

Component Variable Reference

Vertical wind shear
Zonal wind (U, 250 hPa and 850 hPa) K2015
Meridional wind (V, 250 hPa and 850 hPa) K2015

Potential Intensity
Atmospheric temperature (T) K2015
Sea surface temperature (T) K2015
Specific humidity (Q) K2015
Surface pressure (PS) K2015

Mixed Layer Depth
Ocean temperature (TEMP) K2015

Sub-Mixed Layer Thermal Stratification
Ocean temperature (TEMP) K2015

Bathymetry
ETOPO1 Global Relief Model Amante and Eakins (2009); NGDC (2009)

Table 1: Datasets used for tropical cyclone intensity component.

We follow Bister and Emanuel (2002) to calculate monthly maps of potential in-255

tensity. Mixed layer depth is taken to be the depth at which temperature is 1◦C less than256

the sea surface temperature (Wagner, 1996; Kara et al., 2000) and sub-mixed layer ther-257

mal stratification is calculated from Emanuel (2015) by taking the vertical temperature258

gradient between the mixed layer depth and 100 meters below it. We use the ETOPO1259

Global Relief Model (Amante & Eakins, 2009; NGDC, 2009) to represent bathymetry260

on a 1 arc-minute (∼1.8 km) grid. This allows us to model the TC interaction with the261

coast and landfall at sufficiently high resolution, instead of using the CESM-LE bathymetry262

which is at a nominal resolution of ∼100 km. When the center of a tropical cyclone is263

located over the ocean based on the ETOPO1 grid but is over land based on the lower-264

resolution CESM grid, the oceanic CESM quantities (mixed layer depth and sub-mixed265

layer thermal stratification) are not defined. In this case, we calculate tropical cyclone266

intensity by using the most recent values of mixed layer depth and sub-mixed layer ther-267

mal stratification.268

Time series of vertical shear, potential intensity, mixed layer depth, and sub-mixed269

layer thermal stratification are determined from their monthly grids depending on the270

location of the center of the storm and the day of year. For vertical shear and potential271

intensity, we apply a multilinear interpolation in space and time. Mixed layer depth and272

sub-mixed layer thermal stratification for each point of the storm track take the monthly273

mean value of the grid point of the storm center, since they change little from day to day274
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(Emanuel, 2017). For bathymetry, we also apply a multilinear interpolation in space to275

determine the bathymetry at the storm center.276

Storm translation speed is calculated from the displacement components of the sim-277

ulated trajectory. We follow Demaria and Kaplan (1994) to compute the zonal (U) and278

meridional (V ) components of winds at 850 and 250 hPa and the magnitude of the ver-279

tical wind shear.280

To run the FAST model, we interpolate linearly from the 6-hour trajectory timestep281

to the 4-minute timestep required for FAST. Following Emanuel (2017), we add 60% of282

the simulated translation velocity (from the trajectory component) to the storm-relative283

maximum intensity to arrive at the ground-relative peak wind speed (Emanuel & Jag-284

ger, 2010). The intensity model is applied to every trajectory of the event set based on285

the prevailing conditions of the corresponding MY. This physics-based component is there-286

fore deterministic in the sense that two identical trajectories will yield identical winds287

along their tracks, but a slightly different trajectory might be enough to yield different288

winds.289

The models from the intercomparison project of Meiler et al. (2022) each use dif-290

ferent approaches to represent TC intensity. The MIT wind model is based upon the afore-291

mentioned CHIPS model. The CHAZ TC intensity is built on autoregressive models (Lee292

et al., 2015, 2016) whose predictors are derived from environmental conditions (includ-293

ing e.g., potential intensity, vertical wind shear, and mid-level relative humidity). In this294

case, simulated intensity is obtained by forcing the autoregressive models with a reanal-295

ysis or climate model. STORM randomly generates pressure change along the track with296

an autoregressive model similar to James and Mason (2005). Over the ocean, an empir-297

ical wind-pressure relationship is used to deduce wind speed, whereas overland, wind de-298

cays according to Kaplan and DeMaria (1995). The relationships for the STORM inten-299

sity component are fitted with observations (IBTrACS and reanalysis).300

2.5 Size and radial profile301

Important progress has been made in the state of knowledge of tropical cyclone size302

on both the empirical (Dean et al., 2009) and theoretical (Chavas & Emanuel, 2014) fronts,303

but key challenges remain to improve the understanding of its environmental determi-304

nants (Kilroy et al., 2016). Considering this, we take an empirical approach to represent305

tropical cyclone size and radial profiles. Given empirical differences in the distributions306

of size and radial profile in different basins, such as storms being largest in the West Pa-307

cific and smallest in the East Pacific (Chan & Chan, 2015), we recalibrate Willoughby308

et al. (2006) for each basin using IBTrACS’ wind radii data available since approximately309

2000.310

Willoughby et al. (2006) assume that the log radius of maximum sustained wind311

(log(Rmax) or RMW) is a linear function of maximum sustained winds (Vmax) and lat-312

itude (φ). The latter three variables are directly available in IBTrACS, which allows a313

linear regression model to be fit in each basin.314

The next step is the calibration of the radial profile. Willoughby et al. (2006) showed315

that for many tropical cyclones, there might be a different rate of decay in the radial pro-316

file, especially away from the center. The radial profile component of our global model317

borrows the dual-exponential functional form from Willoughby et al. (2006) (Eq. 4). But318

given that IBTrACS only provides wind radii at 34, 50, and 60 kt for the NE, NW, SE,319

SW quadrants, not all parameters could be calibrated. As such, we fixed X1 = 300 and320

X2 = 30 and defined A as321

A = Φ(β0 + β1Vmax + β2φ) (1)

where Φ is the cumulative normal distribution function (probit function) that transforms322

an input in R to a value within [0, 1]. Both exponential decaying functions are therefore323
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used and given a weight of A (that cannot be negative or above 1 in our model) that varies324

according to wind speed and latitude. To find the parameters β0, β1 and β2 we then min-325

imized the squared errors between Eq. 4 of Willoughby et al. (2006) and the IBTrACS326

profiles. Each observation of the radial profile takes the maximum radius over the four327

quadrants available. This process is repeated for each basin.328

Simulation of the radial wind profile at a given location begins by computing the329

prediction of Rmax from the linear regression using the simulated maximum winds from330

the intensity component, and latitude from the location of the trajectory. We then sam-331

ple one normal random variable for the entire track and add noise to Rmax. This will sim-332

ulate a radius for an entire track that is consistently above or below the mean, depend-333

ing on the normal variate. This is done to avoid an accordion effect where the radius con-334

stantly increases or decreases around its predicted value over the track. Then, based upon335

the sampled Rmax, in addition to maximum winds and latitude, we deduce the entire wind336

profile from the dual-exponential function.337

Modeling of the radial wind profile differs significantly across the models of the in-338

tercomparison project. Whereas the entire wind profile is provided by CHIPS in the MIT339

model, no wind profile is included by default with CHAZ. STORM simulates the RMW340

by sampling from observations depending on pressure in each of three stages: at gene-341

sis, peak intensity and dissipation. To overcome the discrepancies in available wind pro-342

files, Meiler et al. (2022) couple each model with the same parametric wind field model343

from Holland (2008).344

2.6 Algorithm345

We now describe how the components are combined to generate event sets for each346

MY of the CESM-LE (see the left-hand side of Figure 1). When used in conjunction with347

vulnerability and exposure information, each event set thus forms the basis of event loss348

tables (ELTs) used in catastrophe modelling (Mitchell-Wallace et al., 2017).349

For each basin and each of the 1600 CESM-LE member-years, we use the model350

to construct a set of accepted tropical cyclone trajectories that are consistent with the351

environmental conditions of the year in question. We refer to each of these as event sets352

that are connected by the following components:353

1. Climate forcing: Based on the environmental conditions in the selected MY and354

basin, determine the ENSO phase and index;355

2. Cyclogenesis location: Based on Step 1, simulate one cyclogenesis location from356

the ENSO-dependent cyclogenesis generation rate;357

3. Trajectory: Based on Step 1 and the simulated cyclogenesis location from Step358

2, simulate the entire trajectory (meridional and zonal displacements every 6 hours);359

4. Intensity: Initialize trajectory intensity at the cyclogenesis location with a wind360

speed of 10 ms−1, and calculate the intensity every 4 minutes using the FAST model361

over the entire trajectory with the climate model variables for the MY in ques-362

tion (Step 1). Add 60% of the translation velocity to the intensity to calculate the363

ground-relative intensity from the storm-relative intensity (Emanuel & Jagger, 2010);364

5. Acceptance/Rejection: Retain trajectory if the lifetime maximum intensity (LMI)365

is 18 ms−1 or larger. End trajectory where the storm intensity falls below 2.5 ms−1.366

If the storm is too weak and is therefore rejected, then repeat Steps 2-5;367

6. Size and wind profiles: If the trajectory has a LMI above 30 ms−1 (Cat1+ storm),368

simulate the radius of maximum wind and radial profile. We use this threshold369

since wind damage is generally negligible for storm with intensity below 30 ms−1
370

(Emanuel, 2011).371
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To yield a sufficient number of tracks in each event set for the annual catalogs of372

Section 3, we want for the typical event set to contain as many trajectories as were ob-373

served from 1981 to 2020. The number of accepted tracks in each event set is random,374

and depends on the number of cyclogenesis locations simulated (which is random and375

simulated from the cyclogenesis density per ENSO phase), the trajectory paths (which376

are random but depend on the ENSO index), and on the favorability of the environmen-377

tal conditions over the trajectories (which depend on the MY of the CESM-LE). Although378

the number of tracks is random for a given cyclogenesis density, we can increase or de-379

crease the number of accepted tracks and preserve the spatial structure of the cycloge-380

nesis densities by applying a constant multiplier. We determine the baseline number of381

accepted tracks, using the empirical cyclogenesis densities described in Section 2.2 with382

a sample of 50 event sets. Using such a multiplier, we can adjust the number of accepted383

tracks over all the event sets to be consistent with the number of observed tracks. For384

the North Atlantic basin, for example, we run the steps described above for 50 ensem-385

ble members and generate 50 event sets, and find that the mean number of accepted tra-386

jectories is 315. To therefore arrive at a mean number of tracks that is consistent with387

the 475 observed tracks over 1981-2020, we multiply the North Atlantic cyclogenesis den-388

sities by 1.5. With this adjusted cyclogenesis density, we find that the mean number of389

tracks over all of the event sets is 500.390

2.7 Post-processing391

Once we simulate full tracks for each of the 1600 MY, we observe that the global392

TC model tends to either underestimate or overestimate the relative proportions of stronger393

or weaker storms (e.g., proportion of Cat4-5 vs Cat1-3 storms when compared to obser-394

vations over 1981-2020 in Figure 9). Section 4.5 provides a detailed account of these bi-395

ases. Such biases are to be expected because the FAST intensity model is physically-based396

and of general applicability, but was forced and validated with output from the NCEP/NCAR397

Reanalysis (Kalnay et al., 1996), which by construction represents observed historical398

weather and climate conditions. The NCAR CESM-LE, on the other hand, is an ensem-399

ble of simulations from the NCAR Community Earth System model operating at a nom-400

inal resolution of ∼100 km. The NCAR CESM-LE, like other climate models, carries in-401

herent biases (Moreno-Chamarro et al., 2022), and some of these biases will impact the402

downscaled TC activity. We do not expect the intensity biases to originate from the cy-403

clogenesis and trajectory components of the model because they do not rely on output404

from CESM-LE.405

To improve simulated intensities relative to observations, we adjusted the simulated406

lifetime maximum intensity (LMI) distribution. We suggest scaling simulated tropical407

cyclone wind speeds such that the quantiles of the simulated LMI distribution (over the408

1600 MY) match observed quantiles (from IBTrACS). Such a correction is computed and409

applied in each basin using both the overall empirical LMI distribution or the empiri-410

cal LMI distribution per ENSO phase. Throughout the paper, we used both approaches,411

depending on whether the focus is on the overall TC behavior or that per ENSO phase.412

A comparison is provided in Section 4.5 (and in Figure 9).413

We opted for this uniquely post-processing approach as opposed to applying a bias-414

correction to the NCAR CESM-LE output (pre-processing) that is used as input. Bias415

corrections of climate data are widely applied, though have typically been conducted for416

a single variable and location, and as such are one-dimensional. Our use of the NCAR417

CESM-LE output, however, is highly multivariate (many climate variables) and multi-418

dimensional (many grid cells), and one-dimensional bias corrections of each climate vari-419

able required would not preserve the spatial and temporal dependence of the variables420

required.421
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Multivariate bias correction methods are gaining use, though challenges in appli-422

cability remain (François et al., 2020). The comparison of multivariate bias correction423

approaches by François et al. (2020) found that the methods did not represent tempo-424

ral properties and performed increasingly poorly for increasingly large spatial domains425

(due to the higher dimensionality of the problem). Since the relevant spatial domain for426

representing the development of TC intensity, the basin, is large and high dimensional427

(i.e., it contains a large number of grid cells), and that the temporal dependence of the428

forcing climate variables is key to the FAST model, we did not rely on a pre-processing429

approach.430

3 Annual catalogs431

Because it provides a fixed number of tracks per MY, the information provided by432

an event set is rarely enough for socioeconomic studies or for risk management applica-433

tions. The purpose of the catalog is therefore to provide a plausible representation of a434

tropical cyclone season for a given year. For each basin, member and year of the NCAR435

CESM-LE, we simulate the annual frequency of tropical cyclones based upon the con-436

ditions that prevail in the climate model output for that year and randomly sample the437

events from the corresponding event set. Repeating this process a large number of times438

creates a synthetic TC dataset whose structure replicates that of IBTrACS.439

This section focuses on the key methodological aspects of generating annual cat-440

alogs as depicted on the right-hand side of Figure 1 whereas Section 4 evaluates and val-441

idates the components (or combination thereof) of the global TC model.442

3.1 Frequency443

The annual frequency represents the number of storms whose LMI reaches at least444

18 ms−1 in a given year and basin. It is modeled with a negative binomial random vari-445

able whose mean depends upon the ENSO index. The negative binomial distribution gen-446

eralizes the Poisson distribution by allowing overdispersion; that is, the variance of the447

counts can be larger than its mean. The Poisson distribution is a special case of the neg-448

ative binomial distribution.449

For each basin, we fit a negative binomial regression with the annual JMA SSTA450

index (JMAm) (Bove et al., 1998) as the single predictor variable. For basins in the North-451

ern and Southern Hemisphere, we take the observed JMAm to be the August-September-452

October and January-February-March mean, respectively, since these months cover the453

seasonal activity peaks (Bell et al., 2014). Although the Southern Hemisphere TC sea-454

sons take place from November-April, from here on we use the term annual to describe455

TC frequency. To simulate the annual frequency, we calculate the JMAm index from the456

CESM-LE sea surface temperature, compute the parameters of the negative binomial457

distribution from the fit, and then sample from the distribution.458

Cyclogenesis location and frequency are typically intertwined components in the459

TC models of the intercomparison project. STORM sequentially samples the number460

of storms from a Poisson distribution with fixed mean, then simulates the cyclogenesis461

location of each storm. This differs however from the MIT and CHAZ models that both462

rely on randomly spatially distributed TC seeds while sampling storms until a desired463

number is attained. Whereas TC seeds are uniformly sampled in the MIT model which464

could lead to a small acceptance rate, the CHAZ model relies on the TCGI which im-465

proves its rate of acceptance. In the MIT approach, we typically aim to reach a fixed num-466

ber of storms, which is important for the production of ELTs, but in the CHAZ model,467

frequency results from the accepted number of storms which is driven by the the TCGI.468

But as Meiler et al. (2022) remark, post-processing CHAZ’s frequency of events is still469

required. In our paper, we borrow the MIT approach to generate a fixed number of storms470
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in the event set production (left-hand side of Figure 1), whereas we use a typical count471

distribution to generate consistent seasonal frequency (right-hand side of Figure 1).472

3.2 Algorithm473

To build an annual catalog, we need to follow these steps. For each MY and basin:474

1. Climate forcing: Based upon the environmental conditions observed in the selected475

MY and basin, determine the ENSO index;476

2. (Annual) Frequency: Sample the number N of tropical cyclones that reach at least477

18 ms−1 from a negative binomial distribution whose mean is based upon the ENSO478

index observed in Step 1;479

3. Resampling: Randomly select N trajectories from the corresponding event set.480

Using e.g., N = 625 simulations from the negative binomial distribution per MY,481

we get a combined number of 1 million years of events (625 times 1600) allowing for a482

better understanding of extremes. One year is made of a random number of tracks with483

their corresponding characteristics drawn from the event sets. Applying this algorithm484

thus provides the basis for year loss tables (YLTs) in typical catastrophe models (Mitchell-485

Wallace et al., 2017).486

One can also organize catalogs differently to build synthetic IBTrACS-like datasets487

of 40 years of length. Indeed, each year from the CESM has 40 different members with488

625 replications each and therefore, we get 25,000 synthetic IBTrACS-like (40 members489

times 625 simulations) datasets consistent with the climate of 1981-2020.490

4 Model evaluation and results491

In this section, we analyze the various features of the model. The analyses provided492

cover all six basins but for conciseness we only include the figures for the North Atlantic493

and West Pacific basins. The Supporting Information, provided as an interactive HTML494

document, allows the reader to view the same figures for all basins.495

4.1 Cyclogenesis Location496

Figure 2 shows the probability of cyclogenesis for tropical cyclones (with minimum497

wind speed of 18 ms−1) by ENSO phase (La Niña on the left, Neutral in the middle, El498

Niño on the right) over the North Atlantic (top row) and West Pacific basins (bottom499

row). The shades of color represent the spatial probability density conditional upon hav-500

ing cyclogenesis. The darker the color, the more likely cyclogenesis is to occur at that501

particular location. The bandwidth chosen in the kernel density smoothing allows cy-502

clogenesis in realistic but unobserved areas.503

Based on Figure 2 and the Supporting Information, we find that cyclogenesis is more504

likely to occur over the East Coast of the US during El Niño, while cyclogenesis stretches505

westward in the Eastern Pacific and eastward in the West Pacific. Although there are506

important uncertainties since there are few TCs by ENSO phase in the North Indian basin,507

we find that cyclogenesis is more likely along the East Coast of India, and that TCs on508

the West Coast of India are more likely to emerge during El Niño. Cyclogenesis moves509

away from Australia during El Niño in the South Pacific and South Indian basins. The510

model therefore simulates cyclogenesis locations in accordance with the colored densi-511

ties shown in Figure 2. It is important to note however the sample size spans only 40512

years (study period over 1981-2020), with a relatively limited number of years in each513

El Niño or La Niña events.514
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Figure 2: Probability of cyclogenesis in the North Atlantic (top) and West Pacific (bot-
tom) per ENSO phase (Left: La Niña; Center: Neutral; Right: El Niño)

4.2 Trajectory515

The zonal and meridional displacements in each latitudinal band are fitted with516

linear regressions, each with the ENSO index as predictor. The left-hand side of Figure517

3 (Figure 4) shows the coefficients of the regressions (y-axis, km per degree C of ENSO518

anomaly) for each latitudinal band (x-axis, degrees, relative to the Equator) in the North519

Atlantic (West Pacific) basin for zonal (top row) and meridional (bottom row) displace-520

ments. The right-hand side of Figure 3 (Figure 4) shows the p-value of the ENSO pre-521

dictor for each latitudinal band in the North Atlantic (West Pacific). The red horizon-522

tal lines are fixed at 10% (plain red line) and 5% (dotted red line) to determine over which523

latitudinal band ENSO exerts an influence.524

For the North Atlantic, Figure 3 shows that during El Niño (high ENSO index) years525

there is a negative relationship on meridional displacements north of 23°N, indicating526

less northerly displacements (Figure 3c). Note that the mean meridional displacement527

in the North Atlantic is northerly, but during El Niño our fits show that the displace-528

ment is less northerly (not southerly) north of 23°N. Between 11 and 19°N, the relation-529

ship is instead positive, resulting in more northerly displacements during El Niño. Zonal530

displacements in most latitudinal bands are not statistically significant (Figure 3b), in-531

dicating a weak relationship to the ENSO index.532

In the Supporting Information, we show that during El Niño years zonal and merid-533

ional displacements are less westerly and more northerly in the East Pacific between ap-534

proximately 10 and 25°N. In the North Indian basin, El Niño years have less westerly535
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Figure 3: Summary results from statistical fits for zonal and meridional displacements in
terms of the ENSO JMA index. Coefficients (left) and statistical significance (right) of the
impact of ENSO on zonal (top) and meridional (below) displacements for each latitudinal
band in the North Atlantic.
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Figure 4: Summary results from statistical fits for zonal and meridional displacements in
terms of the ENSO JMA index. Coefficients (left) and statistical significance (right) of the
impact of ENSO on zonal (top) and meridional (below) displacements for each latitudinal
band in the West Pacific.

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

displacement in many latitudinal bins, but the relationship between ENSO and merid-536

ional displacements appears weak. In the South Indian, there is a strong impact during537

El Niño rendering zonal displacements less westerly between approximately 10 and 25°S,538

whereas the link between ENSO and displacements in the South Pacific appears weaker.539

4.3 Track densities540

We compute the spatial probability density of tropical cyclone tracks, which we re-541

fer to as track densities. Such spatial densities allow us to assess the location and inten-542

sity of storms in the event sets. It corresponds to the probability that the center of the543

TC passes over a grid cell, given that the TC has an intensity greater than a pre-specified544

minimum at that grid cell. Figure 5 shows the observed and simulated track densities545

for TCs with near-surface winds of least 18 ms−1. The top row shows the track density546

for model simulations with post-processing based upon the overall distribution of the LMI,547

the middle row shows the observed track density from IBTrACS, whereas the bottom548

row shows the simulated bias (red means the model overestimates track density, blue the549

opposite). The left and right columns display results for the North Atlantic and West550

Pacific, respectively.551

In all basins, the track densities from the model are similar to the observed track552

densities, thus showing the capability of the model to simulate a realistic tropical cyclone553

climatology. In the North Atlantic, the model slightly overestimates track density on the554

East Coast of the U.S. and slightly underestimates track density in the Gulf of Mexico,555

Caribbean Sea and along the main development region. Over the West Pacific, the model556

tends to slightly overestimate track density over the Philippines, Brunei and Indonesia,557

and slightly underestimate track density over Japan and China. Elsewhere, the model558

underestimates track density on the West Coast of Mexico, on the East Coast of India559

and Pakistan, over Australia and Papua New Guinea.560

We repeated this exercise for Cat4-5 storms in Figure 6. Given the anomalies are561

small relative to observations (Figure 6, bottom row), the model slightly underestimates562

observations over the Caribbean Sea, and overestimates observations along the East Coast563

of the U.S. and the Northern tip of South America. Over the West Pacific, Southern Japan,564

Coast of China and Northern Philippines, tracks are slightly underestimated whereas they565

are overestimated over Southern Philippines, Malaysia (Sarawak) and part of Indone-566

sia. Elsewhere, the model underestimates track density on the West Coast of Mexico and567

overestimates in Central America, underestimates on the East Coast of India and Pak-568

istan, over Australia and Papua New Guinea.569

We end this subsection by analyzing and comparing ENSO anomalies in track den-570

sities. Figure 7 (Figure 8) shows plots of simulated and observed anomalies for the North571

Atlantic (West Pacific) basin. For the North Atlantic, we find a clear opposite signal be-572

tween the tropics and extra-tropics, which is consistent with Goldenberg and Shapiro573

(1996), and note symmetrical patterns between La Niña and El Niño (particularly in the574

simulations). There is a positive (negative) anomaly associated with El Niño (La Niña)575

events along the East Coast of the U.S., and a positive (negative) anomaly associated576

with La Niña (El Niño) events along the Gulf of Mexico and the Caribbean seas. Although577

the simulated patterns mostly match observations during La Niña, the observed El Niño578

anomaly stretches along the East Coast, which is not the case in the simulations. The579

shape of the observed El Niño anomaly on the right with a red spot over land however580

suggests the simulations have an adequate behavior but observations may have been in-581

fluenced by a few outliers.582

The simulated positive anomaly over the Caribbean and negative anomaly in the583

extratropical North Atlantic during La Niña, and negative anomaly over the Caribbean584

during El Niño, are generally consistent with Baudouin et al. (2018). However, for the585

extratropics during El Niño, our positive anomaly is more consistent with the Modoki586
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Figure 5: Track probability density over the North Atlantic (left) and West Pacific
(right) for storms that reach at least 18 ms−1 (Tropical Storms+). Top row (a): simu-
lations from the model; Middle row (b): observations from IBTrACS; Bottom row (c):
difference between simulations and observations. The positive and negative limits of the
scale for the differences (bottom row) are the same as the maximum limit for the simula-
tions (top row) and observations (middle row). Units are probabilities and add to 1 in the
panels in the top two rows.

El Niño (Central Pacific Warming) case from Baudouin et al. (2018). This is reasonable587

since that study used over two times more tracks from Modoki El Niño years than typ-588

ical El Niño years.589

Over the West Pacific (Figure 8), anomalies highlight an eastward shift during El590

Niño and westward shift during La Niña. This is well captured by the model. The La591

Niña signal appears stronger in the observations over South East Asia and the observed592

anomaly is negative over Japan in both phases. With forty years of data and given the593

natural variability within each phase, it is likely we observe positive or negative anoma-594

lies in both phases in the observations, which is unlikely in the model.595

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 6: Track probability density over the North Atlantic (left) and West Pacific
(right) for storms that reach at least 58 ms−1 (Cat4-5). Top row (a): simulations from
the model; Middle row (b): observations from IBTrACS; Bottom row (c): difference be-
tween simulations and observations. The positive and negative limits of the scale for the
differences (bottom row) are the same as the maximum limit for the simulations (top row)
and observations (middle row). Units are probabilities and add to 1 in the panels in the
top two rows.

Over the other four basins, we also observe approximate symmetrical spatial pat-596

terns in the ENSO anomalies. However, we find many areas where observed anomalies597

are positive (or negative) in both phases that are not replicated in the model: Baja Cal-598

ifornia (Eastern Pacific), Pakistan and parts of India (North Indian), East Coast of Africa599

(South Indian), North Eastern Australia (South Pacific). The sample of El Niño and La600

Niña events is relatively small, and so for basins where the ENSO signal is not as dom-601

inant, such as the South Indian and East Pacific basins, the signal will be noisy.602

Comparing spatial patterns of observed and simulated ENSO anomalies in track603

densities is a challenging exercise, heavily dependent upon the short observational record604

and the capacity of the CESM of simulating realistic spatial ENSO patterns. Although605

not shown, we also analysed the track densities using a post-processing based upon the606
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Figure 7: ENSO anomalies in track probability densities for track locations with a mini-
mum speed of 18 ms−1 over the North Atlantic.
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Figure 8: ENSO anomalies in track probability densities for track locations with a mini-
mum speed of 18 ms−1 over the West Pacific.
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Basin Intercept Wind speed Latitude sigma

SI 3.9508 -0.0135 -0.0032 0.3739
SP 3.8951 -0.0138 -0.0087 0.3944
WP 3.9155 -0.0118 0.0037 0.4125
NA 3.9358 -0.0154 0.0163 0.5452
EP 3.9731 -0.0133 0.0018 0.4511
NI 4.1406 -0.0148 -0.0077 0.4136

(a) Panel A : Radius of maximum winds

Basin Intercept Wind speed Latitude RMSE

SI -1.2014 0.0172 0.0252 8.2167
SP -1.3312 0.0174 0.0195 8.7479
WP -1.1821 0.0139 -0.0143 8.7047
NA -1.1766 0.0161 -0.0221 8.3480
EP -0.9365 0.0180 -0.0325 8.6994
NI -1.3083 0.0164 -0.0139 7.8734

(b) Panel B : Dual-exponential profile

Table 2: Parameter estimates of the Willoughby model in each basin. Panel A: RMW
regression model. The columns Intercept, Wind speed and Latitude represent the corre-
sponding coefficients in the regression equation whereas sigma is the residual standard
deviation. Panel B: Dual-exponential profile. The columns Intercept, Wind speed and
Latitude represent the corresponding parameters of the dual-exponential profile and
RMSE is the root-mean-square error of the fit.

LMI distribution for each ENSO phase independently. We found that the differences be-607

tween the post-processing methods are marginal because the simulated tracks remain608

the same. The post-processing only influences the likelihood of a track of being accepted609

or rejected (minimum speed of 18 ms−1). In other words, the post-processing method610

impacts the intensity distribution (as shown in Section 4.5) but not the spatial patterns611

of ENSO anomalies, which is clearly driven by the CESM.612

4.4 Size and radial profile613

Following the methodology described in Section 2.5, we calibrated the size and ra-614

dial profile components of the model. Table 2 - Panel A shows the parameter estimates615

for the RMW model (Eq. 7a in Willoughby et al. (2006)) and the sigma from the regres-616

sions (columns) for each basin (rows). In Panel B we provide the parameters (columns)617

for Equation 1 and the root mean square error for each basin (rows) .618

We find that the ”Wind speed” coefficient is negative and statistically significant619

(p-value below 0.1%) in all basins, meaning that: (1) wind speed is a significant driver620

of RMW, and that (2) RMW tends to decrease with stronger winds. In the North At-621

lantic basin, this value is consistent with Willoughby et al. (2006) Eq. 7a (-0.0155 in the622

latter and -0.0154 in our model). The effect of latitude is negative in the two Southern623

Hemisphere basins (both strongly statistically significant), and positive in the Northern624

Hemisphere with the exception of the North Indian (all statistically significant with the625

exception of the Eastern Pacific). From a physical standpoint, this means that RMW626

increases when tropical cyclones move away from the Equator (or approach the poles).627

Again, the values are comparable with Willoughby et al. (2006) Eq. 7a (0.0169 in the628
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latter and 0.0163 in our model). The intercepts are also comparable with Willoughby629

et al. (2006). The residual standard deviations (sigmas) however indicate a large amount630

of uncertainty in the predictions. The predicted RMW can hence be multiplied by 1.5-631

2.5 (1-2 sigmas above or below the mean).632

The calibrated wind profiles are presented in Panel B. We cannot easily compare633

coefficients from our model with Willoughby et al. (2006) Eq. 10c since we forced A to634

remain in the range [0, 1]. However, we see the coefficients for the wind speed are pos-635

itive for all basins and those for the latitude are negative (positive) in the Northern (South-636

ern) Hemisphere, as expected. The signs obtained in the North Atlantic are coherent with637

those in Willoughby et al. (2006) Eq. 10c. Moreover, the RMSE is about 8 knots for all638

basins, which is relatively small considering the radii provided in IBTrACS are for 34,639

50, and 60 knots.640

4.5 Event sets641

Once all 1600 event sets are fully simulated, we have a complete set of tropical cy-642

clone tracks with their corresponding intensity. We now aim to measure the intensity dis-643

tribution; that is, the proportion of simulated tropical cyclones that reach a given Saffir-644

Simpson category.645

Figure 9 shows the proportion of tropical cyclones that reach each Saffir-Simpson646

category in IBTrACS and in the simulations, without or with post-processing. The top647

(bottom) row corresponds to the North Atlantic (West Pacific) basin. The first column648

corresponds to the empirical frequency in IBTrACS, whereas the second represents the649

model without any post-processing of the LMI. The third and fourth columns show the650

simulated relative frequencies with two variants of post-processing based upon the over-651

all basin-scale LMI distribution (3rd column) and by the LMI distribution for each ENSO652

phase (4th column). Exploring two variants of post-processing allows for the sensitiv-653

ity of the post-processing technique to be tested and allows for users to be able to choose654

event sets and catalogs that are tuned to either a general year or a particular ENSO phase.655

We observe that the model overestimates tropical storms but underestimates stronger656

storms in the North Atlantic. Applying either post-processing method significantly im-657

proves the overall intensity distribution, especially the correction method based upon the658

overall distribution of the LMI. In the Western Pacific, the model without post-processing659

behaves well but the overall post-processing method results in the best fit overall. Else-660

where, the model tends to underestimate Cat4-5 storms, but again, the bias correction661

based upon the overall LMI distribution does best at replicating observed intensities.662

4.6 Annual catalogs663

In this last subsection, we analyze the behavior of annual catalogs, which there-664

fore include the frequency component and the resampling step. We have organized the665

1 million years of events into 25,000 IBTrACS-like synthetic datasets to study the vari-666

ability that naturally occurs over 40-year histories.667

Each panel of Figure 10 provides an histogram of simulated proportions of storms668

per category as measured in each of the 25,000 synthetic datasets, whereas the vertical669

line provides the historical proportion observed in IBTrACS. For example, in the North670

Atlantic basin, approximately 25% (10%) of historical tropical cyclones have reached max-671

imum intensity of Cat1 (Cat4). However, accounting for the natural variability, the share672

of Cat1 (Cat4) storms in a 40-year history could have been 13% to 38% (0% to 25%).673

The location of the vertical lines, derived from the observed 40-year history in IBTrACS674

falls within the realistic range, which is close to the statistical mode in each category.675

This is expected given how each component has been calibrated and given the post-processing676

applied. We obtain similar results in the other five basins.677
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Figure 9: Simulated and observed intensity distribution in the North Atlantic (top)
and West Pacific (bottom). Panel 1: Observations. Panel 2: Simulations without post-
processing (p-p). Panel 3: Simulations with post-processing based upon overall distribu-
tion of LMI. Panel 4: Simulations with post-processing based upon distribution of LMI
per ENSO phase.

5 Risk Maps678

The annual catalogs can be used to produce landfall risk maps which are extremely679

useful for socioeconomic studies and financial risk management. In this section, we pro-680

vide risk maps from simulations for Cat1+ and Cat4-5 tropical cyclones. As in Section681

4, the maps shown cover the North Atlantic and West Pacific basins, whereas maps for682

all basins are provided in the Supporting Information.683

For each 2-km grid cell of land, we have computed the average annual hit rate, in-684

cluding direct and indirect hits, from Cat1+ and Cat4-5 tropical cyclones. We have used685

1 million years of events to compute return periods, as the inverse of the average annual686

hit rate. The left (right) panel of Figure 11 shows a risk map for the North Atlantic (West687

Pacific) basin for Cat1+ tropical cyclones whereas Figure 12 is similar but for Cat4-5688
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Figure 10: Relative storm frequency over 40-year ensemble members per Saffir-Simpson
category (TS to Cat5) in the North Atlantic (top) and West Pacific (bottom). The verti-
cal lines represent the observed proportions for each category (IBTrACS).

tropical cyclones. We compare Cat1+ to results from Bloemendaal et al. (2020) since689

that study is of comparable resolution and integrated storm size and a model for the ra-690

dial wind profile.691

The left panel of Figure 11 shows that the riskiest locations for landfalling Cat1+692

tropical cyclones are expectedly the American and Mexican coasts of the Gulf of Mex-693

ico, the Antilles, the U.S. coasts of Virginia and North Carolina. These regions of low694

return period (high risk) are generally comparable to Bloemendaal et al. (2020), as are695

the general reduction in risk in the coastal U.S. north of Delaware. However, our rare696

storms (return periods of 1 in 1000 to 1 in 10000 years) of Cat1+ intensity penetrate fur-697

ther into the coast, and return periods are lower (more risk) in Nova Scotia and New-698

foundland than shown in Bloemendaal et al. (2020). The riskiest locations for Cat4-5699

hurricanes (Figure 12) in the North Atlantic are the American Coast of the Gulf of Mex-700

ico, Florida and the East Coast of the U.S.701

–24–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 11: Average annual number of hits (expressed in return period) for Cat1+ storms
over the North Atlantic (left) and West Pacific (right)

In the West Pacific, the riskiest locations for Cat1+ typhoons (right panel of Fig-702

ure 11) are Southern Japan, Taiwan, East Coast of mainland China, Philippines, Viet-703

nam and Cambodia. The high risk regions are generally consistent with Bloemendaal704

et al. (2020), and we produce a similar footprint of storms’ entry into the coast from Viet-705

nam to the Chinese coast to 35°N. Our model results in higher return periods (less risk)706

in central Japan than Bloemendaal et al. (2020), and Cat1+ storms do not reach North-707

ern Japan, and Northeastern China via the Yellow Sea and Sea of Japan. Though, Cat1+708

storms in these areas are rare Cat4-5 typhoons (right panel of Figure 12), show highest709

risk in the Northeastern Philippines, the Okinawa Japanese prefecture and Taiwan.710

6 Discussion and Conclusion711

We presented a global modelling framework to randomly generate tropical cyclones712

(tracks, size and radial profile) based upon the environmental conditions simulated by713

the CESM Large Ensemble over the present climate. This framework provides a unique714

and flexible approach for studying risk management of tropical cyclones by generating715

a large ensemble of TC trajectories that are statistically coherent with observations yet716

also consistent with interannual climate variability and historical climate change.717

The model will be of value to climate and environmental scientists investigating718

interannual climate variability, event attribution, and downscaling techniques. The hit719

rates presented and supplemented by impact measures can be of use in socioeconomic720

and impact research investigating risk mitigation and trends in affected population or721

financial losses. The modeling framework is also of particular interest to the insurance722

and reinsurance industry due to its global perspective and direct link to climate mod-723

els. These two aspects will allow the insurance industry to better constrain the impacts724
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Figure 12: Average annual number of hits (expressed in return period) for Cat4 and
above storms over the North Atlantic (left) and West Pacific (right)

of ENSO and other teleconnections on their global portfolios, which can in turn affect725

pricing, setting of reserves, and the diversification of tropical cyclone risk. The approach726

presented here also lays the required foundations for physical risk assessments of TC im-727

pacts under projected climate scenarios as will soon be required by regulating and ac-728

counting bodies globally (Financial Stability Board, 2017; Bank of England, 2019).729

The CESM Large Ensemble has proven to be an important tool to expand the short730

observational record of reliable tropical cyclone measurements. As such, it can improve731

our understanding of the effects of ENSO on tropical cyclones, and their interactions with732

the seasonal frequency, cyclogenesis and track locations, wind speeds and radii. By cal-733

ibrating the model and post-processing the outputs to past observations, it allows a faith-734

ful representation of key dynamics of tropical cyclones while leaving enough room to repli-735

cate the large spatial and temporal variability inherent to tropical cyclones. By directly736

connecting the components of tropical cyclones to the CESM Large Ensemble, the mod-737

eling framework therefore provides the appropriate foundations to assess the impacts of738

climate change on each of the tropical cyclone components. We leave such analysis for739

future research.740

Data Availability Statement741

The International Best Track Archive for Climate Stewardship (IBTrACS) dataset742

is available at: https://www.ncei.noaa.gov/products/international-best-track743

-archive (Knapp et al., 2018). The CESM Large Ensemble dataset is available at https://744

www.earthsystemgrid.org/ and the authors acknowledge CESM Large Ensemble Com-745

munity Project and supercomputing resources provided by NSF/CISL/Yellowstone (Kay746
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et al., 2015). The ETOPO1 Global Relief Model was accessed at https://www.ngdc.noaa747

.gov/mgg/global/relief/ (Amante & Eakins, 2009; NGDC, 2009).748

The Supporting Information is available on Zenodo at https://doi.org/10.5281/749

zenodo.7832839 and consists of 1) supporting figures and 2) supporting data (Carozza750

et al., 2023). The supporting figures are two HTML files that interactively display the751

figures for all basins. The supporting data contains event sets, catalogs, and an exam-752

ple analysis using the catalogs.753
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