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Abstract

Landfast ice is immobile sea ice attached to the coastline. Through the position of wintertime offshore polynyas and related

brine rejection with new ice formation, the landfast ice cover has an effect on the halocline stability in the Arctic. Landfast ice

formation depends in large part on the depth of the ocean floor. Numerical simulations with and without a landfast ice cover

in the relatively deeper Kara Sea show that the presence of landfast ice decreases the near-surface salinity not only locally, but

the local negative salinity anomaly in the Kara Sea is then advected in the Makarov Basin on timescales of less than ten years.

The fresh signal is also affected by river discharge into the Kara Sea. We argue that a proper representation of landfast ice in

the Kara is key to a proper simulation of the halocline stability and Atlantification of the Makarov Basin.
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Key Points:6

• The extent of landfast ice in the Kara Sea has a significant impact on the upper7

ocean salinity.8

• This fresh upper ocean signal is advected from the Kara Sea to the central Arc-9

tic10

• The salt anomaly advection from the ice and upper ocean affects the stability of11

the halocline of the Makarov Basin.12
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Abstract13

Landfast ice is immobile sea ice attached to the coastline. Through the position of win-14

tertime offshore polynyas and related brine rejection with new ice formation, the land-15

fast ice cover has an effect on the halocline stability in the Arctic. Landfast ice forma-16

tion depends in large part on the depth of the ocean floor. Numerical simulations with17

and without a landfast ice cover in the relatively deeper Kara Sea show that the pres-18

ence of landfast ice decreases the near-surface salinity not only locally, but the local neg-19

ative salinity anomaly in the Kara Sea is then advected in the Makarov Basin on timescales20

of less than ten years. The fresh signal is also affected by river discharge into the Kara21

Sea. We argue that a proper representation of landfast ice in the Kara is key to a proper22

simulation of the halocline stability and Atlantification of the Makarov Basin.23

Plain Language Summary24

Landfast ice is sea ice that forms a stable ice cover attached to the coast. In the25

Arctic, this land extension serves as a platform for hunting, tourism, scientific observa-26

tion, oil and gas drilling. Landfast ice also influences the distribution of temperature and27

salinity in the Arctic Ocean because it sets the areas where new ice is formed from sea-28

water. This process leaves more saline and denser surface water behind. Most marginal29

seas in the Arctic Ocean are very shallow, except for the Kara Sea where the water depth30

can reach 60m implying that the effect of landfast ice on the ocean can be different than31

in the other marginal seas. In a numerical computer model of the Arctic Ocean with sea32

ice, these effects are explored. With more landfast ice prevents new ice formation and33

leads to lower salinity, that is, fresher water, locally. Only for the Kara Sea, the fresh34

signal in the surface ocean is exported to the central Arctic Ocean, where it leads to a35

more stable stratification. This effect may have implications for the water mass struc-36

ture in a future Arctic Ocean.37
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1 Introduction38

Landfast ice (also called fast ice) is defined as “sea ice that stays fast along the coast39

where it is attached to the shore, to an ice wall, to an ice front, over shoals, or between40

grounded icebergs” (World Meteorological Organization, 1970). Landfast ice can extend41

a few kilometers (e.g. Beaufort Sea, Western Laptev Sea) to several hundred kilometers42

into the ocean (e.g. Kara Sea, East Siberian Sea, Eastern Laptev Sea). Landfast ice for-43

mation is related to local bathymetry and coastline geometry. It can be grounded on the44

ocean floor by pressure ridges (Stamukhi) in shallow water and over shoals (Mahoney45

et al., 2014; Lemieux et al., 2015, 2016), attached to coastlines by frictional effects, or46

pinned by offshore islands (Divine et al., 2005). Landfast ice plays an important role in47

polar coastal regions. The stable landfast ice cover decreases the energy, momentum, and48

heat flux between the atmosphere and the ocean (Johnson et al., 2012; Lemieux et al.,49

2016). Consequently, ocean mixing underneath a landfast ice cover is reduced. The sta-50

ble fast ice cover also prevents sea ice compression in convergent motion, thus limiting51

sea ice thickness (Johnson et al., 2012; Itkin et al., 2015). The northward extent of land-52

fast ice determines the location of flaw lead polynyas (i.e. the openings between the land-53

fast ice and pack ice). The position of these polynyas is important for the large scale Arc-54

tic hydrography, because salt rejection during ice formation in these polynyas leads to55

dense bottom water that flows off the continental shelves, decoupling the warm Atlantic56

water from the cold surface water with effects on the Arctic halocline stability (Itkin et57

al., 2015).58

The stratification in the Arctic Ocean is mainly determined by salinity instead of59

temperature (i.e. there is a halocline instead of a thermocline, Timmermans & Marshall,60

2020). The salt budget in the Arctic Ocean is a function of lateral processes, such as ad-61

vection of relatively saline Atlantic water and fresh Pacific water, river runoff, and lo-62

cal (vertical) processes, such as ice melt and formation, evaporation and precipitation63

(Rudels et al., 1994; Serreze et al., 2006; Morison et al., 2012; Haine et al., 2015; Proshutin-64
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sky et al., 2015). Here, we focus on changes in salinity due to changes in landfast ice area65

and how this affects the halocline stability in the Arctic. We explore the effects of dif-66

ferent landfast ice regions on the salinity in the upper ocean and show that this effect67

can be particularly large for landfast ice in the relatively deep Kara Sea (∼ 60m). To68

this end, we exploit parameterizations that lead to more landfast ice (Lemieux et al., 2015;69

Liu et al., 2022) as a switch to turn on and off landfast ice in different regions. Differ-70

ent sensitivity experiments and a detailed salt budget analysis shed light on which land-71

fast ice areas cause which of the changes in the large-scale salinity distribution.72

The paper is organized as follows: the model configuration is described in Section 2,73

the model results are presented in Section 3, and the discussion and conclusion are given74

in Section 4 and Section 5.75

2 Model and Experimental set-up76

We use a regional Arctic configuration of the Massachusetts Institute of Technol-77

ogy general circulation model (MITgcm, Marshall et al., 1997; MITgcm Group, 2022)78

with a grid resolution of 36 km. This model resolves ocean and sea ice processes with a79

finite-volume discretization on an Arakawa C grid. The sea ice component includes a zero-80

layer thermodynamics (Semtner, 1976) and viscous-plastic dynamics with an elliptical81

yield curve and a normal flow rule (Hibler, 1979; Zhang & Hibler, 1997). The surface forc-82

ing is from global atmospheric reanalysis ERA-Interim data (Dee et al., 2011). The hy-83

drography is initialized with temperature and salinity fields from the Polar Science Cen-84

ter Hydrographic Climatology 3.0 (Steele et al., 2011). Details of the sea ice model can85

be found in Losch et al. (2010); Ungermann and Losch (2018).86

The model is run from 2001 to 2015 with and without fast ice parameterizations.87

The first five years constitute a spin-up during which the sea ice and surface ocean reaches88

a stable state for analysis. As in any sea-ice ocean model at this resolution, the land-89

fast ice cover in marginal seas is too small; implementing a basal drag parameterization90
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(Lemieux et al., 2015) leads to realistic landfast ice areas in shallow marginal seas such91

as the Beaufort, Laptev and the East Siberian Seas, but not in the Kara Sea. The ex-92

tent of the fast ice in the Kara Sea can be improved in part by implementing a differ-93

ent parameterization where an explicit lateral drag that depends on the sub-grid-scale94

coastline length and orientation replaces the no-slip boundary condition of the sea-ice95

momentum equations (Liu et al., 2022). We label the three configurations as CTRL (with-96

out any fast ice parameterization), BD (with basal drag parameterization, i.e. fast ice97

in shallow regions and no fast ice in the Kara Sea), and LD+BD (with both lateral and98

basal drag parameterization, i.e. most realistic fast ice distribution both in shallow and99

deep regions). Switching between the BD and the LD+BD configuration allows us to iso-100

late the effect of the landfast ice in the Kara Sea on the Arctic hydrography.101

3 Results102

3.1 More landfast ice in the Kara Sea, fresher surface water in the in-103

terior Arctic104

More landfast ice makes the shelves fresher, but more landfast ice in the Kara Sea105

also makes the interior Arctic fresher (Figure 1c-d). In the landfast ice regions of the Beau-106

fort, East Siberian, Laptev and Kara Seas, the ice concentration is higher (less open wa-107

ter for sea ice formation) along the coastlines with the landfast ice parameterizations,108

but lower (more open water for more sea ice formation in flaw polynyas) offshore (Figure 1b,109

see also Itkin et al., 2015, where this effect is restricted to the first three very shallow110

seas). Especially in the landfast ice regions of the Laptev and East Siberian Seas, this111

leads to fresher surface water in the simulations with fast ice parameterization (LD+BD,112

BD) compared to the CTRL run (Figure 1c-d), because the stable landfast ice cover in-113

hibits new ice formation. As a consequence, less salt is rejected, reducing the salinity of114

the surface ocean. Northward of the East Siberian Sea landfast ice edge, the upper ocean115

is more saline in the simulation with basal drag parameterization than in the CTRL sim-116

–5–
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Figure 1. (a) Arctic topography. VS denotes the Vilkitsky Strait. (b) Sea ice concentration

difference between LD+BD and CTRL simulations for the mean April of 2006–2015. (c)–(f)

Depth averaged (0–40m) salinity differences for the mean April of 2006–2015 between: (c) the

simulation with basal drag parameterization (BD, with landfast ice in the shallow regions) and

the CTRL run; (d) the simulation with lateral and basal drag parameterization (LD+BD, with

landfast ice in both shallow and deep regions) and the CTRL run; (e) the LD+BD with lateral

drag parameterization everywhere except in the Kara Sea and the CTRL run; (f) LD+BD and

CTRL simulations as in (d), but without river runoff in the Kara Sea.
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ulation (Figure 1c), which is consistent with previous results (Itkin et al., 2015), where117

the landfast ice parameterization was also depth-dependent and only active in shallow118

(<30m) water. During offshore wind events in the East Siberian Sea, new ice formation119

at the edge of the landfast ice leaves more salt behind and increases the surface ocean120

salinity in the coastal polynyas. The lateral drag parameterization leads to additional121

landfast ice in the Kara Sea and around Greenland, where the water is deeper. In con-122

trast to the landfast ice effects in the shallow East Siberian and Laptev Seas, this land-123

fast ice in the deep marginal seas leads to a much fresher upper ocean in the Kara Sea124

and also Makarov Basin (Figure 1d). We emphasize that the only difference between the125

BD and LD+BD simulation is the additional landfast ice parameterization in the sea ice126

component of our model.127

Salinity observations in the Arctic are sparse. For example, in the Unified Database128

for Arctic and Subarctic Hydrography (UDASH, Behrendt et al., 2017; Behrendt et al.,129

2018), there are only 28 salinity casts in all Aprils of 2006–2015 in the region between130

the meridians 120◦E and 180◦E and north of 75◦N (approximately the Makarov Basin).131

Of these 28 casts, only 20 contain data in the upper 40m. We compare the average over132

the top 40m to the corresponding model grid points and find that the root-mean-square133

difference (RMSD) of salinity between the LD+BD run and the UDASH data (1.06) is134

smaller than the value between the CTRL run and the UDASH data (1.27). This shows135

that the extra fast ice in the Kara Sea and the consequential negative salinity anomaly136

in the Makarov Basin slightly, and maybe fortuitously, reduces a model bias (plots not137

shown).138

In two sensitivity experiments, we turned off the lateral drag parameterization in139

the LD+BD simulation in the Kara Sea (LD + BD - KS, Figure 1e) and the Greenland140

Sea and the Canadian Arctic Archipelago separately by setting the coefficient of the lat-141

eral drag parameterization to zero in these regions. The fresh upper ocean signal in the142

Makarov and Eurasian Basins disappears when there is no landfast ice in the Kara Sea143

–7–
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(Figure 1e), whereas the fresh signal in the upper ocean near the Canadian Arctic Archipelago144

(CAA) and the Greenland Sea disappears when turning off the lateral drag parameter-145

ization locally along these coasts (not shown). In a different sensitivity experiment we146

disabled the river runoff from the Ob and Yenisei Rivers in the Kara Sea aiming to iden-147

tify the source for the fresher upper ocean signal in the central Arctic (Figure 1f). The148

amplitude of the negative salinity anomaly in the Kara Sea and the Makarov Basin de-149

creases without river runoff in the Kara Sea and a positive anomaly appears north of the150

New Siberian Island (Figure 1f). Furthermore, the positive salinity anomaly north of the151

East Siberian Sea intensifies. We hypothesize that the river runoff contributes to the trans-152

port of the low salinity signal in the upper ocean from the Kara Sea to the Makarov Basin153

(Figure 2).154

We trace the river runoff of the Ob and Yenisei Rivers in the Kara Sea with a pas-155

sive tracer. The passive tracer leaves the Kara Sea through the Vilkitsky Strait (between156

the Laptev and Kara Seas), then part of the tracer enters the Laptev Sea, and the rest157

subducts into the Amundsen Basin, passes the Lomonosov Ridge and enters the Makarov158

Basin. Over the Lomonosov Ridge, Ob/Yenisei water outcrops at the surface and sub-159

merges to 50 m in the Makarov Basin (Figure 2). The passive tracer of the Ob and Yeni-160

sei water has a similar distribution to the observed Ob/Yenisei water based on chem-161

ical tracer-based water mass analyses (Paffrath et al., 2021). The tracer pattern is very162

similar to the pattern of the low salinity signal in the upper ocean implying a transport163

path from the Kara Sea to the Makarov Basin.164

3.2 Propagation of the low salinity signal165

A Hovmöller diagram of the depth-averaged (0–40m) salinity and salinity differ-166

ence between different experiments along the transect in Figure 2a illustrates the trans-167

port of the low salinity signal from the Kara Sea to the Chuckchi Sea (Figure 3). The168

positive salinity difference between the BD and CTRL simulations in the Makarov Basin169

(approximately 1900 km away from the Kara Sea) develops locally very soon after 2001170
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Figure 2. (a) Depth averaged (0–40m) passive tracer of the river runoff from the Kara Sea in

April 2015. (b) Vertical distribution of the passive tracer along the section in panel (a) starting

from the Kara Sea to the Chukchi Sea.
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Figure 3. Hovmöller diagram for years 2001 to 2015 of depth-averaged (0–40m) (a) salinity in

the CTRL simulation; (b) salinity difference between the BD and CTRL simulations; (c) salinity

difference between the LD+BD and CTRL simulations. The abscissa is the distance in km along

the transect in Figure 2a. The dashed lines parallel to the ordinate indicate the locations of the

Vilkitsky Strait, the Eurasian and the Makarov Basins.

(Figure 3b), when the new ice formation releases salt in the upper ocean in the polynyas171

north of the East Siberian Sea landfast ice edge. The same positive salinity anomaly also172

appears in the LD+BD simulation in the Makarov Basin (Figure 3c). In contrast to the173

locally generated signal, the low salinity signal in the LD+BD simulation in the Makarov174

and Eurasian Basins is advected from the Kara Sea, apparently starting in 2008, with175

a negative salinity anomaly peak in 2012. Note the pulses of negative salinity anomaly176

in the upper ocean moving from the Kara Sea to the Makarov Basin throughout the years177

2001-2007. The explanation for the events is elaborated in Section 4.178

3.3 Salt budget analysis179

Integrating the salt conservation equation leads to a salt budget equation. The change180

in salt content over time (GS
tot) is equal to the convergence of the advective (GS

adv) and181
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manuscript submitted to Geophysical Research Letters

diffusive fluxes (GS
diff), and a forcing term associated with surface salt exchanges (GS

forc):182

∂s

∂t︸︷︷︸
GS

tot

= − ρ

∮
A

uS da︸ ︷︷ ︸
GS

adv

+ ρ

∫∫∫
Fdiff dx dy dz︸ ︷︷ ︸
GS

diff

+ ρ

∫∫
Fforc dx dy︸ ︷︷ ︸
GS

forc

, (1)

where u is the ocean velocity normal to the area, S is the salinity, s = ρ
∫∫∫

S dx dy dz183

is the salt content (in grams), da is the area element, A is the surface area of the vol-184

ume integral. The differences between the simulation with landfast ice and the CTRL185

run in the advection and salinity tendency in the Arctic Ocean are small for the first five186

years until the end of 2005 (Figure 4). The trend of the influence of landfast ice in the187

deep region gradually intensifies after 2006, and the trend stabilizes after the year 2014.188

The salt content difference in the Arctic Ocean with landfast ice parameterization is de-189

termined by surface forcing, advection, and diffusion. The decrease in salt content in the190

Arctic Ocean in the simulation with fast ice in shallow and deep regions is to 90% caused191

by changes in advective salt flux through the open boundaries (Figure 4). Furthermore,192

the remaining 10% of reduced salinity is mainly caused by the surface forcing. The sur-193

face forcing flux difference between the LD+BD and CTRL simulation in the Arctic Ocean194

has a strong seasonal signal governed by the sea ice formation and melt. For perspec-195

tive, the total salt loss in the Makarov Basin in the upper 40m is approximately 1.94196

Gt per year.197

4 Discussion198

The presence of landfast ice in sea ice-ocean models changes the position of offshore199

polynyas and hence the location where sea ice is formed over open water. The modified200

freshwater flux changes the salinity forcing which in turn leads to changes in the halo-201

cline stability in the Arctic (Itkin et al., 2015). This result was obtained with a numer-202

ical model that did not have any landfast ice in the Kara Sea. We used a lateral drag203

parameterization designed to make the Kara Sea landfast ice cover more realistic (Liu204

et al., 2022) as a switch. When switched on, there is more landfast ice in the Kara Sea,205

but the landfast ice cover in other fast ice regions does not change very much (Liu et al.,206

–11–



manuscript submitted to Geophysical Research Letters

Figure 4. Time series of accumulated salt budget differences (
∫ t

0
G(t′) dt′, see Eq. 1) in the

Arctic Ocean in 2001-2015. The blue line is the difference between BD and CTRL simulation

(effects from landfast ice in the shallow region), and the orange line is the difference between

LD+BD and CTRL simulation (effects of fast ice in both shallow and deep regions). (a) Ad-

vection. (b) Surface forcing (evaporation-precipitation-runoff). (c) The sum of surface forcing,

advection and diffusion. (d) Total salt content tendency in the Arctic Ocean. Positive means

increasing salinity in the ocean. The (vertical) diffusion term is very small, thus not shown in the

plot.

–12–



manuscript submitted to Geophysical Research Letters

2022). This makes it possible to isolate the effects of the Kara Sea landfast ice. The ef-207

fect on the near-surface salinity is much larger than including landfast ice in the other208

marginals seas (Laptev, East Siberian, Beaufort Sea), even though the Kara Sea area209

is small compared to the other marginal seas. For the halocline, the large decrease of salin-210

ity in the top 40m of the water column means increased stability (and it corrects a saline211

model bias). Likewise, less landfast ice in the Kara Sea (e.g., in response to climate change),212

may lead to reduced stability in the central Arctic Ocean and hence an accelerated “At-213

lantification” as it may become easier for warm Atlantic water to reach the surface (Asbjørnsen214

et al., 2020; Ingvaldsen et al., 2021), with significant consequences for the sea ice cover215

extent and seasonality.216

Although the negative salinity anomaly in the upper ocean in the simulation with217

fast ice in the Kara Sea travels from the Kara Sea to the Makarov Basin soon after the218

start of the model run, there are two main transport episodes (2002–2006 and 2008–2015).219

These may be driven by the wind forcing in the Arctic (Duan et al., 2019; Zatsepin et220

al., 2017). The negative salinity difference in the upper ocean is largest after the end of221

summer in 2012 (Figure 3c), presumably because of the large sea ice retreat in 2012. In222

August 2012, an intense storm increased mixing in the ocean boundary layer, increased223

upward ocean heat transport, causing bottom melt, and reduced the sea ice volume about224

twice as fast as in other years (Zhang et al., 2013). Eventually, the sea ice extent at the225

end of the summer in 2012 was smaller than it had been in the previous 33 years (Parkinson226

& Comiso, 2013). The processes are also at play in our simulation and the mean sim-227

ulated sea ice extent reaches its lowest value of the simulation in 2012 (not shown). More228

landfast ice melting in the LD+BD simulation reduces the salinity in the upper ocean229

compared to the CTRL simulation. The increased mixing and melting increase the neg-230

ative salinity difference. The particularly fresh upper ocean in 2012 may also be related231

to position of the Beaufort Gyre. As a major freshwater reservoir for the Arctic Ocean,232

the gyre extended northward after 2012, thus increasing the freshwater content in the233

Makarov Basin, and making the central Arctic Ocean fresher (Bertosio et al., 2022).234

–13–
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The Kara Sea receives freshwater discharge from the Ob and Yenisei Rivers, which235

carry over one-third of the total freshwater discharge in the Arctic (Janout et al., 2015).236

The geostrophic surface currents determine the circulation pathways of river runoff, and237

of surface water originally from the Pacific and the Atlantic Oceans (Wang et al., 2021).238

The simulated passive tracer for Ob/Yenisei water agrees with the observed Ob/Yenisei239

water distribution (Laukert et al., 2017; Paffrath et al., 2021). The tracer experiment240

demonstrates that the river runoff and the negative salinity anomaly in the upper ocean241

induced by the fast ice in the Kara Sea travel from the Kara Sea to the Makarov Basin242

via the Vilkitsky Strait. The exact mechanism by which the river runoff in the Kara Sea243

modifies the influence the landfast ice has on the hydrography cannot be extracted from244

the numerical model because the Ob/Yenisei water is stored in landfast ice during sea245

ice formation and the riverine heat, which is not taken into account in our model, is as-246

sumed to be important to explain the phenomena (Janout et al., 2020).247

The Arctic mixed layer is important to physical, chemical, and biological processes.248

Mixed layer properties also influence ocean stratification, sea ice distribution, and heat249

transfer between ocean, sea ice, and atmosphere. Peralta-Ferriz and Woodgate (2015)250

suggested two drivers for seasonal mixed layer depth change: sea ice thermodynamics251

(i.e., salt rejection during ice formation, freshwater input during the ice melt) and wind-252

driven mixing. During ice-free phases, wind-driven mixing deepens the mixed layer, while253

thermodynamic processes dominate the stratification and control mixed layer depth vari-254

ability in winter. With more fast ice less salt is released into the ocean which may mod-255

ify the mixed layer depth. Our model configuration has 50 vertical layers with a min-256

imum thickness of 10m in the upper ocean, which is insufficient to explore the details257

of the influence of landfast ice parameterization on the mixed layer depth. Vertical grid258

refinement in the upper ocean would allow studying the mixed layer variability differ-259

ence with and without the landfast ice parameterization.260

–14–
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A proper representation of the landfast ice distribution, as suggested here, may be261

even more important in the Southern Ocean than in the Arctic Ocean. Along the deep262

Southern Ocean shelf around Antarctica, landfast ice is mainly attached to grounded ice-263

bergs or other coastal features (e.g. the shoreline, glacier tongues, and ice shelves, Fraser264

et al., 2012, 2020). Salt rejection during continuous sea-ice formation (in polynyas) on265

the shelves produces the densest waters observed in the world ocean, which eventually266

are a source of Antarctic Bottom water (Williams et al., 2010; Ohshima et al., 2013, 2016).267

The dense bottom water is an important part of the global circulation (Killworth, 1983;268

Nihashi & Ohshima, 2015; Ohshima et al., 2016). In this sense, the impact of realisti-269

cally simulated landfast ice around Antarctica may even be larger than in the Arctic Ocean270

where the hydrographic processes appear to be restricted mainly to surface waters.271

5 Conclusion272

More landfast ice in the Arctic Ocean decreases the upper ocean salinity locally273

on the shelves in the Kara, Laptev and East Siberian Seas. The largest effect, however,274

is found for the Kara Sea, where the large fresh upper ocean signal induced by the land-275

fast ice is transported to the central Arctic Ocean and leads to surprisingly large salin-276

ity anomaly which increases the halocline stability. River runoff in the Kara Sea contributes277

to transporting the signal from the Kara Sea to the Makarov Basin. The negative salin-278

ity tendency with the landfast ice in both shallow and deep shelves can be attributed279

mainly (90%) to advective fluxes out of the Arctic Ocean and to surface forcing (10%).280

A sea ice model with a proper representation of landfast ice will improve our un-281

derstanding of its influence on the hydrography in the Arctic. The landfast ice occur-282

rence modifies sea ice thermodynamics and thus may reshape the mixed layer depth. A283

finner vertical resolution model is suggested to investigate further the impact of land-284

fast ice presentation on the mixed layer depth. Implementing landfast ice parameteri-285
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zations in sea ice model of the Antarctic will allow to explore the effects of landfast ice286

on the Antarctic Bottom Water formation.287

Open Research288

The model data in this manuscript is based on the Massachusetts Institute of Tech-289

nology general circulation model (MITgcm, MITgcm Group, 2022), the version with lat-290

eral drag parameterization is available at https://doi.org/10.5281/zenodo.7954400291

and the model configurations at https://doi.org/10.5281/zenodo.7919422. The salin-292

ity in the Unified Database for Arctic and Subarctic Hydrography (UDASH) is available293

from the PANGAEA data archive (Behrendt et al., 2017). Figures are made with Mat-294

plotlib version 3.1.3 (Hunter, 2007), available under the Matplotlib license at https://295

matplotlib.org/.296
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Key Points:6

• The extent of landfast ice in the Kara Sea has a significant impact on the upper7

ocean salinity.8

• This fresh upper ocean signal is advected from the Kara Sea to the central Arc-9

tic10

• The salt anomaly advection from the ice and upper ocean affects the stability of11

the halocline of the Makarov Basin.12
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Abstract13

Landfast ice is immobile sea ice attached to the coastline. Through the position of win-14

tertime offshore polynyas and related brine rejection with new ice formation, the land-15

fast ice cover has an effect on the halocline stability in the Arctic. Landfast ice forma-16

tion depends in large part on the depth of the ocean floor. Numerical simulations with17

and without a landfast ice cover in the relatively deeper Kara Sea show that the pres-18

ence of landfast ice decreases the near-surface salinity not only locally, but the local neg-19

ative salinity anomaly in the Kara Sea is then advected in the Makarov Basin on timescales20

of less than ten years. The fresh signal is also affected by river discharge into the Kara21

Sea. We argue that a proper representation of landfast ice in the Kara is key to a proper22

simulation of the halocline stability and Atlantification of the Makarov Basin.23

Plain Language Summary24

Landfast ice is sea ice that forms a stable ice cover attached to the coast. In the25

Arctic, this land extension serves as a platform for hunting, tourism, scientific observa-26

tion, oil and gas drilling. Landfast ice also influences the distribution of temperature and27

salinity in the Arctic Ocean because it sets the areas where new ice is formed from sea-28

water. This process leaves more saline and denser surface water behind. Most marginal29

seas in the Arctic Ocean are very shallow, except for the Kara Sea where the water depth30

can reach 60m implying that the effect of landfast ice on the ocean can be different than31

in the other marginal seas. In a numerical computer model of the Arctic Ocean with sea32

ice, these effects are explored. With more landfast ice prevents new ice formation and33

leads to lower salinity, that is, fresher water, locally. Only for the Kara Sea, the fresh34

signal in the surface ocean is exported to the central Arctic Ocean, where it leads to a35

more stable stratification. This effect may have implications for the water mass struc-36

ture in a future Arctic Ocean.37
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1 Introduction38

Landfast ice (also called fast ice) is defined as “sea ice that stays fast along the coast39

where it is attached to the shore, to an ice wall, to an ice front, over shoals, or between40

grounded icebergs” (World Meteorological Organization, 1970). Landfast ice can extend41

a few kilometers (e.g. Beaufort Sea, Western Laptev Sea) to several hundred kilometers42

into the ocean (e.g. Kara Sea, East Siberian Sea, Eastern Laptev Sea). Landfast ice for-43

mation is related to local bathymetry and coastline geometry. It can be grounded on the44

ocean floor by pressure ridges (Stamukhi) in shallow water and over shoals (Mahoney45

et al., 2014; Lemieux et al., 2015, 2016), attached to coastlines by frictional effects, or46

pinned by offshore islands (Divine et al., 2005). Landfast ice plays an important role in47

polar coastal regions. The stable landfast ice cover decreases the energy, momentum, and48

heat flux between the atmosphere and the ocean (Johnson et al., 2012; Lemieux et al.,49

2016). Consequently, ocean mixing underneath a landfast ice cover is reduced. The sta-50

ble fast ice cover also prevents sea ice compression in convergent motion, thus limiting51

sea ice thickness (Johnson et al., 2012; Itkin et al., 2015). The northward extent of land-52

fast ice determines the location of flaw lead polynyas (i.e. the openings between the land-53

fast ice and pack ice). The position of these polynyas is important for the large scale Arc-54

tic hydrography, because salt rejection during ice formation in these polynyas leads to55

dense bottom water that flows off the continental shelves, decoupling the warm Atlantic56

water from the cold surface water with effects on the Arctic halocline stability (Itkin et57

al., 2015).58

The stratification in the Arctic Ocean is mainly determined by salinity instead of59

temperature (i.e. there is a halocline instead of a thermocline, Timmermans & Marshall,60

2020). The salt budget in the Arctic Ocean is a function of lateral processes, such as ad-61

vection of relatively saline Atlantic water and fresh Pacific water, river runoff, and lo-62

cal (vertical) processes, such as ice melt and formation, evaporation and precipitation63

(Rudels et al., 1994; Serreze et al., 2006; Morison et al., 2012; Haine et al., 2015; Proshutin-64
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sky et al., 2015). Here, we focus on changes in salinity due to changes in landfast ice area65

and how this affects the halocline stability in the Arctic. We explore the effects of dif-66

ferent landfast ice regions on the salinity in the upper ocean and show that this effect67

can be particularly large for landfast ice in the relatively deep Kara Sea (∼ 60m). To68

this end, we exploit parameterizations that lead to more landfast ice (Lemieux et al., 2015;69

Liu et al., 2022) as a switch to turn on and off landfast ice in different regions. Differ-70

ent sensitivity experiments and a detailed salt budget analysis shed light on which land-71

fast ice areas cause which of the changes in the large-scale salinity distribution.72

The paper is organized as follows: the model configuration is described in Section 2,73

the model results are presented in Section 3, and the discussion and conclusion are given74

in Section 4 and Section 5.75

2 Model and Experimental set-up76

We use a regional Arctic configuration of the Massachusetts Institute of Technol-77

ogy general circulation model (MITgcm, Marshall et al., 1997; MITgcm Group, 2022)78

with a grid resolution of 36 km. This model resolves ocean and sea ice processes with a79

finite-volume discretization on an Arakawa C grid. The sea ice component includes a zero-80

layer thermodynamics (Semtner, 1976) and viscous-plastic dynamics with an elliptical81

yield curve and a normal flow rule (Hibler, 1979; Zhang & Hibler, 1997). The surface forc-82

ing is from global atmospheric reanalysis ERA-Interim data (Dee et al., 2011). The hy-83

drography is initialized with temperature and salinity fields from the Polar Science Cen-84

ter Hydrographic Climatology 3.0 (Steele et al., 2011). Details of the sea ice model can85

be found in Losch et al. (2010); Ungermann and Losch (2018).86

The model is run from 2001 to 2015 with and without fast ice parameterizations.87

The first five years constitute a spin-up during which the sea ice and surface ocean reaches88

a stable state for analysis. As in any sea-ice ocean model at this resolution, the land-89

fast ice cover in marginal seas is too small; implementing a basal drag parameterization90
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(Lemieux et al., 2015) leads to realistic landfast ice areas in shallow marginal seas such91

as the Beaufort, Laptev and the East Siberian Seas, but not in the Kara Sea. The ex-92

tent of the fast ice in the Kara Sea can be improved in part by implementing a differ-93

ent parameterization where an explicit lateral drag that depends on the sub-grid-scale94

coastline length and orientation replaces the no-slip boundary condition of the sea-ice95

momentum equations (Liu et al., 2022). We label the three configurations as CTRL (with-96

out any fast ice parameterization), BD (with basal drag parameterization, i.e. fast ice97

in shallow regions and no fast ice in the Kara Sea), and LD+BD (with both lateral and98

basal drag parameterization, i.e. most realistic fast ice distribution both in shallow and99

deep regions). Switching between the BD and the LD+BD configuration allows us to iso-100

late the effect of the landfast ice in the Kara Sea on the Arctic hydrography.101

3 Results102

3.1 More landfast ice in the Kara Sea, fresher surface water in the in-103

terior Arctic104

More landfast ice makes the shelves fresher, but more landfast ice in the Kara Sea105

also makes the interior Arctic fresher (Figure 1c-d). In the landfast ice regions of the Beau-106

fort, East Siberian, Laptev and Kara Seas, the ice concentration is higher (less open wa-107

ter for sea ice formation) along the coastlines with the landfast ice parameterizations,108

but lower (more open water for more sea ice formation in flaw polynyas) offshore (Figure 1b,109

see also Itkin et al., 2015, where this effect is restricted to the first three very shallow110

seas). Especially in the landfast ice regions of the Laptev and East Siberian Seas, this111

leads to fresher surface water in the simulations with fast ice parameterization (LD+BD,112

BD) compared to the CTRL run (Figure 1c-d), because the stable landfast ice cover in-113

hibits new ice formation. As a consequence, less salt is rejected, reducing the salinity of114

the surface ocean. Northward of the East Siberian Sea landfast ice edge, the upper ocean115

is more saline in the simulation with basal drag parameterization than in the CTRL sim-116
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Figure 1. (a) Arctic topography. VS denotes the Vilkitsky Strait. (b) Sea ice concentration

difference between LD+BD and CTRL simulations for the mean April of 2006–2015. (c)–(f)

Depth averaged (0–40m) salinity differences for the mean April of 2006–2015 between: (c) the

simulation with basal drag parameterization (BD, with landfast ice in the shallow regions) and

the CTRL run; (d) the simulation with lateral and basal drag parameterization (LD+BD, with

landfast ice in both shallow and deep regions) and the CTRL run; (e) the LD+BD with lateral

drag parameterization everywhere except in the Kara Sea and the CTRL run; (f) LD+BD and

CTRL simulations as in (d), but without river runoff in the Kara Sea.
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ulation (Figure 1c), which is consistent with previous results (Itkin et al., 2015), where117

the landfast ice parameterization was also depth-dependent and only active in shallow118

(<30m) water. During offshore wind events in the East Siberian Sea, new ice formation119

at the edge of the landfast ice leaves more salt behind and increases the surface ocean120

salinity in the coastal polynyas. The lateral drag parameterization leads to additional121

landfast ice in the Kara Sea and around Greenland, where the water is deeper. In con-122

trast to the landfast ice effects in the shallow East Siberian and Laptev Seas, this land-123

fast ice in the deep marginal seas leads to a much fresher upper ocean in the Kara Sea124

and also Makarov Basin (Figure 1d). We emphasize that the only difference between the125

BD and LD+BD simulation is the additional landfast ice parameterization in the sea ice126

component of our model.127

Salinity observations in the Arctic are sparse. For example, in the Unified Database128

for Arctic and Subarctic Hydrography (UDASH, Behrendt et al., 2017; Behrendt et al.,129

2018), there are only 28 salinity casts in all Aprils of 2006–2015 in the region between130

the meridians 120◦E and 180◦E and north of 75◦N (approximately the Makarov Basin).131

Of these 28 casts, only 20 contain data in the upper 40m. We compare the average over132

the top 40m to the corresponding model grid points and find that the root-mean-square133

difference (RMSD) of salinity between the LD+BD run and the UDASH data (1.06) is134

smaller than the value between the CTRL run and the UDASH data (1.27). This shows135

that the extra fast ice in the Kara Sea and the consequential negative salinity anomaly136

in the Makarov Basin slightly, and maybe fortuitously, reduces a model bias (plots not137

shown).138

In two sensitivity experiments, we turned off the lateral drag parameterization in139

the LD+BD simulation in the Kara Sea (LD + BD - KS, Figure 1e) and the Greenland140

Sea and the Canadian Arctic Archipelago separately by setting the coefficient of the lat-141

eral drag parameterization to zero in these regions. The fresh upper ocean signal in the142

Makarov and Eurasian Basins disappears when there is no landfast ice in the Kara Sea143

–7–



manuscript submitted to Geophysical Research Letters

(Figure 1e), whereas the fresh signal in the upper ocean near the Canadian Arctic Archipelago144

(CAA) and the Greenland Sea disappears when turning off the lateral drag parameter-145

ization locally along these coasts (not shown). In a different sensitivity experiment we146

disabled the river runoff from the Ob and Yenisei Rivers in the Kara Sea aiming to iden-147

tify the source for the fresher upper ocean signal in the central Arctic (Figure 1f). The148

amplitude of the negative salinity anomaly in the Kara Sea and the Makarov Basin de-149

creases without river runoff in the Kara Sea and a positive anomaly appears north of the150

New Siberian Island (Figure 1f). Furthermore, the positive salinity anomaly north of the151

East Siberian Sea intensifies. We hypothesize that the river runoff contributes to the trans-152

port of the low salinity signal in the upper ocean from the Kara Sea to the Makarov Basin153

(Figure 2).154

We trace the river runoff of the Ob and Yenisei Rivers in the Kara Sea with a pas-155

sive tracer. The passive tracer leaves the Kara Sea through the Vilkitsky Strait (between156

the Laptev and Kara Seas), then part of the tracer enters the Laptev Sea, and the rest157

subducts into the Amundsen Basin, passes the Lomonosov Ridge and enters the Makarov158

Basin. Over the Lomonosov Ridge, Ob/Yenisei water outcrops at the surface and sub-159

merges to 50 m in the Makarov Basin (Figure 2). The passive tracer of the Ob and Yeni-160

sei water has a similar distribution to the observed Ob/Yenisei water based on chem-161

ical tracer-based water mass analyses (Paffrath et al., 2021). The tracer pattern is very162

similar to the pattern of the low salinity signal in the upper ocean implying a transport163

path from the Kara Sea to the Makarov Basin.164

3.2 Propagation of the low salinity signal165

A Hovmöller diagram of the depth-averaged (0–40m) salinity and salinity differ-166

ence between different experiments along the transect in Figure 2a illustrates the trans-167

port of the low salinity signal from the Kara Sea to the Chuckchi Sea (Figure 3). The168

positive salinity difference between the BD and CTRL simulations in the Makarov Basin169

(approximately 1900 km away from the Kara Sea) develops locally very soon after 2001170
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Figure 2. (a) Depth averaged (0–40m) passive tracer of the river runoff from the Kara Sea in

April 2015. (b) Vertical distribution of the passive tracer along the section in panel (a) starting

from the Kara Sea to the Chukchi Sea.
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Figure 3. Hovmöller diagram for years 2001 to 2015 of depth-averaged (0–40m) (a) salinity in

the CTRL simulation; (b) salinity difference between the BD and CTRL simulations; (c) salinity

difference between the LD+BD and CTRL simulations. The abscissa is the distance in km along

the transect in Figure 2a. The dashed lines parallel to the ordinate indicate the locations of the

Vilkitsky Strait, the Eurasian and the Makarov Basins.

(Figure 3b), when the new ice formation releases salt in the upper ocean in the polynyas171

north of the East Siberian Sea landfast ice edge. The same positive salinity anomaly also172

appears in the LD+BD simulation in the Makarov Basin (Figure 3c). In contrast to the173

locally generated signal, the low salinity signal in the LD+BD simulation in the Makarov174

and Eurasian Basins is advected from the Kara Sea, apparently starting in 2008, with175

a negative salinity anomaly peak in 2012. Note the pulses of negative salinity anomaly176

in the upper ocean moving from the Kara Sea to the Makarov Basin throughout the years177

2001-2007. The explanation for the events is elaborated in Section 4.178

3.3 Salt budget analysis179

Integrating the salt conservation equation leads to a salt budget equation. The change180

in salt content over time (GS
tot) is equal to the convergence of the advective (GS

adv) and181
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diffusive fluxes (GS
diff), and a forcing term associated with surface salt exchanges (GS

forc):182

∂s

∂t︸︷︷︸
GS

tot

= − ρ

∮
A

uS da︸ ︷︷ ︸
GS

adv

+ ρ

∫∫∫
Fdiff dx dy dz︸ ︷︷ ︸
GS

diff

+ ρ

∫∫
Fforc dx dy︸ ︷︷ ︸
GS

forc

, (1)

where u is the ocean velocity normal to the area, S is the salinity, s = ρ
∫∫∫

S dx dy dz183

is the salt content (in grams), da is the area element, A is the surface area of the vol-184

ume integral. The differences between the simulation with landfast ice and the CTRL185

run in the advection and salinity tendency in the Arctic Ocean are small for the first five186

years until the end of 2005 (Figure 4). The trend of the influence of landfast ice in the187

deep region gradually intensifies after 2006, and the trend stabilizes after the year 2014.188

The salt content difference in the Arctic Ocean with landfast ice parameterization is de-189

termined by surface forcing, advection, and diffusion. The decrease in salt content in the190

Arctic Ocean in the simulation with fast ice in shallow and deep regions is to 90% caused191

by changes in advective salt flux through the open boundaries (Figure 4). Furthermore,192

the remaining 10% of reduced salinity is mainly caused by the surface forcing. The sur-193

face forcing flux difference between the LD+BD and CTRL simulation in the Arctic Ocean194

has a strong seasonal signal governed by the sea ice formation and melt. For perspec-195

tive, the total salt loss in the Makarov Basin in the upper 40m is approximately 1.94196

Gt per year.197

4 Discussion198

The presence of landfast ice in sea ice-ocean models changes the position of offshore199

polynyas and hence the location where sea ice is formed over open water. The modified200

freshwater flux changes the salinity forcing which in turn leads to changes in the halo-201

cline stability in the Arctic (Itkin et al., 2015). This result was obtained with a numer-202

ical model that did not have any landfast ice in the Kara Sea. We used a lateral drag203

parameterization designed to make the Kara Sea landfast ice cover more realistic (Liu204

et al., 2022) as a switch. When switched on, there is more landfast ice in the Kara Sea,205

but the landfast ice cover in other fast ice regions does not change very much (Liu et al.,206
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Figure 4. Time series of accumulated salt budget differences (
∫ t

0
G(t′) dt′, see Eq. 1) in the

Arctic Ocean in 2001-2015. The blue line is the difference between BD and CTRL simulation

(effects from landfast ice in the shallow region), and the orange line is the difference between

LD+BD and CTRL simulation (effects of fast ice in both shallow and deep regions). (a) Ad-

vection. (b) Surface forcing (evaporation-precipitation-runoff). (c) The sum of surface forcing,

advection and diffusion. (d) Total salt content tendency in the Arctic Ocean. Positive means

increasing salinity in the ocean. The (vertical) diffusion term is very small, thus not shown in the

plot.
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2022). This makes it possible to isolate the effects of the Kara Sea landfast ice. The ef-207

fect on the near-surface salinity is much larger than including landfast ice in the other208

marginals seas (Laptev, East Siberian, Beaufort Sea), even though the Kara Sea area209

is small compared to the other marginal seas. For the halocline, the large decrease of salin-210

ity in the top 40m of the water column means increased stability (and it corrects a saline211

model bias). Likewise, less landfast ice in the Kara Sea (e.g., in response to climate change),212

may lead to reduced stability in the central Arctic Ocean and hence an accelerated “At-213

lantification” as it may become easier for warm Atlantic water to reach the surface (Asbjørnsen214

et al., 2020; Ingvaldsen et al., 2021), with significant consequences for the sea ice cover215

extent and seasonality.216

Although the negative salinity anomaly in the upper ocean in the simulation with217

fast ice in the Kara Sea travels from the Kara Sea to the Makarov Basin soon after the218

start of the model run, there are two main transport episodes (2002–2006 and 2008–2015).219

These may be driven by the wind forcing in the Arctic (Duan et al., 2019; Zatsepin et220

al., 2017). The negative salinity difference in the upper ocean is largest after the end of221

summer in 2012 (Figure 3c), presumably because of the large sea ice retreat in 2012. In222

August 2012, an intense storm increased mixing in the ocean boundary layer, increased223

upward ocean heat transport, causing bottom melt, and reduced the sea ice volume about224

twice as fast as in other years (Zhang et al., 2013). Eventually, the sea ice extent at the225

end of the summer in 2012 was smaller than it had been in the previous 33 years (Parkinson226

& Comiso, 2013). The processes are also at play in our simulation and the mean sim-227

ulated sea ice extent reaches its lowest value of the simulation in 2012 (not shown). More228

landfast ice melting in the LD+BD simulation reduces the salinity in the upper ocean229

compared to the CTRL simulation. The increased mixing and melting increase the neg-230

ative salinity difference. The particularly fresh upper ocean in 2012 may also be related231

to position of the Beaufort Gyre. As a major freshwater reservoir for the Arctic Ocean,232

the gyre extended northward after 2012, thus increasing the freshwater content in the233

Makarov Basin, and making the central Arctic Ocean fresher (Bertosio et al., 2022).234
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The Kara Sea receives freshwater discharge from the Ob and Yenisei Rivers, which235

carry over one-third of the total freshwater discharge in the Arctic (Janout et al., 2015).236

The geostrophic surface currents determine the circulation pathways of river runoff, and237

of surface water originally from the Pacific and the Atlantic Oceans (Wang et al., 2021).238

The simulated passive tracer for Ob/Yenisei water agrees with the observed Ob/Yenisei239

water distribution (Laukert et al., 2017; Paffrath et al., 2021). The tracer experiment240

demonstrates that the river runoff and the negative salinity anomaly in the upper ocean241

induced by the fast ice in the Kara Sea travel from the Kara Sea to the Makarov Basin242

via the Vilkitsky Strait. The exact mechanism by which the river runoff in the Kara Sea243

modifies the influence the landfast ice has on the hydrography cannot be extracted from244

the numerical model because the Ob/Yenisei water is stored in landfast ice during sea245

ice formation and the riverine heat, which is not taken into account in our model, is as-246

sumed to be important to explain the phenomena (Janout et al., 2020).247

The Arctic mixed layer is important to physical, chemical, and biological processes.248

Mixed layer properties also influence ocean stratification, sea ice distribution, and heat249

transfer between ocean, sea ice, and atmosphere. Peralta-Ferriz and Woodgate (2015)250

suggested two drivers for seasonal mixed layer depth change: sea ice thermodynamics251

(i.e., salt rejection during ice formation, freshwater input during the ice melt) and wind-252

driven mixing. During ice-free phases, wind-driven mixing deepens the mixed layer, while253

thermodynamic processes dominate the stratification and control mixed layer depth vari-254

ability in winter. With more fast ice less salt is released into the ocean which may mod-255

ify the mixed layer depth. Our model configuration has 50 vertical layers with a min-256

imum thickness of 10m in the upper ocean, which is insufficient to explore the details257

of the influence of landfast ice parameterization on the mixed layer depth. Vertical grid258

refinement in the upper ocean would allow studying the mixed layer variability differ-259

ence with and without the landfast ice parameterization.260
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A proper representation of the landfast ice distribution, as suggested here, may be261

even more important in the Southern Ocean than in the Arctic Ocean. Along the deep262

Southern Ocean shelf around Antarctica, landfast ice is mainly attached to grounded ice-263

bergs or other coastal features (e.g. the shoreline, glacier tongues, and ice shelves, Fraser264

et al., 2012, 2020). Salt rejection during continuous sea-ice formation (in polynyas) on265

the shelves produces the densest waters observed in the world ocean, which eventually266

are a source of Antarctic Bottom water (Williams et al., 2010; Ohshima et al., 2013, 2016).267

The dense bottom water is an important part of the global circulation (Killworth, 1983;268

Nihashi & Ohshima, 2015; Ohshima et al., 2016). In this sense, the impact of realisti-269

cally simulated landfast ice around Antarctica may even be larger than in the Arctic Ocean270

where the hydrographic processes appear to be restricted mainly to surface waters.271

5 Conclusion272

More landfast ice in the Arctic Ocean decreases the upper ocean salinity locally273

on the shelves in the Kara, Laptev and East Siberian Seas. The largest effect, however,274

is found for the Kara Sea, where the large fresh upper ocean signal induced by the land-275

fast ice is transported to the central Arctic Ocean and leads to surprisingly large salin-276

ity anomaly which increases the halocline stability. River runoff in the Kara Sea contributes277

to transporting the signal from the Kara Sea to the Makarov Basin. The negative salin-278

ity tendency with the landfast ice in both shallow and deep shelves can be attributed279

mainly (90%) to advective fluxes out of the Arctic Ocean and to surface forcing (10%).280

A sea ice model with a proper representation of landfast ice will improve our un-281

derstanding of its influence on the hydrography in the Arctic. The landfast ice occur-282

rence modifies sea ice thermodynamics and thus may reshape the mixed layer depth. A283

finner vertical resolution model is suggested to investigate further the impact of land-284

fast ice presentation on the mixed layer depth. Implementing landfast ice parameteri-285

–15–



manuscript submitted to Geophysical Research Letters

zations in sea ice model of the Antarctic will allow to explore the effects of landfast ice286

on the Antarctic Bottom Water formation.287

Open Research288

The model data in this manuscript is based on the Massachusetts Institute of Tech-289
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and the model configurations at https://doi.org/10.5281/zenodo.7919422. The salin-292
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