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Abstract

The water storage capacity of the root zone determines whether plants survive dry periods and controls the partitioning of

precipitation into streamflow and evapotranspiration. It is currently thought that top-down, climatic factors are the primary

control on this capacity via their interaction with plant rooting adaptations. However, it remains unclear to what extent bottom-

up, geologic factors can provide an additional constraint on storage capacity. Here we use a machine learning approach to identify

regions with lower than climatically expected apparent storage capacity. We find that in seasonally dry California these regions

overlap with particular geologic substrates. We hypothesize that these patterns reflect diverse mechanisms by which substrate

can limit storage capacity, and highlight case studies consistent with limited weathered bedrock extent (melange in the Northern

Coast Range), toxicity (ultramafic substrates in the Klamath-Siskiyou region), nutrient limitation (phosphorus-poor plutons in

the southern Sierra Nevada), and low porosity capable of retaining water (volcanic formations in the southern Cascades). The

observation that at regional scales climate alone does not ‘size’ the root zone has implications for the parameterization of storage

capacity in models of plant dynamics (and the interrelated carbon and water cycles), and also underscores the importance of

geology in considerations of climate-change induced biome migration and habitat suitability.
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Key Points:7

• Regionally extensive areas of low apparent root-zone storage capacity for a par-8

ticular climate coincide with particular geologic substrates9

• Hypothesized geologic controls include water storage capacity limitation, nutri-10

ent limitation, and toxicity11
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Abstract12

The water storage capacity of the root zone determines whether plants survive dry pe-13

riods and controls the partitioning of precipitation into streamflow and evapotranspira-14

tion. It is currently thought that top-down, climatic factors are the primary control on15

this capacity via their interaction with plant rooting adaptations. However, it remains16

unclear to what extent bottom-up, geologic factors can provide an additional constraint17

on storage capacity. Here we use a machine learning approach to identify regions with18

lower than climatically expected apparent storage capacity. We find that in seasonally19

dry California these regions overlap with particular geologic substrates. We hypothesize20

that these patterns reflect diverse mechanisms by which substrate can limit storage ca-21

pacity, and highlight case studies consistent with limited weathered bedrock extent (melange22

in the Northern Coast Range), toxicity (ultramafic substrates in the Klamath-Siskiyou23

region), nutrient limitation (phosphorus-poor plutons in the southern Sierra Nevada),24

and low porosity capable of retaining water (volcanic formations in the southern Cas-25

cades). The observation that at regional scales climate alone does not ‘size’ the root zone26

has implications for the parameterization of storage capacity in models of plant dynam-27

ics (and the interrelated carbon and water cycles), and also underscores the importance28

of geology in considerations of climate-change induced biome migration and habitat suit-29

ability.30

Plain Language Summary31

What determines how much water plants can store in their root zone? One school32

of thought posits that plants ‘size’ the root-zone capacity to survive a drought of a par-33

ticular return period. In this scenario, plants extend their roots into the subsurface in34

response to climate drivers (e.g., precipitation magnitude-frequency and atmospheric wa-35

ter demand). This worldview neglects the potential for geology to restrict root access36

to water. ‘Bottom-up’ limitations on storage capacity have been described at individ-37

ual field sites, but it has been unclear how to identify geologic limitations at large scales.38

Here, we introduce an approach that quantifies differences between the climatically ex-39

pected and locally observed apparent storage capacity, and relate these spatial patterns40

to geologic substrate. Importantly, we quantify apparent storage capacity via a method41

that includes water below the upper 1.5 m, within weathered bedrock, which is an im-42

portant water source in seasonally dry climates and is typically excluded from traditional43

soil texture databases. We find that geology limits storage capacity at regional scales,44

and synthesize existing field evidence to hypothesize mechanisms of bottom-up control.45

Our findings have important implications for water-carbon cycle modeling efforts and46

the prediction of plant biome migration in response to climate change.47

1 Introduction48

Root-accessible water storage capacity in the subsurface is a key earth system prop-49

erty that regulates the water and carbon cycles (Kleidon & Heimann, 1998). For exam-50

ple, plant transpiration of stored water is a first-order control on Earth’s surface energy51

budget and terrestrial water partitioning (Milly, 1994), setting aquatic ecosystem habi-52

tat and water quality and quantity for downstream users. Sufficient storage capacity also53

enables plants to bridge meteorologic droughts and sustain photosynthesis during extreme54

dry periods (Porporato et al., 2004; McLaughlin et al., 2020). It has been argued that55

top-down (climatic) drivers are primarily responsible for determining the large-scale spa-56

tiotemporal variability of storage capacity (Nijzink et al., 2016; Guswa, 2008, 2010; M. Liu57

et al., 2022; van Oorschot et al., 2021; Bouaziz et al., 2022). However, field investigations58

have revealed that geologic or edaphic factors can exert a primary control at some sites59

(e.g., Hahm et al., 2019), but it is presently unknown where and why geologic factors60

eclipse climate factors at landscape scales. This uncertainty challenges earth system and61
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dynamic global vegetation modeling efforts, including prediction of plant biome migra-62

tion in the context of climate change.63

Plant-available water storage capacity is understood to be set by i) the porosity64

profile, which determines the amount of water that can be held at various water poten-65

tials, and ii) the presence of roots to access that porosity (Klos et al., 2018; C. Zhang66

et al., 2020). Factors related to geology can limit the storage capacity, either directly (by67

restricting accessible porosity in the near surface (e.g, the presence of low porosity fresh68

bedrock at a shallow depth) (Hahm et al., 2019) or by being too permeable to store wa-69

ter (H. Liu et al., 2021; Jiang et al., 2020)) or indirectly (by inhibiting plant growth (via70

nutrient limitation or toxicity) (Hahm et al., 2014; Kruckeberg, 1985; Morford et al., 2011)71

that in turn inhibits root exploitation of accessible porosity), as depicted in Figure 1.72

In contrast, top-down (climatic) controls are thought to determine the storage capac-73

ity primarily by setting atmospheric water demand and precipitation inputs, including74

the frequency and duration of dry periods that plants need to endure to survive. Var-75

ious models that explore optimal plant strategy suggest that plants will invest just enough76

carbon in root profiles to have sufficient water access to survive dry periods of a partic-77

ular recurrence interval (Schymanski et al., 2008; Schenk, 2008; Yang et al., 2016; Spe-78

ich et al., 2018; Guswa, 2008, 2010). This school of thought is encapsulated in the no-79

tion that climate ‘sizes’ the root-zone storage capacity (Gao et al., 2014; de Boer-Euser80

et al., 2016, 2019; Gentine et al., 2012). Optimal rooting frameworks may neglect the81

potential for bottom-up factors to limit storage capacity, however, because they implic-82

itly treat the subsurface like an infinite sand box, into which plants may invest as much—83

or as little—into rooting as is advantageous (e.g., Singh et al., 2020).84

A first-order challenge in teasing apart climatic versus geologic controls on stor-85

age capacity is quantifying the actual storage capacity accessed by plants. Traditionally,86

the storage capacity has been parameterized in models through calibration or with the87

aid of distributed soils datasets, which typically quantify water retention properties through88

the upper 1 to 1.5 m or to the depth of a restrictive layer. Although widely available and89

relatively finely resolved, soils datasets have two principle shortcomings: i) they do not90

capture whether roots are actually present in the soil profile, and ii) they do not extend91

deep enough into the subsurface to capture porosity profiles in deeper weathered bedrock92

that commonly underlies soils (Holbrook et al., 2014; Witty et al., 2003; Dawson et al.,93

2020), where widespread evidence has emerged of root penetration and water uptake (McCormick94

et al., 2021; Zhu et al., 2023; Stocker et al., 2023). The relative inaccessibility of the deep95

subsurface challenges quantification of these factors (Stocker et al., 2023).96

A recently developed and now widely adopted alternative approach (Wang-Erlandsson97

et al., 2016; Dralle et al., 2021) constrains storage capacity via tracking of hydrologic fluxes.98

Precipitation (flux in) and evapotranspiration (flux out) are monitored at a location, and99

it is reasoned that the root-accessible subsurface water storage capacity must be big enough100

to explain the largest observed cumulative evapotranspiration in excess of precipitation101

over a period of record (i.e., the largest observed storage deficit). This approach quan-102

tifies an apparent root-zone water storage capacity (SR): i.e., SR identified from the largest103

observed deficit is only a lower bound on actual accessible storage capacity (McCormick104

et al., 2021). For example, it is possible that plants may have had access to—and would105

have used—more water if dry conditions persisted. In other words, actual root-zone wa-106

ter storage capacity may be larger than SR, but we do not have the means to directly107

measure it (although some researchers have attempted to quantify it by fitting yearly108

maximum deficit values to extreme value distributions (Wang-Erlandsson et al., 2016)).109

Nevertheless, storage capacity calculated via deficit-style approaches has many theoret-110

ical and pragmatic advantages. SR results in improved hydrological model performance111

when used as an input parameter (Wang-Erlandsson et al., 2016) and can explain continental-112

scale patterns in water partitioning (Cheng et al., 2022) and storage dynamics (Trautmann113

et al., 2022); deficit calculations have also proven essential in the accurate prediction of114
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snowmelt contributions to streamflow following droughts (Lapides et al., 2022). Impor-115

tantly, deficit-calculated SR does not require a priori assumptions regarding porosity or116

rooting profiles; distributed hydrologic flux datasets make it feasible to estimate SR at117

large spatial scales in cloud-based analysis platforms like Google Earth Engine.118

Although distributed estimates of SR are now available, it has remained challeng-119

ing to isolate both the spatial patterns and drivers of geologic factors impacting the mag-120

nitude of SR. Here we explore a simple machine learning approach to predict SR, assum-121

ing that climatic controls are the primary drivers of spatial variations in SR. This ex-122

ercise reveals locations where the null hypothesis may be rejected (i.e., places where ge-123

ologic controls may be important) based on deviations between the SR predicted by mod-124

ern climate (informed by all observations) and empirically observed SR (the local ob-125

servation). We then explore select case studies of geologic control and suggest process126

explanations through an analysis of available subsurface geologic and hydrologic field stud-127

ies.128

2 Methods129

2.1 Study area130

The study area covers the state of California, USA, where three factors make for131

an ideal setting to explore geologic controls on SR: i) there is a high diversity of annual132

precipitation and potential evapotranspiration rates, geologic substrates, and tectonic133

uplift rates, resulting in large spatial gradients to explore controls on plant biomes and134

SR; ii) the local Mediterranean climate (asynchronous seasonal precipitation and energy135

input, with a long summer dry period) results in almost complete reliance on wet season-136

replenished storage to sustain evapotranspiration in summer, and iii) existing evidence137

for widespread and routine use of bedrock water by woody vegetation (McCormick et138

al., 2021) indicates that water storage capacity inferred from soils databases is insuffi-139

cient to describe SR and that bedrock geologic properties that impact plants (nutrients,140

toxins, and water status) are likely to strongly influence spatial patterns in SR.141

2.2 Identification of lower than climatically expected SR142

To identify locations with a geologic control on SR, we compare observed SR to cli-143

matically predicted SR on a per-pixel basis. Locations with an observed SR lower than144

expected for the local climate (i.e., low relative to the predicted SR) are potentially in-145

dicative of a geologic limiting factor. The observed SR is determined based on the pre-146

viously described approach that records at each location the maximum deficit between147

cumulative precipitation and cumulative evapotranspiration (Wang-Erlandsson et al.,148

2016; Dralle et al., 2021), which in California typically exceeds published soils database149

water storage capacities and must include deeper water storage in bedrock (McCormick150

et al., 2021). We use a machine learning (random forest) model to predict SR solely as151

a function of climatic factors.152

2.3 Data sources153

All datasets described below previously existed and were ingested and analyzed for154

this study via the Google Earth Engine cloud computation environment (Gorelick et al.,155

2017), where spatial joins and spatial resampling were also performed. The data are mapped156

at the state-wide level in Figure 2.157

2.3.1 Observed apparent root-zone water storage capacity, SR158

SR was calculated following the deficit-based approach described above (see Wang-159

Erlandsson et al. (2016) for more details), modified to account for the impacts of snow160
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following Dralle et al. (2021). We used the SR dataset provided by Dralle et al. (2021),161

which was calculated using data from 2003-2017 and is provided at approximately 1 km162

pixel resolution. This SR dataset relies on precipitation data from PRISM (Daly et al.,163

2015), evapotranspiration data from PML v2 (Y. Zhang et al., 2019), and snow cover164

from the MODIS Terra normalized difference snow index product (Hall et al., 2010). This165

SR dataset also excludes urban areas, open water, and croplands as well as areas in which166

evapotranspiration exceeded precipitation, which may be due to unaccounted for irri-167

gation, inter-pixel groundwater fluxes or data error.168

Consumer dynamics (Kuijper et al., 2015) or episodic disturbances (e.g., fire or log-169

ging) may result in lower than climatically possible evapotranspiration and therefore a170

lower than climatically expected SR. This is particularly of concern when SR is inferred171

from a relatively short timeseries of precipitation and evapotranspiration. Here, because172

the SR dataset is inferred from 15 continuous water years, we do not exclude areas with173

logging or fire. This is motivated by the desire to include as much training data as pos-174

sible and the finding that paired catchment studies in the region have observed non-detectable175

changes in dry season streamflow (the time of year when deficits accumulate) just five176

years after logging (Keppeler & Ziemer, 1990). Spot checking of logged areas indicates177

that SR differences between adjacent logged or burned areas during the study period tend178

to be small relative to differences across geologic contacts or large climate zones.179

2.3.2 Climatic predictors of SR180

We used four static climate variables as predictors of SR:181

• Mean annual precipitation, P (mm)182

• Mean annual potential evapotranspiration PET (mm)183

• The coefficient of variation of annual precipitation, CVP , equal to the standard184

deviation of annual precipitation divided by mean annual precipitation.185

• The asynchronicity index between precipitation and potential evapotranspiration186

(in time and in relative magnitude), ASI (Feng et al., 2019)187

The precipitation data were obtained from PRISM (Daly et al., 2015) and the po-188

tential evapotranspiration data from the MODIS Terra MOD16A2 product (Running et189

al., 2017) for the period 2003-2017. The ASI raster was previously generated and described190

in (Hahm, Lapides, et al., 2022). These climate variables were chosen for their widespread191

availability at relatively high spatial resolution, and because magnitudes and timing of192

water delivery and water demand are the first order constraints on the amount of wa-193

ter available to plant biomes and the amount that can be taken up by the atmosphere;194

together P and PET also capture the aridity index (which is important for water par-195

titioning within the classical Budyko framework). The variability of annual precipita-196

tion (captured in CVP ) roughly accounts for drought recurrence intervals, which have197

been hypothesized to be the other primary climatic driver of top-down root zone stor-198

age capacity.199

2.3.3 Random forest model200

We used the RandomForestRegressor module within the scikit-learn Python pack-201

age (Pedregosa et al., 2011) to predict SR from four climate variables (mean annual pre-202

cipitation, the coefficient of variation of annual precipitation, mean annual potential evap-203

otranspiration, and the seasonal asynchronicity between precipitation and energy deliv-204

ery; detailed in Section 2.3.2). Model accuracy was assessed by first training on a ran-205

dom subset of 75% of the observations and using the resulting preliminary model to pre-206

dict SR with the remaining 25% set-aside validation data, after which a final model was207

trained on the entire dataset. In each case default scikit-learn (version 1.2.0) hyperpa-208
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rameters were used, except for the minimum number of samples per leaf node, which was209

set to 100 (discussed below).210

The choice of random forest modeling over a multiple linear regression approach211

(with and without interaction terms) is due to the flexibility of the random forest to ac-212

count for non-linear interactions between climate drivers and SR, which were were ap-213

parent during exploratory data analysis. The choice of random forest modeling over cli-214

matic envelope binning approaches is due to the readily available model diagnostics for215

random forests, specifically feature importance and partial dependence analysis.216

The climatically predicted SR values from a training dataset consisting of an even217

mixture of climatically optimal and geologically limited SR will predict the mean of all218

pixels present in that climate configuration rather than the climatically optimal one. As219

a result, the extent to which a low SR for a given climate is indeed low is underestimated,220

and therefore absolute deviations between observed and predicted SR should be inter-221

preted as conservative (minimum) estimates.222

A concern with any model is overfitting: if all pixels situated within a certain cli-223

mate configuration identified by the model are geologically rather than climatically lim-224

ited, the model will not identify them as having lower than climatically expected SR be-225

cause no other other pixels with higher SR for that climate configuration exist. This weak-226

ness is unavoidable with both the random forest approach as well as other empirical cli-227

matic envelope binning approaches, but can be overcome to some extent by limiting the228

decision tree depths (i.e., limiting fit) by enforcing a minimum leaf sample size. Spec-229

ifying tree depth hyperparameters to limit model fitting comes at the potential cost of230

absolute model accuracy. However, identification of within-climate configuration vari-231

ability rather than the best predictive accuracy is the overarching goal in this study. Sen-232

sitivity explorations indicated that changing tree depth hyperparameters resulted in vary-233

ing magnitudes of absolute predicted versus observed SR differences, nevertheless, the234

spatial patterns highlighted below were robust.235

2.3.4 Geologic layers236

We compared the output of the random forest model to existing geologic maps. For237

statewide analyses, we used the 1:750,000 scale digitized Geologic Map of California (Jennings238

et al., 2010) to interpret patterns in climatically predicted vs. observed SR. The map239

was rasterized to 1 km pixel to match the SR dataset resolution. We additionally used240

a 1:65,000 scale geologic map (Huber, 1968) to explore km-scale SR anomaly patterns241

across granitic plutons in the Sierra Nevada.242

3 Results243

Our primary findings are that i) while in general climate can predict SR with rea-244

sonable accuracy, there is substantial unexplained variance; ii) regions where observed245

SR tends to be lower than climatically predicted are in many cases spatially bounded246

by geologic contacts, indicative of a bottom-up geologic control on SR, and iii) these re-247

gions of apparent geologic-controlled SR are not confined to a particular rock type: di-248

verse lithologies—and hypothesized causal mechanisms—are capable of limiting SR.249

3.1 Observed SR250

Over much of the state, SR falls between 300 and 600 mm (Figure 2e). The largest251

observed SR values (yellow areas in Figure 2e) are found along the western flank of the252

southern Sierra Nevada and the Transverse Ranges, which also have high interannual vari-253

ability of precipitation (CVP , Figure 2c) and moderately high energy delivery (PET , Fig-254

ure 2a). Very low SR (purple areas in Figure 2e) is observed in the far north-east (Modoc255
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Plateau), higher elevation regions in the Sierra Nevada, and parts of the foothills sur-256

rounding the Sacramento and Central Valley and the Tulare Basin (the large N-S trend-257

ing region in white in Figure 2 that was masked from analysis primarily due to large agri-258

cultural operations and irrigation).259

3.2 Climatically predicted SR260

The random forest model driven by the static climate variables predicts SR with261

a root mean square error (RMSE) of 132 mm (the average observed SR of all pixels is262

416 mm) and an R2 of 0.61. This model was specified to have a minimum of 100 leaf nodes263

to limit the lumping of particular climate configurations within particular geologic units264

(see above); hyperparameter tuning estimates indicated that the highest accuracy model265

would have a minimum of 3 leaf nodes but still have an RMSE of 114 mm. In contrast,266

a multiple linear regression model including interaction terms (not shown) with the same267

predictor variables achieves an RMSE of 183 mm, much worse than the random forest.268

At broad scales, the pattern of predicted SR using the random forest model (Figure 2f)269

closely resembles the pattern of observed SR (Figure 2e).270

When the final random forest model is trained with all the available data, analy-271

sis of feature importance (Figure 3) indicates that CVP is the most important predic-272

tor of SR, followed by mean annual P . Thus the random forest model indicates that wa-273

ter supply (its inter-annual variability and average magnitude) are the most important274

climatic controls on SR within California, with energy supply (PET ) and the intra-annual275

patterns of water and energy delivery (ASI) being less important.276

Partial dependence plots (Figure 4) reveal the marginal effect on predictions of SR277

to each climate predictor variable. This analysis indicates that high magnitudes of both278

P and PET and low magnitudes of CVP predict low values of SR. SR increases mono-279

tonically with CVP , whereas the partial dependence of SR on P exhibits a humped re-280

lationship, with a mesic maximum (Good et al., 2017). There is only a weak negative281

relationship for ASI. We hypothesize that the physical mechanisms behind these pat-282

terns are connected to the impacts of annual magnitude and variability of water deliv-283

ery. SR is likely low at low P because there is simply not enough precipitation that ar-284

rives prior to dry periods to support much evapotranspiration, limiting the size of the285

deficit (our measure of SR) that can grow. SR is similarly low at high P , but for the op-286

posite reason that locations with high P may have their evapotranspiration limited by287

energy availability (wetter places tend to have lower potential evapotranspiration in Cal-288

ifornia). SR may increase with CVP partly because the denominator in that term is P289

but also because larger relative inter-annual variability means that plants must rely on290

more stored water to bridge droughts relative to the typical use for the plant commu-291

nity.292

3.3 Regions of climatically under-predicted SR and underlying geology293

While the overall patterns of observed and predicted SR are similar, the differences294

reveal where geology may limit plant water availability. Figure 2g shows state-wide ar-295

eas where the observed SR is less than the climatically predicted SR. These pixels are,296

in many regions, strongly clustered in space and include a large N-S trending swath and297

other smaller regions of the Northern Coast Ranges, the foothills surrounding the north298

end of the Sacramento Valley, and large parts of the southern Sierra Nevada. While less299

obvious in the full map of California, the anomalies are spatially organized at local scales300

as well (Figure 5 a, d, g, j).301

The clustering could be due to a regional, systematic top-down disturbance (e.g.,302

fire, logging, or other unaccounted for land-use) or unaccounted-for climate variable in303
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the model. However, comparison of these regions with geologic mapping indicates instead304

that substrate is playing the primary role in these spatial patterns.305

Figure 5 zooms in on four example regions (one for each row) where SR anoma-306

lies roughly coincide in space with mapped geologic units. The left column of Figure 5307

shows how pixels with lower than climatically expected SR (in dark red) tend to be clus-308

tered rather than randomly distributed across the landscape, with clusters aligning rea-309

sonably well with outlines of geologic formations. The middle column highlights the par-310

ticular mapped geologic unit whose extent includes areas of anomalous SR. The right311

column shows the same mapped geologic unit’s outline superimposed on satellite imagery,312

and Figure 6 more clearly shows these regions to be less forested than their immediate313

surroundings. The four highlighted regions have distinct rock types (from top to bot-314

tom in Figure 5 and clockwise in Figure 6: melange, volcanic, ultramafic, and granitic).315

The hypothesized mechanisms for geologic control exerted by each of these rock types316

is explored in the Discussion below.317

In Figure 7, we highlight expansive mapped geologic units (more than 1,000 km2
318

areal coverage) where the median of the observed minus predicted SR is less than -20319

mm (i.e., geologic units where the observed SR tends to be substantially less than the320

climatically predicted SR across the state of California). We note that i) these substrates321

span diverse lithologies (including sedimentary, metamorphic and igneous), and that ii)322

in some cases, the same units identified visually in the regional case-studies (Figure 5)323

also exhibit anomalously low SR at the state-wide scale. Overall, 41% of the study area,324

or approximately 80,000 km2 had an observed SR less than -20 mm than the climati-325

cally predicted SR, indicating that roughly a fifth of California’s land area may expe-326

rience geologically limited storage capacity. It is worth noting that Figure 7 identifies327

young geologic substrates (Quaternary age) as particularly subject to lower than climat-328

ically expected storage capacity. This may be due to a variety of mechanisms, includ-329

ing limited time for nutrients to be fixed or mobilized (Chadwick et al., 1999) or water-330

retaining clay minerals to form (Jefferson et al., 2010).331

4 Discussion332

To evaluate where geologic substrates may limit biomass or plant productivity and333

thus water vapor fluxes to the atmosphere, we identify locations where the observed ap-334

parent root-zone water storage capacity (SR) is smaller than expected relative to other335

locations with similar climate. Similar to empirical ecological approaches that relate plant336

productivity or biome characteristics to climate, this empirical identification procedure337

does not determine the mechanisms underlying the lower-than-expected SR, which could338

be associated with disturbance, land-use, or herbivory dynamics. The spatial congru-339

ence of many of these locations with geologic boundaries, as opposed to e.g. fire or land340

use boundaries, provides strong evidence for geologic limitations to plant water availabil-341

ity.342

4.1 Process-based mechanisms of geologic limitation of SR343

Figure 1 synthesizes previously proposed mechanisms for geologically limited SR.344

Two of these mechanisms are hydrologic mechanisms that limit plant-water availabil-345

ity directly (water storage limitation and water excess) whereas the other two mecha-346

nisms indirectly limit SR via chemical processes that limit plant growth (nutrient lim-347

itation and toxicity). We stress that these drivers are not necessarily independent: for348

example, low nutrient availability could limit plants which in turn limits porosity pro-349

duction in the subsurface. Below, we draw on insights from previous field studies to il-350

lustrate how these mechanisms operate, using examples revealed by our mapping as il-351

lustrative case studies.352
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Figure 1. Conceptual diagram illustrating hypothesized geologically mediated controls on

apparent root-zone water storage capacity, SR (lowest row) and corresponding plant biome and

hydrologic manifestations. Curved arrows indicate that the geologic controls are not mutually

exclusive and may be subject to feedback mechanisms.

–9–



manuscript submitted to Water Resources Research

e)	Observed	S_R	(mm)
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>	900

b)	P	(mm)
<=	300
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1200	-	1500
1500	-	1800
1800	-	2100
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2400	-	2700
>	2700

b)	P	(mm)
<=	300
300	-	600
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2100	-	2400
2400	-	2700
>	2700

f)	Predicted	S_R	(mm)
<=	100
100	-	200
200	-	300
300	-	400
400	-	500
500	-	600
600	-	700
700	-	800
800	-	900
>	900

f)	Predicted	S_R	(mm)
<=	100
100	-	200
200	-	300
300	-	400
400	-	500
500	-	600
600	-	700
700	-	800
800	-	900
>	900

c)	CV(P)	*100
<=	15
15	-	20
20	-	25
25	-	30
30	-	35
35	-	40
40	-	45
45	-	50
50	-	55
>	55

c)	CV(P)	*100
<=	15
15	-	20
20	-	25
25	-	30
30	-	35
35	-	40
40	-	45
45	-	50
50	-	55
>	55

a)	PET	(mm)
<=	750
750	-	1000
1000	-	1250
1250	-	1500
1500	-	1750
1750	-	2000
2000	-	2250
2250	-	2500
2500	-	2750
>	2750

a)	PET	(mm)
<=	750
750	-	1000
1000	-	1250
1250	-	1500
1500	-	1750
1750	-	2000
2000	-	2250
2250	-	2500
2500	-	2750
>	2750

d)	ASI	*	100
<=	52.5
52.5	-	55
55	-	57.5
57.5	-	60
60	-	62.5
62.5	-	65
65	-	67.5
67.5	-	70
70	-	72.5
>	72.5

d)	ASI	*	100
<=	52.5
52.5	-	55
55	-	57.5
57.5	-	60
60	-	62.5
62.5	-	65
65	-	67.5
67.5	-	70
70	-	72.5
>	72.5

g)	Predicted	-	Observed	S_R	(mm)
<=	-30
-30	-	-27
-27	-	-24
-24	-	-21
-21	-	-18
-18	-	-15
-15	-	-12
-12	-	-9
-9	-	-6
-6	-	-3
-3	-	0
>	0

g)	Predicted	-	Observed	S_R	(mm)
<=	-30
-30	-	-27
-27	-	-24
-24	-	-21
-21	-	-18
-18	-	-15
-15	-	-12
-12	-	-9
-9	-	-6
-6	-	-3
-3	-	0
>	0

Figure 2. California-wide maps of climatic predictors of SR (top row) and observed, pre-

dicted, and difference between predicted and observed SR (bottom row). Masked (white) areas

are locations where SR calculation criteria are not met (see Methods).
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Figure 3. Permutation feature importance of the random forest climate predictors of SR:

higher feature importance indicates that a climate predictor is an important predictor of SR

(inferred by quantifying how much worse the model performs when that variable is randomly

shuffled).
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Figure 4. Partial dependence plots show how variation in individual climatic predictor fea-

tures (x-axes) on average impacts the predicted target variable (SR, y-axis) when the other

climate predictors are controlled for. Vertical lines above x-axes denote decile breaks for the

distribution of each climate predictor variable.
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Figure 5. Four regional-scale case studies of apparent geologic control on SR (one per row).

The hypothesized mechanism responsible for anomalously low SR for the local climate (i.e., red

shading in the left column) is identified with the labels at left. The middle column highlights the

geologic unit whose spatial extent tends to coincide with a region of anomalous SR. In the top

three rows, the geology mapping comes from the state-wide compilation (Jennings et al., 2010),

and in the bottom row from a smaller quadrangle (Huber, 1968). Satellite imagery (from ESRI)

in the right column reveals that the low SR areas also tend to have lower canopy cover than

their immediate surroundings. See Discussion for synthesis of prior field studies that support the

hypothesized geologic limitation mechanism.
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a) Franciscan melange b) Tuscan volcanics

c) Klamath-Siskiyou ultramafics

d) Shuteye Peak 
quartz monzonite

Figure 6. Google Earth imagery with topography of the four case studies highlighted in Fig-

ure 5, revealing some of the striking vegetation contrasts over short spatial scales within similar

climates that are hypothesized to arise due to geologic controls. The ecotones separating plant

communities in these images generally coincide with geologic contacts. In each image, the yellow

line is a 10 km scale bar, and the latitude and longitude listed at the lower right of the image is

from the center of the scale bar.
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Figure 7. Geologic units with large represented areas (> 100 km2) that appear to limit

root zone storage capacity (i.e., have substantially lower than climatically expected SR). Key

(adapted from Jennings et al. (2010)): Qrv: Volcanic rocks (Holocene) - Recent (Holocene)

volcanic flow rocks; minor pyroclastic deposits. Qoa: Marine and nonmarine (continental) sedi-

mentary rocks (Pleistocene) - Older alluvium, lake, playa, and terrace deposits. QPc: Nonmarine

(continental) sedimentary rocks (Pleistocene-Holocene) - Pliocene and/or Pleistocene sandstone,

shale, and gravel deposits; mostly loosely consolidated. KJfm: Marine sedimentary and metased-

imentary rocks (Cretaceous-Jurassic) - Melange of fragmented and sheared Franciscan Complex

rocks. Q: Marine and nonmarine (continental) sedimentary rocks (Pleistocene-Holocene) - Allu-

vium, lake, playa, and terrace deposits; unconsolidated and semi-consolidated. Mostly nonmarine,

but includes marine deposits near the coast. um: Plutonic rocks (Mesozoic) - Ultramafic rocks,

mostly serpentine. Minor peridotite, gabbro, and diabase; chiefly Mesozoic. Ku: Marine sedimen-

tary and metasedimentary rocks (Upper Cretaceous) - Upper Cretaceous sandstone, shale, and

conglomerate.
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4.1.1 Water limitation and excess353

In both soil and weathered bedrock, connected porosity enables water storage and354

flow, thereby regulating water status in the root zone (Klos et al., 2018). In upland en-355

vironments, the weathered bedrock layer is variably thick and typically underlies a phys-356

ically mobile regolith (soil, in the geomorphological sense) (Rempe & Dietrich, 2014).357

Weathered bedrock forms as chemical and physical weathering fronts propagate down-358

wards into fresh bedrock as it is nears Earth’s surface (Riebe et al., 2017). Under sim-359

ilar climate, spatial gradients in tectonics and lithology can result in variations in weath-360

ering extent and thus water storage and flow properties. These variations can result in361

either limited or excess water, and in some scenarios, both at the same location at dif-362

ferent times of year.363

For the first case study, we highlight the Central Belt melange of the Franciscan364

Formation that runs roughly parallel to the coast in the Northern California Coast Ranges365

(first row in Figure 5). In a region where the local climate can support some of the tallest366

trees on the planet, the melange is surprisingly sparsely vegetated; instead of the dense367

forest found immediately to the west, the melange is characterized by an open savanna368

of deciduous Oregon White oak (Quercus garryana) and an herbaceous groundcover (Hahm369

et al., 2017).370

Deep drilling and multiple years of intensive hillslope-scale ecohydrologic field mon-371

itoring have resulted in the interpretation that this lower than climatically expected veg-372

etation community arises due the shallow (only 1 to 2 m) propagation of weathering into373

the fresh melange bedrock (Hahm et al., 2019), which consequently results in limited wa-374

ter storage capacity (about 1/10th of the typical wet season precipitation; in contrast,375

the Coastal Belt immediately to the west has 20 to 30 m deep weathering fronts and three376

times greater seasonal water storage (Dralle et al., 2018), with a dense evergreen forest377

(Figure 6a)). Storage of water from the wet season in the subsurface is critical for plant378

water supply in the summer dry season in this rain-dominated Mediterranean climate379

(Hahm, Dralle, et al., 2022). Our mapping in this study extends the insights from hillslope-380

and catchment-scale field observations and indicates that the melange rock type is as-381

sociated with lower than climatically expected SR across the state (the melange is de-382

noted as KJfm in Figure 7).383

The low storage capacity of the melange results in both water limitation—in the384

dry season, when oak pre-dawn water potentials drop below -3 MPa—and water excess,385

in the wet season, when the subsurface completely saturates repeatedly in storms—resulting386

in anoxic conditions around flooded roots (Hahm et al., 2018, 2020). The role of excess387

water as a control on vegetation has also been explored by Sousa et al. (2022); Roebroek388

et al. (2020); Zipper et al. (2015). The melange presents the interesting situation of rhi-389

zosphere water limitation even when a perennially saturated zone is relatively near the390

surface: in the summer the vadose zone is just a few meters deep, and although the fresh391

melange beneath is perennially saturated, its extremely low hydraulic conductivity and392

anoxic conditions apparently prevent root water uptake (Hahm et al., 2020).393

In contrast to the scenario where low permeability, perennially saturated fresh bedrock394

is near the surface, some landscapes can instead have a high conductivity, high poros-395

ity substrate that allows infiltrating precipitation to rapidly transit the root zone ver-396

tically, draining to deeper aquifers. This form of low vadose zone storage capacity can397

also lead to water limitation and a lower than climatically expected plant community.398

These conditions have been documented in karstic terrain in China (H. Liu et al., 2021;399

Jiang et al., 2020).400

We posit that a similar phenomenon may also be possible in highly permeable vol-401

canic bedrock. As a second case study, we highlight a community with low biomass—402

and low SR—for the local climate in the Lassen foothills at the north-western end of the403
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Sacramento Valley (second row in Figure 5). Here, a Pliocene aged volcanic substrate404

(the Tuscan Formation (Lydon, 1967)) is inhabited by an open oak savanna with abun-405

dant rocky outcrops. Both the geomorphology (characterized by buttes) and woody veg-406

etation community (including Interior Live (Quercus wislizeni and Blue (Quercus dou-407

glasii) oaks) are strongly organized along outcrops of particular subhorizontally bedded408

volcanic deposits (lahars containing tuffs and breccias), as seen in Figure 6b. Based on409

these bedrock structure and vegetation observations, along with records of high surface410

infiltration rates and conductivity within permeable beds (Butte County Department411

of Water and Resource Conservation, 2013), we interpret that in this landscape infiltrat-412

ing precipitation rapidly transits certain high permeability volcanic beds that comprise413

the majority of the Formation volumetrically, without significant moisture retention. (Rel-414

atively young volcanic landscapes in the Cascades can have relatively little water stor-415

age capacity in the near surface and high conductivity (Jefferson et al., 2010; Tague &416

Grant, 2004) volcanic landscapes). Woody vegetation is minimal on these volcanic beds,417

but is found along roughly elevation-contour parallel bands where lower conductivity or418

higher storage capacity beds outcrop at the surface, as vegetation there may experience419

enhanced water availability from lateral flow or greater retention of infiltrating precip-420

itation.421

4.1.2 Toxicity422

Toxic concentrations of elements can be released via chemical weathering of under-423

lying bedrock, inhibiting plant growth. Classic examples are associated with ultramafic424

substrates, and in California there are well-studied examples of high-biodiversity, low-425

biomass endemic plant communities inhabiting serpentines (Kruckeberg, 1992, 1985; Har-426

rison et al., 2004). In these environments, plants struggle in the presence of exposure to427

high ratios of Mg:Ca and high Ni (Kruckeberg, 1992).428

Consistent with previous observations of low plant biomass on ultramafic substrates,429

we found that ultramafic areas across the study area tend to have lower than climati-430

cally expected SR (denoted um in Figure 7). As a case study, we highlight the dramatic431

example of a large ultramafic body in the Klamath-Siskiyou region of north-western California—432

one of the largest in North America (third row in Figure 5 and Figure 6c). This region433

can climatically support dense evergreen forests, yet the vegetation situated on the ser-434

pentine substrate is commonly stunted or altogether absent (Alexander et al., 2007), with435

scattered individuals of pine, fir and cedar. The inhibited plant growth reduces evapo-436

transpiration, in turn limiting water storage deficits and apparent root-zone water stor-437

age capacity, as illustrated conceptually in Figure 1. We emphasize that there may in438

fact be ample water storage capacity, but the stunted plants growing on toxic substrates439

do not access it, and it is therefore mapped as lower than climatically expected SR.440

4.1.3 Nutrient limitation441

Low concentrations of plant-essential nutrients in parent material, low erosion rate442

and/or high leaching may all contribute to nutrient limitation, stunted vegetation, and443

lower than expected SR. In California, nutrient limitation has been associated with ul-444

tramafic substrates (see Toxicity above), as well as leucogranitic plutons in the Sierra445

Nevada, where phosphorus concentrations in parent bedrock can be an order of magni-446

tude lower than more mafic adjacent plutons (Hahm et al., 2014). The bottom row of447

Figure 5 illustrates one such pluton, the Quartz Monzonite of Shuteye Peak, which has448

low woody plant cover (sparse Jeffrey Pine (Pinus jeffreyi)) and large expanses of ex-449

posed granitic bedrock, in contrast to nearby granodioritic plutons experiencing a sim-450

ilar climate which are occupied by high biomass evergreen forests, including the charis-451

matic Giant Sequoia (Sequoiadendron giganteum); Figure 6d. Ecotones separating the452

plant communities closely align with mapped intrusive contacts (Huber, 1968; Hahm et453

al., 2014). Neither Shuteye Peak nor the nearby Bald Mountain were glaciated in the454
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Pleistocene, and their sparse soil cover has been attributed to nutrient limitation that455

inhibits root growth which consequently inhibits soil retention (Hahm et al., 2014). This456

has been hypothesized to result in a feedback cycle that further inhibits weathering and457

porosity production in the subsurface, which in turn also limits the water storage capac-458

ity for trees and their growth (Callahan et al., 2022). Thus, the nutrient and water lim-459

itation geologic controls on plant abundance, water use, and ultimately SR are poten-460

tially closely linked via feedback cycles, defining an exciting research frontier.461

4.2 Implications for climate change driven plant biome migration and462

the use of SR in models463

Bioclimatic modeling approaches provide a first approximation to the availability464

of plant habitat (Pearson & Dawson, 2003). It has long been argued, however, that phys-465

iographic, edaphic, and geophysical factors—in addition to climate—should be taken into466

consideration when predicting and managing for climate change induced species migra-467

tion (Theobald et al., 2015; Anderson & Ferree, 2010; Hulshof & Spasojevic, 2020; Davis468

et al., 2018; Butler et al., 2007; Macias-Fauria & Johnson, 2013), a sentiment well cap-469

tured by Kruckeberg (2013): “given a regional climatic framework, much of the plant470

species diversity and discontinuity in the region is governed by variations in soil chem-471

istry, and thus by specific variations in the mineralogy of rock substrates.” Our work builds472

on these insights by enabling a direct quantification of the impact of geology over large473

spatial scales using recently made available, spatially distributed estimates of SR and474

a simple, climate-driven machine learning model.475

SR is a key parameter across hydrology, vegetation, and climate models (Seneviratne476

et al., 2013), because of its large impact on terrestrial water partitioning, plant-water477

availability and associated carbon uptake, and the associated impacts of latent heat flux478

and vegetation greenness on the climate. Although previous studies have used both cli-479

mate and soils databases to establish edaphoclimatic envelopes for modeling vegetation480

distribution (de Castro Oliveira et al., 2021), there is a growing consensus that tradi-481

tionally used static soils database derived estimates of SR are inadequate (Stocker et al.,482

2023). This is due to the mounting evidence of widespread plant-water uptake from bedrock483

whose water storage properties are not traditionally included within soils databases (McCormick484

et al., 2021; Stocker et al., 2023) and because temporally changing vegetation commu-485

nities can result in shifting magnitudes of SR at a single location (L. Zhang et al., 2001;486

Li et al., 2019; Nijzink et al., 2016; Hrachowitz et al., 2021). Our approach offers a path487

forward for empirically identifying geologic limitations on SR, but we do not see a clear488

way to predict such limitations a priori at large spatial scales at the moment, particu-489

larly when they arise due to hydrologic mechanisms (Figure 1). This is due to compli-490

cated feedbacks among the various processes and our current inability to directly observe491

weathering extent and water storage and flow properties at large spatial scales.492

4.3 Limitations and future work493

The distinction between top-down (climate) versus bottom-up (geologic) drivers494

of SR becomes murky over longer time scales. This is partly because landscapes inherit495

paleoclimate weathering legacies: for example, climate may result in glaciation, which496

can strip away soil and weathered bedrock, resulting in a proximate bottom-up control497

on SR that is facilitated ultimately by a long-term climate history. Climate drivers are498

also filtered by the subsurface to determine groundwater dynamics, which can strongly499

impact plant community distribution over individual hillslope lengthscales (Koirala et500

al., 2017; Roebroek et al., 2020; Fan et al., 2017). Climate also impacts hillslope diffu-501

sive and advective erosive processes, which may impact seedling establishment (Toloui-502

Semnani & Johnson, 2019), the thickness of the weathered bedrock zone and the sizes503

of colluvial wedges (and potential storage space for water (Ding et al., 2018; Milodowski504

et al., 2015; Rempe & Dietrich, 2014)) and the spacing of ridges and valleys (Perron et505
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al., 2009). It has also been argued that vegetation ‘coevolves’ with the subsurface in such506

a way to produce a particular water storage reservoir: in this view, soils are largely bi-507

otic constructs (van Breemen, 1993). The approach outlined in this study is not capa-508

ble of teasing apart the longer-term connections between top-down and bottom-up drivers509

of SR—instead, it takes the current climate at face value and asks whether the empir-510

ically observed SR is lower in some places relative to others with the same climate. While511

this works in many locations (e.g., the case studies explored above), this empirical ap-512

proach is incapable of detecting a bottom-up limitation on SR if all locations for a par-513

ticular climate are similarly limited by a geologically mediated factor.514

An additional complication in identifying bottom-up limitations of SR can arise515

in locations with significant inter-pixel lateral groundwater subsidies to vegetation (Roebroek516

et al., 2020; Fan et al., 2017). In this scenario, a larger than climatically expected SR517

may be detected because evapotranspiration is sustained by groundwater flow from else-518

where, which could result in large calculated water storage deficits. We expect this pro-519

cess to be most common at the scale of individual hillslopes, where water that infiltrates520

near local topographic highs may flow laterally downslope toward local channels. Because521

the pixel sizes we consider are large relative to local hillslope lengthscales, however, this522

effect should be minimized in our estimation procedure.523

5 Conclusions524

We employed a simple machine learning approach to quantify the difference between525

climatically expected and observed apparent root-zone water storage capacity (SR). By526

comparing the resulting patterns with geologic maps, we found strong spatial correspon-527

dence between particular substrates and regions of lower than climatically expected SR.528

These patterns are indicative of bottom-up controls on the size of the root zone. Our map-529

ping approach is not capable of identifying the mechanisms by which geology limits SR.530

However, the patterns we observed are consistent with mechanisms identified in previ-531

ous field studies, which highlight the role of water availability (excess and limitation),532

nutrient supply, and toxicity. Although our analysis is not exhaustive, the approach pre-533

sented here enables extension of hillslope-scale field inferences to much larger areas, and,534

importantly, does not rely on traditionally used soil water storage capacity databases,535

which are generally too shallow to capture relevant plant water dynamics in seasonally536

dry climates. Furthermore, our findings indicate that climate patterns alone can be in-537

sufficient predictors of root zone water storage capacity. The subsurface matters, and538

should be incorporated into earth system models and ecosystem migration management539

plans in the context of climate change.540

6 Open Research541

All data sets used in this research were previously published (see references in Meth-542
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data, and perform the random forest modeling and other data analyses are available on544
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Key Points:7

• Regionally extensive areas of low apparent root-zone storage capacity for a par-8

ticular climate coincide with particular geologic substrates9

• Hypothesized geologic controls include water storage capacity limitation, nutri-10

ent limitation, and toxicity11
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Abstract12

The water storage capacity of the root zone determines whether plants survive dry pe-13

riods and controls the partitioning of precipitation into streamflow and evapotranspira-14

tion. It is currently thought that top-down, climatic factors are the primary control on15

this capacity via their interaction with plant rooting adaptations. However, it remains16

unclear to what extent bottom-up, geologic factors can provide an additional constraint17

on storage capacity. Here we use a machine learning approach to identify regions with18

lower than climatically expected apparent storage capacity. We find that in seasonally19

dry California these regions overlap with particular geologic substrates. We hypothesize20

that these patterns reflect diverse mechanisms by which substrate can limit storage ca-21

pacity, and highlight case studies consistent with limited weathered bedrock extent (melange22

in the Northern Coast Range), toxicity (ultramafic substrates in the Klamath-Siskiyou23

region), nutrient limitation (phosphorus-poor plutons in the southern Sierra Nevada),24

and low porosity capable of retaining water (volcanic formations in the southern Cas-25

cades). The observation that at regional scales climate alone does not ‘size’ the root zone26

has implications for the parameterization of storage capacity in models of plant dynam-27

ics (and the interrelated carbon and water cycles), and also underscores the importance28

of geology in considerations of climate-change induced biome migration and habitat suit-29

ability.30

Plain Language Summary31

What determines how much water plants can store in their root zone? One school32

of thought posits that plants ‘size’ the root-zone capacity to survive a drought of a par-33

ticular return period. In this scenario, plants extend their roots into the subsurface in34

response to climate drivers (e.g., precipitation magnitude-frequency and atmospheric wa-35

ter demand). This worldview neglects the potential for geology to restrict root access36

to water. ‘Bottom-up’ limitations on storage capacity have been described at individ-37

ual field sites, but it has been unclear how to identify geologic limitations at large scales.38

Here, we introduce an approach that quantifies differences between the climatically ex-39

pected and locally observed apparent storage capacity, and relate these spatial patterns40

to geologic substrate. Importantly, we quantify apparent storage capacity via a method41

that includes water below the upper 1.5 m, within weathered bedrock, which is an im-42

portant water source in seasonally dry climates and is typically excluded from traditional43

soil texture databases. We find that geology limits storage capacity at regional scales,44

and synthesize existing field evidence to hypothesize mechanisms of bottom-up control.45

Our findings have important implications for water-carbon cycle modeling efforts and46

the prediction of plant biome migration in response to climate change.47

1 Introduction48

Root-accessible water storage capacity in the subsurface is a key earth system prop-49

erty that regulates the water and carbon cycles (Kleidon & Heimann, 1998). For exam-50

ple, plant transpiration of stored water is a first-order control on Earth’s surface energy51

budget and terrestrial water partitioning (Milly, 1994), setting aquatic ecosystem habi-52

tat and water quality and quantity for downstream users. Sufficient storage capacity also53

enables plants to bridge meteorologic droughts and sustain photosynthesis during extreme54

dry periods (Porporato et al., 2004; McLaughlin et al., 2020). It has been argued that55

top-down (climatic) drivers are primarily responsible for determining the large-scale spa-56

tiotemporal variability of storage capacity (Nijzink et al., 2016; Guswa, 2008, 2010; M. Liu57

et al., 2022; van Oorschot et al., 2021; Bouaziz et al., 2022). However, field investigations58

have revealed that geologic or edaphic factors can exert a primary control at some sites59

(e.g., Hahm et al., 2019), but it is presently unknown where and why geologic factors60

eclipse climate factors at landscape scales. This uncertainty challenges earth system and61
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dynamic global vegetation modeling efforts, including prediction of plant biome migra-62

tion in the context of climate change.63

Plant-available water storage capacity is understood to be set by i) the porosity64

profile, which determines the amount of water that can be held at various water poten-65

tials, and ii) the presence of roots to access that porosity (Klos et al., 2018; C. Zhang66

et al., 2020). Factors related to geology can limit the storage capacity, either directly (by67

restricting accessible porosity in the near surface (e.g, the presence of low porosity fresh68

bedrock at a shallow depth) (Hahm et al., 2019) or by being too permeable to store wa-69

ter (H. Liu et al., 2021; Jiang et al., 2020)) or indirectly (by inhibiting plant growth (via70

nutrient limitation or toxicity) (Hahm et al., 2014; Kruckeberg, 1985; Morford et al., 2011)71

that in turn inhibits root exploitation of accessible porosity), as depicted in Figure 1.72

In contrast, top-down (climatic) controls are thought to determine the storage capac-73

ity primarily by setting atmospheric water demand and precipitation inputs, including74

the frequency and duration of dry periods that plants need to endure to survive. Var-75

ious models that explore optimal plant strategy suggest that plants will invest just enough76

carbon in root profiles to have sufficient water access to survive dry periods of a partic-77

ular recurrence interval (Schymanski et al., 2008; Schenk, 2008; Yang et al., 2016; Spe-78

ich et al., 2018; Guswa, 2008, 2010). This school of thought is encapsulated in the no-79

tion that climate ‘sizes’ the root-zone storage capacity (Gao et al., 2014; de Boer-Euser80

et al., 2016, 2019; Gentine et al., 2012). Optimal rooting frameworks may neglect the81

potential for bottom-up factors to limit storage capacity, however, because they implic-82

itly treat the subsurface like an infinite sand box, into which plants may invest as much—83

or as little—into rooting as is advantageous (e.g., Singh et al., 2020).84

A first-order challenge in teasing apart climatic versus geologic controls on stor-85

age capacity is quantifying the actual storage capacity accessed by plants. Traditionally,86

the storage capacity has been parameterized in models through calibration or with the87

aid of distributed soils datasets, which typically quantify water retention properties through88

the upper 1 to 1.5 m or to the depth of a restrictive layer. Although widely available and89

relatively finely resolved, soils datasets have two principle shortcomings: i) they do not90

capture whether roots are actually present in the soil profile, and ii) they do not extend91

deep enough into the subsurface to capture porosity profiles in deeper weathered bedrock92

that commonly underlies soils (Holbrook et al., 2014; Witty et al., 2003; Dawson et al.,93

2020), where widespread evidence has emerged of root penetration and water uptake (McCormick94

et al., 2021; Zhu et al., 2023; Stocker et al., 2023). The relative inaccessibility of the deep95

subsurface challenges quantification of these factors (Stocker et al., 2023).96

A recently developed and now widely adopted alternative approach (Wang-Erlandsson97

et al., 2016; Dralle et al., 2021) constrains storage capacity via tracking of hydrologic fluxes.98

Precipitation (flux in) and evapotranspiration (flux out) are monitored at a location, and99

it is reasoned that the root-accessible subsurface water storage capacity must be big enough100

to explain the largest observed cumulative evapotranspiration in excess of precipitation101

over a period of record (i.e., the largest observed storage deficit). This approach quan-102

tifies an apparent root-zone water storage capacity (SR): i.e., SR identified from the largest103

observed deficit is only a lower bound on actual accessible storage capacity (McCormick104

et al., 2021). For example, it is possible that plants may have had access to—and would105

have used—more water if dry conditions persisted. In other words, actual root-zone wa-106

ter storage capacity may be larger than SR, but we do not have the means to directly107

measure it (although some researchers have attempted to quantify it by fitting yearly108

maximum deficit values to extreme value distributions (Wang-Erlandsson et al., 2016)).109

Nevertheless, storage capacity calculated via deficit-style approaches has many theoret-110

ical and pragmatic advantages. SR results in improved hydrological model performance111

when used as an input parameter (Wang-Erlandsson et al., 2016) and can explain continental-112

scale patterns in water partitioning (Cheng et al., 2022) and storage dynamics (Trautmann113

et al., 2022); deficit calculations have also proven essential in the accurate prediction of114
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snowmelt contributions to streamflow following droughts (Lapides et al., 2022). Impor-115

tantly, deficit-calculated SR does not require a priori assumptions regarding porosity or116

rooting profiles; distributed hydrologic flux datasets make it feasible to estimate SR at117

large spatial scales in cloud-based analysis platforms like Google Earth Engine.118

Although distributed estimates of SR are now available, it has remained challeng-119

ing to isolate both the spatial patterns and drivers of geologic factors impacting the mag-120

nitude of SR. Here we explore a simple machine learning approach to predict SR, assum-121

ing that climatic controls are the primary drivers of spatial variations in SR. This ex-122

ercise reveals locations where the null hypothesis may be rejected (i.e., places where ge-123

ologic controls may be important) based on deviations between the SR predicted by mod-124

ern climate (informed by all observations) and empirically observed SR (the local ob-125

servation). We then explore select case studies of geologic control and suggest process126

explanations through an analysis of available subsurface geologic and hydrologic field stud-127

ies.128

2 Methods129

2.1 Study area130

The study area covers the state of California, USA, where three factors make for131

an ideal setting to explore geologic controls on SR: i) there is a high diversity of annual132

precipitation and potential evapotranspiration rates, geologic substrates, and tectonic133

uplift rates, resulting in large spatial gradients to explore controls on plant biomes and134

SR; ii) the local Mediterranean climate (asynchronous seasonal precipitation and energy135

input, with a long summer dry period) results in almost complete reliance on wet season-136

replenished storage to sustain evapotranspiration in summer, and iii) existing evidence137

for widespread and routine use of bedrock water by woody vegetation (McCormick et138

al., 2021) indicates that water storage capacity inferred from soils databases is insuffi-139

cient to describe SR and that bedrock geologic properties that impact plants (nutrients,140

toxins, and water status) are likely to strongly influence spatial patterns in SR.141

2.2 Identification of lower than climatically expected SR142

To identify locations with a geologic control on SR, we compare observed SR to cli-143

matically predicted SR on a per-pixel basis. Locations with an observed SR lower than144

expected for the local climate (i.e., low relative to the predicted SR) are potentially in-145

dicative of a geologic limiting factor. The observed SR is determined based on the pre-146

viously described approach that records at each location the maximum deficit between147

cumulative precipitation and cumulative evapotranspiration (Wang-Erlandsson et al.,148

2016; Dralle et al., 2021), which in California typically exceeds published soils database149

water storage capacities and must include deeper water storage in bedrock (McCormick150

et al., 2021). We use a machine learning (random forest) model to predict SR solely as151

a function of climatic factors.152

2.3 Data sources153

All datasets described below previously existed and were ingested and analyzed for154

this study via the Google Earth Engine cloud computation environment (Gorelick et al.,155

2017), where spatial joins and spatial resampling were also performed. The data are mapped156

at the state-wide level in Figure 2.157

2.3.1 Observed apparent root-zone water storage capacity, SR158

SR was calculated following the deficit-based approach described above (see Wang-159

Erlandsson et al. (2016) for more details), modified to account for the impacts of snow160
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following Dralle et al. (2021). We used the SR dataset provided by Dralle et al. (2021),161

which was calculated using data from 2003-2017 and is provided at approximately 1 km162

pixel resolution. This SR dataset relies on precipitation data from PRISM (Daly et al.,163

2015), evapotranspiration data from PML v2 (Y. Zhang et al., 2019), and snow cover164

from the MODIS Terra normalized difference snow index product (Hall et al., 2010). This165

SR dataset also excludes urban areas, open water, and croplands as well as areas in which166

evapotranspiration exceeded precipitation, which may be due to unaccounted for irri-167

gation, inter-pixel groundwater fluxes or data error.168

Consumer dynamics (Kuijper et al., 2015) or episodic disturbances (e.g., fire or log-169

ging) may result in lower than climatically possible evapotranspiration and therefore a170

lower than climatically expected SR. This is particularly of concern when SR is inferred171

from a relatively short timeseries of precipitation and evapotranspiration. Here, because172

the SR dataset is inferred from 15 continuous water years, we do not exclude areas with173

logging or fire. This is motivated by the desire to include as much training data as pos-174

sible and the finding that paired catchment studies in the region have observed non-detectable175

changes in dry season streamflow (the time of year when deficits accumulate) just five176

years after logging (Keppeler & Ziemer, 1990). Spot checking of logged areas indicates177

that SR differences between adjacent logged or burned areas during the study period tend178

to be small relative to differences across geologic contacts or large climate zones.179

2.3.2 Climatic predictors of SR180

We used four static climate variables as predictors of SR:181

• Mean annual precipitation, P (mm)182

• Mean annual potential evapotranspiration PET (mm)183

• The coefficient of variation of annual precipitation, CVP , equal to the standard184

deviation of annual precipitation divided by mean annual precipitation.185

• The asynchronicity index between precipitation and potential evapotranspiration186

(in time and in relative magnitude), ASI (Feng et al., 2019)187

The precipitation data were obtained from PRISM (Daly et al., 2015) and the po-188

tential evapotranspiration data from the MODIS Terra MOD16A2 product (Running et189

al., 2017) for the period 2003-2017. The ASI raster was previously generated and described190

in (Hahm, Lapides, et al., 2022). These climate variables were chosen for their widespread191

availability at relatively high spatial resolution, and because magnitudes and timing of192

water delivery and water demand are the first order constraints on the amount of wa-193

ter available to plant biomes and the amount that can be taken up by the atmosphere;194

together P and PET also capture the aridity index (which is important for water par-195

titioning within the classical Budyko framework). The variability of annual precipita-196

tion (captured in CVP ) roughly accounts for drought recurrence intervals, which have197

been hypothesized to be the other primary climatic driver of top-down root zone stor-198

age capacity.199

2.3.3 Random forest model200

We used the RandomForestRegressor module within the scikit-learn Python pack-201

age (Pedregosa et al., 2011) to predict SR from four climate variables (mean annual pre-202

cipitation, the coefficient of variation of annual precipitation, mean annual potential evap-203

otranspiration, and the seasonal asynchronicity between precipitation and energy deliv-204

ery; detailed in Section 2.3.2). Model accuracy was assessed by first training on a ran-205

dom subset of 75% of the observations and using the resulting preliminary model to pre-206

dict SR with the remaining 25% set-aside validation data, after which a final model was207

trained on the entire dataset. In each case default scikit-learn (version 1.2.0) hyperpa-208
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rameters were used, except for the minimum number of samples per leaf node, which was209

set to 100 (discussed below).210

The choice of random forest modeling over a multiple linear regression approach211

(with and without interaction terms) is due to the flexibility of the random forest to ac-212

count for non-linear interactions between climate drivers and SR, which were were ap-213

parent during exploratory data analysis. The choice of random forest modeling over cli-214

matic envelope binning approaches is due to the readily available model diagnostics for215

random forests, specifically feature importance and partial dependence analysis.216

The climatically predicted SR values from a training dataset consisting of an even217

mixture of climatically optimal and geologically limited SR will predict the mean of all218

pixels present in that climate configuration rather than the climatically optimal one. As219

a result, the extent to which a low SR for a given climate is indeed low is underestimated,220

and therefore absolute deviations between observed and predicted SR should be inter-221

preted as conservative (minimum) estimates.222

A concern with any model is overfitting: if all pixels situated within a certain cli-223

mate configuration identified by the model are geologically rather than climatically lim-224

ited, the model will not identify them as having lower than climatically expected SR be-225

cause no other other pixels with higher SR for that climate configuration exist. This weak-226

ness is unavoidable with both the random forest approach as well as other empirical cli-227

matic envelope binning approaches, but can be overcome to some extent by limiting the228

decision tree depths (i.e., limiting fit) by enforcing a minimum leaf sample size. Spec-229

ifying tree depth hyperparameters to limit model fitting comes at the potential cost of230

absolute model accuracy. However, identification of within-climate configuration vari-231

ability rather than the best predictive accuracy is the overarching goal in this study. Sen-232

sitivity explorations indicated that changing tree depth hyperparameters resulted in vary-233

ing magnitudes of absolute predicted versus observed SR differences, nevertheless, the234

spatial patterns highlighted below were robust.235

2.3.4 Geologic layers236

We compared the output of the random forest model to existing geologic maps. For237

statewide analyses, we used the 1:750,000 scale digitized Geologic Map of California (Jennings238

et al., 2010) to interpret patterns in climatically predicted vs. observed SR. The map239

was rasterized to 1 km pixel to match the SR dataset resolution. We additionally used240

a 1:65,000 scale geologic map (Huber, 1968) to explore km-scale SR anomaly patterns241

across granitic plutons in the Sierra Nevada.242

3 Results243

Our primary findings are that i) while in general climate can predict SR with rea-244

sonable accuracy, there is substantial unexplained variance; ii) regions where observed245

SR tends to be lower than climatically predicted are in many cases spatially bounded246

by geologic contacts, indicative of a bottom-up geologic control on SR, and iii) these re-247

gions of apparent geologic-controlled SR are not confined to a particular rock type: di-248

verse lithologies—and hypothesized causal mechanisms—are capable of limiting SR.249

3.1 Observed SR250

Over much of the state, SR falls between 300 and 600 mm (Figure 2e). The largest251

observed SR values (yellow areas in Figure 2e) are found along the western flank of the252

southern Sierra Nevada and the Transverse Ranges, which also have high interannual vari-253

ability of precipitation (CVP , Figure 2c) and moderately high energy delivery (PET , Fig-254

ure 2a). Very low SR (purple areas in Figure 2e) is observed in the far north-east (Modoc255
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Plateau), higher elevation regions in the Sierra Nevada, and parts of the foothills sur-256

rounding the Sacramento and Central Valley and the Tulare Basin (the large N-S trend-257

ing region in white in Figure 2 that was masked from analysis primarily due to large agri-258

cultural operations and irrigation).259

3.2 Climatically predicted SR260

The random forest model driven by the static climate variables predicts SR with261

a root mean square error (RMSE) of 132 mm (the average observed SR of all pixels is262

416 mm) and an R2 of 0.61. This model was specified to have a minimum of 100 leaf nodes263

to limit the lumping of particular climate configurations within particular geologic units264

(see above); hyperparameter tuning estimates indicated that the highest accuracy model265

would have a minimum of 3 leaf nodes but still have an RMSE of 114 mm. In contrast,266

a multiple linear regression model including interaction terms (not shown) with the same267

predictor variables achieves an RMSE of 183 mm, much worse than the random forest.268

At broad scales, the pattern of predicted SR using the random forest model (Figure 2f)269

closely resembles the pattern of observed SR (Figure 2e).270

When the final random forest model is trained with all the available data, analy-271

sis of feature importance (Figure 3) indicates that CVP is the most important predic-272

tor of SR, followed by mean annual P . Thus the random forest model indicates that wa-273

ter supply (its inter-annual variability and average magnitude) are the most important274

climatic controls on SR within California, with energy supply (PET ) and the intra-annual275

patterns of water and energy delivery (ASI) being less important.276

Partial dependence plots (Figure 4) reveal the marginal effect on predictions of SR277

to each climate predictor variable. This analysis indicates that high magnitudes of both278

P and PET and low magnitudes of CVP predict low values of SR. SR increases mono-279

tonically with CVP , whereas the partial dependence of SR on P exhibits a humped re-280

lationship, with a mesic maximum (Good et al., 2017). There is only a weak negative281

relationship for ASI. We hypothesize that the physical mechanisms behind these pat-282

terns are connected to the impacts of annual magnitude and variability of water deliv-283

ery. SR is likely low at low P because there is simply not enough precipitation that ar-284

rives prior to dry periods to support much evapotranspiration, limiting the size of the285

deficit (our measure of SR) that can grow. SR is similarly low at high P , but for the op-286

posite reason that locations with high P may have their evapotranspiration limited by287

energy availability (wetter places tend to have lower potential evapotranspiration in Cal-288

ifornia). SR may increase with CVP partly because the denominator in that term is P289

but also because larger relative inter-annual variability means that plants must rely on290

more stored water to bridge droughts relative to the typical use for the plant commu-291

nity.292

3.3 Regions of climatically under-predicted SR and underlying geology293

While the overall patterns of observed and predicted SR are similar, the differences294

reveal where geology may limit plant water availability. Figure 2g shows state-wide ar-295

eas where the observed SR is less than the climatically predicted SR. These pixels are,296

in many regions, strongly clustered in space and include a large N-S trending swath and297

other smaller regions of the Northern Coast Ranges, the foothills surrounding the north298

end of the Sacramento Valley, and large parts of the southern Sierra Nevada. While less299

obvious in the full map of California, the anomalies are spatially organized at local scales300

as well (Figure 5 a, d, g, j).301

The clustering could be due to a regional, systematic top-down disturbance (e.g.,302

fire, logging, or other unaccounted for land-use) or unaccounted-for climate variable in303
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the model. However, comparison of these regions with geologic mapping indicates instead304

that substrate is playing the primary role in these spatial patterns.305

Figure 5 zooms in on four example regions (one for each row) where SR anoma-306

lies roughly coincide in space with mapped geologic units. The left column of Figure 5307

shows how pixels with lower than climatically expected SR (in dark red) tend to be clus-308

tered rather than randomly distributed across the landscape, with clusters aligning rea-309

sonably well with outlines of geologic formations. The middle column highlights the par-310

ticular mapped geologic unit whose extent includes areas of anomalous SR. The right311

column shows the same mapped geologic unit’s outline superimposed on satellite imagery,312

and Figure 6 more clearly shows these regions to be less forested than their immediate313

surroundings. The four highlighted regions have distinct rock types (from top to bot-314

tom in Figure 5 and clockwise in Figure 6: melange, volcanic, ultramafic, and granitic).315

The hypothesized mechanisms for geologic control exerted by each of these rock types316

is explored in the Discussion below.317

In Figure 7, we highlight expansive mapped geologic units (more than 1,000 km2
318

areal coverage) where the median of the observed minus predicted SR is less than -20319

mm (i.e., geologic units where the observed SR tends to be substantially less than the320

climatically predicted SR across the state of California). We note that i) these substrates321

span diverse lithologies (including sedimentary, metamorphic and igneous), and that ii)322

in some cases, the same units identified visually in the regional case-studies (Figure 5)323

also exhibit anomalously low SR at the state-wide scale. Overall, 41% of the study area,324

or approximately 80,000 km2 had an observed SR less than -20 mm than the climati-325

cally predicted SR, indicating that roughly a fifth of California’s land area may expe-326

rience geologically limited storage capacity. It is worth noting that Figure 7 identifies327

young geologic substrates (Quaternary age) as particularly subject to lower than climat-328

ically expected storage capacity. This may be due to a variety of mechanisms, includ-329

ing limited time for nutrients to be fixed or mobilized (Chadwick et al., 1999) or water-330

retaining clay minerals to form (Jefferson et al., 2010).331

4 Discussion332

To evaluate where geologic substrates may limit biomass or plant productivity and333

thus water vapor fluxes to the atmosphere, we identify locations where the observed ap-334

parent root-zone water storage capacity (SR) is smaller than expected relative to other335

locations with similar climate. Similar to empirical ecological approaches that relate plant336

productivity or biome characteristics to climate, this empirical identification procedure337

does not determine the mechanisms underlying the lower-than-expected SR, which could338

be associated with disturbance, land-use, or herbivory dynamics. The spatial congru-339

ence of many of these locations with geologic boundaries, as opposed to e.g. fire or land340

use boundaries, provides strong evidence for geologic limitations to plant water availabil-341

ity.342

4.1 Process-based mechanisms of geologic limitation of SR343

Figure 1 synthesizes previously proposed mechanisms for geologically limited SR.344

Two of these mechanisms are hydrologic mechanisms that limit plant-water availabil-345

ity directly (water storage limitation and water excess) whereas the other two mecha-346

nisms indirectly limit SR via chemical processes that limit plant growth (nutrient lim-347

itation and toxicity). We stress that these drivers are not necessarily independent: for348

example, low nutrient availability could limit plants which in turn limits porosity pro-349

duction in the subsurface. Below, we draw on insights from previous field studies to il-350

lustrate how these mechanisms operate, using examples revealed by our mapping as il-351

lustrative case studies.352
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Figure 1. Conceptual diagram illustrating hypothesized geologically mediated controls on

apparent root-zone water storage capacity, SR (lowest row) and corresponding plant biome and

hydrologic manifestations. Curved arrows indicate that the geologic controls are not mutually

exclusive and may be subject to feedback mechanisms.
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e)	Observed	S_R	(mm)
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600	-	700
700	-	800
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<=	100
100	-	200
200	-	300
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500	-	600
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700	-	800
800	-	900
>	900

b)	P	(mm)
<=	300
300	-	600
600	-	900
900	-	1200
1200	-	1500
1500	-	1800
1800	-	2100
2100	-	2400
2400	-	2700
>	2700
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<=	300
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2100	-	2400
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>	2700
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<=	100
100	-	200
200	-	300
300	-	400
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500	-	600
600	-	700
700	-	800
800	-	900
>	900
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<=	100
100	-	200
200	-	300
300	-	400
400	-	500
500	-	600
600	-	700
700	-	800
800	-	900
>	900

c)	CV(P)	*100
<=	15
15	-	20
20	-	25
25	-	30
30	-	35
35	-	40
40	-	45
45	-	50
50	-	55
>	55

c)	CV(P)	*100
<=	15
15	-	20
20	-	25
25	-	30
30	-	35
35	-	40
40	-	45
45	-	50
50	-	55
>	55

a)	PET	(mm)
<=	750
750	-	1000
1000	-	1250
1250	-	1500
1500	-	1750
1750	-	2000
2000	-	2250
2250	-	2500
2500	-	2750
>	2750

a)	PET	(mm)
<=	750
750	-	1000
1000	-	1250
1250	-	1500
1500	-	1750
1750	-	2000
2000	-	2250
2250	-	2500
2500	-	2750
>	2750

d)	ASI	*	100
<=	52.5
52.5	-	55
55	-	57.5
57.5	-	60
60	-	62.5
62.5	-	65
65	-	67.5
67.5	-	70
70	-	72.5
>	72.5

d)	ASI	*	100
<=	52.5
52.5	-	55
55	-	57.5
57.5	-	60
60	-	62.5
62.5	-	65
65	-	67.5
67.5	-	70
70	-	72.5
>	72.5

g)	Predicted	-	Observed	S_R	(mm)
<=	-30
-30	-	-27
-27	-	-24
-24	-	-21
-21	-	-18
-18	-	-15
-15	-	-12
-12	-	-9
-9	-	-6
-6	-	-3
-3	-	0
>	0

g)	Predicted	-	Observed	S_R	(mm)
<=	-30
-30	-	-27
-27	-	-24
-24	-	-21
-21	-	-18
-18	-	-15
-15	-	-12
-12	-	-9
-9	-	-6
-6	-	-3
-3	-	0
>	0

Figure 2. California-wide maps of climatic predictors of SR (top row) and observed, pre-

dicted, and difference between predicted and observed SR (bottom row). Masked (white) areas

are locations where SR calculation criteria are not met (see Methods).
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Figure 3. Permutation feature importance of the random forest climate predictors of SR:

higher feature importance indicates that a climate predictor is an important predictor of SR

(inferred by quantifying how much worse the model performs when that variable is randomly

shuffled).
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Figure 4. Partial dependence plots show how variation in individual climatic predictor fea-

tures (x-axes) on average impacts the predicted target variable (SR, y-axis) when the other

climate predictors are controlled for. Vertical lines above x-axes denote decile breaks for the

distribution of each climate predictor variable.
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Figure 5. Four regional-scale case studies of apparent geologic control on SR (one per row).

The hypothesized mechanism responsible for anomalously low SR for the local climate (i.e., red

shading in the left column) is identified with the labels at left. The middle column highlights the

geologic unit whose spatial extent tends to coincide with a region of anomalous SR. In the top

three rows, the geology mapping comes from the state-wide compilation (Jennings et al., 2010),

and in the bottom row from a smaller quadrangle (Huber, 1968). Satellite imagery (from ESRI)

in the right column reveals that the low SR areas also tend to have lower canopy cover than

their immediate surroundings. See Discussion for synthesis of prior field studies that support the

hypothesized geologic limitation mechanism.
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a) Franciscan melange b) Tuscan volcanics

c) Klamath-Siskiyou ultramafics

d) Shuteye Peak 
quartz monzonite

Figure 6. Google Earth imagery with topography of the four case studies highlighted in Fig-

ure 5, revealing some of the striking vegetation contrasts over short spatial scales within similar

climates that are hypothesized to arise due to geologic controls. The ecotones separating plant

communities in these images generally coincide with geologic contacts. In each image, the yellow

line is a 10 km scale bar, and the latitude and longitude listed at the lower right of the image is

from the center of the scale bar.
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Figure 7. Geologic units with large represented areas (> 100 km2) that appear to limit

root zone storage capacity (i.e., have substantially lower than climatically expected SR). Key

(adapted from Jennings et al. (2010)): Qrv: Volcanic rocks (Holocene) - Recent (Holocene)

volcanic flow rocks; minor pyroclastic deposits. Qoa: Marine and nonmarine (continental) sedi-

mentary rocks (Pleistocene) - Older alluvium, lake, playa, and terrace deposits. QPc: Nonmarine

(continental) sedimentary rocks (Pleistocene-Holocene) - Pliocene and/or Pleistocene sandstone,

shale, and gravel deposits; mostly loosely consolidated. KJfm: Marine sedimentary and metased-

imentary rocks (Cretaceous-Jurassic) - Melange of fragmented and sheared Franciscan Complex

rocks. Q: Marine and nonmarine (continental) sedimentary rocks (Pleistocene-Holocene) - Allu-

vium, lake, playa, and terrace deposits; unconsolidated and semi-consolidated. Mostly nonmarine,

but includes marine deposits near the coast. um: Plutonic rocks (Mesozoic) - Ultramafic rocks,

mostly serpentine. Minor peridotite, gabbro, and diabase; chiefly Mesozoic. Ku: Marine sedimen-

tary and metasedimentary rocks (Upper Cretaceous) - Upper Cretaceous sandstone, shale, and

conglomerate.
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4.1.1 Water limitation and excess353

In both soil and weathered bedrock, connected porosity enables water storage and354

flow, thereby regulating water status in the root zone (Klos et al., 2018). In upland en-355

vironments, the weathered bedrock layer is variably thick and typically underlies a phys-356

ically mobile regolith (soil, in the geomorphological sense) (Rempe & Dietrich, 2014).357

Weathered bedrock forms as chemical and physical weathering fronts propagate down-358

wards into fresh bedrock as it is nears Earth’s surface (Riebe et al., 2017). Under sim-359

ilar climate, spatial gradients in tectonics and lithology can result in variations in weath-360

ering extent and thus water storage and flow properties. These variations can result in361

either limited or excess water, and in some scenarios, both at the same location at dif-362

ferent times of year.363

For the first case study, we highlight the Central Belt melange of the Franciscan364

Formation that runs roughly parallel to the coast in the Northern California Coast Ranges365

(first row in Figure 5). In a region where the local climate can support some of the tallest366

trees on the planet, the melange is surprisingly sparsely vegetated; instead of the dense367

forest found immediately to the west, the melange is characterized by an open savanna368

of deciduous Oregon White oak (Quercus garryana) and an herbaceous groundcover (Hahm369

et al., 2017).370

Deep drilling and multiple years of intensive hillslope-scale ecohydrologic field mon-371

itoring have resulted in the interpretation that this lower than climatically expected veg-372

etation community arises due the shallow (only 1 to 2 m) propagation of weathering into373

the fresh melange bedrock (Hahm et al., 2019), which consequently results in limited wa-374

ter storage capacity (about 1/10th of the typical wet season precipitation; in contrast,375

the Coastal Belt immediately to the west has 20 to 30 m deep weathering fronts and three376

times greater seasonal water storage (Dralle et al., 2018), with a dense evergreen forest377

(Figure 6a)). Storage of water from the wet season in the subsurface is critical for plant378

water supply in the summer dry season in this rain-dominated Mediterranean climate379

(Hahm, Dralle, et al., 2022). Our mapping in this study extends the insights from hillslope-380

and catchment-scale field observations and indicates that the melange rock type is as-381

sociated with lower than climatically expected SR across the state (the melange is de-382

noted as KJfm in Figure 7).383

The low storage capacity of the melange results in both water limitation—in the384

dry season, when oak pre-dawn water potentials drop below -3 MPa—and water excess,385

in the wet season, when the subsurface completely saturates repeatedly in storms—resulting386

in anoxic conditions around flooded roots (Hahm et al., 2018, 2020). The role of excess387

water as a control on vegetation has also been explored by Sousa et al. (2022); Roebroek388

et al. (2020); Zipper et al. (2015). The melange presents the interesting situation of rhi-389

zosphere water limitation even when a perennially saturated zone is relatively near the390

surface: in the summer the vadose zone is just a few meters deep, and although the fresh391

melange beneath is perennially saturated, its extremely low hydraulic conductivity and392

anoxic conditions apparently prevent root water uptake (Hahm et al., 2020).393

In contrast to the scenario where low permeability, perennially saturated fresh bedrock394

is near the surface, some landscapes can instead have a high conductivity, high poros-395

ity substrate that allows infiltrating precipitation to rapidly transit the root zone ver-396

tically, draining to deeper aquifers. This form of low vadose zone storage capacity can397

also lead to water limitation and a lower than climatically expected plant community.398

These conditions have been documented in karstic terrain in China (H. Liu et al., 2021;399

Jiang et al., 2020).400

We posit that a similar phenomenon may also be possible in highly permeable vol-401

canic bedrock. As a second case study, we highlight a community with low biomass—402

and low SR—for the local climate in the Lassen foothills at the north-western end of the403

–15–



manuscript submitted to Water Resources Research

Sacramento Valley (second row in Figure 5). Here, a Pliocene aged volcanic substrate404

(the Tuscan Formation (Lydon, 1967)) is inhabited by an open oak savanna with abun-405

dant rocky outcrops. Both the geomorphology (characterized by buttes) and woody veg-406

etation community (including Interior Live (Quercus wislizeni and Blue (Quercus dou-407

glasii) oaks) are strongly organized along outcrops of particular subhorizontally bedded408

volcanic deposits (lahars containing tuffs and breccias), as seen in Figure 6b. Based on409

these bedrock structure and vegetation observations, along with records of high surface410

infiltration rates and conductivity within permeable beds (Butte County Department411

of Water and Resource Conservation, 2013), we interpret that in this landscape infiltrat-412

ing precipitation rapidly transits certain high permeability volcanic beds that comprise413

the majority of the Formation volumetrically, without significant moisture retention. (Rel-414

atively young volcanic landscapes in the Cascades can have relatively little water stor-415

age capacity in the near surface and high conductivity (Jefferson et al., 2010; Tague &416

Grant, 2004) volcanic landscapes). Woody vegetation is minimal on these volcanic beds,417

but is found along roughly elevation-contour parallel bands where lower conductivity or418

higher storage capacity beds outcrop at the surface, as vegetation there may experience419

enhanced water availability from lateral flow or greater retention of infiltrating precip-420

itation.421

4.1.2 Toxicity422

Toxic concentrations of elements can be released via chemical weathering of under-423

lying bedrock, inhibiting plant growth. Classic examples are associated with ultramafic424

substrates, and in California there are well-studied examples of high-biodiversity, low-425

biomass endemic plant communities inhabiting serpentines (Kruckeberg, 1992, 1985; Har-426

rison et al., 2004). In these environments, plants struggle in the presence of exposure to427

high ratios of Mg:Ca and high Ni (Kruckeberg, 1992).428

Consistent with previous observations of low plant biomass on ultramafic substrates,429

we found that ultramafic areas across the study area tend to have lower than climati-430

cally expected SR (denoted um in Figure 7). As a case study, we highlight the dramatic431

example of a large ultramafic body in the Klamath-Siskiyou region of north-western California—432

one of the largest in North America (third row in Figure 5 and Figure 6c). This region433

can climatically support dense evergreen forests, yet the vegetation situated on the ser-434

pentine substrate is commonly stunted or altogether absent (Alexander et al., 2007), with435

scattered individuals of pine, fir and cedar. The inhibited plant growth reduces evapo-436

transpiration, in turn limiting water storage deficits and apparent root-zone water stor-437

age capacity, as illustrated conceptually in Figure 1. We emphasize that there may in438

fact be ample water storage capacity, but the stunted plants growing on toxic substrates439

do not access it, and it is therefore mapped as lower than climatically expected SR.440

4.1.3 Nutrient limitation441

Low concentrations of plant-essential nutrients in parent material, low erosion rate442

and/or high leaching may all contribute to nutrient limitation, stunted vegetation, and443

lower than expected SR. In California, nutrient limitation has been associated with ul-444

tramafic substrates (see Toxicity above), as well as leucogranitic plutons in the Sierra445

Nevada, where phosphorus concentrations in parent bedrock can be an order of magni-446

tude lower than more mafic adjacent plutons (Hahm et al., 2014). The bottom row of447

Figure 5 illustrates one such pluton, the Quartz Monzonite of Shuteye Peak, which has448

low woody plant cover (sparse Jeffrey Pine (Pinus jeffreyi)) and large expanses of ex-449

posed granitic bedrock, in contrast to nearby granodioritic plutons experiencing a sim-450

ilar climate which are occupied by high biomass evergreen forests, including the charis-451

matic Giant Sequoia (Sequoiadendron giganteum); Figure 6d. Ecotones separating the452

plant communities closely align with mapped intrusive contacts (Huber, 1968; Hahm et453

al., 2014). Neither Shuteye Peak nor the nearby Bald Mountain were glaciated in the454
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Pleistocene, and their sparse soil cover has been attributed to nutrient limitation that455

inhibits root growth which consequently inhibits soil retention (Hahm et al., 2014). This456

has been hypothesized to result in a feedback cycle that further inhibits weathering and457

porosity production in the subsurface, which in turn also limits the water storage capac-458

ity for trees and their growth (Callahan et al., 2022). Thus, the nutrient and water lim-459

itation geologic controls on plant abundance, water use, and ultimately SR are poten-460

tially closely linked via feedback cycles, defining an exciting research frontier.461

4.2 Implications for climate change driven plant biome migration and462

the use of SR in models463

Bioclimatic modeling approaches provide a first approximation to the availability464

of plant habitat (Pearson & Dawson, 2003). It has long been argued, however, that phys-465

iographic, edaphic, and geophysical factors—in addition to climate—should be taken into466

consideration when predicting and managing for climate change induced species migra-467

tion (Theobald et al., 2015; Anderson & Ferree, 2010; Hulshof & Spasojevic, 2020; Davis468

et al., 2018; Butler et al., 2007; Macias-Fauria & Johnson, 2013), a sentiment well cap-469

tured by Kruckeberg (2013): “given a regional climatic framework, much of the plant470

species diversity and discontinuity in the region is governed by variations in soil chem-471

istry, and thus by specific variations in the mineralogy of rock substrates.” Our work builds472

on these insights by enabling a direct quantification of the impact of geology over large473

spatial scales using recently made available, spatially distributed estimates of SR and474

a simple, climate-driven machine learning model.475

SR is a key parameter across hydrology, vegetation, and climate models (Seneviratne476

et al., 2013), because of its large impact on terrestrial water partitioning, plant-water477

availability and associated carbon uptake, and the associated impacts of latent heat flux478

and vegetation greenness on the climate. Although previous studies have used both cli-479

mate and soils databases to establish edaphoclimatic envelopes for modeling vegetation480

distribution (de Castro Oliveira et al., 2021), there is a growing consensus that tradi-481

tionally used static soils database derived estimates of SR are inadequate (Stocker et al.,482

2023). This is due to the mounting evidence of widespread plant-water uptake from bedrock483

whose water storage properties are not traditionally included within soils databases (McCormick484

et al., 2021; Stocker et al., 2023) and because temporally changing vegetation commu-485

nities can result in shifting magnitudes of SR at a single location (L. Zhang et al., 2001;486

Li et al., 2019; Nijzink et al., 2016; Hrachowitz et al., 2021). Our approach offers a path487

forward for empirically identifying geologic limitations on SR, but we do not see a clear488

way to predict such limitations a priori at large spatial scales at the moment, particu-489

larly when they arise due to hydrologic mechanisms (Figure 1). This is due to compli-490

cated feedbacks among the various processes and our current inability to directly observe491

weathering extent and water storage and flow properties at large spatial scales.492

4.3 Limitations and future work493

The distinction between top-down (climate) versus bottom-up (geologic) drivers494

of SR becomes murky over longer time scales. This is partly because landscapes inherit495

paleoclimate weathering legacies: for example, climate may result in glaciation, which496

can strip away soil and weathered bedrock, resulting in a proximate bottom-up control497

on SR that is facilitated ultimately by a long-term climate history. Climate drivers are498

also filtered by the subsurface to determine groundwater dynamics, which can strongly499

impact plant community distribution over individual hillslope lengthscales (Koirala et500

al., 2017; Roebroek et al., 2020; Fan et al., 2017). Climate also impacts hillslope diffu-501

sive and advective erosive processes, which may impact seedling establishment (Toloui-502

Semnani & Johnson, 2019), the thickness of the weathered bedrock zone and the sizes503

of colluvial wedges (and potential storage space for water (Ding et al., 2018; Milodowski504

et al., 2015; Rempe & Dietrich, 2014)) and the spacing of ridges and valleys (Perron et505
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al., 2009). It has also been argued that vegetation ‘coevolves’ with the subsurface in such506

a way to produce a particular water storage reservoir: in this view, soils are largely bi-507

otic constructs (van Breemen, 1993). The approach outlined in this study is not capa-508

ble of teasing apart the longer-term connections between top-down and bottom-up drivers509

of SR—instead, it takes the current climate at face value and asks whether the empir-510

ically observed SR is lower in some places relative to others with the same climate. While511

this works in many locations (e.g., the case studies explored above), this empirical ap-512

proach is incapable of detecting a bottom-up limitation on SR if all locations for a par-513

ticular climate are similarly limited by a geologically mediated factor.514

An additional complication in identifying bottom-up limitations of SR can arise515

in locations with significant inter-pixel lateral groundwater subsidies to vegetation (Roebroek516

et al., 2020; Fan et al., 2017). In this scenario, a larger than climatically expected SR517

may be detected because evapotranspiration is sustained by groundwater flow from else-518

where, which could result in large calculated water storage deficits. We expect this pro-519

cess to be most common at the scale of individual hillslopes, where water that infiltrates520

near local topographic highs may flow laterally downslope toward local channels. Because521

the pixel sizes we consider are large relative to local hillslope lengthscales, however, this522

effect should be minimized in our estimation procedure.523

5 Conclusions524

We employed a simple machine learning approach to quantify the difference between525

climatically expected and observed apparent root-zone water storage capacity (SR). By526

comparing the resulting patterns with geologic maps, we found strong spatial correspon-527

dence between particular substrates and regions of lower than climatically expected SR.528

These patterns are indicative of bottom-up controls on the size of the root zone. Our map-529

ping approach is not capable of identifying the mechanisms by which geology limits SR.530

However, the patterns we observed are consistent with mechanisms identified in previ-531

ous field studies, which highlight the role of water availability (excess and limitation),532

nutrient supply, and toxicity. Although our analysis is not exhaustive, the approach pre-533

sented here enables extension of hillslope-scale field inferences to much larger areas, and,534

importantly, does not rely on traditionally used soil water storage capacity databases,535

which are generally too shallow to capture relevant plant water dynamics in seasonally536

dry climates. Furthermore, our findings indicate that climate patterns alone can be in-537

sufficient predictors of root zone water storage capacity. The subsurface matters, and538

should be incorporated into earth system models and ecosystem migration management539

plans in the context of climate change.540
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