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Abstract

Though tropical cyclone (TC) models have been routinely evaluated against track and intensity observations, little work has

been performed to validate modeled TC wind fields over land. In this paper, we present a simple framework for evaluating

simulated low-level inland winds with in-situ observations and existing TC structure theory. The Automated Surface Observing

Systems, Florida Coastal Monitoring Program, and best track data are used to generate a theory-driven wind profile that

reasonably represents the observed radial distribution of TC wind speeds. We quantitatively and qualitatively evaluated the

modeled inland TC wind fields, and described the model performance with a set of simple indicators. The framework was used

to examine the performance of a high-resolution two-way nested Geophysical Fluid Dynamics Laboratory model on recent U.S.

landfalling TCs. Results demonstrate the capacity of using this framework to assess the modeled TC low-level wind field in the

absence of dense inland observations.
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Key Points:7

• We introduce a new framework for evaluating modeled inland tropical cyclone wind8

fields with observation-based, theory-driven wind profiles.9

• The theory-driven wind profile well represents the observed radial distribution of10

inland tropical cyclone wind speeds.11

• We propose simple indicators to summarize the model performance on inland wind12

field predictions.13

Corresponding author: Jie Chen, chenjie@princeton.edu

–1–



manuscript submitted to Geophysical Research Letters

Abstract14

Though tropical cyclone (TC) models have been routinely evaluated against track and in-15

tensity observations, little work has been performed to validate modeled TC wind fields16

over land. In this paper, we present a simple framework for evaluating simulated low-level17

inland winds with in-situ observations and existing TC structure theory. The Automated18

Surface Observing Systems, Florida Coastal Monitoring Program, and best track data are19

used to generate a theory-driven wind profile that reasonably represents the observed radial20

distribution of TC wind speeds. We quantitatively and qualitatively evaluated the modeled21

inland TC wind fields, and described the model performance with a set of simple indicators.22

The framework was used to examine the performance of a high-resolution two-way nested23

Geophysical Fluid Dynamics Laboratory model on recent U.S. landfalling TCs. Results24

demonstrate the capacity of using this framework to assess the modeled TC low-level wind25

field in the absence of dense inland observations.26

Plain Language Summary27

Some of the biggest human impacts of tropical cyclone (TC) winds come after the28

TC makes landfall. A skillful prediction of the radial distribution of winds is essential for29

forecasting TC-induced inland hazards. However, the forecast skill of numerical hurricane30

models on inland TC wind fields has rarely been evaluated since it is challenging to collect31

wind observations during landfall, and the network of regular weather observations is too32

spread out to capture the strongest winds associated with a TC. This inhibits the improve-33

ment of forecast models and limits our understanding of the TC’s inland evolution. Our34

work combines available inland in-situ wind observations over the southeastern U.S. with35

existing TC structure theory, and presents a new ”optimal” estimate of the post-landfall36

winds. Our framework is found to be useful for evaluating the post-landfall TC winds in37

hurricane forecast models. In addition, the new evaluation technique can intuitively demon-38

strate how well the model simulates TC intensity and structure.39

1 Introduction40

Landfalling tropical cyclones (TCs) bring significant hazards and cause enormous eco-41

nomic losses (Villarini et al., 2014; Rappaport, 2014). These impacts could be amplified42

in a changing climate, given the potential that landfalling TCs may move and decay more43

slowly in a warming climate (Kossin, 2018, 2019; Li & Chakraborty, 2020; Chan et al.,44

2022), and compound hazards may increases under climate change (Gori & Lin, 2022; Feng45

et al., 2022). Beyond that, research suggests that TCs may make landfall in unusual regions46

that are more vulnerable to TC hazards due to a shift in landfall location and to a possible47

poleward shift in the latitude of maximum intensity in a warmer future climate (Kossin et48

al., 2014; Knutson & Coauthors, 2020). Indeed, even without the effects of climate change,49

TC damage is likely to double in the future since there are more people and assets in harm’s50

way (Mendelsohn et al., 2012). Therefore, it is urgent to evaluate the post-landfall per-51

formance of hurricane models, especially for predicting the low-level TC wind field, since52

inland hazards and weather extremes are intimately linked to the wind field structure (Zhai53

& Jiang, 2014).54

Though in-situ observations are essential for evaluating the simulation of inland TC55

low-level wind fields (Nolan et al., 2021), our community lacks dense and systematic obser-56

vations of the TC low-level wind field after landfall. As such, it is necessary to introduce57

alternative analyses for the evaluation of modeled inland TC winds. In this work, we form58

a framework assessing the model performance on predicting inland TC wind fields using59

observation-based, theory-driven wind profiles. This wind profile is generated from existing60

TC structure models given observable TC parameters obtained primarily from the avail-61

able observations. Beyond the widely-used International Best Track Archive for Climate62

Stewardship (IBTrACS version 4, Knapp et al. (2010)) for TC intensity and track, the63
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minute-by-minute, near-surface observations provided by the Automated Surface Weather64

Observations (ASOS) and the Florida Coastal Monitoring Program (FCMP) are also used.65

The model evaluated in this work is the Tropical Atlantic version of Geophysical Fluid Dy-66

namics Laboratory (GFDL)’s System for High-resolution prediction on Earth-to-Local Do-67

mains (T-SHiELD hereafter), which will be introduced in the following section. T-SHiELD68

has shown skillful predictions of TC landfall track and intensity (Harris et al., 2020; Gao69

et al., 2021). Since T-SHiELD shares much of the code with the NOAA’s next-generation70

Hurricane Analysis and Forecast System (HAFS) and also includes advanced features devel-71

oped at GFDL for better hurricane predictions, it serves as a good representative model for72

the evaluation. Moreover, this work attempts to quantify the performance of the model on73

simulated wind fields via a set of time-dependent indicators that describe the characteristics74

of the forecast error. These evaluations can reveal the performance of model predictions for75

landfalling cases and quantify the improvement of forecast skills associated with the model76

development.77

In this paper, we first introduce the datasets, the GFDL T-SHiELD model, and the78

assessment framework (Section 2). Then we analyze the performance of the simulated T-79

SHiELD inland wind fields via the evaluation framework and the performance indicators80

(Section 3). We end with a summary and discussion (Section 4).81

2 Data and Methods82

2.1 Observation and model data83

We use TC track and intensity data from IBTrACS version 4 for selected 2020–202284

landfalling storms in the contiguous United States. Recent studies suggest that the data ac-85

curacy has been improved through years with advanced technology (Landsea, 2007; Landsea86

& Frankin, 2013; Zhu & Collins, 2021). Therefore, this work considers the IBTrACS reports87

as a baseline reference for the inland TC track and intensity change. The representative88

landfalling cases are the storms during the 2020-2022 hurricane seasons to strike along the89

coastlines of the Gulf of Mexico and the Florida peninsula: Laura (2020), Sally (2020),90

Delta (2020), Fred (2021), Ida (2021), and Ian (2022) (Figure 1). Except for Fred, which91

represents a low-intensity landfalling TC, selection of landfall cases is defined following the92

criteria used in Zhu and Collins (2021), but with a few modifications, including that the93

TC intensity upon first U.S. inland point must be Category 1 or higher (maximum wind94

speed ≥ 64 kts), and the intensity remains higher than 34 kts for at least 12 hours before95

dissipation or extratropical transition. This criteria enables a close and sufficiently lengthy96

examination after landfall while excluding the influences on TC intensity and structure from97

extratropical transition at higher latitudes (Evans & Hart, 2003).98

We use several in-situ datasets for wind observations in addition to the IBTrACS: 1)99

ASOS wind data at each 5-min interval across 11 southeastern states obtained from the Na-100

tional Centers for Environmental Information (NCEI) and processed by Iowa Environmental101

Mesonet at Iowa State University (Figure 2a). Due to the destructive power of TC winds,102

ASOS sites near the eyewall may be missing validated wind records during the landfall. 2)103

the FCMP mobile tower observations (Masters et al., 2010; Balderrama et al., 2011). The104

FCMP 10-m mobile towers, T1 (29.44N,90.26W) and T5 (29.76N,90.56W) (Figure 1) are105

deployed to record Hurricane Ida’s wind speed every 0.1s, which are applied for additional106

analyses (Supplementary Figure 5).107

The dynamical model to be evaluated is the GFDL T-SHiELD that is initialized by108

six-hourly National Centers for Environmental Prediction (NCEP) Global Forecast System109

(GFS) analyses, which is used to provide near real-time forecasts during recent hurricane110

season (Harris et al., 2020; Gao et al., 2021). The model applies the non-hydrostatic Finite-111

Volume Cubed-Sphere Dynamical Core (FV3) with a 3-km-resolution nested domain cover-112

ing the southeast U.S. and western Atlantic and 75 vertical levels (Chen et al., 2019; Zhou113

–3–
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Figure 1. T-SHiELD tracks of six selected 2020-2022 U.S. landfalling hurricanes, initialized every

six hours starting from the labeled time (colored tracks), and the corresponding IBTrACS tracks

(thick black track). The evolution of the predicted mean intensity averaged over the successive

T-SHiELD forecasts (red) is compared to the IBTrACS intensity (black) in the right panel. The

evolution time shown in the X-axis is referenced by each landfall time reported by the IBTrACS.

The two FCMP mobile towers T1 (29.44N,90.26W) and T5 (29.76N,90.56W) for Hurricane Ida

(2021) are marked on the map with red triangles. The surface roughness (Z0) obtained from the

Fifth generation of ECMWF atmospheric reanalyses of the global climate (ERA5) will be used to

calculate the surface drag coefficient in this work (see Appendix A).

et al., 2019; Gao et al., 2021; Harris et al., 2021). For representative cases in this work,114

forecasts initialized from different times before landfall show consistent intensity and track115

prediction. To avoid a weakening of the wind field characteristics when using the mean wind116

field averaged over the successive T-SHiELD forecasts (Figure 1 left), we pick the T-SHiELD117

forecast initialized 12 hours prior to the observed landfall time for each case. That is, the118

T-SHiELD forecast time since the landfall is 12 hours plus the observation time in this work.119

We produce model output every 15 minutes for comparison to high-frequency ASOS data.120

2.2 The evaluation framework121

2.2.1 Wind speed radial distribution122

ASOS sites are unevenly distributed and sparse. To alleviate this problem, we produce123

radial wind speed distributions from ASOS sites in each TC quadrant. The four earth-124

relative quadrants are identified by the observed, time-dependent TC center (Figure 2a-b,125

blue). Given that IBTrACS provides TC location every 3 or 6 hours, the ASOS radial126

wind distribution is also generated every 3 or 6 hours. Correspondingly, the nearest T-127

SHiELD grid points to each ASOS site are selected and formed into the radial wind speed128

distributions based on simulated TC locations at each observed time (Figure 2a-b, red).129

Adjacent ASOS sites may have the same corresponding T-SHiELD grid point due to the130

site sparsity in some areas. For a more consistent comparison, the maximum wind speed131

recorded by each ASOS site during the analyzed observation hour will be selected from its132
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twelve records at each 5-minute interval to represent the hourly wind speed, and similarly,133

the T-SHiELD modeled wind speed maxima during the same hourly period are selected134

from the outputs.135

2.2.2 The observation-based, theory-driven wind profile136

In addition to the direct site-by-site wind comparison between ASOS and T-SHiELD as137

shown in Fig.2b, we introduce an observation-based, theory-driven inland TC wind profile138

for further quantitative assessments. The Chavas et al. (2015) wind field model (referred139

to as C15 hereafter) is a simple theoretical model formed by mathematically merging the140

Emanuel and Rotunno (2011) inner wind field model and Emanuel (2004) outer wind field141

model. With a small number of physical parameters, C15 captures the structure of the142

observed TC wind field over the ocean, and has been applied in TC surge risk simulations143

and analysis (Xi et al., 2020; Lin et al., 2020; Wang et al., 2022). For post-landfall TC144

evolution, the C15 model well-reproduces the simulated wind field in response to idealized145

landfalls (Chen & Chavas, 2023). Using the observed parameters to generate a theoretical146

post-landfall wind field is a natural attempt to link the theoretical understanding to the147

real-world applications. The full solutions of using the C15, including how environmental148

approximations are calculated are provided in the Appendix A. Essential parameters re-149

quired to generate the radial wind profile are the TC intensity (vm) and any wind radius150

(e.g., radius of 10 ms−1 wind, referred to as r10 hereafter).151

Here we use our observed wind profiles to generate the required input parameters for152

the C15 wind profile. Given the ASOS wind speed radial distribution, we first fit a cubic153

spline to identify the representative r10(τ), or r5(τ) when r10(τ) is not applicable, for the154

wind field in each quadrant (Figure 2c, dash line), where τ is the time since TC landfall.155

For the TC intensity after landfall, vm(τ), which is not reliably captured by the ASOS156

or FCMP, we use the widely-applied sustained maximum wind speed from IBTrACS. We157

call this theoretical inland TC wind profile in each quadrant the observation-based, theory-158

driven wind profile (Obs-Theo hereafter). For further quantitative assessment, the Obs-Theo159

wind profile will be used to verify the T-SHiELD wind profile as in Figure 2d, as long as160

the required parameters are available from the observational datasets. In the quantitative161

evaluation, the T-SHiELD wind profile is azimuthally-averaged based on all model grid162

points in each quadrant, and smoothed by averaging over every several points along each163

selected arc to reduce noise from various maxima and minima in the wind data, which is164

necessary for a high-resolution model.165

Notably, with just size parameters from the cubic spline fit, the Obs-Theo wind profile166

well represents the observed wind speed distribution in the outer region (r = 200− 600 km)167

with a small root-mean-square error (2-3 ms−1) that slightly increases with the forecast168

time in selected landfall case (Supplementary Figure 1). For the inner region, where we169

lack a dense network of ASOS observations, the Obs-Theo profile is primarily determined170

by the IBTrACS vm. As shown in Supplementary Figure 2a, at 1800UTC 29 Aug 2021, the171

Obs-Theo inner wind profile can vary remarkably given IBTrACS vm or FCMP-recorded vm172

that differ significantly (Supplementary Figure 2b). In the absence of dense observations, it173

is challenging to verify the Obs-Theo inner wind profile. FCMP along the landfall track is174

not routinely provided for every landfall TC. Future work could explore using an alternative175

vm other than that from IBTrACS, or testing the Obs-Theo profile against specific cases176

with dense inner region observations.177
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Figure 2. Schematic for the evaluation framework using Hurricane Ida at 1800UTC 29 Aug 2021

as an example. (a) The locations of the validated ASOS sites and their corresponding nearest T-

SHiELD grid points. The analyzed area (r ≤ 600 km) from the observed TC center is divided into

four earth-relative quadrants. (b) In each quadrant of (a), the hourly-maximum wind speed values

of all the ASOS sites and T-SHiELD grid points are lined into a wind speed radial distribution

based on their distance to the observed or simulated TC center, respectively. (c) The observation-

based, theory-driven (Obs-Theo) wind profile (solid curve) for Ida at this time, where the maximum

wind speed vm is obtained from IBTrACS, the representative radius r10 for the wind field in each

quadrant is obtained from the cubic spline (dash curve) of the ASOS wind speed radial distribution.

The average root-mean-square deviation of ASOS observations from the Obs-Theo wind profile is

2 ms−1. (d) A comparison of the Obs-Theo and the T-SHiELD wind profiles in each quadrant at

this time for Ida. The T-SHiELD wind profile is generated based on all model grid points in each

quadrant.

–6–



manuscript submitted to Geophysical Research Letters

3 Assessing the T-SHiELD performance on inland TC wind field178

Hurricane Ida (2021), a destructive Category 4 hurricane, is the second most-damaging179

hurricane to hit Louisiana in history (Beven et al., 2021). The post-landfall remnants of Ida180

also caused catastrophic damages from flooding and thunderstorms across the Northeastern181

states (Smith et al., 2023). Here we use Ida as an example to show the evaluation framework.182

The direct comparison of the Ida inland wind speed radial distributions between ASOS183

observations and T-SHiELD forecast, similar to Figure 2b, are provided in the supplemen-184

tary materials, along with the results of other representative cases (Supplementary Figure 3-185

5). Overall, the T-SHiELD forecast reproduces the observed post-landfall structural change186

of the wind speed radial distribution. However, the direct comparison of the wind speed187

radial distribution cannot quantitatively show the performance of the T-SHiELD forecast,188

especially when ASOS lacks validated data near the eyewall or over the ocean. Therefore, we189

evaluate the T-SHiELD wind profile with the Obs-Theo wind profile for further quantitative190

assessments as introduced in Figure 2c-d.191

3.1 Wind profile comparison: using model performance indicators192

To ensure a uniform comparison across cases with varying storm structures and sizes,193

characteristic wind profiles, ṽ (r̃), are used here (Chavas & Knaff, 2022; Klotzbach et al.,194

2022), where the wind speed is normalized by the observed maximum wind speed vm from195

IBTrACS as ṽ = v/vm, and radius is normalized by the radius of maximum wind speed rm196

identified by the Obs-Theo wind profile as r̃ = r/rm. We only assess the wind field outside197

rm (r̃ > 1) since neither the theory nor the forecast model can well describe or simulate198

the wind field inside rm. We divide the wind field into inner region (1 < r̃ < 3) and outer199

region (r̃ > 3) for more in-depth analysis.200

Using Hurricane Ida at 1800UTC 29 Aug 2021 as an example, the characteristic wind
profiles of Obs-Theo and T-SHiELD are compared in each quadrant, respectively (Figure
3). The wind speed difference △ṽ between the T-SHiELD forecast and Obs-Theo along the
characteristic radius r̃ is defined as the error profile, △ṽ(r̃). In this way, the shape of the
error profile explains the performance of T-SHiELD on the inland wind field simulation. We
use a simple linear fit to the error profile in each region, as

△ṽ =

{
β(r̃ − 1) + α, 1 < r̃ < 3
β(r̃ − 3) + α, r̃ > 3

(1)

where the two indicators, α and β together describe characteristics of the error profile —the201

performance of the T-SHiELD wind field forecast—at a single time for a selected storm.202

We name α, the y-intercept, as the wind field bias indicator, the value of which reflects203

the normalized T-SHiELD forecast bias at r̃ = 1 or 3. Negative α indicates a weaker204

wind field forecast at the starting point of inner or outer wind region. β, the slope of205

△ṽ(r̃), describes how the forecast error changes along the radius from the starting point of206

each region, and is defined as the wind profile shape indicator. For both α and β, lower207

magnitudes suggest better wind field simulations, as (α, β = 0) indicates the modeled wind208

profile exactly matching the observed one. In this work, ”best forecast” is defined by both209

indicators that have a magnitude smaller than O(10−2). For example, the near-zero α and210

β in the outer regions suggest a T-SHiELD simulation comparable to the corresponding211

Obs-Theo wind profiles in the NE, SE, and NW quadrants (Figure 3a, b and d, purple212

fit curves). However, in the SW quadrant, the higher magnitude of α (∼ −10−1) and the213

near-zero β indicates a uniform weaker wind field simulation among the outer region (Figure214

3c). In contrast to the well-simulated outer region, T-SHiELD shows a weaker forecast bias215

gradually increasing towards the rm within the inner region (Figure 3, yellow fit curve). In216

this Ida example, the IBTrACS vm = 64.3 ms−1 at 1800UTC, thus the value of inner-region217

α can be translated into a weaker intensity bias up to tens of ms−1 at r̃ = 1. More examples218

interpreting the values of α and β are shown in Supplementary Figure 6.219
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Figure 3. The comparison of characteristic wind profile ṽ (r̃) between the Obs-Theo profile (blue

line) and the T-SHiELD wind profile (red line) for Hurricane Ida at 1800UTC 29 Aug 2021. The

error profile △ṽ(r̃) (dash curve) is linearly fitted among the inner region (yellow line, 1 < r̃ < 3)

and outer region (purple line, r̃ > 3), respectively. α is defined as the wind field bias and β is

defined as the wind profile shape indicator. vm = 64.3 ms−1 is obtained from the IBTrACS.

3.2 Composite results of 2020-2022 selected Hurricanes220

Given the value of averaged α(τ) and β(τ) in each quadrant of all representative TCs,221

where τ indicates the time since the observed landfall, we can examine the overall perfor-222

mance of T-SHiELD simulated inland wind field for the 2020-2022 selected hurricanes.223

For inner regions, α and β do not fall in the “best forecast” interval (Figure 4a-d, grey224

shaded area). The values of α and β indicate that T-SHiELD underestimates the maximum225

wind speed vm, leading to a weaker wind field forecast where the forecast error increases226

towards the rm (Similar to Figure 3a). There is no clear trend for α(τ) and β(τ) in each227

quadrant after landfall, suggesting that the T-SHiELD performance on the inner wind field228

does not change significantly after landfall. However, for the outer region, T-SHiELD wind229

profiles are comparable to the Obs-Theo in each quadrant (Figure 4e-h). Despite the NW230

quadrant (Figure 4e), both α and β largely fall in the ”best forecast” interval after the231

landfall, indicating a -forecast outer wind field across different cases.232

To summarize, the value of indicators α(τ) and β(τ) suggests that T-SHiELD mostly233

struggles with representing the inner-core wind structure of landfalling TCs. The relatively234

large negative α(τ) values (Fig. 4a-d) suggest the structural biases are related to the negative235

model intensity biases (Figure 1). Therefore, improving the T-SHIELD intensity forecasts,236

for example, through a vortex-specific initialization technique, may significantly improve its237

performance on the overall wind field forecast.238
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Figure 4. The averaged α(τ) and β(τ) of six 2020-2022 major hurricanes at discrete lead times

after their corresponding landfalls, which describe the T-SHiELD performance on predicting the

inland low-level wind field. Left panels show the inner region wind field (1 < r̃ < 3), and right

panels for the outer wind field (r̃ > 3). α indicates the normalized intensity bias of the T-SHiELD

forecasts compared to the observations at r̃ = 1 or 3, while β indicates the shape similarity between

the observed and T-SHiELD wind profiles. The indicator magnitudes ranging from −0.1 to 0.1 are

shaded, where 0 indicates a perfect simulation (no forecast error). Indicators falling in the shaded

interval suggest a ”best forecast” in this work.

4 Summary239

This work presents a novel framework for assessing the model performance on predicting240

the inland TC low-level wind using the observation-based, theory-driven wind profile that241

combines the ASOS observations and the existing theoretical TC wind field model. Although242

the evaluation in this paper only focuses on the performance of the GFDL T-SHiELD on243

six major landfalling hurricanes in the continental U.S. along the Gulf of Mexico coast244

from 2020 to 2022, the evaluation framework can be generalized to other model evaluations245

emphasizing the TC wind field.246

In our framework, we introduce several observation-based evaluation approaches into247

the wind field assessment. The ASOS wind speed radial distribution, which generally de-248

picts the TC asymmetric structural change shortly after landfall, can directly be used to249

qualitatively evaluate the model overall forecast of the inland TC wind field. Then, the wind250

profile in each quadrant generated by the theoretical wind field model given observable TC251

parameters (r10, vm) obtained from ASOS and IBTrACS enables further quantitative eval-252

uations for the simulated inland wind field. This Obs-Theo wind profile well represents the253

observed wind speed distribution in the outer region. Finally, the forecast error along the254

radius (i.e., error profile) is linearly fitted among the inner and outer regions, described255

by the wind field bias indicator and wind profile shape indicator of the fitted lines. These256

indicators quantitatively reveal the performance of the model on inland TCs, and can also257

be used in future work to reveal the improvement in wind field forecast skill associated with258

the model development.259
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Compared to TC track and intensity, the post-landfall evolution of the TC low-level260

wind field has not received much attention in previous model evaluation studies due to the261

complexity of the TC structural change and the lack of in-situ inland wind field observations.262

This wind field evaluation framework provides an alternative approach assessing the model263

directly with in-situ observations taking advantage of existing TC structure theory. However,264

our community still needs to advance the post-landfall TC observations, especially among265

the eyewall region, and provide reliable routinely-used TC datasets to strengthen our studies266

on inland TC hazards and their evolution.267

5 Open Research268

The GFDL T-SHiELD outputs, processed ASOS data, and the observation-based,269

theory-driven wind profile data used in this work are available on Zenedo (DOI 10.5281/zen-270

odo.7937697). The IBTrACS data is available at https://climatedataguide.ucar.edu/271

climate-data/ibtracs-tropical-cyclone-best-track-data. The ASOS data applied272

in this work is available at Iowa State University (https://mesonet.agron.iastate.edu/273

ASOS/). The FCMP data of hurricane Ida is is available by contacting Prof. David Nolan274

at University of Miami. The C15 wind structure model is available at https://doi.org/275

doi:10.4231/CZ4P-D448.276

Appendix A C15 wind field model277

The C15 model mathematically merged the Emanuel and Rotunno (2011) inner wind278

field model (Eq.36 therein) and Emanuel (2004) outer wind field model (Eq.31-33 therein)279

solution to produce a model for the complete azimuthal wind profile. This merging yields a280

unique solution; the process is described in C15 (Eq.2-10 therein). Using C15, parameters281

required to solve the differential equations for the wind profile are: storm intensity vm,282

radius of maximum wind speed rm for the inner region, the intensity and radius of the283

merge point connecting the inner and outer region, va and ra, and a specified radius input284

rfit, χ and Coriolis parameter f for the environmental conditions where χ = 2Cd

Wcool
. Cd285

is the exchange coefficients of momentum, Wcool is the free tropospheric subsidence rate.286

The value of Wcool is constrained by the thermodynamics of the free troposphere and can be287

estimated from the ambient stratification and radiative cooling rate via radiative-subsidence288

balance. Given the environmental parameters χ and f , one only needs to know two storm289

parameters – the intensity vm and any wind radius (e.g. rm, r17, or r10) – to specify the290

model solution.291

In this work, vm and r10 are primarily obtained from IBTrACS and ASOS observations.292

f is calculated by the TC location provided by IBTrACS; Cd is calculated from the Fifth293

generation of ECMWF atmospheric reanalyses of the global climate (ERA5) surface rough-294

ness (Hersbach, 2010) and then averaged within r = 0−600 km to yield a single value within295

each of the four earth-relative quadrants (Figure 1). Previous work testing C15 against ide-296

alized landfall suggests that, the wind field solution is not very sensitive to Wcool except297

for at large radii. Thus, the radiative-subsidence rate Wcool is set to 0.002 ms−1, which is298

the median of the best-fit value for observed storms (Chavas et al., 2015) and identical to299

idealized experiments in Chen and Chavas (2023) and related studies.300
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Abstract14

Though tropical cyclone (TC) models have been routinely evaluated against track and in-15

tensity observations, little work has been performed to validate modeled TC wind fields16

over land. In this paper, we present a simple framework for evaluating simulated low-level17

inland winds with in-situ observations and existing TC structure theory. The Automated18

Surface Observing Systems, Florida Coastal Monitoring Program, and best track data are19

used to generate a theory-driven wind profile that reasonably represents the observed radial20

distribution of TC wind speeds. We quantitatively and qualitatively evaluated the modeled21

inland TC wind fields, and described the model performance with a set of simple indicators.22

The framework was used to examine the performance of a high-resolution two-way nested23

Geophysical Fluid Dynamics Laboratory model on recent U.S. landfalling TCs. Results24

demonstrate the capacity of using this framework to assess the modeled TC low-level wind25

field in the absence of dense inland observations.26

Plain Language Summary27

Some of the biggest human impacts of tropical cyclone (TC) winds come after the28

TC makes landfall. A skillful prediction of the radial distribution of winds is essential for29

forecasting TC-induced inland hazards. However, the forecast skill of numerical hurricane30

models on inland TC wind fields has rarely been evaluated since it is challenging to collect31

wind observations during landfall, and the network of regular weather observations is too32

spread out to capture the strongest winds associated with a TC. This inhibits the improve-33

ment of forecast models and limits our understanding of the TC’s inland evolution. Our34

work combines available inland in-situ wind observations over the southeastern U.S. with35

existing TC structure theory, and presents a new ”optimal” estimate of the post-landfall36

winds. Our framework is found to be useful for evaluating the post-landfall TC winds in37

hurricane forecast models. In addition, the new evaluation technique can intuitively demon-38

strate how well the model simulates TC intensity and structure.39

1 Introduction40

Landfalling tropical cyclones (TCs) bring significant hazards and cause enormous eco-41

nomic losses (Villarini et al., 2014; Rappaport, 2014). These impacts could be amplified42

in a changing climate, given the potential that landfalling TCs may move and decay more43

slowly in a warming climate (Kossin, 2018, 2019; Li & Chakraborty, 2020; Chan et al.,44

2022), and compound hazards may increases under climate change (Gori & Lin, 2022; Feng45

et al., 2022). Beyond that, research suggests that TCs may make landfall in unusual regions46

that are more vulnerable to TC hazards due to a shift in landfall location and to a possible47

poleward shift in the latitude of maximum intensity in a warmer future climate (Kossin et48

al., 2014; Knutson & Coauthors, 2020). Indeed, even without the effects of climate change,49

TC damage is likely to double in the future since there are more people and assets in harm’s50

way (Mendelsohn et al., 2012). Therefore, it is urgent to evaluate the post-landfall per-51

formance of hurricane models, especially for predicting the low-level TC wind field, since52

inland hazards and weather extremes are intimately linked to the wind field structure (Zhai53

& Jiang, 2014).54

Though in-situ observations are essential for evaluating the simulation of inland TC55

low-level wind fields (Nolan et al., 2021), our community lacks dense and systematic obser-56

vations of the TC low-level wind field after landfall. As such, it is necessary to introduce57

alternative analyses for the evaluation of modeled inland TC winds. In this work, we form58

a framework assessing the model performance on predicting inland TC wind fields using59

observation-based, theory-driven wind profiles. This wind profile is generated from existing60

TC structure models given observable TC parameters obtained primarily from the avail-61

able observations. Beyond the widely-used International Best Track Archive for Climate62

Stewardship (IBTrACS version 4, Knapp et al. (2010)) for TC intensity and track, the63
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minute-by-minute, near-surface observations provided by the Automated Surface Weather64

Observations (ASOS) and the Florida Coastal Monitoring Program (FCMP) are also used.65

The model evaluated in this work is the Tropical Atlantic version of Geophysical Fluid Dy-66

namics Laboratory (GFDL)’s System for High-resolution prediction on Earth-to-Local Do-67

mains (T-SHiELD hereafter), which will be introduced in the following section. T-SHiELD68

has shown skillful predictions of TC landfall track and intensity (Harris et al., 2020; Gao69

et al., 2021). Since T-SHiELD shares much of the code with the NOAA’s next-generation70

Hurricane Analysis and Forecast System (HAFS) and also includes advanced features devel-71

oped at GFDL for better hurricane predictions, it serves as a good representative model for72

the evaluation. Moreover, this work attempts to quantify the performance of the model on73

simulated wind fields via a set of time-dependent indicators that describe the characteristics74

of the forecast error. These evaluations can reveal the performance of model predictions for75

landfalling cases and quantify the improvement of forecast skills associated with the model76

development.77

In this paper, we first introduce the datasets, the GFDL T-SHiELD model, and the78

assessment framework (Section 2). Then we analyze the performance of the simulated T-79

SHiELD inland wind fields via the evaluation framework and the performance indicators80

(Section 3). We end with a summary and discussion (Section 4).81

2 Data and Methods82

2.1 Observation and model data83

We use TC track and intensity data from IBTrACS version 4 for selected 2020–202284

landfalling storms in the contiguous United States. Recent studies suggest that the data ac-85

curacy has been improved through years with advanced technology (Landsea, 2007; Landsea86

& Frankin, 2013; Zhu & Collins, 2021). Therefore, this work considers the IBTrACS reports87

as a baseline reference for the inland TC track and intensity change. The representative88

landfalling cases are the storms during the 2020-2022 hurricane seasons to strike along the89

coastlines of the Gulf of Mexico and the Florida peninsula: Laura (2020), Sally (2020),90

Delta (2020), Fred (2021), Ida (2021), and Ian (2022) (Figure 1). Except for Fred, which91

represents a low-intensity landfalling TC, selection of landfall cases is defined following the92

criteria used in Zhu and Collins (2021), but with a few modifications, including that the93

TC intensity upon first U.S. inland point must be Category 1 or higher (maximum wind94

speed ≥ 64 kts), and the intensity remains higher than 34 kts for at least 12 hours before95

dissipation or extratropical transition. This criteria enables a close and sufficiently lengthy96

examination after landfall while excluding the influences on TC intensity and structure from97

extratropical transition at higher latitudes (Evans & Hart, 2003).98

We use several in-situ datasets for wind observations in addition to the IBTrACS: 1)99

ASOS wind data at each 5-min interval across 11 southeastern states obtained from the Na-100

tional Centers for Environmental Information (NCEI) and processed by Iowa Environmental101

Mesonet at Iowa State University (Figure 2a). Due to the destructive power of TC winds,102

ASOS sites near the eyewall may be missing validated wind records during the landfall. 2)103

the FCMP mobile tower observations (Masters et al., 2010; Balderrama et al., 2011). The104

FCMP 10-m mobile towers, T1 (29.44N,90.26W) and T5 (29.76N,90.56W) (Figure 1) are105

deployed to record Hurricane Ida’s wind speed every 0.1s, which are applied for additional106

analyses (Supplementary Figure 5).107

The dynamical model to be evaluated is the GFDL T-SHiELD that is initialized by108

six-hourly National Centers for Environmental Prediction (NCEP) Global Forecast System109

(GFS) analyses, which is used to provide near real-time forecasts during recent hurricane110

season (Harris et al., 2020; Gao et al., 2021). The model applies the non-hydrostatic Finite-111

Volume Cubed-Sphere Dynamical Core (FV3) with a 3-km-resolution nested domain cover-112

ing the southeast U.S. and western Atlantic and 75 vertical levels (Chen et al., 2019; Zhou113
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Figure 1. T-SHiELD tracks of six selected 2020-2022 U.S. landfalling hurricanes, initialized every

six hours starting from the labeled time (colored tracks), and the corresponding IBTrACS tracks

(thick black track). The evolution of the predicted mean intensity averaged over the successive

T-SHiELD forecasts (red) is compared to the IBTrACS intensity (black) in the right panel. The

evolution time shown in the X-axis is referenced by each landfall time reported by the IBTrACS.

The two FCMP mobile towers T1 (29.44N,90.26W) and T5 (29.76N,90.56W) for Hurricane Ida

(2021) are marked on the map with red triangles. The surface roughness (Z0) obtained from the

Fifth generation of ECMWF atmospheric reanalyses of the global climate (ERA5) will be used to

calculate the surface drag coefficient in this work (see Appendix A).

et al., 2019; Gao et al., 2021; Harris et al., 2021). For representative cases in this work,114

forecasts initialized from different times before landfall show consistent intensity and track115

prediction. To avoid a weakening of the wind field characteristics when using the mean wind116

field averaged over the successive T-SHiELD forecasts (Figure 1 left), we pick the T-SHiELD117

forecast initialized 12 hours prior to the observed landfall time for each case. That is, the118

T-SHiELD forecast time since the landfall is 12 hours plus the observation time in this work.119

We produce model output every 15 minutes for comparison to high-frequency ASOS data.120

2.2 The evaluation framework121

2.2.1 Wind speed radial distribution122

ASOS sites are unevenly distributed and sparse. To alleviate this problem, we produce123

radial wind speed distributions from ASOS sites in each TC quadrant. The four earth-124

relative quadrants are identified by the observed, time-dependent TC center (Figure 2a-b,125

blue). Given that IBTrACS provides TC location every 3 or 6 hours, the ASOS radial126

wind distribution is also generated every 3 or 6 hours. Correspondingly, the nearest T-127

SHiELD grid points to each ASOS site are selected and formed into the radial wind speed128

distributions based on simulated TC locations at each observed time (Figure 2a-b, red).129

Adjacent ASOS sites may have the same corresponding T-SHiELD grid point due to the130

site sparsity in some areas. For a more consistent comparison, the maximum wind speed131

recorded by each ASOS site during the analyzed observation hour will be selected from its132
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twelve records at each 5-minute interval to represent the hourly wind speed, and similarly,133

the T-SHiELD modeled wind speed maxima during the same hourly period are selected134

from the outputs.135

2.2.2 The observation-based, theory-driven wind profile136

In addition to the direct site-by-site wind comparison between ASOS and T-SHiELD as137

shown in Fig.2b, we introduce an observation-based, theory-driven inland TC wind profile138

for further quantitative assessments. The Chavas et al. (2015) wind field model (referred139

to as C15 hereafter) is a simple theoretical model formed by mathematically merging the140

Emanuel and Rotunno (2011) inner wind field model and Emanuel (2004) outer wind field141

model. With a small number of physical parameters, C15 captures the structure of the142

observed TC wind field over the ocean, and has been applied in TC surge risk simulations143

and analysis (Xi et al., 2020; Lin et al., 2020; Wang et al., 2022). For post-landfall TC144

evolution, the C15 model well-reproduces the simulated wind field in response to idealized145

landfalls (Chen & Chavas, 2023). Using the observed parameters to generate a theoretical146

post-landfall wind field is a natural attempt to link the theoretical understanding to the147

real-world applications. The full solutions of using the C15, including how environmental148

approximations are calculated are provided in the Appendix A. Essential parameters re-149

quired to generate the radial wind profile are the TC intensity (vm) and any wind radius150

(e.g., radius of 10 ms−1 wind, referred to as r10 hereafter).151

Here we use our observed wind profiles to generate the required input parameters for152

the C15 wind profile. Given the ASOS wind speed radial distribution, we first fit a cubic153

spline to identify the representative r10(τ), or r5(τ) when r10(τ) is not applicable, for the154

wind field in each quadrant (Figure 2c, dash line), where τ is the time since TC landfall.155

For the TC intensity after landfall, vm(τ), which is not reliably captured by the ASOS156

or FCMP, we use the widely-applied sustained maximum wind speed from IBTrACS. We157

call this theoretical inland TC wind profile in each quadrant the observation-based, theory-158

driven wind profile (Obs-Theo hereafter). For further quantitative assessment, the Obs-Theo159

wind profile will be used to verify the T-SHiELD wind profile as in Figure 2d, as long as160

the required parameters are available from the observational datasets. In the quantitative161

evaluation, the T-SHiELD wind profile is azimuthally-averaged based on all model grid162

points in each quadrant, and smoothed by averaging over every several points along each163

selected arc to reduce noise from various maxima and minima in the wind data, which is164

necessary for a high-resolution model.165

Notably, with just size parameters from the cubic spline fit, the Obs-Theo wind profile166

well represents the observed wind speed distribution in the outer region (r = 200− 600 km)167

with a small root-mean-square error (2-3 ms−1) that slightly increases with the forecast168

time in selected landfall case (Supplementary Figure 1). For the inner region, where we169

lack a dense network of ASOS observations, the Obs-Theo profile is primarily determined170

by the IBTrACS vm. As shown in Supplementary Figure 2a, at 1800UTC 29 Aug 2021, the171

Obs-Theo inner wind profile can vary remarkably given IBTrACS vm or FCMP-recorded vm172

that differ significantly (Supplementary Figure 2b). In the absence of dense observations, it173

is challenging to verify the Obs-Theo inner wind profile. FCMP along the landfall track is174

not routinely provided for every landfall TC. Future work could explore using an alternative175

vm other than that from IBTrACS, or testing the Obs-Theo profile against specific cases176

with dense inner region observations.177
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Figure 2. Schematic for the evaluation framework using Hurricane Ida at 1800UTC 29 Aug 2021

as an example. (a) The locations of the validated ASOS sites and their corresponding nearest T-

SHiELD grid points. The analyzed area (r ≤ 600 km) from the observed TC center is divided into

four earth-relative quadrants. (b) In each quadrant of (a), the hourly-maximum wind speed values

of all the ASOS sites and T-SHiELD grid points are lined into a wind speed radial distribution

based on their distance to the observed or simulated TC center, respectively. (c) The observation-

based, theory-driven (Obs-Theo) wind profile (solid curve) for Ida at this time, where the maximum

wind speed vm is obtained from IBTrACS, the representative radius r10 for the wind field in each

quadrant is obtained from the cubic spline (dash curve) of the ASOS wind speed radial distribution.

The average root-mean-square deviation of ASOS observations from the Obs-Theo wind profile is

2 ms−1. (d) A comparison of the Obs-Theo and the T-SHiELD wind profiles in each quadrant at

this time for Ida. The T-SHiELD wind profile is generated based on all model grid points in each

quadrant.
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3 Assessing the T-SHiELD performance on inland TC wind field178

Hurricane Ida (2021), a destructive Category 4 hurricane, is the second most-damaging179

hurricane to hit Louisiana in history (Beven et al., 2021). The post-landfall remnants of Ida180

also caused catastrophic damages from flooding and thunderstorms across the Northeastern181

states (Smith et al., 2023). Here we use Ida as an example to show the evaluation framework.182

The direct comparison of the Ida inland wind speed radial distributions between ASOS183

observations and T-SHiELD forecast, similar to Figure 2b, are provided in the supplemen-184

tary materials, along with the results of other representative cases (Supplementary Figure 3-185

5). Overall, the T-SHiELD forecast reproduces the observed post-landfall structural change186

of the wind speed radial distribution. However, the direct comparison of the wind speed187

radial distribution cannot quantitatively show the performance of the T-SHiELD forecast,188

especially when ASOS lacks validated data near the eyewall or over the ocean. Therefore, we189

evaluate the T-SHiELD wind profile with the Obs-Theo wind profile for further quantitative190

assessments as introduced in Figure 2c-d.191

3.1 Wind profile comparison: using model performance indicators192

To ensure a uniform comparison across cases with varying storm structures and sizes,193

characteristic wind profiles, ṽ (r̃), are used here (Chavas & Knaff, 2022; Klotzbach et al.,194

2022), where the wind speed is normalized by the observed maximum wind speed vm from195

IBTrACS as ṽ = v/vm, and radius is normalized by the radius of maximum wind speed rm196

identified by the Obs-Theo wind profile as r̃ = r/rm. We only assess the wind field outside197

rm (r̃ > 1) since neither the theory nor the forecast model can well describe or simulate198

the wind field inside rm. We divide the wind field into inner region (1 < r̃ < 3) and outer199

region (r̃ > 3) for more in-depth analysis.200

Using Hurricane Ida at 1800UTC 29 Aug 2021 as an example, the characteristic wind
profiles of Obs-Theo and T-SHiELD are compared in each quadrant, respectively (Figure
3). The wind speed difference △ṽ between the T-SHiELD forecast and Obs-Theo along the
characteristic radius r̃ is defined as the error profile, △ṽ(r̃). In this way, the shape of the
error profile explains the performance of T-SHiELD on the inland wind field simulation. We
use a simple linear fit to the error profile in each region, as

△ṽ =

{
β(r̃ − 1) + α, 1 < r̃ < 3
β(r̃ − 3) + α, r̃ > 3

(1)

where the two indicators, α and β together describe characteristics of the error profile —the201

performance of the T-SHiELD wind field forecast—at a single time for a selected storm.202

We name α, the y-intercept, as the wind field bias indicator, the value of which reflects203

the normalized T-SHiELD forecast bias at r̃ = 1 or 3. Negative α indicates a weaker204

wind field forecast at the starting point of inner or outer wind region. β, the slope of205

△ṽ(r̃), describes how the forecast error changes along the radius from the starting point of206

each region, and is defined as the wind profile shape indicator. For both α and β, lower207

magnitudes suggest better wind field simulations, as (α, β = 0) indicates the modeled wind208

profile exactly matching the observed one. In this work, ”best forecast” is defined by both209

indicators that have a magnitude smaller than O(10−2). For example, the near-zero α and210

β in the outer regions suggest a T-SHiELD simulation comparable to the corresponding211

Obs-Theo wind profiles in the NE, SE, and NW quadrants (Figure 3a, b and d, purple212

fit curves). However, in the SW quadrant, the higher magnitude of α (∼ −10−1) and the213

near-zero β indicates a uniform weaker wind field simulation among the outer region (Figure214

3c). In contrast to the well-simulated outer region, T-SHiELD shows a weaker forecast bias215

gradually increasing towards the rm within the inner region (Figure 3, yellow fit curve). In216

this Ida example, the IBTrACS vm = 64.3 ms−1 at 1800UTC, thus the value of inner-region217

α can be translated into a weaker intensity bias up to tens of ms−1 at r̃ = 1. More examples218

interpreting the values of α and β are shown in Supplementary Figure 6.219
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Figure 3. The comparison of characteristic wind profile ṽ (r̃) between the Obs-Theo profile (blue

line) and the T-SHiELD wind profile (red line) for Hurricane Ida at 1800UTC 29 Aug 2021. The

error profile △ṽ(r̃) (dash curve) is linearly fitted among the inner region (yellow line, 1 < r̃ < 3)

and outer region (purple line, r̃ > 3), respectively. α is defined as the wind field bias and β is

defined as the wind profile shape indicator. vm = 64.3 ms−1 is obtained from the IBTrACS.

3.2 Composite results of 2020-2022 selected Hurricanes220

Given the value of averaged α(τ) and β(τ) in each quadrant of all representative TCs,221

where τ indicates the time since the observed landfall, we can examine the overall perfor-222

mance of T-SHiELD simulated inland wind field for the 2020-2022 selected hurricanes.223

For inner regions, α and β do not fall in the “best forecast” interval (Figure 4a-d, grey224

shaded area). The values of α and β indicate that T-SHiELD underestimates the maximum225

wind speed vm, leading to a weaker wind field forecast where the forecast error increases226

towards the rm (Similar to Figure 3a). There is no clear trend for α(τ) and β(τ) in each227

quadrant after landfall, suggesting that the T-SHiELD performance on the inner wind field228

does not change significantly after landfall. However, for the outer region, T-SHiELD wind229

profiles are comparable to the Obs-Theo in each quadrant (Figure 4e-h). Despite the NW230

quadrant (Figure 4e), both α and β largely fall in the ”best forecast” interval after the231

landfall, indicating a -forecast outer wind field across different cases.232

To summarize, the value of indicators α(τ) and β(τ) suggests that T-SHiELD mostly233

struggles with representing the inner-core wind structure of landfalling TCs. The relatively234

large negative α(τ) values (Fig. 4a-d) suggest the structural biases are related to the negative235

model intensity biases (Figure 1). Therefore, improving the T-SHIELD intensity forecasts,236

for example, through a vortex-specific initialization technique, may significantly improve its237

performance on the overall wind field forecast.238
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Figure 4. The averaged α(τ) and β(τ) of six 2020-2022 major hurricanes at discrete lead times

after their corresponding landfalls, which describe the T-SHiELD performance on predicting the

inland low-level wind field. Left panels show the inner region wind field (1 < r̃ < 3), and right

panels for the outer wind field (r̃ > 3). α indicates the normalized intensity bias of the T-SHiELD

forecasts compared to the observations at r̃ = 1 or 3, while β indicates the shape similarity between

the observed and T-SHiELD wind profiles. The indicator magnitudes ranging from −0.1 to 0.1 are

shaded, where 0 indicates a perfect simulation (no forecast error). Indicators falling in the shaded

interval suggest a ”best forecast” in this work.

4 Summary239

This work presents a novel framework for assessing the model performance on predicting240

the inland TC low-level wind using the observation-based, theory-driven wind profile that241

combines the ASOS observations and the existing theoretical TC wind field model. Although242

the evaluation in this paper only focuses on the performance of the GFDL T-SHiELD on243

six major landfalling hurricanes in the continental U.S. along the Gulf of Mexico coast244

from 2020 to 2022, the evaluation framework can be generalized to other model evaluations245

emphasizing the TC wind field.246

In our framework, we introduce several observation-based evaluation approaches into247

the wind field assessment. The ASOS wind speed radial distribution, which generally de-248

picts the TC asymmetric structural change shortly after landfall, can directly be used to249

qualitatively evaluate the model overall forecast of the inland TC wind field. Then, the wind250

profile in each quadrant generated by the theoretical wind field model given observable TC251

parameters (r10, vm) obtained from ASOS and IBTrACS enables further quantitative eval-252

uations for the simulated inland wind field. This Obs-Theo wind profile well represents the253

observed wind speed distribution in the outer region. Finally, the forecast error along the254

radius (i.e., error profile) is linearly fitted among the inner and outer regions, described255

by the wind field bias indicator and wind profile shape indicator of the fitted lines. These256

indicators quantitatively reveal the performance of the model on inland TCs, and can also257

be used in future work to reveal the improvement in wind field forecast skill associated with258

the model development.259
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Compared to TC track and intensity, the post-landfall evolution of the TC low-level260

wind field has not received much attention in previous model evaluation studies due to the261

complexity of the TC structural change and the lack of in-situ inland wind field observations.262

This wind field evaluation framework provides an alternative approach assessing the model263

directly with in-situ observations taking advantage of existing TC structure theory. However,264

our community still needs to advance the post-landfall TC observations, especially among265

the eyewall region, and provide reliable routinely-used TC datasets to strengthen our studies266

on inland TC hazards and their evolution.267

5 Open Research268

The GFDL T-SHiELD outputs, processed ASOS data, and the observation-based,269

theory-driven wind profile data used in this work are available on Zenedo (DOI 10.5281/zen-270

odo.7937697). The IBTrACS data is available at https://climatedataguide.ucar.edu/271

climate-data/ibtracs-tropical-cyclone-best-track-data. The ASOS data applied272

in this work is available at Iowa State University (https://mesonet.agron.iastate.edu/273

ASOS/). The FCMP data of hurricane Ida is is available by contacting Prof. David Nolan274

at University of Miami. The C15 wind structure model is available at https://doi.org/275

doi:10.4231/CZ4P-D448.276

Appendix A C15 wind field model277

The C15 model mathematically merged the Emanuel and Rotunno (2011) inner wind278

field model (Eq.36 therein) and Emanuel (2004) outer wind field model (Eq.31-33 therein)279

solution to produce a model for the complete azimuthal wind profile. This merging yields a280

unique solution; the process is described in C15 (Eq.2-10 therein). Using C15, parameters281

required to solve the differential equations for the wind profile are: storm intensity vm,282

radius of maximum wind speed rm for the inner region, the intensity and radius of the283

merge point connecting the inner and outer region, va and ra, and a specified radius input284

rfit, χ and Coriolis parameter f for the environmental conditions where χ = 2Cd

Wcool
. Cd285

is the exchange coefficients of momentum, Wcool is the free tropospheric subsidence rate.286

The value of Wcool is constrained by the thermodynamics of the free troposphere and can be287

estimated from the ambient stratification and radiative cooling rate via radiative-subsidence288

balance. Given the environmental parameters χ and f , one only needs to know two storm289

parameters – the intensity vm and any wind radius (e.g. rm, r17, or r10) – to specify the290

model solution.291

In this work, vm and r10 are primarily obtained from IBTrACS and ASOS observations.292

f is calculated by the TC location provided by IBTrACS; Cd is calculated from the Fifth293

generation of ECMWF atmospheric reanalyses of the global climate (ERA5) surface rough-294

ness (Hersbach, 2010) and then averaged within r = 0−600 km to yield a single value within295

each of the four earth-relative quadrants (Figure 1). Previous work testing C15 against ide-296

alized landfall suggests that, the wind field solution is not very sensitive to Wcool except297

for at large radii. Thus, the radiative-subsidence rate Wcool is set to 0.002 ms−1, which is298

the median of the best-fit value for observed storms (Chavas et al., 2015) and identical to299

idealized experiments in Chen and Chavas (2023) and related studies.300

Acknowledgments301

The authors benefited from the advice from Drs. David Nolan and John Knaff, and conver-302

sations related to this research during the 35th AMS Conference on Hurricanes and Tropical303

Meteorology. The authors also thank Dr. Shuai Wang, Dr. Jan-Huey Chen, Thomas304

Knutson and Lingwei Meng for their constructive feedback. The simulations presented in305

this paper were performed using High Performance Computing resources provided by the306

Cooperative Institute for Modeling the Earth System. This research was supported under307

–10–



manuscript submitted to Geophysical Research Letters

award NA18OAR4320123 from the National Oceanic and Atmospheric Administration, U.S.308

Department of Commerce.309

References310

Balderrama, J., Masters, F., Gurley, K., Prevatt, D., Aponte-Bermudez, L., Reinhold, T.,311

. . . Chowdhury, A. (2011). The Florida Coastal Monitoring Program (FCMP): A312

review. Journal of Wind Engineering and Industrial Aerodynamics, 99(9), 979-995.313

Beven, J. L., Hagen, A., & Berg, R. (2021). Hurricane Ida (AL092021). (Tropical Cyclone314

Report). National Hurricane Center. (Available from National Hurricane Center)315

Chan, K., Zhang, K., Wu, Y., & Chan, J. C. L. (2022). Landfalling Hurricane Track Modes316

and Decay. Nature, 606 , E7-E11.317

Chavas, D. R., & Knaff, J. A. (2022). A Simple Model for Predicting the Tropical Cyclone318

Radius of Maximum Wind from Outer Size. (EOR). Weather Forecasting .319

Chavas, D. R., Lin, N., & Emanuel, K. A. (2015). A Complete Tropical Cyclone Radial320

Wind Structure Model. Part I: Comparison with Observed Structure. J. Atmos. Sci.,321

72(9), 3647-3662.322

Chen, J., & Chavas, D. R. (2023). A Model for the Tropical Cyclone Wind Field Response323

to Idealized Landfall. J. Atmos. Sci., 80 , 1163–1176.324

Chen, J., Lin, S. J., Magnusson, L., Bender, M. A., Chen, X., Zhou, L. J., . . . Harris,325

L. (2019). Advancements in Hurricane Prediction with NOAA’s Next Generation326

Forecast System. Geophysical Research Letters, 46(8).327

Emanuel, K. A. (2004). Atmospheric Turbulence and Mesoscale Meteorology. In Tropical328

cyclone energetics and structure (p. 165–192). Cambridge University Press.329

Emanuel, K. A., & Rotunno, R. (2011). Self-stratification of Tropical Cyclone Outflow.330

Part I: Implications for Storm Structure. J. Atmos. Sci., 68 , 2236–2249.331

Evans, J. L., & Hart, R. E. (2003). Objective Indicators of the Life Cycle Evolution of332

Extratropical Transition for Atlantic Tropical Cyclones. Mon. Wea. Rev., 131(5),333

909–925.334

Feng, K., Ouyang, M., & Lin, N. (2022). Tropical Cyclone-blackout-heatwave Compound335

Hazard Resilience in a Changing Climate. Nat Commun, 13 , 4421.336

Gao, K., Harris, L., Zhou, L., Bender, M., & Morin, M. (2021). On the Sensitivity of337

Hurricane Intensity and Structure to Horizontal Tracer Advection Schemes in FV3.338

J. Atmos. Sci., 78 , 3007–3021.339

Gori, A., & Lin, N. (2022). Projecting Compound Flood Hazard Under Climate Change340

with Physical Models and Joint Probability Methods. Earth’s Future..341

Harris, L., Chen, X., Putman, W., Zhou, L., & Chen, J. H. (2021). A Scientific Descrip-342

tion of the GFDL Finite-Volume Cubed-Sphere Dynamical Core. NOAA technical343

memorandum OAR GFDL, 2021-001 .344

Harris, L., Zhou, L., Lin, S.-J., Chen, J.-H., X.Chen, Gao, K., & et al. (2020). GFDL345

SHiELD: A Unified System for Weather-to-Seasonal Prediction. Journal of Advances346

in Modeling Earth Systems, 12 , e2020MS002223.347

Hersbach, H. (2010). Sea-surface Roughness and Drag Coefficient as Function of Neu-348

tral Wind Speed. Internal Report from European Centre for Medium-Range Weather349

Forecasts (ECMWF). Retrieved from https://www.ecmwf.int/node/9875350

Klotzbach, P. J., Chavas, D. R., Bell, M., Bowen, S., Gibney, E., & III, C. S. (2022). Char-351

acterizing Continental US Hurricane Risk: Which Intensity Metric is Best? Journal352

of Geophysical Research: Atmospheres, 127.353

Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., & Neumann, C. J. (2010).354

The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying355

tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91 , 363-376.356

Knutson, T., & Coauthors. (2020). Tropical Cyclones and Climate Change Assessment:357

Part II: Projected Response to Anthropogenic Warming. Bull. Amer. Meteor. Soc.,358

101 , E303–E322.359

–11–



manuscript submitted to Geophysical Research Letters

Kossin, J. (2018). A Global Slowdown of Tropical-cyclone Translation Speed. Nature, 558 ,360

104-107.361

Kossin, J. (2019). Reply to: Moon, I.-J. et al.; Lanzante, J. R. Nature, 570 , E16–E22.362

Kossin, J., Emanuel, K. A., & Vecchi, G. A. (2014). The Poleward Migration of the Location363

of Tropical Cyclone Maximum Intensity. Nature, 509 , 349–352.364

Landsea, C. W. (2007). Counting Atlantic Tropical Cyclones Back to 1900. EOS Transac-365

tions American Geophysical Union, 88(18).366

Landsea, C. W., & Frankin, J. (2013). Atlantic Hurricane Database Uncertainty and Pre-367

sentation of a new Database Format. Monthly Weather Review , 141(10), 3576–3592.368

Li, L., & Chakraborty, P. (2020). Slower Decay of Landfalling Hurricanes in a Warming369

World. Nature, 587 , 230–234.370

Lin, J., Emanuel, K., & K.Vigh, J. (2020). Forecasts of Hurricanes Using Large-Ensemble371

Outputs. Weather and Forecasting , 35(5), 1713-1731.372

Masters, F. J., Vickery, P. J., Bacon, P., & Rappaport, E. N. (2010). Toward Objective,373

Standardized Intensity Estimates from Surface Wind Speed Observations. Bull. Amer.374

Meteor. Soc., 91 , 1665–1681.375

Mendelsohn, R., Emanuel, K., Chonabayashi, S., & Bakkensen, L. (2012). The Impact of376

Climate Change on Global Tropical Storm Damages. Nat. Clim. Change, 2 , 205-9.377

Nolan, D. S., McNoldy, B., & Yunge, J. (2021). Evaluation of the Surface Wind Field over378

Land in WRF Simulations of Hurricane Wilma (2005). Part I: Model Initialization379

and Simulation Validation. Mon. Wea. Rev., 149(3), 679-695.380

Rappaport, E. (2014). Fatalities in the United States from Atlantic Tropical Cyclones:New381

Data and Interpretation. Bull. Amer. Meteor. Soc., 95 , 341–346.382

Smith, J., Baeck, M., Su, Y., Liu, M., & Vecchi, G. (2023). Strange Storms: Rainfall383

Extremes from the Remnants of Hurricane Ida (2021) in the Northeastern US. Water384

Resources Research, 59 , e2022WR033934.385

Villarini, G., Goska, R., Smith, J. A., & Vecchi, G. A. (2014). North Atlantic Tropical386

Cyclones and U.S. Flooding. Bull. Amer. Meteor. Soc., 95 , 1381–1388.387

Wang, S., Lin, N., & Gori, A. (2022). Investigation of Tropical Cyclone Wind Models388

with Application to Storm Tide Simulations. Journal of Geophysical Research: Atmo-389

spheres.390

Xi, D., Lin, N., & Smith, J. (2020). Evaluation of a Physics-Based Tropical Cyclone Rainfall391

Model for Risk Assessment. Journal of Hydrometeorology , 21(9), 2197-2218.392

Zhai, A. R., & Jiang, J. H. (2014). Dependence of US Hurricane Economic Loss on Maximum393

Wind Speed and Storm Size. Environ. Res. Lett., 9 , 064019.394

Zhou, L. J., Lin, S. J., Chen, J. H., ad X. Chen, L. H., & Rees, S. L. (2019). Toward395

Convective-Scale Prediction within the Next Generation Global Prediction System.396

Bulletin of the American Meteorological Society , 100(7).397

Zhu, Y. J., & Collins, J. M. (2021). Recent Rebounding of the Post-landfall Hurricane398

Wind Decay Period over the Continental United States. Geophys Res Lett , 70 ,399

e2020GL092072.400

–12–



GEOPHYSICAL RESEARCH LETTERS

Supporting Information for ”A new framework for

evaluating model simulated inland tropical cyclone

wind fields”
Jie Chen1, Kun Gao1, Lucas Harris2, Timothy Marchok2, Linjiong Zhou 1,

Matthew Morin2

1The Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ

2NOAA Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ

Contents of this file

1. Figure S1

2. Figure S2

3. Figure S3

4. Figure S4

5. Figure S5

6. Figure S6

May 19, 2023, 1:30pm



X - 2 :

Figure S1. (a)-(b) Similar to Figure 2c, but additional examples showing the ASOS wind

speed radial distribution and the corresponding observation-driven, theory-based (Obs-Theo)

wind profiles of Hurricanes Laura and Delta 3-h after their observed landfall. (c) The quadrant-

averaged root-mean-square deviation of ASOS observations from the Obs-Theo wind profile (r =

200− 600 km) in each landfall case since the corresponding observed landfall.
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Figure S2. (a) Similar to Figure 2c, but the observation-driven, theory-based (Obs-Theo)

wind profile in the northern quadrants of Hurricane Ida (1800 UTC 29 August 2021) using

the maximum wind speed vm obtained from IBTrACS (blue line) and FCMP T1 (yellow line),

respectively. The representative radius r10 for the both of the Obs-Theo wind fields is obtained

from the cubic spline of the wind speed radial distribution. (b) The time series of vm recorded

by the FCMP T1 and the corresponding closest T-SHiELD grid point, respectively.
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Figure S3. Same as Figure 2b, but for the Hurricane Ida (2021) wind speed radial distribution

in each quadrant generated from ASOS sites and their corresponding T-SHiELD grid points at

(a) 1500UTC, (b) 2100UTC 29 Aug 2021, and (c) 0300UTC, (d) 0900UTC, (e) 1500UTC 30 Aug

2021, which are 0, 6, 12, 18 and 24 h since the landfall, respectively. The T-SHiELD forecast time

is 12 hours plus the observed time.
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Figure S4. Same as S3, but for the Hurricane Delta (2020) at (a) 2100UTC 9 Oct 2020, (b)

0300UTC (c) 0900UTC, (d) 1200UTC, (e) 1800UTC 10 Oct 2020, which are 0, 6, 12, 18 and

24 h since the landfall, respectively. The T-SHiELD forecast time is 12 hours plus the observed

time.
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Figure S5. Same as S1, but for the Hurricane Ian (2022) at (a) 0600UTC, (b) 1200UTC and

(c) 1800UTC 27 Sept. 2022, and (d) 0000UTC, (e) 0600UTC 28 Sept. 2022 , which are 0, 6, 12,

18 and 24 h since the landfall, respectively. The T-SHiELD forecast time is 12 hours plus the

observed time.
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Figure S6. Same as Figure 3, but for the Hurricane Fred (2021) at 1800 UTC 16 Aug, 2021.

In this example (c)-(d), the positive α in the outer region indicates a stronger wind field forecast,

while the wind profile shape may or may not resemble the Obs-Theo or not, depending on the

value of β.
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