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Abstract

Understanding the partitioning of runoff into baseflow and quickflow is crucial for informed decision-making in water resources

management, guiding the implementation of flood mitigation strategies, and supporting the development of drought resilience

measures. Methods that combine the physically-based Budyko framework with machine learning (ML) have shown promise in

estimating global runoff. However, such ‘hybrid’ approaches have not been used for baseflow estimation. Here, we develop a

Budyko-constrained ML approach for baseflow estimation by incorporating the Budyko-based baseflow coefficient (BFC) curve

as a physical constraint. We estimate the parameters of the original Budyko curve and the newly developed BFC curve based

on 13 climatic and physiographic characteristics using boosted regression trees (BRT). BRT models are trained and tested in

1226 catchments worldwide and subsequently applied to the entire global land surface at a 0.25° grid scale. The catchment-

trained models exhibit strong performance during the testing phase, with R2 values of 0.96 and 0.88 for runoff and baseflow,

respectively. Results reveal that, on average, 30.3% (spatial standard deviation std=26.5%) of the continental precipitation is

partitioned into runoff, of which 20.6% (std=22.1%) is baseflow and 9.7% (std=10.3%) is quickflow. Among the 13 climatic

and physiographic characteristics, topography and soil-related characteristics generally emerge as the most important drivers,

although significant regional variability is observed. Comparisons with previous datasets suggest that global runoff partitioning

is still highly uncertain and warrants further research.
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 13 

Highlights:  14 

1. A Budyko-constrained machine learning approach is developed for 15 

estimating long-term mean runoff and baseflow. 16 

2. The hybrid approach performs well in terms of both the runoff coefficient 17 

(R2=0.93) and the baseflow coefficient (R2=0.84). 18 

3. Globally, 30% of the precipitation is partitioned into runoff, with baseflow 19 

contribution estimated to be twice the quickflow (20.6% vs. 9.7%). 20 

4. Primary drivers of runoff partitioning vary in space with topography and soil 21 

properties as dominant factors. 22 

  23 



Abstract: Understanding the partitioning of runoff into baseflow and quickflow 24 

is crucial for informed decision-making in water resources management, guiding the 25 

implementation of flood mitigation strategies, and supporting the development of 26 

drought resilience measures. Methods that combine the physically-based Budyko 27 

framework with machine learning (ML) have shown promise in estimating global 28 

runoff. However, such 'hybrid' approaches have not been used for baseflow estimation. 29 

Here, we develop a Budyko-constrained ML approach for baseflow estimation by 30 

incorporating the Budyko-based baseflow coefficient (BFC) curve as a physical 31 

constraint. We estimate the parameters of the original Budyko curve and the newly 32 

developed BFC curve based on 13 climatic and physiographic characteristics using 33 

boosted regression trees (BRT). BRT models are trained and tested in 1226 34 

catchments worldwide and subsequently applied to the entire global land surface at a 35 

0.25° grid scale. The catchment-trained models exhibit strong performance during the 36 

testing phase, with R2 values of 0.96 and 0.88 for runoff and baseflow, respectively. 37 

Results reveal that, on average, 30.3% (spatial standard deviation std=26.5%) of the 38 

continental precipitation is partitioned into runoff, of which 20.6% (std=22.1%) is 39 

baseflow and 9.7% (std=10.3%) is quickflow. Among the 13 climatic and 40 

physiographic characteristics, topography and soil-related characteristics generally 41 

emerge as the most important drivers, although significant regional variability is 42 

observed. Comparisons with previous datasets suggest that global runoff partitioning 43 

is still highly uncertain and warrants further research. 44 

 45 

Keywords: runoff partitioning, baseflow, quickflow, Budyko, machine learning 46 

  47 



1 Introduction 48 

Accurate partitioning of runoff (Q) into its main components – baseflow (Qb) and 49 

quickflow (Qq) – is crucial for water management and emergency planning during 50 

droughts (Apurv & Cai, 2020) and floods (Roxy et al., 2017). Baseflow, sometimes 51 

referred to as 'slow flow', provides most of the water for sustaining river flows during 52 

dry periods (Miller et al., 2016). It originates from groundwater and other delayed 53 

sources, such as wetlands, lakes, melting of snow and ice (Hall, 1968). Quickflow is 54 

directly responsible for flood generation (Yin et al., 2018), and is a result of fast 55 

processes such as saturation or infiltration of excess overland flow and fast subsurface 56 

flow, i.e., processes where precipitation is not retained in the soil (Beven & Kirkby, 57 

1979). Process‐based models play an important role in accurately estimating global 58 

runoff, quickflow and baseflow; this includes among others land surface models 59 

(LSMs) and global hydrological models (GHMs). Nonetheless, LSMs and GHMs 60 

struggle with runoff partitioning resulting in poor performances in terms of baseflow 61 

index (BFI= Qb/Q) – see e.g. Beck et al. (2017).  62 

To complement process-oriented models, data-driven machine learning (ML) 63 

techniques have been developed to assess runoff partitioning regionally and globally 64 

without the biases induced by process-based models. For instance, Huang et al. (2021) 65 

adopted a random forest model (RF) and multiple linear regression approach to 66 

estimate the baseflow index (BFI = Qb/Q) in the United States. Beck et al. (2013, 67 

2015) achieved satisfactory performance for BFI estimation globally (R2=0.65) and 68 

provided global BFI datasets by using neural networks to relate BFI to 69 

climatic/physiographic characteristics. ML has the potential to build effective 70 

relationships between inputs and outputs, even if underlying physical processes are 71 

unknown. That is why ML has been growing in popularity in hydrological sciences 72 

beyond runoff (Xie et al., 2021), being used to predict evaporation (Jung et al., 2010) 73 

and precipitation (Sadeghi et al., 2019; Beck et al., 2010) as well. Despite the strength 74 

of pure ML models, the major limitation is their “black box” nature, and hence their 75 

lack of physical constraints and limited interpretability. The combination of 76 

physically-based models and ML methods, i.e., 'hybrid' approaches, can retain both of 77 

their individual strengths (de Bézenac et al., 2019; Koppa et al., 2022; Kraft et al., 78 

2022; Zhao et al., 2019). Hence, these physically-constrained ML methods can 79 

potentially improve the realism of the runoff partitioning estimates globally.  80 



Previous studies have illustrated the advantage of the Budyko (1961) framework 81 

as a physical constraint for pure ML to estimate runoff (Bai et al., 2020; Liu & You, 82 

2021), while no such attempt has been made for baseflow estimation yet. Recently, 83 

the Budyko framework was expanded by Cheng et al. (2021) to partition baseflow 84 

from precipitation with the Budyko-based baseflow coefficient (BFC) curve. This 85 

enables the Budyko framework to provide consistent physical constraints for both 86 

runoff and baseflow estimation. Both the Budyko and BFC curves depend on the 87 

aridity index and use lumped parameters (parameter α in Fu's equation and Qb,p in the 88 

BFC curve, see Section 2.1) to incorporate climatic and physiographic properties such 89 

as vegetation, soil, topography, and human activities (Mianabadi et al., 2020; Potter et 90 

al., 2005; Tang & Wang, 2017; Zhang et al., 2001). Zhang et al. (2001) revealed the 91 

impact of vegetation change on long-term evaporation and suggested α equal to 0.5 92 

and 2.0 for herbaceous plants and trees, respectively. Besides vegetation, Liu et al. 93 

(2018) indicated that climate seasonality also plays an important role on the Budyko 94 

parameter α. More complex relationships have also been proposed for small 95 

catchments (Bai et al., 2020). These different relationships between α and catchment 96 

properties indicate that a detailed understanding of the Budyko parameter is yet to be 97 

achieved (Padrón et al., 2017). ML models have the strength to achieve better 98 

regionalization of the parameters within the Budyko and BFC curves. 99 

      In this study, we design a framework for the long-term partitioning of global 100 

runoff by adopting the Budyko and Budyko-based BFC curves as physical constraints 101 

for ML models. The hybrid Budyko–ML approach makes full use of the available 102 

data, and enables physical consistency by obeying the Budyko limits of water and 103 

energy conservation. The primary objectives are to (1) develop Budyko constrained 104 

ML models to estimate individual runoff components globally, (2) assess the accuracy 105 

of the different estimated components, (3) analyse their spatial patterns, and (4) 106 

identify and quantify the primary drivers of runoff partitioning. The derived dataset 107 

includes gridded total runoff (Q), baseflow (Qb), quickflow (Qq), runoff coefficient 108 

(RFC=Q/P), baseflow coefficient (BFC=Qb/P), and quickflow coefficient 109 

(QFC=RFC–BFC) at 0.25° resolution. The structure of the paper is as follows: 110 

Section 2 describes the data development process, Section 3 describes the input 111 

datasets, and Sections 4 and 5 present the results and discussions, respectively. 112 



2 Methods 113 

2.1 Budyko curve for runoff estimation 114 

The Budyko framework is a first order approach that partitions long-term mean 115 

precipitation into runoff and actual evaporation (Budyko, 1961). According to this 116 

framework, both fluxes are limited by the water supply (typically precipitation, P) and 117 

the energy demand on evaporation (typically potential evaporation, 𝐸 ). This 118 

framework assumes that long-term soil water storage changes are negligible. Hence, 119 

the water balance can be written as: 120 𝑃 = 𝐸 + 𝑄        (1) 121 

where 𝑃 is precipitation, Q is runoff and 𝐸  is actual evaporation. 122 

As the original Budyko (1961) equation does not consider climatic and 123 

physiographic properties, several studies proposed alternative equations that introduce 124 

a single parameter to incorporate these properties (Choudhury, 1999; Yang et al., 125 

2007; Zhang et al., 2001). The formulation proposed by Fu (1981) and Zhang et al. 126 

(2004) is adopted in this study: 127 

= 1 + − 1 + ( )       (2) 128 

By combining Eq.1 and Eq.2, the equation for Q estimation can be written as: 129 

= 1 − = − + 1 + ( )       (3) 130 

where α is a parameter reflecting the secondary controls such as climate variability, 131 

vegetation, soil and topography, and can range from 1 to ∞ (Zhang et al., 2004). High 132 

α values result in low runoff and high actual evaporation for specific precipitation and 133 

potential evaporation values (Figure 1a). Figures in this study visualise P/Ep instead 134 

of Ep/P to put more focus on humid regions with larger variability of 𝑄/𝑃. 135 

2.2 BFC curve for baseflow estimation 136 

The BFC curve was developed by Cheng et al. (2021) to estimate long-term 137 

mean baseflow (Qb) based on the Budyko framework with suitable modifications (see 138 

supplementary material). The BFC equation (Eq. 4) indicates that the baseflow not 139 

only depends on P and potential evaporation Ep, but also on the potential baseflow 140 



(Qb,p). This latter parameter is newly introduced in this study and indicates the 141 

amount of baseflow that would occur if sufficient water were available. Hence, it is an 142 

upper limit for the baseflow, analogous to the concept of Ep for the case of 143 

evaporation. See the supplementary material for the derivation of the equation, which 144 

is slightly modified compared to Cheng et al. (2021). The final equation of the BFC 145 

curve is as follows:  146 = , + [1 + ( ) ] − [1 + ( + , ) ]    (4) 147 

where 𝛼 is a parameter (identical to the one in Eq. 3). Qb/P increases with increasing 148 

P/Ep and 𝑄 , /P. High 𝑄 ,  values result in high baseflow and low quickflow for 149 

specific precipitation and potential evaporation values (Figure 1b). 150 

 151 

Figure 1. Visualization of the physical constraints for (a) runoff, Budyko curve (Eq. 3), and 152 
(b) baseflow, BFC curve (Eq. 4).  153 

2.3 Calibration of parameters 154 

The Budyko and BFC curves include the following two parameters: α and Qb,p. 155 

The latter is also parameterized, since its value cannot be determined with any 156 

available dataset. For individual catchments, the parameter α is calibrated first by 157 

using the Budyko curve (Eq. 3) and observed long-term mean Q, P, and Ep. Then, 158 

Qb,p is calibrated using the BFC curve (Eq. 4) and observed long-term mean Qb, P, Ep, 159 

and α (as calibrated in the previous step). 160 



2.4 Machine learning to relate parameters to climatic and 161 

physiographic properties 162 

The parameters (α and Qb,p) are regionalized as functions of climatic and 163 

physiographic properties using ML. The calibrated α and Qb,p in each catchment (see 164 

Section 2.3) serve as a benchmark for training ML models. The catchment-trained ML 165 

models are then used to regionalize α and Qb,p globally at grid scale.  166 

This study uses Boosted Regression Trees (BRT), which combines the strengths 167 

of a regression tree algorithm and a boosting algorithm (Elith et al., 2008). BRT 168 

differs fundamentally from conventional techniques that aim to produce a single “best” 169 

parsimonious model, as it constructs multiple regression models in the algorithm 170 

(Elith et al., 2008). The process of training a BRT model includes two parts: 171 

regression trees and a boosting algorithm. First, multiple regression trees are built by 172 

minimizing the prediction errors. Second, the boosting algorithm combines the 173 

regression trees to give improved predictive performance. An effective strategy for 174 

fitting a single decision tree is to grow a large tree, and then to prune it by collapsing 175 

the weakest links as identified through cross-validation (Franklin, 2008). The first 176 

regression tree is grown using recursive binary splits, that is, a binary split is 177 

repeatedly applied to its own output until the loss function is maximally reduced. The 178 

second tree is fitted to the residuals of the first tree, and the second tree can contain 179 

quite different variables and split points. Consequently, multiple trees are fitted 180 

additively based on the residuals of the previous tree. For multiple fitted trees, the 181 

boosting algorithm averages trees to increase model performance. The dominant 182 

drivers for the parameters α and Qb,p are estimated through method local interpretable 183 

model-agnostic explanations (LIME) (Ribeiro et al., 2016). 184 

Several hyper-parameters in BRT can be adjusted, including tree complexity (tc), 185 

learning rate (lr) and bag fraction (bf). To find the most robust model for our analysis, 186 

combinations of the following parameter values are tested using a 10-fold cross-187 

validation strategy: tc∈{4, 7, 10, 12}, lr∈{0.0005, 0.005, 0.01} and bf∈{0.4, 0.5, 0.6, 188 

0.8} (Elith et al., 2008). The combination of hyper-parameter values with the highest 189 

test performance is tc=12, lr=0.01, and bf=0.50. 10-fold cross-validation strategy is 190 

also used for training models. The training is conducted ten times. Each time, 10 191 

groups of catchments are randomly formed, of which nine groups are used for training 192 

and one for testing. Ten BRT models are finally constructed at catchment scale and 193 
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Figure 2. Overview of the modelling process and input datasets. The input datasets required in 210 
each step are indicated by the colored squares; they correspond to the input datasets listed on 211 
the left. 212 

3 Data 213 

3.1 Observed runoff, baseflow and quickflow 214 

Observed daily discharge data from 3274 gauge-stations are obtained from the 215 

Global Runoff Data Centre (GRDC) dataset together with the corresponding 216 

catchment boundaries (https://www.bafg.de/GRDC/). A set of 1314 gauge-stations 217 

and their corresponding catchments are selected from the initial dataset based on the 218 

following requirements. First, the record length needed to be at least 10 years to allow 219 

analyses on long-term mean values. Second, the missing data rate should be smaller 220 

than 20% to warrant the representativeness of the mean values. Third, the water 221 

balance should close, i.e., |     | < 0.1, to exclude stations with too large data 222 

uncertainties, or regional groundwater export/import as this is not included in the 223 

Budyko framework. The spatial distribution of the selected 1314 catchments is shown 224 

in Figure 3c. 225 

Daily Qb and quickflow (Qq=Q–Qb) are separated from daily Q using a digital 226 

filter technique, more specifically the Lyne–Hollick (LH) method (Lyne & Hollick, 227 

1979). Different digital filter methods have no significant influence on the long-term 228 

estimation of Qb and Qs (Chen et al., 2023). The LH method has the advantage of 229 

being minimally parameterized, and thus is easily applicable to a large sample of 230 

catchments. The filter parameter f1, also called recession constant, affects the degree 231 

of attenuation. The number of passes determines the degree of smoothing, with the 232 

backward pass nullifying the phase distortion from the forward pass. Here, the LH 233 

method is applied in a conventional way with three passes (forward, backward, and 234 

forward again) and the filter parameter f1 is set to 0.925 (Nathan & McMahon, 1990).  235 

Long-term mean Q, Qb and Qq are estimated from their daily values and used to 236 

estimate the catchment runoff coefficient (RFC=Q/P), baseflow coefficient 237 

(BFC=Qb/P), and quickflow coefficient (QFC=RFC–BFC). Note that the time period 238 

for P, Ep, Q, Qb and Qq are consistent within each catchment by selecting their 239 

crossing period. The available data lengths of the 1314 catchments vary from 10 to 41 240 

years. 241 



3.2 Climatic and Physiographic Characteristics 242 

Table 1 lists 16 climatic and physiographic variables that are used in this study, 243 

including the respective references, original spatial resolution and temporal coverage. 244 

In this study, analysis is done at 0.25° resolution; hence, observations are resampled 245 

to 0.25° using bilinear interpolation method when needed. Among the 16 variables, 246 

precipitation (P), potential evaporation (Ep) and evaporation (Ea) are direct inputs in 247 

the Budyko and BFC curves (Eq. 3 and 4). The remaining 13 variables are predictors 248 

for parameters α and Qb,p during the ML step (see Section 2.4). Three of these 249 

characteristics are related to climate, four to vegetation, three to topography, two to 250 

soil and one is related to human activities. 251 

Table 1. Gridded climatic and physiographic characteristics used directly in the Budyko and 252 
BFC curve (P, Ea and Ep), or to predict runoff and baseflow with ML (remaining variables). 253 

Subcategory Data Description Data Sources Original 
Resolution 

Temporal 
coverage 

Climate 

P Precipitation MSWEP v1.1 (Beck et al., 
2017) 0.25° 

1980–2020 

Ep 
Potential 
Evaporation 

TerraClimate (Abatzoglou et 
al., 2018) 1/24° 

Ea 
Actual 
evaporation 

GLEAM v3.6 (Martens et al., 
2017) 0.25° 

TC Air 
temperature ERA5 (Hersbach et al., 2020) 0.25° 

SAI 

Seasonality 
and 
asynchrony 
index 

Calculated from daily P and Ep 
(Liu et al., 2018) 0.25° 

SWE Snow water 
equivalent 

GLOBSNOW L3av2 and 
NSIDC v0.1 (Armstrong, 
2005; Luojus et al., 2013) 

0.25° 

Vegetation  

NDVI 

Normalized 
difference 
vegetation 
index MODIS 

(https://modis.gsfc.nasa.gov/) 0.05° 2000–2014 
WUE Water use 

efficiency 

LAI Leaf area 
index 

RD 
Maximum 
rooting 
depth 

Fan et al. (2017) ~1km Static 

Topography 
CTI Topographic 

index Marthews et al. (2015) 500m 
Static 

ELEV Mean Yamazaki et al. (2019) 90m 



elevation 

SLO Slope Amatulli et al. (2018) 1km 

Soil 

STHI 

Average soil 
and 
sedimentary 
deposit 
thickness 

Pelletier, J.D, et.al, (2016)  1km 

Static 

SPO Soil porosity SoilGrids 2.0 (Poggio et al., 
2021) 250 m 

Human 
activities HFP 

Human 
influence 
index 

Eric W. Sanderson et al. 
(2002) 1km 

1995–2004 

 254 

4 Results 255 

4.1 Calibrated parameters at catchment scale 256 

Figure 3 visualises the values of the parameters α and Qb,p for all 1314 257 

catchments as calibrated with Eq. 3 and 4. Due to the large variability of catchment 258 

conditions, the parameter values vary such that their 5% and 95% quantiles range 259 

between α = 1.94–5.55 and Qb,p = 104–2242 mm yr–1, resulting in different Budyko 260 

and BFC curves as shown in Figure 3a and b with the purple and orange lines. The 261 

median values of the catchment-specific α and Qb,p are 2.83 and 547 mm yr–1, 262 

respectively. The large variability of α and Qb,p is spatially shown in Figure 3c and d, 263 

respectively. Large α values (i.e., α > 4) mainly appear in the Great Plains in North 264 

America, the east coast of Australia and South America. A mix of low and median α 265 

values (i.e., α < 3) appear in Europe and in the east of the United States. For the 266 

spatial distribution of Qb,p, Australia, southern Africa and the middle of the United 267 

States show low Qb,p values. There are no obvious spatial patterns elsewhere. Of the 268 

1314 catchments, 88 stations show extreme parameter values (i.e., α>6.0 and 269 

Qb,p >3000; see the tails in the density plots in Figure 3c and d). In addition, 38 270 

stations of these 88 stations fall outside the Budyko limits (i.e., α→ ∞) as shown in 271 

Figure 3a. These 88 stations with extreme parameter values are considered as outliers 272 

and are therefore excluded, such that 1226 stations are left for the remainder of the 273 

analysis. These remaining stations are further tested by analysing results during 274 

calibration and validation periods (see Figure S1). For each catchment, the first 20 275 

years are used to calibrate the parameters α and Qb,p, and the remaining years are used 276 



for 282 

vali283 

The284 

calib285 

sele286 

283 

validation. 

idated runof

e high valid

brated α an

ected catchm

Catchment

ff and basef

dation perfo

nd Qb,p can

ments. 

ts with less

flow show 

rmance illu

n reproduce

s than 30 y

a correlatio

ustrates that

e the spatial

years of da

on (R2) of 0

t the Budyk

l variability

ata are not 

.95 and 0.9

ko and BFC

y of Q and 

validated. 

94, respectiv

C curve with

Qb well at

 

The 

vely. 

h the 

t the 



Figure 3. Scatterplots of (a) Q/P and (b) Qb/P versus P/Ep. The lines in panel (a) and (b) are 283 
the Budyko and BFC curves, respectively, using the following quantile values for the 284 
parameters α and Qb,p: 5% (purple), 50% (red), and 95% (orange). Note, that in (b) α is fixed 285 
to its median value of 2.83 to focus on Qb,p changes. Spatial distribution and density plots of 286 
(c) α and (d) Qb,p. Extreme values beyond the grey lines in the density plots are considered as 287 
outliers and are removed. 288 

4.2 Catchment-scale performance of trained models 289 

The first row in Figure 4 shows the performances of BRT-derived α, Q/P and Q 290 

using Eq.3 and BRT-derived α (Budyko–ML). During training, all three variables 291 

agree well with observations with RMSE for Q/P and Q equal to 0.02 and 17 mm yr–1, 292 

respectively (Figure 4b and c). During testing, the performances decrease as expected, 293 

especially for α, with R2 = 0.50. The performances of Q/P and Q remain high though, 294 

with R2 = 0.93 and 0.96 and RMSE = 0.04 and 46 mm yr–1, respectively. 295 

Similar to runoff, the second row in Figure 4 shows the performances of BRT-296 

derived Qb,p, Qb/P and Qb estimated with Eq. 4 and BRT-derived α and Qb,p. The 297 

performance for these three variables is high during training, with R2
 = 0.92, 0.96 and 298 

0.97, respectively (Figure 4d, e and f). The performance of Qb,p decreases during the 299 

testing phase (R2=0.41). As a result, also Qb/P and Qb perform slightly worse during 300 

testing, but their performances are still acceptable, with R2 for Qb/P and Qb equal to 301 

0.84 and 0.88, respectively. The good performances of runoff and baseflow during the 302 

testing phase indicates that the trained ML models for α and Qb,p at catchment scale 303 

are reliable for estimating runoff and baseflow globally. 304 
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parameter (α), while Qb relies on two parameters (α and Qb,p). Overall, the global, 325 

long-term mean annual Q is on  average 274 (std=418) mm yr–1, Qb 151 (std=181) 326 

mm yr–1 and Qq 123 (std=270) mm yr–1. The results illustrate that the global river 327 

supply relies more on baseflow than quickflow. 328 

 329 

Figure 5. Global maps of estimated (a) Q, (c) Qb and (e) Qq. Station-based observed (b) Q, (d) 330 
Qb and (f) Qq. 331 

Figure 6 shows the global map of gridded RFC, BFC, QFC, baseflow index 332 

(BFI=Qb/Q) and quickflow index (QFI=Qq/Q). RFC, BFC and QFC have similar 333 

spatial patterns with low values in western America, northern Africa, southern Africa, 334 

western Asia, central Asia, and Australia. However, regions with high RFC values, 335 

show both high and low BFC and QFC values depending on the region. For example, 336 

Q is partitioned more into Qq than Qb in the Amazon and southeast Asia, while in 337 

Canada and Russia, more Qb is generated than Qq. This is also illustrated with Figure 338 

6f–h, which show RFC, BFC and QFC for different quantiles as a function of the 339 

latitude. High RFC values are generally located at 60°N–85°N, 5°N–5°S and 45°S–340 

60°S. In these latitudinal intervals, the partitioning of Q into Qb and Qq differs in 341 

space. As shown in Figure 6i and j, between 60°N–85°N, the majority of Q are mostly 342 

partitioned into Qb (the median values in this latitudinal interval is on average 80.7%), 343 

and less Qq (19.3%). Between 5°N–5°S and 45°S–60°S, the BFC and QFC are quite 344 



similar to each other with Qb of 42.1% and 54.9%, respectively, and Qq of 57.9% and 345 

45.1%, respectively. Across all latitudes, the mean difference between the 5th and 95th 346 

quantiles is larger for RFC (0.50) and BFC (0.35) than for QFC (0.26). The spread of 347 

QFC is more pronounced near the equator (5°N–5°S) and  in the Southern 348 

Hemisphere high latitudes (45°S–60°S). Overall, average 30.3% (std=26.5%) of P is 349 

partitioned into Q, of which 20.6% (spatial standard deviation std=22.1%) is Qb and 350 

9.7% (std=10.3%) Qq. 351 

 352 
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4.4 Dominant drivers of runoff partitioning 359 

The most important drivers for α and Qb,p vary across regions (Figure 7). 360 

Topography and soil properties are most important for most catchments (75.5% 361 

catchments for α; 67.0% catchments for Qb,p, see blue points in Figure 7). Slope (SLO) 362 

is identified most frequently as the dominant driver for both α (48.7% catchments) 363 

and Qb,p (34.1% catchments). The second driver is elevation (ELEV) for α dominant 364 

in 25.6% catchments, and soil thickness (STHI) for Qb,p in 29.1% catchments. 365 

Climate related factors are recognized as the most important driver at a smaller 366 

number of catchments (12.4% for α and 27.3% for Qb,p) as also vegetation related 367 

factors (12.1% for α and 5.7% for Qb,p). 368 

The main drivers for the parameters are region specific. This provides another 369 

perspective on why there is no universally accepted relationship yet (Padrón et al., 370 

2017), besides the complex interaction between the drivers (Ning et al., 2019) and 371 

uncertainties in P, Ep, and Q (Koppa et al., 2021). Previous studies have investigated 372 

the main drivers to Budyko parameters. These identified dominant drivers depend on 373 

the region of interest and are different from each other. Considering large basins 374 

globally, studies illustrated the main dominant property is vegetation (Li et al., 2013; 375 

Zhang et al., 2001) or climate seasonality (Liu et al., 2018). In small catchments 376 

regionally, the influence of climatic and physiographic properties on α becomes more 377 

variable as other factors need to be considered including soil properties (Shen et al., 378 

2017), topography (Shao et al., 2012), human activities (Xing et al., 2018) and a 379 

combination of various controls (Yang et al., 2007). According to the regions 380 

identified in Figure 7, topography and soil related factors should be first considered 381 

for regionalizing α in most catchments. Climate related factors are important in 382 

eastern South America and the coastline of Australia. Vegetation is the most dominant 383 

driver in western America and the United Kingdom. 384 
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long-term mean baseflow of this study (151 (spatial standard deviation std=181) mm 399 

yr–1) is smaller than GSCD-based baseflow (Qb,GSCD = 241 (std=321) mm yr–1, Figure 400 

8a and c), and larger than ERA5-Land-based baseflow (Qb,ERA5-Land = 79 (std=145) 401 

mm yr–1, Figure 8b and d). The baseflow estimated in this study has a larger spatial 402 

correlation with Qb,GSCD (R2=0.84) than Qb,ERA5-Land (R2=0.51), while a smaller RMSE 403 

is found relative to Qb,ERA5-Land (RMSE=143 mm yr–1) compared to Qb,GSCD 404 

(RMSE=198 mm yr–1). This means the spatial variability of our Budyko-ML-based 405 

baseflow is more similar to GSCD, while the magnitudes are closer to ERA5-Land 406 

values. The baseflow coefficient (BFC=Qb/P) is also compared to estimates according 407 

to GSCD and ERA5-Land. Figure S4 shows that the correlation of BFC is higher 408 

relative to GSCD (R2=0.73) than ERA5-Land (R2=0.07). 409 

These three datasets are a result of different types of methods with each their 410 

strengths and weaknesses: physically constrained ML in this study, pure ML for 411 

GSCD and the land surface model H-TESSEL for ERA5_Land. The GSCD dataset is 412 

not physically constrained, but available at a higher spatial resolution (0.05°) and 413 

based on significantly more catchments (3394). The H-TESSEL used for ERA5_Land 414 

is not specifically developed for runoff estimation, but for land-atmosphere 415 

interactions. Also, H-TESSEL uses “expert opinion” based parameterization instead 416 

of being calibrated. This may be the cause for the poor correlation results and 417 

confirms opinions that land surface models such as the H-TESSEL poorly estimate 418 

baseflow and groundwater-surface water interactions (Clark et al., 2015, Beck et al., 419 

2017). 420 

As the baseflow index (BFI=Qb/Q) is more sensitive to both baseflow and runoff 421 

uncertainties (Gnann et al., 2019), the BFI is only compared to GSCD. As shown in 422 

Figure S5, the performance of BFI at catchment scale is acceptable with R2 of 0.54. 423 

However, the performance decreases at global grid scale (R2=0.18). This low 424 

correlation of BFI may be attributed to several aspects. First, getting accurate BFI 425 

estimates from separately estimated Q and Qb is difficult (Beck et al., 2017). The 426 

spatial variability of the individual variables Q and Qb is much larger than the 427 

difference between Q and Qb within each catchment (BFI). High similarities in the 428 

spatial distribution of Q and Qb does not guarantee similar BFI values. The BFI is 429 

especially sensitive in dry regions since very low Q values (in the denominator) 430 

would result in high BFI values. Second, the study period of the GSCD dataset and 431 
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Qb,GSCD)/( 0.5 * (Qb,this study + Qb,GSCD)) for plot (c), and replace Qb,GSCD with Qb,ERA5-Land for 442 
plot (d). 443 

5.2 Partitioning in northern latitudes 444 

The runoff partitioning dataset developed in this study has difficulties in 445 

representing high northern latitudes correctly (HNL). First, precipitation datasets tend 446 

to be underestimated at latitudes higher than 60 °N (snow-dominant regions) at a 447 

long-term scale (Beck et al., 2017). The MSWEP dataset used in this study attempted 448 

to correct this underestimation bias by the catch-ratio equation (Goodison et al., 1998). 449 

But the precipitation in HNL still has uncertainties for the gauge under-catch. By 450 

using the Budyko constrained ML framework, precipitation is a dominant forcing for 451 

the runoff and baseflow estimation, such that the uncertainty of precipitation could 452 

bring large uncertainties. Second, there are no catchments in HNL when applying the 453 

selection criteria as described in Section 3.1, which means relations based on trained 454 

ML models may not be accurate there. As a data-oriented method, ML relies on 455 

training data sources with all representative data expected to be included (Ma et al., 456 

2020). Third, the partitioning of baseflow and quickflow from snow-melt runoff is 457 

different from precipitation-generated runoff. Based on the definition of baseflow 458 

from Hall (1968), snow-melt runoff is grouped under baseflow. However, this 459 

contradicts the digital filter technique that considers high frequency parts as 460 

quickflow. Snow-melt runoff can have quickflow features of high frequency and 461 

peaks during summer, even generating floods (Benn et al., 2012). As shown in Figure 462 

6d and 6i, the baseflow index in high northern latitudes have high values, which 463 

means runoff comes more from baseflow rather than quickflow. It makes sense if we 464 

consider snow-melt runoff as baseflow following the definition of Hall (1968). 465 

However, we recommend further investigation on runoff partitioning in NHL regions. 466 

6 Conclusion 467 

This study extends the Budyko constrained machine learning (Budyko–ML) 468 

approach to develop global datasets for the runoff (Q), baseflow (Qb), quickflow (Qq) 469 

and the respective coefficients relative to the precipitation (Q/P, Qb/P and Qq/P) at 470 

0.25°resolution. This hybrid approach, combining the Budyko-based framework 471 

(Budyko and BFC curve) with ML (BRT), retains the advantage of both the physical 472 

part and ML to achieve good performances within physical boundaries. This 473 



advantage is illustrated by the good performance of both Q and Qb as they performed 474 

well compared to field observations during the testing phase with R2=0.96 and 475 

R2=0.88 for Q and Qb, respectively. BRT estimates parameters globally, despite their 476 

unknown relationship with climatic and physiographic properties. Among the 13 477 

climatic and physiographic properties considered, the main drivers are region specific, 478 

with topography and soil related factors being predominant in most catchments. 479 

Findings indicate that global runoff amounts to 274 (spatial standard deviation 480 

std=418) mm yr–1, which means 30.3% (std=26.5%) of the precipitation, of which 481 

20.6 (std=22.1%) is baseflow and 9.7% (std=10.3%) is quickflow. Our baseflow 482 

estimates are lower than GSCD estimates (241 (std=321) mm yr–1) but larger than 483 

ERA5-Land estimates (79 (std=145) mm yr–1). These large differences illustrate the 484 

large uncertainty that remains in runoff partitioning at global scales, and the required 485 

efforts to improve it further.  486 

 487 

Data Availability Statement 488 

The developed global 0.25° datasets including runoff (Q), baseflow (Qb), runoff 489 

coefficient (Q/P), baseflow coefficient (Qb/P) and baseflow index (Qb/Q) are 490 

available at Global runoff partitioning based on Budyko-constrained machine learning 491 

| Zenodo. 492 
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1 Method  

Baseflow curve based on limit concept 

In general, the water balance can be written as: 

𝑑𝑆

𝑑𝑡
= 𝑃 − 𝐸𝑎 − 𝑄         (S1) 

where S is water stored in underground, P is precipitation, 𝐸𝑎 is actual evaporation, Q is discharge 

which can be partitioned into Qb is baseflow and Qq is quick flow (𝑄 =  𝑄𝑏 + 𝑄𝑞).  

The basic limit concept of the Budyko framework for estimating 𝐸𝑎  is: 

𝐸𝑎 𝑃 → 1 𝑎𝑠 ⁄ 𝐸𝑝 𝑃 → ∞⁄  for very dry conditions, and 𝐸𝑎 → 𝐸𝑝 𝑎𝑠 𝐸𝑝 𝑃 → 0⁄  for very wet 

conditions, where 𝐸𝑝 is potential evaporation. The demand limit of 𝐸𝑎 is 𝐸𝑝 and the supply limit is P. 

Fu (1981) proposed 𝐸𝑎 can be calculated with: 

𝐸𝑎

𝑃
= 1 +

𝐸𝑝

𝑃
− [1 + (

𝐸𝑝

𝑃
)𝑎1]

1 𝑎1⁄

       (S2) 

Assuming 
𝑑𝑆

𝑑𝑡
 ≈ 0 on long term time scales and with the catchment retention defined as 

 𝐶𝑅 = 𝐸𝑎 + 𝑄𝑏         (S3) 

Equation S1 can be expressed as: 

𝑃 = 𝐶𝑅 + 𝑄𝑞         (S4) 

The demand limit for CR is 𝐶𝑅0 = 𝐸𝑝 +  𝑄𝑏,𝑝 . The Ep and Qb,p are the potential values for E and 

Qb, respectively. According to Zhang et al. (2008), the limits concept of Budyko can also be applied 

to CR such that: 𝐶𝑅 𝑃 → 1 𝑎𝑠 ⁄ 𝐶𝑅0 𝑃 → ∞⁄  for very dry conditions, and𝐶𝑅 → 𝐶𝑅0 𝑎𝑠 𝐶𝑅0 𝑃 → 0⁄  

for very wet conditions. Then CR can be estimated as: 

𝐶𝑅

𝑃
= 1 +

𝐶𝑅0

𝑃
− [1 + (

𝐶𝑅0

𝑃
)𝑎2]

1 𝑎2⁄

       (S5) 

Combining Eq. S2, Eq. S3 and Eq. S5: 

𝑄𝑏

𝑃
=

𝑄𝑏,𝑝

𝑃
+ [1 + (

𝐸𝑝

𝑃
)𝑎1]

1
𝑎1

⁄ − [1 + (
𝐸𝑝+𝑄𝑏,𝑝

𝑃
)𝑎2]

1
𝑎2

⁄     （S6） 

Under very limited storage capacity conditions (for instance an impervious catchment), 

no/limited water is stored in the subsurface such that the baseflow also approaches zero (i.e., 𝑄𝑏 𝑃⁄ →

0 if 𝑄𝑏,𝑝 𝑃 → 0⁄ ). Under that condition, Eq. S11 changes to 0 ≈ [1 + (
𝐸𝑝

𝑃
)𝑎1]

1
𝑎1

⁄ − [1 + (
𝐸𝑝

𝑃
)

𝑎2

]
1

𝑎2
⁄

 . 

This equation can only be satisfied if 𝑎1 =  𝑎2. Thus Eq. S11 can be written as: 



𝑄𝑏

𝑃
=

𝑄𝑏,𝑝

𝑃
+ [1 + (

𝐸𝑝

𝑃
)𝛼]

1
𝛼⁄ − [1 + (

𝐸𝑝+𝑄𝑏,𝑝

𝑃
)𝛼]

1
𝛼⁄      (S7) 

 

2 Figures 

 

Figure S1. Performance of (a) Q and (b) Qb at catchment scale during the calibration (orange) and 

validation (blue) periods. 

 



 

Figure S2. Global maps of (a) parameter α in the Budyko curve (Eq. 3) and BFC curve (Eq. 4), and (b) 

parameter Qb,p in BFC curve estimated as the mean of 10 BRT models. 

 

Figure S3. Global map of the uncertainty of (a) parameter α, (b) parameter Qb,p, (c) runoff coefficient (RC=Q/P), 

(d) baseflow coefficient (BFC=Qb/P), (e) runoff (Q), and (f) baseflow (Qb). These uncertainty values are equal 

to the standard deviation of the 10 trained BRT models using the 10-fold cross-validation strategy. 



 

Figure S4. Comparison of the baseflow coefficient (Qb/P) from this study with estimates according to (a) 

GSCD and (b) ERA5-Land. 

 

Figure S5. Comparison of the baseflow index (Qb/Q) as estimated in this study with (a) field observations and 

(b) GSCD estimates. 
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