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Abstract

We assess the Southern Ocean CO2 uptake (1985-2018) using data sets gathered in the REgional Carbon Cycle Assessment
and Processes Project phase 2 (RECCAP2). The Southern Ocean acted as a sink for CO2 with close agreement between simu-
lation results from global ocean biogeochemistry models (GOBMs, 0.75±0.28 PgCyr-1) and pCO2-observation-based products
(0.73±0.07 PgCyr-1). This sink is only half that reported by RECCAP1. The present-day net uptake is to first order a response
to rising atmospheric CO2, driving large amounts of anthropogenic CO2 (Cant) into the ocean, thereby overcompensating the
loss of natural CO2 to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, with pCO2-products
suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26±0.06 and 0.11±0.03 PgCyr-1
decade-1 respectively). This is despite nearly identical pCO2 trends in GOBMs and pCO2-products when both products are
compared only at the locations where pCO2 was measured. Seasonal analyses revealed agreement in driving processes in winter
with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit
difficulties in simulating the effects of the non-thermal processes of biology and mixing/circulation. Ocean interior accumulation
of Cant points to an underestimate of Cant uptake and storage in GOBMs. Future work needs to link surface fluxes and interior
ocean transport, build long overdue systematic observation networks and push towards better process understanding of drivers
of the carbon cycle.
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Key Points:23

• Ocean models and machine learning estimates agree on the mean Southern Ocean24

CO2 sink, but the trend since 2000 differs by a factor of two.25

• Compared with RECCAP1, the updated estimate for the Southern Ocean CO226

uptake is 50% smaller.27

• Large model spread in summer and winter indicates that sustained efforts are re-28

quired to understand driving processes in all seasons.29

Corresponding author: Judith Hauck, judith.hauck@awi.de
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Abstract30

We assess the Southern Ocean CO2 uptake (1985-2018) using data sets gathered in the31

REgional Carbon Cycle Assessment and Processes Project phase 2 (RECCAP2). The32

Southern Ocean acted as a sink for CO2 with close agreement between simulation results33

from global ocean biogeochemistry models (GOBMs, 0.75±0.28 PgC yr−1) and pCO2-34

observation-based products (0.73±0.07 PgC yr−1). This sink is only half that reported35

by RECCAP1. The present-day net uptake is to first order a response to rising atmo-36

spheric CO2, driving large amounts of anthropogenic CO2 (Cant) into the ocean, thereby37

overcompensating the loss of natural CO2 to the atmosphere. An apparent knowledge38

gap is the increase of the sink since 2000, with pCO2-products suggesting a growth that39

is more than twice as strong and uncertain as that of GOBMs (0.26±0.06 and 0.11±40

0.03 Pg C yr−1 decade−1 respectively). This is despite nearly identical pCO2 trends in41

GOBMs and pCO2-products when both products are compared only at the locations where42

pCO2 was measured. Seasonal analyses revealed agreement in driving processes in win-43

ter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fun-44

damental in summer, when GOBMs exhibit difficulties in simulating the effects of the45

non-thermal processes of biology and mixing/circulation. Ocean interior accumulation46

of Cant points to an underestimate of Cant uptake and storage in GOBMs. Future work47

needs to link surface fluxes and interior ocean transport, build long overdue systematic48

observation networks and push towards better process understanding of drivers of the49

carbon cycle.50

Plain Language Summary51

The ocean takes up CO2 from the atmosphere and thus slows climate change. The52

Southern Ocean has been long known to be an important region for ocean CO2 uptake.53

Here, we bring together all available data sets that estimate the Southern Ocean CO254

uptake, from models that simulate ocean circulation and physical and biological processes55

that affect the ocean carbon cycle, from surface ocean observation-based estimates, from56

atmospheric transport models that ingest atmospheric CO2 observations, and from in-57

terior ocean biogeochemical observations. With these data sets, we find good agreement58

on the mean Southern Ocean CO2 uptake 1985-2018, which is 50% smaller than previ-59

ous estimates when recalculated for the time period and spatial extent used in the pre-60

vious estimate. However, the estimates of the temporal change of the Southern Ocean61

CO2 uptake differ by a factor of two and thus are not in agreement. We further high-62

light that knowledge gaps exist not only in winter when observations are typically rare,63

but equally in summer when biology plays a larger role, which is typically represented64

in a too simplistic fashion in the dynamic models.65

1 Introduction66

The Southern Ocean (Figure 1) is the primary conduit between the surface and the67

deep ocean (Talley, 2013; Morrison et al., 2022) making it a key region for the global car-68

bon cycle and the climate system across time-scales from paleo to present day and into69

the future (Canadell et al., 2021). Firstly, water mass formation of Antarctic surface wa-70

ter occurs during large-scale upwelling of deep, old and carbon-rich water masses due71

to strong westerly winds (Russell et al., 2006; Marshall & Speer, 2012). Part of this wa-72

ter moves northwards by Ekman transport and contributes to the formation of South-73

ern mode and intermediate waters (Ito et al., 2010; Sallée et al., 2012; Morrison et al.,74

2022) together with subtropical water masses (Iudicone et al., 2016). Another part moves75

southward and circulates in the large gyres of the Weddell and Ross Seas (Klatt et al.,76

2005). A fraction of these Antarctic surface waters densify on the Antarctic shelves through77

cooling and brine rejection during sea-ice formation on the Antarctic shelves to then flow78
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down the Antarctic slope and form Antarctic Bottom Water (Orsi et al., 1999; Jacobs,79

2004).80

Historically, in pre-industrial times, the Southern Ocean was a net source of CO281

to the atmosphere due to upwelling of carbon-rich deep waters (Mikaloff Fletcher et al.,82

2007). Importantly, the large-scale upwelling that drove the natural outgassing fluxes83

in the polar and subpolar Southern Ocean still occurs today. However, since industri-84

alisation, increasing atmospheric levels of CO2 have shifted the thermodynamic equilib-85

rium of CO2 partial pressure between the ocean and the atmosphere in the favor of the86

latter, thus overcompensating the natural outgassing(e.g., Hoppema, 2004). The con-87

temporary net flux in the Southern Ocean can thus be understood as the sum of the out-88

gassing of natural CO2 and uptake of anthropogenic CO2 (Gruber et al., 2009; Gruber,89

Landschützer, & Lovenduski, 2019). Importantly, the Southern Ocean has acted as the90

primary region of uptake for anthropogenic CO2 in the industrialized era (Sarmiento et91

al., 1992; Orr et al., 2001; Caldeira & Duffy, 2000; Khatiwala et al., 2009; Frölicher et92

al., 2015; Mikaloff Fletcher et al., 2006), which is attributed to upwelling of old water93

masses (with low anthropogenic carbon) in a region of high wind speeds, as well as sub-94

sequent transport of excess carbon from the surface into the ocean interior through the95

formation of Subantarctic Mode and Antarctic Intermediate Water (Waugh et al., 2006;96

Mikaloff Fletcher et al., 2006; Bopp et al., 2015; Langlais et al., 2017; Sallée et al., 2012).97

In the absence of evidence of substantial changes in the biological carbon pump over the98

past decades, the role of biology for anthropogenic carbon uptake is thought to be small99

(Murnane et al., 1999; Holzer & DeVries, 2022). However, the biological carbon pump100

can have a strong imprint on the net fluxes during the summer when primary produc-101

tion draws down natural CO2 at the surface (e.g., E. Jones et al., 2012, 2015).102

While the general importance of the Southern Ocean for the ocean carbon sink is103

recognised, it is also the region with the largest uncertainty in the mean and trend of104

the sink (Hauck et al., 2020; Friedlingstein et al., 2022). This is partly because the observation-105

based estimates and model-based estimates measure different components of the ocean106

carbon sink, and assumptions on fluxes associated with river discharge need to made,107

which carry high uncertainty themselves (Aumont et al., 2001; Lacroix et al., 2020). Fur-108

ther, the decadal variability of the Southern Ocean and the underlying mechanisms thereof109

are a key contributor to the uncertainty and are a topic of continued discussion (Le Quéré110

et al., 2007; Landschützer et al., 2015; Gruber, Landschützer, & Lovenduski, 2019; Hauck111

et al., 2020; McKinley et al., 2020; Canadell et al., 2021). A stagnation in the growth112

of the Southern Ocean carbon sink in the 1990s is commonly attributed to a strength-113

ening of the westerly winds and associated intensified upwelling of carbon- and nutrient-114

rich deep water (Le Quéré et al., 2007; Lovenduski et al., 2007; Hauck et al., 2013). In-115

deed, evidence for this stronger upwelling is indirectly observed by enhanced surface nu-116

trient concentrations in all Southern Ocean basins (Hoppema et al., 2015; Panassa et al.,117

2018; T. Iida et al., 2013; Ayers & Strutton, 2013; Pardo et al., 2017). The early 2000’s118

marked the start of the so-called reinvigoration of the Southern Ocean carbon sink (Landschützer119

et al., 2015). The strength of the reinvigoration is uncertain due to the observation-based120

products potentially overestimating the trends owing to data sparsity (Landschützer et121

al., 2015; Gloege et al., 2021; Hauck et al., 2023), while further analysis on the trends122

in the models is needed. Furthermore, the drivers of the reinvigoration are less well un-123

derstood than for the stagnation, but it may be linked to changes in the atmospheric forc-124

ing (Gruber, Landschützer, & Lovenduski, 2019) and/or changes in the overturning cir-125

culation (DeVries et al., 2017). There is also evidence that both the stagnation and the126

reinvigoration are part of a global response to variations in atmospheric CO2 growth rate,127

ocean temperature and circulation induced by the 1992 eruption of Mount Pinatubo (McKinley128

et al., 2020; Eddebbar et al., 2019).129

The Southern Ocean carbon sink is projected to continue to play an important role130

in the future carbon cycle as shown by Earth System Model simulations (Hauck et al.,131
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2015; Kessler & Tjiputra, 2016; Canadell et al., 2021; Terhaar et al., 2021). However,132

there are indications that system changes may occur, such as a shift to a larger propor-133

tion of the CO2 uptake occurring in the polar Southern Ocean (Hauck et al., 2015), and134

a strong sensitivity of Southern Ocean carbon storage to physical ventilation and warm-135

ing (Katavouta & Williams, 2021; Terhaar et al., 2021; Bourgeois et al., 2022).136

In this study, we aim to synthesize and assess information on the Southern Ocean137

carbon sink over the period 1985 to 2018 in the framework of the REgional Carbon Cy-138

cle Assessment and Processes project, phase 2 (RECCAP2). This work builds on a pre-139

vious assessment, RECCAP phase 1 (referred to as RECCAP1 for clarity), for the pe-140

riod 1990 to 2009 (Lenton et al., 2013). In RECCAP1, the Southern Ocean was defined141

as the ocean south of 44◦S (building on earlier classification in the atmospheric inver-142

sion community), which, however, cut through the major anthropogenic CO2 uptake re-143

gion at the northern edge of the Southern Ocean. The assessment was based on five global144

ocean biogeochemical models, eleven atmospheric inversions, ten ocean inversions and145

a single pCO2 observation-based data set, the climatology of Takahashi et al. (2009). REC-146

CAP1 resulted in a best estimate of the net Southern Ocean CO2 uptake (1990-2009)147

of 0.42±0.07 PgC yr−1 based on all models (including inversions), with a surface pCO2-148

based climatology (Takahashi et al., 2009) suggesting a lower number of 0.27±0.13 PgC yr−1
149

Lenton et al. (2013). The interannual variability was estimated to be ±25% around this150

mean value. The largest proportion of the mean flux occurred in the region 44-58◦S which151

spans large parts of the Subantarctic Zone and of the Polar Frontal Zone with similar152

contributions from the Atlantic, Pacific and Indian Ocean sectors. In the Antarctic Zone153

(south of 58◦S), individual estimates did not agree on the sign of the net CO2 flux.154

A major advance since RECCAP1 is the release and continued updating of the Sur-155

face Ocean CO2 Atlas (SOCAT Bakker et al., 2016), which currently provides 33.7 mil-156

lion quality-controlled and curated surface ocean pCO2 measurements with an accuracy157

of <5 µatm in the 2022 release (Bakker et al., 2022). The release of SOCAT allowed for158

the development of the surface ocean pCO2 observation-based products (pCO2-products)159

that interpolate and extrapolate sparse ship-based observations from SOCAT to global160

coverage. Based on these maps of surface pCO2, the air-sea CO2 flux is then calculated161

using gas-exchange parameterizations and input data fields such as sea surface temper-162

ature and wind fields (R. H. Wanninkhof, 2014). Since RECCAP1, a diverse set of sta-163

tistical and machine-learning approaches have been developed (e.g., Landschützer et al.,164

2014; Rödenbeck et al., 2014; Gregor et al., 2019; Chau et al., 2022). The pCO2-products165

allowed for observation-based investigation of interannual and decadal variability. They166

confirmed the reported stagnation of the Southern Ocean carbon sink in the 1990s (Le Quéré167

et al., 2007), and identified the aforementioned reinvigoration in the 2000s (Landschützer168

et al., 2015; Ritter et al., 2017). However, these pCO2-products have made the South-169

ern Ocean’s long-standing issue of sparse observations even more evident. Observation170

system simulation experiments (OSSEs) have shown that these methods are prone to re-171

gional and temporal biases (Denvil-Sommer et al., 2021) and some pCO2-products may172

overestimate the decadal variability by 30% (Gloege et al., 2021). In fact, a recent study173

showed that the SOM-FFN pCO2-product used in the reinvigoration study of Landschützer174

et al. (2015) overestimates the model-based decadal trend 2000-2018 by 130% in an ocean175

model subsampling experiment (Hauck et al., 2023). However, these OSSEs have also176

shown that augmenting ship-based observations with well-placed, high accuracy pCO2177

observations from autonomous platforms can reduce these biases (Denvil-Sommer et al.,178

2021; Djeutchouang et al., 2022; Hauck et al., 2023).179

The gap in ship-based pCO2 observations is slowly being addressed by a second180

major advance, that is autonomous measurement devices. Among these are pH-equipped181

biogeochemical Argo floats (BGC-floats) (Williams et al., 2016; Johnson et al., 2017).182

With this approach, float pH measurements are combined with multi-linear regression-183

derived alkalinity (Williams et al., 2016; Carter et al., 2016, 2018, 2021), to calculate es-184
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timates of pCO2. Although uncertainties of the BGC-float based estimates of pCO2 are,185

to date, higher (theoretical uncertainty of 11 µatm, Williams et al., 2017) than for di-186

rect pCO2 measurements (2µatm, Bakker et al., 2016), some of these indirect pCO2 es-187

timates fill critical gaps in the sparsely sampled winter months. These novel data, either188

on their own (Gray et al., 2018) or as additional input for pCO2-products (Bushinsky189

et al., 2019), reported a strong winter outgassing of CO2 in the subpolar Southern Ocean190

for the years 2015 through 2017 that also led to a substantially smaller estimate of the191

annual Southern Ocean CO2 uptake for these years. However, these larger-than-expected192

winter outgassing estimates were challenged by airborne flux estimates and direct pCO2193

measurements from a circumpolar navigation by an uncrewed sailing drone (Long et al.,194

2021; Sutton et al., 2021). The sailing drone observations were in agreement with ship-195

based pCO2-product estimates throughout all seasons (Sutton et al., 2021). The authors196

attributed the discrepancy between BGC-floats and other estimates to either a bias of197

the float measurement devices or interannual variability. In support of the latter argu-198

ment, the BGC-Argo-based air-sea CO2 flux in the years 2017-2019 also did not reveal199

the strong winter outgassing signal of the years 2015 and 2016 (Sutton et al., 2021).200

Another advance since RECCAP1 is that more global ocean biogeochemical mod-201

els (GOBMs) have become available with improvements in resolution and physical and202

biogeochemical process representation (R. H. Wanninkhof et al., 2013; Friedlingstein et203

al., 2022). While the ability of the GOBMs to capture interannual variability of air-sea204

CO2 fluxes (FCO2) was questioned by the larger variability of pCO2-product estimates205

(Le Quéré et al., 2018), the lower interannual variability of GOBMs now falls within the206

range of the larger ensemble of pCO2-products (McKinley et al., 2020; Hauck et al., 2020).207

For the decadal variability of FCO2, there is a moderate agreement between GOBMs and208

pCO2-products on a stagnation of the sink in the 1990s and an increase of the sink in209

2002-2011 but with a larger amplitude of the multi-year/decadal variability in the pCO2-210

products (McKinley et al., 2020; Hauck et al., 2020; Gruber et al., 2023). Although the211

GOBMs compare reasonably well to global and Southern Ocean observations of surface212

ocean pCO2 (Hauck et al., 2020), their estimates of the global ocean carbon sink remain213

below those of interior ocean anthropogenic carbon accumulation estimates from 1994214

to 2007 (Gruber, Clement, et al., 2019), atmospheric inversions, observed O2/N2 ratios215

(Friedlingstein et al., 2022; Tohjima et al., 2019), and a similar underestimation was found216

in Earth System Models (Terhaar et al., 2022).217

The final major advance in the last decade are regional and global data-assimilating218

global ocean biogeochemistry models (Verdy & Mazloff, 2017; Carroll et al., 2020). These219

models bring together the process-based knowledge from GOBMs, but use data assim-220

ilation schemes to minimize mismatches between simulated fields, and physical and bio-221

geochemical observations.222

Despite these recent advances in observations and models, the Southern Ocean is223

still the region with the largest discrepancy in mean CO2 flux (although within the un-224

certainty of the fluxes associated with river discharge which are implicitly included in225

the observation-based estimates, but not in the models, see sections 2.2.1 and 2.3.1) and226

variability, as well as largest model spread (Friedlingstein et al., 2022; Canadell et al.,227

2021). In this study, we aim to quantify the Southern Ocean (following the RECCAP2228

biome shown in Figure 1) surface CO2 fluxes and interior storage of anthropogenic car-229

bon over the period 1985-2018 from different classes of models and observations, and to230

identify knowledge gaps and ways forward.231

This study is organized in the following way. In our methods, we describe the re-232

gion (section 2.1), the datasets that we use throughout this synthesis (section 2.2), and233

how the data were processed (section 2.3). Our results contain first the estimates of the234

mean fluxes 1985-2018 and their decomposition into anthropogenic and natural fluxes,235

and atmospheric CO2 versus climate effects (section 3.1). This is followed by an anal-236

ysis of summer and winter fluxes and the full seasonal cycle, where we also decompose237
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pCO2 into seasonal thermal and non-thermal contributions (section 3.2). We then anal-238

yse the regionally averaged temporal trends of CO2 flux and also of pCO2 in compar-239

ison with in situ pCO2 observations, as well as atmospheric CO2 and climate effects as240

drivers of the trends (section 3.3). In the final part of the results, the study then eval-241

uates the GOBM simulation results with observation-based estimates of ocean interior242

storage of anthropogenic carbon in the Southern Ocean (section 3.4). The discussion first243

summarizes the results with a comparison of the RECCAP1 and RECCAP2 results (sec-244

tion 4.1). We also discuss the drivers of the seasonal cycle (section 4.2), the interannual245

and decadal variability (section 4.3), and the zonal asymmetry of the fluxes in the South-246

ern Ocean (section 4.4). Lastly, we discuss how our study links with and can inform ob-247

servational programs (section 4.5), before presenting a conceptual characterization of the248

Southern Ocean carbon cycle in the conclusions (section 5).249

2 Methods250

2.1 Regions251

We use the RECCAP2 regions (DeVries, 2022) to define the Southern Ocean and252

its northern boundary (Figure 1). This definition of the Southern Ocean covers the sub-253

tropical seasonally stratified biome (STSS), the subpolar seasonally stratified biome (SPSS),254

and the ice biome (ICE) and is based on the global open ocean biome classification of255

Fay and McKinley (2014). This covers a larger area than the definition used in REC-256

CAP1 (44-58◦S, 58-75◦S Lenton et al., 2013) and has the advantage that it does not cut257

through the subtropical region with its large CO2 flux into the ocean. The northernmost258

extent of the Southern Ocean in this definition is 35◦S. For parts of our analysis, we fur-259

ther separate the Atlantic, Indian, and Pacific Ocean sectors along longitudes of 20◦E,260

147◦E, and 290◦E (Figure 1).261

2.2 Data sets262

Here, we introduce data sets across four different data classes that are used for the263

assessment of the Southern Ocean CO2 fluxes and storage, namely: ocean biogeochem-264

istry models (14), surface pCO2-based data-products (11), data assimilated and ocean265

inverse models (3), and atmospheric inversion models (6).266

2.2.1 Ocean biogeochemistry models267

We used 13 global ocean biogeochemistry models (GOBMs) and 1 regional ocean268

biogeochemistry model (Table 1). These models simulate ocean circulation and biogeo-269

chemical fluxes caused by physics (advection, mixing, gas-exchange) and by biological270

processes. They are forced with atmospheric fields from reanalysis products, e.g., by ei-271

ther heat and freshwater fluxes directly or by air temperature, wind speed, precipitation272

and humidity, which are converted to heat and freshwater fluxes using bulk formulae (see273

references in Table 1; Large et al., 1994). From these 14 models, eleven models are global274

ocean models with roughly 1◦×1◦ resolution, and two global models (FESOM REcoM HR275

and ORCA025-GEOMAR) and the regional model (ROMS-SouthernOcean-ETHZ) are276

available in ca. 0.25◦×0.25◦ resolution. Details of global model set-ups are given in (DeVries277

et al., 2023). The ROMS-based regional Southern Ocean model has a northern bound-278

ary at 24◦S.279

For the ocean-models listed above, up to four different simulations were provided280

(see also Table S1 and DeVries et al., 2023). These differ in whether atmospheric CO2281

and all other atmospheric forcing variables vary on interannual time scales, are repeated282

for a single year, or follow a multi-year climatology. In simulation A, the historical run,283

both atmospheric CO2 and all other physical forcing variables vary on interannual time284

scales. In simulation B, the preindustrial control run, a repeated year or climatological285
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Table 1. Overview of data sets used in this paper. Sorted by data class, here: Global Ocean

Biogeochemistry Models (GOBMs), Regional Ocean Biogeochemistry Model, and data assimi-

lated models.

Data set Time period Specific infor-

mation

Reference

Global Ocean Biogeochemistry Models Simulations

CCSM-WHOI 1985-2017 A, B, C, D Doney et al. (2009)

CESM-ETHZ 1985-2018 A, B, C, D Lindsay et al. (2014);

S. Yang and Gruber (2016)

CNRM-ESM2-1 1985-2018 A, B, C, D Séférian et al. (2019);

Berthet et al. (2019);

Séférian et al. (2020)

EC-Earth3 1985-2018 A, B, C, D Döscher et al. (2022)

FESOM REcoM HR 1985-2018 A, B Hauck et al. (2013);

Schourup-Kristensen et

al. (2014, 2018)

FESOM REcoM LR 1985-2018 A, B, C, D Hauck et al. (2013);

Schourup-Kristensen et al.

(2014); Hauck et al. (2020)

MOM6-Princeton 1985-2018 A, B Liao et al. (2020); Stock et

al. (2020)

MPIOM-HAMOCC 1985-2018 A, B, C, D Ilyina et al. (2013); Paulsen

et al. (2017); Mauritsen et

al. (2019)

MRI-ESM2-1 1985-2018 A, B, C, D Urakawa et al. (2020)

NorESM-OC1.2 1985-2018 A, B, C, D Schwinger et al. (2016)

ORCA025-GEOMAR 1985-2018 A, B, C, D Madec and the NEMO team

(2016); Kriest and Oschlies

(2015); Chien et al. (2022)

ORCA1-LIM3-PISCES

(IPSL-NEMO-PISCES)

1985-2018 A, B, C, D Aumont et al. (2015)

PlankTOM12 1985-2018 A, B, C, D Le Quéré et al. (2016);

Buitenhuis et al. (2019);

Wright et al. (2021)

Regional Ocean Biogeochemical Models Simulations

ROMS-SouthernOcean-

ETHZ

1985-2018 A, B, D A. Haumann (2016); Nissen

et al. (2018)

Data-assimilated models

B-SOSE 2013-2018 Verdy and Mazloff (2017)

ECCO-Darwin 1992-2017 Carroll et al. (2020, 2022)

OCIMv2021 1780-2018 A, B, C DeVries (2022)
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Table 2. Overview of data sets used in this paper (continued). Sorted by data class, here:

pCO2-products and atmospheric inversions. The atmospheric inversions were provided only since

1990.

Data set Time pe-

riod

Specific infor-

mation

Reference

pCO2-products

AOML EXTRAT 1998-2018 R. Wanninkhof (2023)

CMEMS-LSCE-

FFNN

1985-2018 Chau et al. (2022)

CSIR-ML6 1985-2018 Gregor et al. (2019)

Jena-CarboScope

(Mixed Layer

Scheme)

1985-2018 Rödenbeck et al. (2013, 2022)

JMA-MLR 1985-2018 Y. Iida et al. (2021)

LDEO-HPD 1985-2018 Gloege et al. (2022)

NIES-ML3 1985-2018 Zeng et al. (2022)

OceanSODA-ETHZ 1985-2018 Gregor and Gruber (2021)

MPI-SOM-FFN 1985-2018 Landschützer et al. (2016, 2020)

Jena-CarboScope

(SOCCOM)

2015-2018 Bushinsky et al. (2019) updated

MPI-SOM-FFN

(SOCCOM)

2015-2018 Bushinsky et al. (2019) updated

Watson2020 1988-2018 Watson et al. (2020)

LDEO climatology

(Takahashi legacy)

climatology Takahashi et al. (2009)

Atmospheric inversions Ocean prior

Jena CarboScope 1957-2020

(1990-2020)

CarboScope

pCO2-product

Rödenbeck et al. (2018)

CAMS 1979-2020

(1990-2020)

CMEMS-

LSCE-FFNN

pCO2-product

Chevallier et al. (2005)

NISMON-CO2 1990-2020 JMA-MLR

pCO2-product

Niwa et al. (2017)

CarbonTrackerEurope

(CTE)

2001-2020 CarboScope

pCO2-product

van der Laan-Luijkx et al. (2017)

UoE 2001-2020 Takahashi cli-

matology

Feng et al. (2016)

CMS-Flux 2010-2020 MOM6 GOBM Liu et al. (2021)
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35°S

44°S

58°S

147°E

20°E

70°W

Atlantic STSS

Atlantic SPSS

Atlantic ICE

Indian STSS

Indian SPSS

Indian ICE

Pacific STSS

Pacific SPSS

Pacific ICE

Figure 1. Study region. The Southern Ocean covers three biomes: The subtropical seasonally

stratified (STSS), the subpolar seasonally stratified (SPSS), and the ice (ICE) biome. The biomes

are defined following Fay and McKinley (2014). We further consider the Atlantic, Pacific, and

Indian Ocean sectors separately in parts of the analysis. The dashed lines show the RECCAP2

Southern Ocean northernmost extent (35◦S), the RECCAP1 Southern Ocean northernmost

extent (44◦S), and RECCAP1’s boundary for the circumpolar region (58◦S).

physical atmospheric forcing is used, and the atmospheric CO2 levels are held constant286

at pre-industrial levels. In simulation C, the atmospheric CO2 varies interannually and287

only the physical atmospheric forcing is climatological. In simulation D, the atmospheric288

CO2 levels are held constant at pre-industrial levels, whereas the physical atmospheric289

forcing varies interannually. These simulations allow for the separation of the effects of290

the increase in atmospheric CO2 and climate change and variability on air-sea CO2 fluxes:291

the steady-state and non-steady state components of both natural and anthropogenic292

carbon. Here anthropogenic refers to the direct effect of increasing atmospheric CO2 and293

non-steady state encompasses the effects of climate change and variability. For a detailed294

explanation, please see DeVries et al. (2023) and further explanation in Le Quéré et al.295

(2010); McNeil and Matear (2013); Hauck et al. (2020); Crisp et al. (2022); Gruber et296

al. (2023). Simulation A includes all components of the carbon fluxes. In the control sim-297

ulation B, only the steady-state component of natural carbon is considered. In simula-298

tion C, only the steady-state components of both natural and anthropogenic carbon are299

accounted for. Lastly, in simulation D, only the steady state and non-steady state com-300

ponents of natural carbon are represented.301

The majority of models do not account for the river-induced outgassing of carbon302

(DeVries et al., 2023; Terhaar et al., 2023), hence the air-sea CO2 flux in simulation A303

corresponds to the SOCEAN definition used in the Global Carbon Budget (Friedlingstein304

et al., 2022), which differs from pCO2-product estimates by the river-induced term. Note305

that the river-induced term will be discussed in greater detail in section 4.1. In addition,306

simulation A may include a model bias (mean offset) and drift (temporally changing off-307

set). We assess the model drift of the air-sea CO2 flux by calculating the linear trend308

of the integrated CO2 flux time series for the period 1985-2018 in simulation B for each309

model and each biome. The time series plots and the linear trends reported in Figure310
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8 are drift corrected by subtracting the trend from simulation B. We note that this drift-311

correction only marginally impacts the reported trends in the result section, as the trends312

in simulation B are small compared to the mean fluxes for all models (see supplemen-313

tary material: Text S1 and Figure S1). In contrast to a global bias (any deviation of the314

global mean CO2 flux from 0 in simulation B, see Hauck et al., 2020), the regional bias315

in the simulated flux cannot be assessed by the set of simulations as it cannot be sep-316

arated from the natural steady-state air-sea CO2 flux (Terhaar et al., 2023), which is non317

zero on a regional level.318

We use the full suite of models in all analyses, with two exceptions. Firstly, we ex-319

cluded the MPIOM-HAMOCC model in all seasonal analyses (Fig. 4-7) because its am-320

plitude of the seasonal cycle is a factor 3-6 larger than in the other models in the three321

main Southern Ocean biomes (Figure S2), and including this outlier would skew the en-322

semble mean disproportionately. The exaggerated seasonal cycle in the MPIOM-HAMOCC323

model was found in earlier studies and is attributed to excessive net primary production324

in the Southern Ocean (Mongwe et al., 2018). Secondly, the decomposition into natu-325

ral and anthropogenic CO2 fluxes was not possible with GOBMs that only provided sim-326

ulations A and B (MOM6-Princeton and FESOM-REcoM-HR). See section 2.3.4 for fur-327

ther restrictions on GOBM use and interpretation for the interior ocean anthropogenic328

carbon accumulation.329

2.2.2 Surface pCO2-based data-products330

As a second data class, we use surface ocean pCO2 observation-based data prod-331

ucts (pCO2-products) (Table 2, for more details see DeVries et al., 2023). These pCO2-332

products extrapolate or interpolate sparse ship-based measurements of pCO2 using sta-333

tistical modeling approaches. All pCO2-based data-products use SOCAT as the target334

dataset. The majority of pCO2-products use similar gridded prediction datasets to fill335

the gaps, including sea surface temperature, sea surface salinity, mixed-layer depth, and336

chlorophyll-a estimates for the open ocean. We use 8 such pCO2-products that all cover337

the full time-series 1985-2018 for the ensemble mean of pCO2-products. AOML EXTRAT338

covers a shorter period, and is thus not included in the ensemble mean 1985-2018, but339

is included in the ensemble mean 2015-2018. The largest methodological difference be-340

tween the pCO2-products stems from the algorithm choice. The majority of the meth-341

ods use regression approaches (a.k.a. machine learning) such as artificial neural networks342

(e.g, MPI-SOM-FFN) and gradient boosted decision trees (e.g., CSIR-ML6) to capture343

the relationship between the ship-based measurements and the predictor variables. The344

Jena-CarboScope product includes a mechanistic understanding of mixing, entrainment,345

and fluxes of CO2 into and out of the mixed layer (Rödenbeck et al., 2014). The HPD-346

LDEO method adjusts global ocean biogeochemistry model estimates of pCO2 to be closer347

to observed ship-based measurements and is thus an observation-based posterior correc-348

tion to the GOBM estimates (Gloege et al., 2022).349

Further, two additional variants of MPI-SOM-FFN and Jena-CarboScope by Bushinsky350

et al. (2019, ship+float estimates are used here) include additional BGC-float-derived351

pCO2 for the Southern Ocean (referred to as BGC-float pCO2-products, 2015-2018). We352

also use the Watson2020 product, which is a neural network approach (based on MPI-353

SOM-FFN) but applies an adjustment to SOCAT pCO2 that accounts for the difference354

between ship intake temperature and satellite sea surface temperature (Watson et al.,355

2020). The BGC-float pCO2-products (2015-2018) and Watson2020 (1988-2018) are not356

included in the pCO2-product ensemble averages, as they are based on fundamentally357

different pCO2 values. We also use a monthly climatology product (LDEO-clim) that358

is centered on the year 2010 (Takahashi et al., 2009).The LDEO-clim product fills the359

gaps using a combination of inverse distance weighted interpolation and a diffusive-advective360

interpolation scheme (Takahashi et al., 2009). Note that this product is only used in rep-361

resentations of the seasonal cycle, and not for trend analyses. All these pCO2-products362
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estimate the bulk air-sea CO2 flux with:363

FCO2 = K0 · kw · (pCO2
sea − pCO2

atm) · (1− ice) (1)

where K0 is the solubility of CO2 in seawater, kw is the gas transfer velocity, pCOsea
2 is364

the oceanic estimate of pCO2 from the pCO2-product, pCO2atm is the atmospheric pCO2,365

and ice is the sea-ice fraction, with the majority of the open ocean having a fraction of366

0. Other than pCOsea
2 , kw is the largest source of uncertainty in the calculation of bulk367

air-sea CO2 fluxes R. H. Wanninkhof (2014); Fay et al. (2021). However, most of the pCO2-368

products use a quadratic formulation of kw as described by R. Wanninkhof et al. (1993)369

meaning that the product spread is reduced due to similar choices – details are shown370

in Global chapter’s Table S2 (DeVries et al., 2023). An exception is the Watson2020 prod-371

uct (Watson et al., 2020) that calculates air sea CO2 fluxes using the formulation described372

in Woolf et al. (2016) where a cool and salty skin adjustment is applied.373

2.2.3 Data-assimilated models374

We use three data-assimilating models (Table 1). The Biogeochemical Southern375

Ocean State Estimate (B-SOSE Verdy & Mazloff, 2017) is an eddy-permitting 1/6-degree376

resolution data-assimilating model, which assimilates the data from Southern Ocean Car-377

bon and Climate Observations and Modelling (SOCCOM) BGC-Argo floats as well as378

shipborne and other autonomous observations (i.e., GLODAP and SOCAT) over the pe-379

riod 2013-2018. In situ and satellite observations of the physical state are also assimi-380

lated. B-SOSE is based on the MIT general circulation model (MITgcm Campin et al.,381

2011) and uses software developed by the consortium for Estimating the Circulation and382

Climate of the Ocean (ECCO Stammer et al., 2002; Wunsch & Heimbach, 2013) to build383

on the SOSE physical model framework by adding the Nitrogen version of the Biogeo-384

chemistry with Light, Iron, Nutrients, and Gases (N-BLING; evolved from Galbraith et385

al., 2010) biogeochemical model. Consistency with the data is achieved by systemati-386

cally adjusting the model initial conditions and the atmospheric state through the 4D-387

Var assimilation methodology. This B-SOSE assimilation methodology does not break388

the model biogeochemical or physical budgets. The budgets are closed, which allows one389

to understand signal attribution, though limits the control we have over the solution. For390

this reason B-SOSE is only consistent with the data on the timescales longer than ap-391

proximately 90 days; the mesoscale eddies are reproduced statistically and not determin-392

istically. Even with this assimilation methodology some seasonal biases still exist, and393

B-SOSE is still a work in progress.394

The ECCO-Darwin data-assimilation model (Carroll et al., 2020) is based on a global395

ocean and sea ice configuration (about 1/3 degree) of the MIT general circulation model396

and is available from January 1992 to December 2017. Besides being global and cover-397

ing a longer duration than B-SOSE, this product also uses a different biogeochemical model398

and assimilation technique. The ECCO circulation estimates used in this version are cou-399

pled online with the Darwin ecosystem model (Dutkiewicz et al., 2009), which represents400

the planktonic ecosystem dynamics coupled with biogeochemical cycles in the ocean. The401

R. Wanninkhof (1992) parameterization of gas transfer velocity is used and pCOatm
2 is402

the National Oceanic and Atmospheric Administration Marine Boundary Layer Refer-403

ence product (Dlugokencky et al., 2021). The biogeochemical observations used to eval-404

uate and adjust ECCO-Darwin include (1) surface ocean fugacity (fCO2) from the monthly405

gridded Surface Ocean CO2 Atlas (SOCATv5 Bakker et al., 2016), (2) GLODAPv2 ship-406

based profiles of NO3, PO4, SiO2, O2, dissolved inorganic carbon (DIC), and alkalinity407

(Olsen et al., 2016), and (3) BGC-Argo float profiles of NO3 and O2 (Drucker & Riser,408

2016; Riser et al., 2018). To adjust the model’s fit to the global biogeochemical obser-409

vations, the Green’s function approach is used to adjust biogeochemical initial conditions410

and model parameters.411
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OCIMv2021 is an inverse model that assimilates observations of temperature, salin-412

ity, CFCs and radiocarbon to achieve an estimate of the climatological mean ocean cir-413

culation (DeVries, 2022). This steady-state circulation model is used together with an414

abiotic carbon cycle model and atmospheric CO2 forcing to simulate anthropogenic car-415

bon uptake and its redistribution within the ocean. It uses a monthly time-step and sim-416

ulates the period 1780 to 2018. No assimilation takes place during this period.417

2.2.4 Atmospheric inversions418

Six atmospheric inversions are available for our analysis (Table 2). Atmospheric419

inversions make use of the worldwide network of atmospheric CO2 observations. They420

ingest a dataset of fossil fuel emissions, which are assumed to be well known, into an at-421

mospheric transport model and then solve for the spatio-temporal distribution of land422

and ocean CO2 fluxes while minimizing the mismatch with atmospheric CO2 observa-423

tions (Friedlingstein et al., 2022). Thus, the resulting land and ocean carbon fluxes are424

bound to the atmospheric CO2 growth rate, but the estimated regional fluxes depend425

on the number of stations in the observational network. The inversions also start from426

prior estimates of land and ocean fluxes. For four inversion data sets that we use here,427

the ocean prior is taken from pCO2 -products that are used in this analysis as well (Ta-428

ble 2). One inversion (UoE) uses the Takahashi climatology as a prior and one (CMS-429

Flux) an ocean biogeochemical model. The atmospheric inversions are thus not indepen-430

dent from the other data classes (Friedlingstein et al., 2022, their Table A4). The atmo-431

spheric inversion data were submitted for RECCAP in the same version as in the Global432

Carbon Budget 2021 (Friedlingstein et al., 2022), but only since 1990. The three inver-433

sions starting later (2001 or 2010) are only included in averages reported for 2015-2018434

(Figures 4 and 5), and as individual lines in the time-series figure (Figure 8).435

2.3 Processing436

Throughout this study, we report the air-sea CO2 exchange as the net flux (FCO2),437

which is the sum of natural, anthropogenic and river-induced air-sea CO2 flux (see e.g.,438

DeVries et al., 2023; Hauck et al., 2020; Crisp et al., 2022). As the GOBMs vary widely439

in their choices on river carbon and nutrient input into the ocean and burial at the seafloor440

(see DeVries et al., 2023; Terhaar et al., 2023), an adjustment is applied to make all data441

classes comparable.442

2.3.1 River flux adjustment443

Globally, the majority of GOBMs produce a small imbalance of riverine carbon in-444

flow and burial globally (<0.14 PgC yr−1), which is smaller than the current best esti-445

mate of river-induced CO2 ocean outgassing of 0.65 PgC yr−1 (Regnier et al., 2022). The446

imbalances are due to manifold choices and illustrate the lack of a closed land-ocean car-447

bon loop in the GOBMs. As the GOBMs do not adequately account for the river dis-448

charge and its fate within the ocean, and thus for river-derived ocean CO2 outgassing449

(Terhaar et al., 2023), we account for this outgassing by using the spatial patterns of river-450

induced air-sea CO2 fluxes from Lacroix et al. (2020) that are scaled to the global value451

of 0.65 PgC yr−1 (Regnier et al., 2022). Southern Ocean outgassing from rivers amounts452

to 0.04 PgC yr−1, i.e., around 6% of the global river flux. It is distributed over the South-453

ern Ocean biomes as follows (positive outgassing): 0.00036 PgC yr−1 in the ICE biome,454

0.053 PgC yr−1 (SPSS biome), -0.014 (STSS biome). The estimated riverine CO2 fluxes455

were added to biome-integrated fluxes in simulation A for all GOBMs, so that these are456

comparable to the pCO2-products. They are not added to spatial maps of CO2 fluxes457

due to large uncertainties in the regional attribution by Lacroix et al. (2020). The river-458

ine fluxes are one (ICE) to multiple (SPSS, STSS) orders of magnitude smaller than the459
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mean fluxes quantified in this study. The uncertainty associated with the river flux ad-460

justment is discussed in section 4.1.461

2.3.2 Treatment of different area coverage462

Air-sea CO2 fluxes in all data classes were integrated over the area available for each463

GOBM, pCO2-product etc., i.e., fluxes were not scaled to the same ocean area here. Rel-464

ative to the ocean area in the RECCAP mask, the covered ocean areas in the GOBMs465

and data-assimilating models corresponds to 96.2-100% (minimum for CCSM-WHOI)466

and to 95.6-100% in the pCO2-products (minimum for JMA-MLR). These differences467

mainly stem from the ICE biome. We assume that the discrepancy arising from differ-468

ences in covered area are smaller than the uncertainty arising from any extrapolation to469

the same area.470

2.3.3 pCO2 decomposition471

To separate temperature driven changes in pCO2 from biological processes and mixing-472

driven entrainment, pCO2 is decomposed into thermal and non-thermal components (Takahashi473

et al., 1993). The thermal component (pCOT
2 ) is calculated as474

pCOT
2 = pCO2 · e(0.0423·∆T ) (2)

where pCO2 is the annual mean of pCO2 and ∆T difference of the monthly mean tem-475

perature from the annual mean temperature. The non-thermal contribution (pCOnonT
2 )476

is estimated as the difference of the thermal contribution (pCOT
2 ) from the monthly-averaged477

pCO2. The first derivatives of these two components are subtracted from each other to478

create the pCO2 seasonal driver metric, denoted as λpCO2:479

λpCO2 =

∣∣∣∣pCOT
2

δt

∣∣∣∣− ∣∣∣∣pCOnonT
2

δt

∣∣∣∣ (3)

Here, positive values indicate periods when the thermal component is a larger contrib-480

utor to pCO2, and negative values show where the DIC processes (non-thermal) play a481

dominant role in surface pCO2 changes. We also denote the first derivatives as pCOT ′

2482

and pCOnonT ′

2 for brevity.483

2.3.4 Anthropogenic carbon inventories484

Anthropogenic CO2 (Cant) is defined as the change in ocean dissolved inorganic485

carbon (DIC) since preindustrial times due to the direct effect of increasing CO2 con-486

centration in the atmosphere. It is computed as the DIC difference between experiments487

A and D. The accumulation of Cant can be separated into a steady-state component (Css
ant,488

DIC difference between experiments C and B), that is influenced only by the increased489

atmospheric CO2, and a non-steady-state component (Cns
ant), which considers the effect490

of climate variability and change on Cant (and which is maximally 10-20% of Cant, Text491

S2 and Figures S3-S4). Here we focus mainly on the change in Cant that has occurred492

over the period 1994-2007 (hereafter ∆Cant), to correspond to the years covered by the493

eMLR(C*) observation-based estimate (Gruber, Clement, et al., 2019). The eMLR(C*)494

method (Clement & Gruber, 2018) uses ocean measurements of DIC from GLODAP2495

(Olsen et al., 2016) over more than 30 years as the foundation to determine ∆Cant be-496

tween nominal years 1994 and 2007. The method has been shown to be accurate at global497

and basin scales, but is more uncertain at sub-basin scales and should not be used be-498

low 3000 m depth. The (2 sigma) uncertainty of the eMLR(C*) product is estimated to499

be around 19% for the Southern Hemisphere (Gruber, Clement, et al., 2019). The eMLR(C*)500

method differs fundamentally from past indirect or model-based methods used to esti-501

mate Cant accumulated since pre-industrial times (Gruber et al., 1996; Sabine et al., 2004;502

Waugh et al., 2006; DeVries, 2014). Of these, we used the 1800-1994 cumulative Cant503

–13–



manuscript submitted to Global Biogeochemical Cycles

estimate based on (Sabine et al., 2004), which is characterized by an uncertainty of about504

20% globally (Sabine et al., 2004; Matsumoto & Gruber, 2005). In terms of GOBMs, we505

used all those listed in Table 1, with the exception of FESOM-REcoM-HR and MOM6-506

Princeton who provided only experiments A and B. For most GOBMs, we analyze Ctot
ant,507

to allow for a more accurate comparison with the observation-based data set (eMLR(C*)).508

However, for MPIOM-HAMOCC and CNRM-ESM2-1 it was only possible to compute509

Css
ant, because of physical forcing inconsistencies between experiments A and D. We be-510

lieve that the advantage of including all GOBMs in the analysis outweighs the disadvan-511

tages of having an incoherent definition of Cant among GOBMs. It should be noted that512

the spin-up procedure of ROMS-SouthernOcean-ETHZ, which uses atmospheric CO2 from513

1969 to 1978 (for a ten year spin-up of the biogeochemical component), makes it suit-514

able only for the analysis of ∆Cant between 1994 and 2007, and not of cumulative Cant515

until 1994 nor of air-sea Cant fluxes in specific years. As explained in the RECCAP2 model516

evaluation chapter (Terhaar et al., 2023), all GOBMs are forced with a very similar at-517

mospheric CO2 mixing ratio (xCO2) over the historical period. However, the atmospheric518

xCO2 in the pre-industrial control simulations across the GOBM ensemble varies between519

278 ppm and 287.4 ppm, leading to an underestimate of the Cant storage for those mod-520

els with a late starting date (Terhaar et al., 2023).521

3 Results522

3.1 Mean air-sea CO2 fluxes 1985-2018523

We start with a comparison of the average air-sea CO2 flux in the two data classes524

(GOBMs, pCO2-products) that cover the full period 1985-2018. We exclude data classes525

with fewer products for the sake of robustness, and show the comparison between all data526

classes in sections 3.2 and 3.3. The mean net Southern Ocean air-sea CO2 flux 1985-2018527

by the GOBM ensemble is -0.75± 0.28 PgC yr−1 and −0.73 ±0.07 PgC yr−1 (flux into528

the ocean) for the pCO2-product ensemble mean (Figure 2a). While both ensemble means529

result in an almost identical ocean uptake of CO2, the GOBM ensemble spread is four530

times larger.531

All Southern Ocean regions are sinks of CO2 based on the ensemble averages of the532

GOBMs and pCO2-products (Figure 2). The subtropical seasonally stratified biome (STSS),533

which is a subduction area with deep winter mixed layer depth and intermediate chloro-534

phyll concentration (Fay & McKinley, 2014), is the largest sink according to all data sets535

(GOBMs: -0.53±-0.17 PgC yr−1, pCO2-based products:-0.62±0.06 PgC yr −1, Figure536

2a). Second is the subpolar seasonally stratified biome (SPSS) (GOBMs: -0.13± 0.14 PgC yr−1,537

pCO2-products: -0.07± 0.02 PgC yr−1), which is characterized by upwelling of old wa-538

ter, rich in natural carbon but with low anthropogenic carbon content. The upwelled wa-539

ter is also rich in nutrients, and thus a region with important biological activity. Note540

that three GOBMs simulate the SPSS to be a source of CO2 to the atmosphere. The marginal541

sea ice (ICE) biome is the weakest CO2 sink (GOBMs: -0.09±0.13 PgC yr−1; pCO2-products:542

-0.05±0.02 PgC yr−1) due to sea ice acting as a lid that prevents carbon outgassing in543

winter, and is the smallest of all three biomes covering an area of about 60% the size of544

STSS or SPSS (Fay & McKinley, 2014). Four individual models suggest that the ICE545

biome is a weak outgassing region, but no other data set supports this.546

In a zonal mean view (Figure 2b), the smallest uptake occurs between 62 and 55◦S547

and the largest uptake around 40◦S. However, the amplitude differs between data classes,548

with the pCO2-products having a larger difference between minima and maxima (1.96 mol C m−2 yr−1),549

than the GOBM ensemble mean (1.19 mol C m−2 yr−1). Some of the individual GOBMs550

deviate from this pattern (see supplementary figure S5a for zonal means of individual551

models).552
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Figure 2. Temporal average of the Southern Ocean CO2 net flux (FCO2). A positive flux

denotes outgassing from ocean to atmosphere. The temporal average is calculated over the period

1985 to 2018 for the global ocean biogeochemistry models (GOBMs) and pCO2-products (Table

1). (a) The green and blue bar plots show the ensemble mean of the GOBMs and pCO2-based

data-products, and open circles indicate the individual GOBMs and pCO2-products. The en-

semble standard deviation (1σ) is shown by the error bars. The river flux adjustment added to

the GOBMs is small (0.04 PgC yr−1), its distribution over the biomes is described in section

2.3.1. (b) zonal mean flux density of the different data sets. Thick green and blue lines show the

ensemble means, and thin green and blue lines show the individual GOBMs and pCO2-products.

Approximate boundaries for biomes are marked with black points on the x-axis. (c-d) maps of

spatial distribution of net CO2 flux for ensemble means of GOBMs, and pCO2-products.
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Figure 3. Decomposition of the modeled net air-sea CO2 flux 1985-2018 into natural and

anthropogenic CO2 fluxes; as well as into CO2 and climate effects. See method section 2.2.1 for

explanation on this decomposition. The separation into natural and anthropogenic CO2 fluxes is

not possible for FESOM-REcoM-HR and MOM6-Princeton models as only simulations A and B

are available. These models are only shown as crosses for net FCO2 but not used for averaging.

Hence, separation within this figure is coherent, but the net FCO2 is slightly different from the

net FCO2 in Figure 2.

Regionally, significant differences emerge between the Atlantic, Indian and Pacific553

sectors of the Southern Ocean (Figure 2c-d). Within the STSS, large CO2 fluxes into554

the ocean occur in the Atlantic and Indian sector across all data classes (Figure 2b-c,555

mean flux density: -1.93 mol C m−2 yr−1 and -2.05 mol C m−2 yr−1 for GOBMs and556

pCO2-products, respectively, in the Atlantic sector, -1.44 mol C m−2 yr−1 and -1.89 mol C m−2 yr−1
557

in the Indian sector, and -1.22 mol C m−2 yr−1 and -1.54 mol C m−2 yr−1 in the Pa-558

cific sector). CO2 outgassing locations differ across the data classes. In the GOBM en-559

semble mean, the outgassing is mainly confined to the Indian sector of the SPSS, whereas560

it is more widely spread in the pCO2-product ensemble mean covering the Pacific and561

Indian Ocean sectors of the SPSS and the Indian sector in the ICE biome. The smooth562

appearance of the outgassing signal in the GOBM and pCO2-product ensemble means563

may be partly attributable to averaging over multiple data sets and months and years.564

3.1.1 Decomposition into anthropogenic and natural carbon fluxes and565

climate versus atmospheric CO2 effects on the mean CO2 flux566

With the aid of the additional model simulations, we can decompose the net South-567

ern Ocean air-sea CO2 flux into natural and anthropogenic components, and separate568

the indirect effects of physical climate change and the direct geochemical effect of increas-569

ing atmospheric CO2 mixing ratios. The GOBM ensemble mean indicates that the nat-570

ural Southern Ocean carbon cycle without anthropogenic perturbation would be a small571

CO2 source to the atmosphere of 0.05 PgC yr−1, although with a large model spread as572

indicated by the standard deviation of 0.25 PgC yr−1 (Figure 3). In fact, six GOBMs573

simulate negative natural CO2 fluxes, i.e., into the ocean, and six GOBMs simulate pos-574

itive natural fluxes, i.e., out of the ocean. This also illustrates that the GOBM spread575

of net fluxes (standard deviation: 0.28 PgC yr−1) is, to the first order, dominated by the576

model differences of natural fluxes (standard deviation: 0.25 PgC yr−1), which may con-577

tain artifacts from model biases and drift (Terhaar et al., 2023). The spread of anthro-578
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pogenic fluxes is smaller (0.13 PgC yr−1). The small natural outgassing signal in the en-579

semble mean is a balance of natural CO2 uptake in the STSS (-0.26±0.14 PgC yr−1) and580

outgassing in the SPSS (0.21±0.11 PgC yr−1) and ICE (0.10± 0.12 PgC yr−1) biomes.581

This is in qualitative agreement with the patterns of natural CO2 fluxes by Mikaloff Fletcher582

et al. (2007).583

The anthropogenic perturbation (-0.79±0.13 PgC yr−1) has turned the SPSS and584

ICE biomes, and possibly the entire Southern Ocean, from source to sink. The large an-585

thropogenic flux contribution in the SPSS (-0.38±0.08 PgC yr−1) suppresses the nat-586

ural CO2 outgassing flux. The STSS is a sink for both natural and anthropogenic flux587

components. The direct effect of increasing atmospheric CO2 enhances the Southern Ocean588

sink by -0.74±0.11 PgC yr−1 and is the largest signal in the anthropogenic perturbation.589

A smaller component stems from the climate change effect on this steady state CO2-induced590

flux (Figure S6). The direct CO2 effect is largest in the SPSS (-0.34±0.06 PgC yr−1) where591

old water masses reach the surface that are undersaturated in anthropogenic carbon, fol-592

lowed by the STSS and ICE biomes (-0.23±0.03 PgC yr−1 and -0.17±0.03 PgC yr−1).593

In the upwelling regions, the primary effect of rising atmospheric CO2 is thus to suppress594

the outgassing of natural carbon.595

The effect of physical climate change and variability, i.e., warming and changes in596

wind speed patterns and strength that provoke changes in circulation (Le Quéré et al.,597

2007; Lovenduski et al., 2007; Hauck et al., 2013), reduces the CO2 flux into the ocean598

(+0.04±0.07 PgC yr−1), but is overall small in comparison to the direct CO2 effect. This599

climate change induced outgassing stems nearly entirely from the SPSS (+0.04±0.04 PgC yr−1),600

with the largest contribution from the Indian sector followed by the Pacific (Figure S7).601

Thus, the climate change effect amplifies the natural CO2 outgassing, which is also the602

largest in the Indian and Pacific sectors of the SPSS. The climate effect is a combina-603

tion of climate effects on natural and anthropogenic CO2 fluxes, which partly oppose each604

other (Figure S6).605

3.2 The seasonal cycle of air-sea CO2 fluxes in the Southern Ocean606

We now shift our focus to seasonal fluxes by separating fluxes into separate win-607

ter (Figure 4) and summer (Figure 5) mean CO2 fluxes. For this, we examine the pe-608

riod 2015-2018, for which all data sets are available (see Figure S8 for an annual mean609

figure for 2015-2018).610

3.2.1 Winter611

In winter, all but two data sets (one GOBM and BGC-float pCO2-products) agree612

that the Southern Ocean is a sink of CO2 (GOBMs: -0.83±0.40 PgC yr−1, pCO2 prod-613

ucts: -0.48±0.08 PgC yr−1; Figure 4a). The general pattern of strong uptake towards614

the north and a reduction towards the south is common to all data classes, though ex-615

ceptions for individual GOBMs do exist (Figure 4a,b). Expounding on this, the strong616

uptake in the STSS is shown by all data sets, but further south the coherence disinte-617

grates. Within the SPSS, there is considerable variation in position and magnitude of618

maximum outgassing with some GOBMs being a sink along the entire zonal mean (Fig-619

ure 4a,b). Towards the southern reaches of the ICE biome, fluxes are more coherent as620

they are constrained by sea-ice cover in winter (Figure 4b). For the zonal means of in-621

dividual GOBMs, see Figure S5.622

The divergence between data class average flux estimates for the Southern Ocean623

are explained nearly entirely by differences in the SPSS (GOBMs: -0.15±0.32 PgC yr−1
624

and pCO2 products: 0.15±0.09 PgC yr−1, in Figure 4a). Note also that the spread of625

the individual GOBMs is the largest in the SPSS (0.32 PgC yr−1), although it is also626

substantial in the other biomes (STSS: 0.29 PgC yr−1, ICE: 0.13 PgC yr−1) (Figure 5a).627
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Figure 4. Average winter (June-August) air-sea CO2 fluxes (FCO2) in the period 2015-2018,

(a) averaged over biomes, (b) zonal mean flux density, (c-f) maps of flux density. Same as Figure

2, but including also data sets with shorter coverage, and a map of the CO2 flux from the BGC-

float pCO2-products (panel e), and B-SOSE (f), and hence focussing on the period 2015-2018 for

all data sets for comparability. Note that the MPI model is excluded here. The zonal mean of

individual models are presented in Figure S5c.
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The SPSS is also where we see the largest impact of the inclusion of floats in the BGC-628

float pCO2-products (Figure 4d,e), with the mean outgassing flux more than doubling629

that of the regular pCO2-product ensemble.630

The zonal differences and features of fluxes between data classes are also most dis-631

tinct in the SPSS (Figures 4c-f). In short, the Atlantic sector of the SPSS has the low-632

est flux (weak source or even sink), while the Indian and Pacific sectors dominate the633

outgassing. The data-assimilated model B-SOSE has stronger localized outgassing com-634

pared with the other data classes but bear in mind that B-SOSE is only one data sets635

(Figure 4f), while the other data classes (Figures 4c-e) represent up to 13, thus poten-636

tially averaging out local signals. The outgassing hotspot at the boundary between the637

Atlantic and Indian sectors of the SPSS can also be recognized in the pCO2-products638

(Figure 4d). The second hotspot in the western Pacific SPSS is not distinguishable in639

the other data sets.640

3.2.2 Summer641

In summer, GOBMs, pCO2-products and inversions largely show CO2 uptake within642

the three Southern Ocean biomes, and outgassing north of the STSS (Figure 5a-b). In643

contrast to winter, the GOBM ensemble mean for summer 2015-2018 (-1.04±0.77 PgC yr−1)644

underestimates the CO2 uptake relative to the pCO2-product ensemble mean (-1.46±0.18 PgC yr−1,645

Figure 5a). This also holds true for the data-assimilated models, where B-SOSE even646

simulates outgassing in the SPSS (Figure 5a,b,f). Otherwise, the data-assimilated mod-647

els, B-SOSE and ECCO-Darwin, deviate substantially from the other data classes. The648

differences between pCO2-products with and without BGC-float data are hardly appar-649

ent in summer (Figure 5a, compared to 4a). This could be due to a smaller discrepancy650

between float and ship-data in summer, and/or a dominance of SOCAT data in sum-651

mer for the ship+float estimate. For context, for the period 2015 through 2018, BGC-652

float data account for up to 70% of winter pCO2 monthly by 1◦×1◦ measurements in653

the Southern Ocean (SOCAT + floats), while in summer the floats represent only 20%654

(Bakker et al., 2016; Bushinsky et al., 2019).655

While the STSS was a region of coherence between data classes in winter (Figure656

4), it is the main source of the discrepancy between the GOBM and pCO2-product en-657

semble means in summer (GOBMs: -0.40±0.28 PgC yr−1, pCO2-products: -0.73±0.08 PgC yr−1).658

The discrepancy is comparatively smaller in the SPSS (GOBMs: -0.33±0.34 PgC yr−1,659

pCO2-products: -0.42±0.06 PgC yr−1). We note that CO2 fluxes for both GOBMs and660

pCO2-products show less variation from ICE to STSS in summer compared to winter661

(Figure 4b vs 5b, respectively). There is, nevertheless, an offset with lower GOBM CO2662

uptake than in pCO2-products north of 55◦S, and vice versa to the south. Also, the GOBM663

spread in the represented magnitude of the fluxes is large. In absolute terms, the GOBM664

ensemble spread of fluxes in summer (from -2.03 to +0.28 PgC yr−1) is larger than in665

winter (from -1.36 to 0.12 PgC yr−1) or than the spread in the annual mean (from -1.30666

to -0.38 PgC yr−1; see Figure S5b for zonal means of individual GOBMs). This mirrors667

the difficulty in representing the balance between physical and biological processes in sum-668

mer, which is further assessed in the next two sections 3.2.3 and 3.2.4.669

3.2.3 The full seasonal cycle670

We diagnose distinctly different seasonal cycles in the three biomes. The ICE biome671

has a rather clear maximum uptake in summer in the GOBM and pCO2-product ensem-672

ble means, as well as most individual data sets (Figure 6a). In the STSS, the pCO2-products673

suggest a weak seasonal cycle with a maximum uptake in autumn (Figure 6c), while the674

majority of GOBMs simulate a maximum CO2 uptake in winter and a substantially smaller675

flux in summer. The largest disagreement occurs in the SPSS, where the seasonal cy-676

cle transitions from winter outgassing in the ICE biome to summer outgassing in the STSS677
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Figure 5. Average summer (December-February) air-sea CO2 fluxes (FCO2) in the period

2015-2018. Same as Figure 4, but for summer. The zonal mean of individual models are pre-

sented in Figure S5b.
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Figure 6. The seasonal cycle of air-sea CO2 flux in the Southern Ocean separated by biomes

for all data sets as indicated in the legend, a) subtropical seasonally stratified (STSS) biome, b)

subpolar seasonally stratified (SPSS) biome, c) ice (ICE) biome. Thin green and blue lines depict

individual GOBMs and pCO2-products, and thick lines indicate their ensemble means. Note that

the MPI model is excluded here. The ensemble standard deviation (1σ) is shown by the bars

for each month. Panels (d-u) present the season of maximum CO2 uptake per grid cell in the

individual GOBMs, data-assimilated models and the ensemble mean of the pCO2-products over

the period indicated in the panels (varies by data set). See Figure S9 for the individual pCO2-

products (panel d-u equivalents) and Figure S10 for the seasonal cycle in all nine subregions

(equivalent to panels a-c but further split into Atlantic, Pacific and Indian Ocean sectors).

–21–



manuscript submitted to Global Biogeochemical Cycles

biomes. Here, atmospheric inversions and pCO2-products (including the BGC-float pCO2678

products), suggest the maximum CO2 uptake to be in summer. In winter, the BGC-float679

pCO2-products more than double the estimates of outgassing relative to the other pCO2680

products (Figure 6b). The GOBM ensemble average roughly agrees with this seasonal681

pattern, but simulates a reduced seasonal cycle amplitude (Figure 6b). The GOBM spread682

is large, not only in terms of magnitude but also phasing of the seasonal cycle in the SPSS683

(8 out of 13 GOBMs simulate the maximum uptake between November and January;684

Figure 6d-r). This illustrates how the transition between the different seasonal cycle regimes685

affects particularly the representation of the seasonality in the SPSS. In summary, most686

GOBMs and pCO2-products agree on a summer peak in the ICE biome (but exceptions687

exist, Figure 6d-r), and a winter peak to the north of the Southern Ocean biomes. The688

largest discrepancy between data sets is where and how swift this transition occurs. While689

the use of static biomes adds to the discrepancies seen in the averaged seasonal cycles690

(Figure 6a-c), the disagreement between the phasing of individual GOBMs is likely a much691

larger contributor to these discrepancies (Figure 6d-p). We now turn to an investigation692

of the thermal and non-thermal effects on the seasonal cycle, which may help explain these693

discrepancies.694

3.2.4 Thermal versus non-thermal effects on the seasonal cycle695

The seasonal cycle of CO2 fluxes in the Southern Ocean is a balancing act between696

competing thermal and non-thermal drivers (Mongwe et al., 2016, 2018; Prend et al., 2022).697

DIC drawdown by biological production leads to a summer maximum in CO2 uptake,698

whereas upwelling and entrainment of DIC-rich water into the mixed layer in autumn699

and winter leads to a minimum in CO2 uptake or even outgassing (Metzl et al., 2006;700

Mongwe et al., 2018). Seasonal variations in mixed layer temperature further affect the701

solubility of CO2, with lower (higher) temperatures increasing (decreasing) solubility and702

thus promoting CO2 uptake (outgassing) (Takahashi et al., 2002).703

The thermal and non-thermal components of pCO2 can be decomposed to deter-704

mine the dominant driver on monthly timescales (Figure 7; Mongwe et al., 2018). Here,705

we do this by estimating the absolute difference of the rate of change of the thermal and706

non-thermal components (Figure 7; Eq. 3). The contribution of salinity and total alka-707

linity to seasonal pCO2 changes are small in the Southern Ocean and compensate for each708

other on a seasonal scale (e.g., Sarmiento & Gruber, 2006; Lauderdale et al., 2016), thus709

we here consider the non-thermal component to be predominantly DIC-driven.710

In general, the seasonal cycle phasing of the thermal component of the GOBMs agrees711

well with those of the pCO2-products (Figure 7a-c). This should not come as a surprise,712

as GOBMs are forced by atmospheric reanalyses which assimilate observed SST (Doney713

et al., 2007). As a result, the thermal component of the pCO2 seasonal cycle in the GOBMs714

(forced by reanalyses) compare much better to the thermal component derived from the715

pCO2-products than fully coupled Earth System Models (Mongwe et al., 2016, 2018).716

The non-thermal contribution is thus the primary reason for the spread between GOBMs,717

and for the differences between GOBMs and pCO2-products (Fig. 7a-c). Thus, we group718

GOBMs based on whether they are predominantly DIC or thermally driven across all719

three biomes (Fig. 7d-f, Table S2), which we term DIC-dominant or DIC-weak respec-720

tively.721

In DIC-weak GOBMs, the strong underestimation of the non-thermal component722

causes these models to be too strongly temperature driven across the year (Figure 7).723

This then tends to shift the timing of uptake towards the colder months (when CO2 sol-724

ubility is largest), while the role of biologically driven uptake in spring and summer is725

suppressed in favor of warming driven outgassing. This effect is largely confined to the726

SPSS and to a lesser extent also the STSS, and can account for the mismatch in the sea-727

sonal cycle seen in some GOBMs. For example, in the SPSS, nearly all GOBMs and specif-728
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Figure 7. (a-c): Seasonal cycle of the rate of change of the thermal (pCOT ′
2 , dashed lines)

and non-thermal (pCOnonT ′
2 , solid lines) components of ocean surface pCO2 on monthly time

scales given in µatm month−1 (Eq. 2). The bars on the bottom show standard deviations of the

non-thermal component. Models have been grouped into DIC dominant/weak, where the DIC

weak models have a thermal contribution >0 for the mean of the STSS and SPSS (shown in d-f;

see Figure S11 for individual global and regional ocean biogeochemistry models, and Table S2 for

the DIC dominant/weak model groups). (d-f): λpCO2, the difference of the thermal and non-

thermal (DIC) components of ocean surface pCO2 as in Mongwe et al. (2018). When λpCO2 >

0 (red) indicates temperature dominance, and λpCO2 < 0 (blue) indicates that the non-thermal

component (i.e., DIC) is dominant. The MPI model is excluded in this analysis.
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ically all DIC-weak GOBMs have a shifted season of maximum uptake from summer to729

spring/winter, i.e., towards the colder months. (Fig. 6 and Table S2). In terms of the730

underlying mechanisms driving the too weak non-thermal component, we hypothesize731

that a lack of deep vertical mixing in winter leads to too little entrainment of DIC-rich732

deep waters, while simultaneously allowing for too early primary production (which may733

then shift the growing season earlier and reduce biologically driven summer uptake). No-734

tably, the bias in pCO2 is largest in summer (DJF), followed by autumn (MAM), and735

is about twice as large in the DIC-weak GOBMs than in the DIC-dominant GOBMs (Fig-736

ure S13). This further supports the lesser importance of thermal processes in the STSS737

and SPSS regions evident in the pCO2-products.738

In the ICE biome GOBMs and pCO2-products tend to agree much more closely739

in terms of their representation of the seasonal cycle (Fig. 6a). This is likely related to740

the strong role the seasonal advance and retreat of sea ice plays in air-sea CO2 fluxes,741

both through its effect as a physical barrier, as well as through its effect on vertical mix-742

ing and light availability (thus impacting both physical and biological pathways of DIC743

into and out of the mixed layer, (Bakker et al., 2008; Shadwick et al., 2021; M. Yang et744

al., 2021)).745

3.3 Temporal variability and trends in Southern Ocean air-sea CO2 flux746

We next inspect the temporal evolution of the air-sea CO2 fluxes from 1985-2018747

(Figure 8). In this annually-resolved perspective, we also discuss the mean fluxes for data748

sets that are not available for the full time-period. While the STSS was a net-sink re-749

gion throughout the period, the SPSS and ICE have turned from neutral (around 0 PgC yr−1)750

to net sink regions since 1985, based on GOBM and pCO2-product ensemble mean es-751

timates. This also holds for most individual GOBMs as only two of them simulate ei-752

ther the ICE or the SPSS biome to still be regions of outgassing at the end of the time753

series (CCSM-WHOI and EC-Earth3).754

Acknowledging some agreement between GOBMs and pCO2-based product ensem-755

ble means despite large spread across GOBMs (Figure 8 bars), substantial deviations among756

individual data sets appear. B-SOSE (2015-2018) suggests a 0.25 PgC yr−1 smaller up-757

take than the GOBM and pCO2-product ensemble means for the entire Southern Ocean758

(Figure 8a). ECCO-Darwin has the largest flux estimate into the ocean in the SPSS and759

the entire Southern Ocean (1.30 PgC yr−1, 1985-2018). Notably, the two data-assimilated760

models B-SOSE and ECCO-Darwin differ by a factor of 2 for the Southern Ocean wide761

estimate. In agreement with previous reports (Bushinsky et al., 2019), BGC-float pCO2-762

products suggest Southern Ocean uptake to be 40% (0.4 PgC yr−1) smaller than the pCO2-763

products without BGC-float data (2015-2018). This discrepancy originates largely in the764

SPSS, where the BGC-float pCO2-products estimate outgassing of 0.14 PgC yr−1, and765

the ensemble mean of the SOCAT-only-based pCO2-products estimate a CO2 uptake of766

-0.13 PgC yr−1. Smaller contributions to the deviation stem from the STSS and ICE biomes767

where BGC-float pCO2-products report a smaller uptake by 0.14 PgC yr−1 when com-768

pared with the regular pCO2-products. The Watson2020-product is generally close to769

the other pCO2-products, with the exception of the SPSS where it suggests a flux of -770

0.18 PgC yr−1 (1985-2018), which is larger than any other pCO2-product. The origin771

of the large SPSS difference in Watson2020 could, in part, be attributed to subtle dif-772

ferences in method choices in addition to different flux parameterisations (Watson et al.,773

2020). The atmospheric inversions produce a somewhat lower sink (-0.64 PgC yr−1, av-774

erage over three inversions 1985-2018), but are generally close to the pCO2-products, as775

they mostly use surface pCO2-products as a prior (Table 2 and Friedlingstein et al., 2022).776

There is also slightly higher interannual variability in the atmospheric inversion ensem-777

ble mean, but this is likely due to the small ensemble size.778
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Figure 8. Temporal evolution of the Southern Ocean air-sea CO2 flux for a) the entire South-

ern Ocean, and the b) subtropical seasonally stratified, c) subpolar seasonally stratified, and d)

ice biomes. The ensemble standard deviation (1σ) averaged over the whole time series, is shown

by the bars. Panels (e-h) are the same as panels (a-d) for the GOBM ensemble average and

pCO2-product ensemble average only, with linear trends between 1985-2000 and 2001-2018 as

the dashed and dotted lines, respectively. The uncertainty range of the trend is calculated as one

standard deviation of the trends across all GOBMs and pCO2-products, respectively. Note the

different y-axis scales. The separation into Atlantic, Pacific and Indian Ocean sectors is shown in

Figure S12.
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The temporal variability is quantified as the amplitude of ‘interannual variability’779

(IAV). This is calculated as the standard deviation of the detrended time-series, as de-780

fined in Rödenbeck et al. (2015); Friedlingstein et al. (2022) which, in reality, captures781

both interannual and decadal variability components. Following this definition, the pCO2-782

products have a larger interannual variability for the Southern Ocean wide integrated783

flux (0.09 PgC yr−1, range 0.04 to 0.16 PgC yr−1) compared to the GOBMs (0.06 PgC yr−1,784

range 0.03 to 0.10 PgC yr−1). Notably, the MPI-SOM-FFN pCO2-product, which formed785

the basis of previous reports on Southern Ocean decadal variability (Landschützer et al.,786

2015), has the largest IAV of 0.16 PgC yr−1, about 60% larger than the next largest pCO2-787

product IAV. This is in line with previous studies that found that the MPI-SOM-FFN788

approach may overestimate Southern Ocean variability by 30% (Gloege et al., 2021) and789

the decadal trend 2000-2018 by 130% (Hauck et al., 2023). Within the Southern Ocean,790

the strongest IAV is found in the SPSS region (0.04 PgC yr−1 GOBMs, 0.05 PgC yr−1pCO2-791

products), followed by the STSS (0.02 PgC yr−1 GOBMs, 0.03 PgC yr−1 pCO2-products)792

and ICE biome (0.02 PgC yr−1 for both data classes). Within the subpolar biome, the793

Indo-Pacific sector has a higher IAV (0.02 PgC yr−1) than the Atlantic sector (0.01 PgC yr−1).794

The large contribution to interannual variability in the SPSS may well be linked to the795

largest amplitude of the seasonal cycle of CO2 flux (see section 3.2.3).796

To assess the decadal-scale trends, we fit linear trends to the periods 1985-2000 and797

2001-2018 (Figure 8e-h) with the year 2000 marking roughly the mid of the considered798

time period and the inflection point in global ocean CO2 uptake (Gruber et al., 2023;799

Landschützer et al., 2016). The pCO2-products suggest a stagnation of the flux in the800

STSS, and even a flux decrease in the SPSS prior to 2000. In contrast, GOBMs suggest801

a continued increase in the sink in the STSS and SPSS in the same period. In the ICE802

biome, GOBMs and pCO2-products result in an increasing trend (Figure 8h). After 2000,803

pCO2-products and GOBMs agree on a trend towards more CO2 uptake, which is sig-804

nificantly different from zero in all biomes except for pCO−2-products in the ICE biome805

(see numbers in Figure 8e-h). However, they differ substantially in magnitude between806

GOBM and pCO2-product ensemble means, particularly in the STSS (Figure 8f). The807

discrepancies in the magnitude of the trend act to decrease the gap between GOBM and808

pCO2-product ensemble means in the SPSS and ICE biomes, but lead to the divergence809

in the flux estimate in the STSS.810

On a sub-biome level (i.e., Atlantic, Indian, and Pacific sectors), all three sectors811

in the STSS were CO2 sinks throughout the period and had weaker trends (less nega-812

tive) before 2000 compared to the period after 2000 (Figure S12). In the SPSS, the In-813

dian and Pacific sectors are characterized by intermittent outgassing and uptake patterns,814

in line with observations from BGC-floats (Prend et al., 2022). In the SPSS, only the815

Atlantic sector has a net uptake throughout the period, and the Indian Ocean sector shows816

the largest model spread of all three sectors (as in the STSS). In the ICE biome, a con-817

sistent quasi-linear evolution is apparent in all sectors. We further analyze divergence818

and drivers of trends in section 3.3.2.819

3.3.1 Comparison with in-situ pCO2820

Here, we evaluate the accuracy of pCO2 across data classes since pCO2 is the dom-821

inant driver of air-sea CO2 flux variability at a monthly scale (Landschützer et al., 2016).822

All data sets are compared with observations (monthly gridded SOCAT v2022 data set823

Sabine et al., 2013; Bakker et al., 2016, 2022). The RECCAP2 data sets are subsampled824

to match the SOCAT observations in time and space, meaning that we do not assess sam-825

pling biases, but rather the mismatch between the observed and estimated pCO2.826

The comparison of the RECCAP2 GOBMs and pCO2-products with gridded in-827

situ pCO2 from SOCAT v2022 shows relatively good agreement (Figure 9a). The SO-828

CAT pCO2 data shows large interannual variability due to spatially and temporally vary-829
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Figure 9. Comparison of surface mean pCO2 for the whole Southern Ocean between global

ocean biogeochemistry models (GOBMs) and pCO2-products with in situ observations (gridded

SOCAT v2022 data set Sabine et al., 2013). (a) Time-series of annually-averaged pCO2 from

GOBMs (green), data-assimilated models (grays), and pCO2–products (blue). The darker shaded

lines show the annual mean as calculated from the data sets subsampled to match the historic

SOCAT sampling. The lighter shades show the annual mean calculated for the full coverage. The

dark red line depicts the annual mean pCO2 from SOCAT observations without interpolation.

The assimilation products (ECCO-Darwin and B-SOSE) are kept separate as they have different

time series lengths (shown by dashed and solid gray lines respectively). The light red area plot

(right y-axis) shows the number of monthly by 1◦×1◦ gridded SOCAT observations per year. (b)

The bias of pCO2 for all data classes (subsampled to match SOCAT observations, dark lines in

a) relative to SOCAT pCO2 observations (solid dark red line in a). (c) The root mean squared

difference (RMSD) between SOCAT observations and estimates for all data classes. Bias and

RMSD were calculated on a monthly by 1◦×1◦ resolution, and the bias and RMSD were averaged

to annual means afterwards. A plot of RMSE and bias for SPSS and STSS biomes and different

seasons is presented in supplementary Figure S13.
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ing sampling efforts from year to year, particularly prior to 2000 when samples are fewer830

and thus carry more weight (Figure 9a). For example, in 1997, SOCAT pCO2 is anoma-831

lously low due to high sampling density in the Ross Sea during summer when primary832

production drives intense CO2 drawdown (Arrigo & van Dijken, 2007). The pCO2 prod-833

ucts have a lower bias and a narrower spread than the GOBMs prior to 2000 (1.7±4.3µatm834

and 10.7±8.0µatm respectively), with the bias and the spread decreasing after 2000 for835

both classes (-0.3±2.6µatm and -0.9±3.9µatm, Figure 9b). This comparison of simulated836

to observed pCO2 at observation sites demonstrates that GOBMs are capable of repro-837

ducing SOCAT pCO2 and its temporal evolution on large spatial and annual time-scales.838

Thus, for the period after 2000, the differences in CO2 flux trend for the entire South-839

ern Ocean between GOBMs and pCO2-products (Figure 8) cannot be attributed to dif-840

ferences in pCO2 in the regions where observations were taken. Instead, the differences841

arise primarily from areas where no pCO2 observations exist, as also concluded in Hauck842

et al. (2020). The pCO2 time-series calculated from the full coverage results in a lower843

pCO2 value in the pCO2-products than in the GOBMs (Figure 9a), which could explain844

the stronger CO2 flux trend in the pCO2-products (Figure 8). This discrepancy between845

pCO2-products and GOBMs is larger in the last ten years (2009-2019: 5.8 µatm) than846

the previous decade (1999-2008: 2.8 µatm, Figure 9a). Nevertheless, the RMSD calcu-847

lated from monthly mean data is higher in GOBMs than in pCO2-products (Figure 9c).848

This is expected as the pCO2-products are trained to fit the observations and further849

illustrates the GOBMs’ deficiencies in simulating seasonal and spatial variability of the850

CO2 uptake.851

The assimilation model, ECCO-Darwin, has a negative bias after 2000 (-13.5±3.0 µatm;852

Figure 4b), but this negative bias is not strongly reflected in the mean of the non-subsampled853

data, with the mean pCO2 still being larger than that of the pCO2-products, which do854

not underestimate the pCO2 relative to SOCAT. This further emphasizes that sampling855

distribution may play an important role in the magnitude of the biases calculated in any856

model. The pCO2 summer sampling bias in the Southern Ocean has long been recog-857

nised as a potential source of biases in pCO2 estimates, particularly for the pCO2-products858

that rely heavily on the in-situ data (Metzl et al., 2006; Gregor et al., 2017; Ritter et al.,859

2017; Djeutchouang et al., 2022). The SOCCOM project increased the number of win-860

ter samples with pH-enabled profiling floats (from 2014), suggesting stronger outgassing861

during winter than previously shown (Gray et al., 2018). In RECCAP2, the B-SOSE as-862

similation model and the BGC-float pCO2-products both make use of this data (Verdy863

& Mazloff, 2017; Bushinsky et al., 2019). Both of these estimates overestimate pCO2 rel-864

ative to SOCAT pCO2 highlighting the challenge in consolidating ship-based SOCAT865

and BGC-float data.866

3.3.2 Climate versus CO2 effects on trends in CO2 flux867

Our analysis so far has indicated that the GOBMs reproduce seasonal tempera-868

ture effects on CO2 flux reasonably well (Figure 7), and a larger uncertainty is associ-869

ated with imprints of circulation and biological activity. Next, we inspect the zonal mean870

and spatial patterns of the CO2 flux trend 1985-2018 (Figure 10). The pCO2-products871

place the largest trend towards more CO2 uptake in the entire ICE biome; however, data872

in this region is sparse and there is larger variability between pCO2 products here (see873

also Figure 8). The pCO2-products show a secondary peak in the STSS between about874

40 to 45◦S. The GOBMs in contrast have a large meridional gradient in the ICE biome875

with a peak in the trend between 60 and 65◦S that is reduced in magnitude towards Antarc-876

tica. The secondary peak in the STSS is hardly apparent and also displaced southwards877

compared to the pCO2-products. In addition, the pCO2-products exhibit trends towards878

less CO2 uptake in the Pacific and eastern Indian sector of the SPSS (Figure 10a-b). Al-879

though the difference in flux density between GOBMs and pCO2-products is larger in880

the ICE biome, the discrepancy in the STSS contributes more to the total flux trend dis-881

crepancy due to the larger area of the STSS biome (Figure 8). The trend over 1985-2018882
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Figure 10. CO2 flux trend between 1985 and 2018. (a-b) Spatial maps of the net CO2 flux

trend, for (a) the global ocean biogeochemistry models and (b) the pCO2-products. (c) Zonal

mean CO2 flux trend 1985-2018 for the net CO2 flux (blue: pCO2-products, green: GOBMs) and

the GOBM flux of Fnat,ss and Fant,ss, i.e., the flux as expected from increasing atmospheric CO2

alone (green, dashed). (d) The sea surface temperature (SST) trend 1985-2018 in the GOBMs

(green) and in the observational data set (black, NOAA Extended Reconstructed Sea Surface

Temperature, ERSST, Version 5 (Huang et al., 2017)). Supplementary figures split this analysis

in the periods 1985-2000 (Figure S14) and 2001-2018 (Figure S15). Individual GOBM trends for

Fnet, as well as Fnat,ss plus Fant,ss and SST are shown in Figure S16.
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includes some compensation between the trends over 1985-2000 and 2001-2018 (see Fig-883

ures S14-S15). While the GOBMs show similar weak trends towards more uptake be-884

fore and after 2000, the pCO2-products show a trend towards less uptake in the earlier885

period 1985-2000 throughout the Southern Ocean except in the Weddell and Ross Seas.886

In the later period 2001-2018, the pCO2 products estimate a much stronger trend to-887

wards more CO2 uptake everywhere, as also shown in Figure 8. The CO2 flux trends in888

the GOBMs are largely driven by increasing atmospheric CO2 levels (simulation C in889

Figure 10c). However, the trend is reduced by climate change and variability through-890

out the SPSS and strengthened in the northern part of the ICE biome (compare sim-891

ulations A that represents net FCO2 and C that represents only steady state natural and892

anthropogenic fluxes, in Figure 10c). The effect of climate change and variability is sub-893

stantially smaller than the uncertainty in the pCO2-products. In line with GOBMs cap-894

turing the thermally-driven component of the pCO2 seasonal cycle (Figure 8), we can895

also demonstrate that the GOBMs simulate sea surface temperature trends 1985-2018896

rather well (Figure 10d). This is related to the choice of forcing the GOBMs with reanal-897

ysis data that itself depends on sea surface temperature observations (Doney et al., 2007).898

In contrast to fully coupled Earth System models in CMIP6 (Beadling et al., 2020), the899

suite of models used here capture the decadal trend pattern of warming along the north-900

ern flank of the Antarctic Circumpolar Current (ACC), and cooling in the south (Figure901

10, Armour et al., 2016; F. Haumann et al., 2020). The lack of warming south of 50◦S902

was previously related to the wind-driven upwelling of deep water that had not yet been903

exposed to anthropogenic warming and by northward heat transport (Armour et al., 2016).904

More recently, the cooling was suggested to be caused by increased freshwater export from905

the ice region, which increases stratification and thus reduces the upward heat flux from906

below by warm water masses (F. Haumann et al., 2020). While the GOBM ensemble mean907

captures the latitudinal structure of the SST trend well, it underestimates the magni-908

tude of peak cooling at around 60◦S as well as peak warming north of 40◦S. Overall, how-909

ever, the GOBM ensemble mean captures the latitudinal structure of the SST trend well.910

We can therefore not relate the discrepancies in the trend of the CO2 flux to temper-911

ature biases. This leaves data sparsity as a reason for potential biases in the trend in the912

pCO2-products, and biases in ocean circulation, sea ice and biology as possible reasons913

for biases in GOBMs.914

3.4 Interior ocean storage of anthropogenic carbon915

The focus of this section is the anthropogenic perturbation of dissolved inorganic916

carbon (DIC) in a subset of the GOBMs (see section 2.2.1), and in particular its accu-917

mulation rate over the period 1994 to 2007 (∆Cant), in comparison with the eMLR(C*)918

observational estimate (Gruber, Clement, et al., 2019) and the ocean inverse model OCIMv2021919

(DeVries, 2022). The eMLR(C*) product uses a multiple linear regression approach to920

estimate ∆Cant and captures both the influence of CO2-driven and climate-driven change921

in sea-air CO2 fluxes and transports, whereas OCIMv2021 captures only the CO2-driven922

changes.923

All data classes agree in having the largest ∆Cant inventories within and to the north924

of the STSS biome (Figure 11), whose southern boundary approximately corresponds925

to the northern edge of the ACC. This pattern is related to the mechanisms by which926

Cant is taken up at the surface and exported to depth (Mikaloff Fletcher et al., 2006; Mor-927

rison et al., 2022; Bopp et al., 2015). Subpolar upwelling exposes old Cant-poor waters928

to elevated atmospheric CO2 concentrations and this, combined with strong winds, drives929

a large influx of Cant in the SPSS biome (Figure 12a-c). A small fraction of the Cant moves930

southward and is exported within Antarctic Bottom Waters, while the largest fraction931

is transported northward within the upper cell of the meridional overturning circulation.932

Cant air-sea fluxes remain elevated throughout the northward path, and are reinforced933

by the deep mixed layers in the regions where mode and intermediate waters are formed,934

–30–



manuscript submitted to Global Biogeochemical Cycles

a) eMLR(C * ) 

0.0 0.2 0.4 0.6 0.8 1.0
Cant accumulation rate [mol m 2 yr 1]

b) OCIM-v2021 

c) GOBMs high d) GOBMs low 

Figure 11. ∆Cant yearly accumulation rate over the period 1994-2007 integrated until 3000

m depth in the observationally-constrained estimates a) eMLR(C*) (Gruber et al., 2019) and b)

OCIM-v2021, in c) “GOBMs high” and in d) “GOBMs low” (individual GOBMs shown in Fig.

S4). The robustness of the patterns has been tested as explained in Text S4 of the Supplement.

Contours show the boundaries of the ICE, SPSS and STSS biomes. Values below 3000 m are not

shown because of the low signal-to-uncertainty ratio in eMLR(C*).
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Figure 12. Zonal integrals of ∆Cant yearly accumulation rate from 1994 to 2007 and of

air-sea Cant fluxes (positive downwards) averaged between 1994 and 2007 for a,d) eMLR(C*),

b,e) OCIM-v2021 and c,f) GOBMs. a-c) (black line) ∆Cant column inventory (0-3000 m) and

(grey line) air-sea Cant fluxes; for the GOBMs, the distinction is made between “GOBMs high”

(full lines) and “GOBMs low” (dashed lines). g-i) Anomalies of ∆Cant accumulation rates in g)

OCIM-v2021 with respect to eMLR(C*), h) GOBMs with respect to eMLR(C*) and i) GOBMs

with respect to OCIM-v2021. In all sections, contours show mean potential density (with a

0.03 kg m−3 spacing) referenced to the surface in World Ocean Atlas 2018 (Boyer et al., 2018),

where thick lines indicate the 1026.9 kg m−3 and 1027.5 kg m−3 isopycnals. Anomalies of in-

dividual GOBMs shown in Fig. S18 (with respect to eMLR(C*) and Fig. S19 (with respect to

OCIMv2021).
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Figure 13. Scatter plots showing relationships between ∆Cant accumulation rates between

1994 and 2007 (integrated to 3000 m) and different quantities namely a) the cumulative Cant in

1994 integrated over the Southern Ocean, b) air-sea Cant fluxes averaged between 1994 and 2007

and integrated over the Southern Ocean, c) sea surface salinity (SSS) horizontally averaged over

the SPSS and STSS biomes (which show consistent SSS anomaly patterns, Fig. S17). Shown are

a subset of the GOBMs (see 2.3), the OCIM-v2021 data-assimilated model, the observation-based

cumulative Cant until 1994 (C* method, Sabine et al., 2004) and the 1994-2007 ∆Cant from

(eMLR(C*) method, Gruber, Clement, et al., 2019), and SSS from EN4.2.1 (Good et al., 2013).

Thin black lines show the linear fit of the data for the GOBMs only, with the explained variance

(R2) and the p-value indicated for each regression. The grey shading in a) indicates the 19%

uncertainty levels around the mean of eMLR(C*) (Southern Hemisphere uncertainty estimate,

based on Table 1, Gruber, Clement, et al., 2019) and the green shading the 20% uncertainty

levels around the C*-based estimate of cumulative Cant until 1994 (global uncertainty estimate

Sabine et al., 2004; Matsumoto & Gruber, 2005). Models that have a ∆Cant storage higher than

the average of the two observationally-constrained data sets (“GOBMs high”) are shown in red,

whereas the models in which it is lower (“GOBMs low”) are shown in blue. Because of its differ-

ent spin-up procedure, ROMS-SouthernOcean-ETHZ is shown in the plots but has been excluded

from the regression analysis. For OCIM-v2021, CNRM-ESM2-1 and MPIOM-HAMOCC the

∆Css
ant is shown, whereas in others the sum of steady state and non steady state is shown. As

discussed in Text S2, ∆Cns
ant accumulation rates are about 10-20% of the total ∆Cant.
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which results in a secondary peak at around 40◦S in some GOBMs, diluted by the en-935

semble mean (Fig. 12c).936

The effective transport of Cant into the ocean interior relies on a number of phys-937

ical processes, the dominant of which is the northward transport by the overturning cir-938

culation of the Cant ventilated in the ocean interior by deep winter mixing (Frölicher et939

al., 2015; Morrison et al., 2022). The absorbed Cant spreads northward along density sur-940

faces within mode and intermediate waters (Figure 12d-f) and is circulated within and941

out of the Southern Ocean by the subtropical gyres (Frölicher et al., 2015; D. C. Jones942

et al., 2016; Waugh et al., 2019). As a result, the largest Cant inventories are displaced943

to the north with respect to the maximum air-sea Cant influx (Figure 12b,c). Another944

pathway by which the Cant inventory can build up without a corresponding surface in-945

flux is by southward advection and subsequent subduction of high-Cant Subtropical Wa-946

ters (Iudicone et al., 2016; Morrison et al., 2022).947

The observation-based product eMLR(C*) and the ocean inverse model OCIM-v2021948

have similar ∆Cant accumulation rates when integrated over the Southern Ocean for the949

period 1994 through 2007 (0.52 PgC yr−1 and 0.47 PgC yr−1, respectively, Figure 13),950

but differ in their horizontal (Figure 11) and vertical (Figure 12) patterns. The eMLR(C*)951

exhibits particularly low ∆Cant values at subpolar and high latitudes (Figure 12g), es-952

pecially in the Pacific sector (Figure 11). The GOBMs multi-model-mean of ∆Cant ac-953

cumulation rates over the same 1994 through 2007 period and integrated within the South-954

ern Ocean (Figure 13) is 0.46±0.11 PgC yr−1, i.e., 7% lower than the mean of the two955

observational estimates considered here. 6 out of the 12 GOBMs fall within the 19% range956

of the observational eMLR(C*) uncertainty. Two thirds of all GOBMs (hereafter “GOBMs957

low”) have lower than observed ∆Cant accumulation rates (0.39±0.11 PgC yr−1, about958

20% lower than the observational estimates). The remaining GOBMs (hereafter “GOBMs959

high”) have higher than observed ∆Cant accumulation rates (0.58±0.07 PgC yr−1, about960

17% higher than the observational estimates). “GOBMs high” have a higher ∆Cant stor-961

age than “GOBMs low” throughout the Southern Ocean (Figures 11c,d and 12c), higher962

Cant air-sea fluxes (Figure 12c), higher sea surface salinity (SSS) in the SPSS and STSS963

biomes and mixed layer depths especially in the SPSS biome (Text S3, S4 and Figure964

S17). Along the zonal mean section, all GOBMs show a southward shift in ∆Cant with965

respect to eMLR(C*) shown by a north-south dipole in the upper 1 km (Figure 12h),966

as similarly found in the comparison between OCIM-v2021 and eMLR(C*) (Figure 12g).967

With respect to OCIM-v2021, GOBMs show higher ∆Cant above 1000 m depth and lower968

∆Cant beneath (Figure 12i). This could point to insufficient ventilation of Cant in “GOBMs969

low” models (Figure S19), which represent the majority of the GOBMs. The amount of970

spread and the overall underestimate of ∆Cant in the GOBMs is consistent with Earth971

System Models analyzed by Frölicher et al. (2015) and Terhaar et al. (2021), support-972

ing the argument that biased ocean model dynamics and water mass properties rather973

than biases in the atmospheric forcing cause the Cant underestimate (Terhaar et al., 2021;974

Bourgeois et al., 2022).975

Integrated over the Southern Ocean, we find that the model spread in ∆Cant ac-976

cumulation rates from 1994 to 2007 can be largely explained (81% variance explained)977

by the spread in accumulated Cant until 1994 (Figure 13), suggesting a coherent scal-978

ing between long-term and recent Cant accumulation rates. The model spread in ∆Cant979

accumulation rates is also related with the spread in Cant air-sea fluxes averaged over980

1994-2007 (78% variance explained). These results show that past long-term ∆Cant ac-981

cumulation rates are a better predictor for present ∆Cant accumulation rate than present982

Cant air-sea fluxes. The reason for this is that Cant air-sea fluxes are linked to changes983

in Cant storage through ocean transport, which may differ substantially between mod-984

els (Frölicher et al., 2015; Terhaar et al., 2021; Bourgeois et al., 2022). This becomes ob-985

vious when considering the myriad of processes involved, including the strength of the986

overturning circulation, the strength of the subtropical gyres, the isopycnal stirring by987
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Table 3. Comparison of the Southern Ocean carbon sink estimate with the estimate presented

in RECCAP1 (Lenton et al., 2013), which used a different definition of the Southern Ocean

region (44-75◦S) and covered a different period (1990-2009). GOBMs: Global Ocean Biogeochem-

istry Models. Reported numbers are means ± one standard deviation. Note for RECCAP1 the

median of all models is reported.

Estimate GOBMs Observation-based

RECCAP2 1985-2018 -0.75 ± 0.28 PgC yr−1 -0.73 ± 0.07 PgC yr−1

RECCAP2 1985-2018 (44◦-75◦S) -0.39 ± 0.24 PgC yr−1 -0.30 ± 0.04 PgC yr−1

RECCAP2 1990-2009 (44◦-75◦S) -0.22 ± 0.25 PgC yr−1 -0.14 ± 0.09 PgC yr−1

RECCAP1 1990-2009 (44◦-75◦S) -0.43 ± 0.38 PgC yr−1 -0.27 ± 0.13 PgC yr−1

mesoscale eddies, and localized subduction dynamics (Sallée et al., 2012; Morrison et al.,988

2022). The different way in which the GOBMs simulate these transport processes is pos-989

sibly linked to the large model spread in ∆Cant accumulation rates among GOBMs. Past990

studies have found that SSS affects the surface ocean density in the formation regions991

of mode and intermediate waters and could be used as a constraint of the Cant air-sea992

fluxes, and thus of the Cant storage within the recently-ventilated water masses (Terhaar993

et al., 2021). In this study and in Terhaar et al. (2023), we find that SSS explains a lower994

variance in the ∆Cant accumulation rates (R2=61%; Figure 13) and in the Cant air-sea995

fluxes (R2=57% Terhaar et al., 2023) with respect to the ESMs (R2=0.74) analyzed by996

Terhaar et al. (2021). The relationship may be weaker due to the different suite of mod-997

els used in the ESM and GOBM ensembles and remaining biases associated with incom-998

plete spin-up (Terhaar et al., 2023).999

4 Discussion1000

4.1 Summary and progress since RECCAP11001

We provide an updated estimate of the Southern Ocean carbon sink (see Figure1002

1 for regional extent). The numbers we present (Table 3) are not directly comparable1003

with the RECCAP1 estimate (Lenton et al., 2013) due to different region definitions (Fig-1004

ure 1) and periods (1990-2009 vs. 1985-2018). The RECCAP1 regional definition of the1005

Southern Ocean (44-75◦S) cut across and missed a large part of the strong CO2 uptake1006

north of the Subantarctic Front. Recalculating the RECCAP2 numbers for the REC-1007

CAP1 region would reduce the Southern Ocean CO2 sink to 52% (GOBMs) or 41% (pCO2-1008

products) of its original value (Table 3). Adjusting RECCAP2 numbers for the 1990-1009

2009 period would further reduce fluxes by about another 50%. Compared on equal foot-1010

ing (44◦-75◦S and 1990-2009), we find the Southern Ocean to be a weaker carbon sink1011

in RECCAP2 compared to RECCAP1.1012

The observational and modeling communities have made substantial progress on1013

quantifying and characterizing the Southern Ocean carbon sink since RECCAP1 (Lenton1014

et al., 2013). The creation of the Surface Ocean CO2 Atlas and its annual updates have1015

marked a step-change by facilitating the development of statistical models (a.k.a. pCO2-1016

products). The large and diverse ensemble of pCO2-products help to identify the robust1017

features of the Southern Ocean carbon sink. The pCO2-products have a relatively small1018

spread compared to the global ocean biogeochemistry models in terms of mean and sea-1019

sonal cycle, indicating that the uncertainty from differences in mapping methods is small.1020

However, the spread in the trend estimates is in fact larger in the products than in the1021

GOBMs (Figure 10). Further, the narrow spread in mean and seasonal cycle does not1022
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include the uncertainties due to sparse pCO2 observations in the Southern Ocean, par-1023

ticularly in winter and before the 2000’s (Ritter et al., 2017). In addition, pCO2-products1024

share the uncertainties associated with the bulk formulation of air-sea CO2 exchange (R. H. Wan-1025

ninkhof et al., 2009; Fay et al., 2021). While they do have their shortcomings, the pCO21026

products are an advance for constraining the Southern Ocean carbon sink compared to1027

the atmospheric inversions that were used in RECCAP1 (Lenton et al., 2013). This is1028

because the surface ocean pCO2 observations provide a more direct constraint on the1029

air-sea CO2 flux than the relatively small atmospheric CO2 signals over the ocean that1030

form the basis of the atmospheric inversions.1031

The larger GOBM ensemble provides a more representative process-based estimate1032

and the spread in GOBMs has been reduced since RECCAP1 (see Table 3 Lenton et al.,1033

2013). The remaining spread is nevertheless large and points towards critical need for1034

model development, where the largest sources of uncertainty stem from biological pro-1035

cess description and circulation, which vary in importance depending on flux component1036

(natural, anthropogenic, etc.), and spatio-temporal scale of interest. In terms of the an-1037

thropogenic component, the 12 GOBMs analyzed here have a 24% spread (standard de-1038

viation around the mean) in the Cant accumulation rates, which is marginally larger than1039

the ∼ 20% uncertainty associated with the observational estimates of ∆Cant and Cant1040

(even though caution is warranted when directly comparing the uncertainty estimates,1041

which are computed formally different across data classes; Gruber, Clement, et al., 2019;1042

Sabine et al., 2004). Overall, the GOBM ensemble mean underestimates the observation-1043

based estimates of the Cant accumulation up to 1994 by 19% and the change between1044

1994-2007 by 7%. Admittedly, the GOBM ensemble analyzed here is relatively small,1045

and the underestimation of Cant and ∆Cant is in the range of the uncertainty ranges of1046

the observational estimates. We can nonetheless speculate that the detected underes-1047

timation is likely related to a combination of physical, chemical and methodological fac-1048

tors. First, our results point to too little or too shallow ventilation of mode and inter-1049

mediate waters (Figure 12i), the causes of which can be related to insufficient vertical1050

mixing or too sluggish northward export of the subducted waters (Morrison et al., 2022).1051

However, while sea-surface salinity (SSS) was singled out as a strong predictor of Cant1052

air-sea fluxes in an ESM ensemble analyzed by (Terhaar et al., 2021), in our study and1053

in (Terhaar et al., 2023), SSS was not found to be a clear constraint of the anthropogenic1054

CO2 uptake and its interior storage in the GOBMs. Rather, Terhaar et al. (2023) find1055

that biases in the normalized surface Revelle factor could explain the underestimation1056

of Cant uptake. Finally, the relatively high pre-industrial CO2 mixing ratios related to1057

late starting dates in several GOBMs are likely causing an underestimation of the cu-1058

mulative Cant storage, which is especially large in the Southern Ocean (Terhaar et al.,1059

2023). For the natural carbon fluxes, the difficulty in capturing the delicate balance be-1060

tween physical and biological processes is clearly manifested by the large model spread1061

(Figure 3). In addition, the different spin-up procedures could play a role. Terhaar et1062

al. (2023) indicate that the natural CO2 flux component may be biased towards uptake1063

that is too strong, possibly related to GOBMs not being in steady-state (Terhaar et al.,1064

2023), which is particularly relevant in the Southern Ocean where old water masses resur-1065

face. While long preindustrial spin-ups would bring the GOBMs closer to steady-state1066

and thus reduce drift, they may come at the cost of less realistic surface conditions and1067

their response to climate change and variability (Séférian et al., 2016). Interestingly, the1068

two data-assimilated GOBMs differ to a large extent, illustrating that dynamical pro-1069

cesses in these models may still override information gained from assimilated observa-1070

tions.1071

The averages of the GOBM and pCO2-product ensembles agree for many key es-1072

timates, showing progress over the past 10 years: the mean and spatial distribution of1073

the sink is in good agreement (Figure 2), although discrepancies of the magnitude and,1074

particularly, the trends still persist (Figures 8 and 10; see also Canadell et al., 2021). The1075

fact that these ensemble means agree so well in many respects provides some confidence1076
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in the Southern Ocean CO2 flux estimates because they are nearly independent. How-1077

ever, the agreement of GOBMs and pCO2-products on the mean CO2 flux is partly a1078

result of compensation of regional and seasonal discrepancies (Figures 4, 5, 8). The agree-1079

ment is also highly susceptible to the choice of river flux adjustment that either locates1080

most outgassing of river-derived carbon in the Southern Ocean (Aumont et al., 2001)1081

or in the tropical Atlantic (Lacroix et al., 2020). Reasons for the discrepancy between1082

Aumont et al. (2001) and Lacroix et al. (2020) may be because of specific choices in nu-1083

trient and carbon input, lability of organic matter, resulting ocean model transport (see1084

also the discussion in Terhaar et al., 2023). We here chose to use the river flux adjust-1085

ment of Lacroix et al. (2020), scaled up to a global value of 0.65 PgC yr−1, resulting in1086

a small adjustment for the Southern Ocean of 0.04 PgC yr−1. In contrast, the South-1087

ern Ocean (south of 20◦S) adjustment based on Aumont et al. (2001) that is so far used1088

in the Global Carbon Budget is higher by one order of magnitude (0.32 PgC yr−1) and1089

can explain the large mismatch in the mean flux (but not its trend) between GOBMs1090

and pCO2 products in the Southern Ocean in the Global Carbon Budget (Friedlingstein1091

et al., 2022). The discrepancies in the trend cannot be explained by GOBM biases in warm-1092

ing trends as these are well reproduced (Figure 10). Similarly, the GOBM ensemble is1093

not systematically biased towards formation of mode and intermediate waters that is too1094

weak, in contrast to the ESMs, and an effect on the trend of the ocean carbon sink could1095

not be evidenced (Terhaar et al., 2023). Further potential candidates for GOBM biases,1096

which were not explored here, are stratification (Bourgeois et al., 2022), mixing, and mixed1097

layer dynamics, which could also lead to excess carbon accumulation in the surface layer1098

and thus may be the driver for the overestimation of the surface Revelle factor. In the1099

pCO2-products, the trend might be biased by data sparsity (Gloege et al., 2021; Hauck1100

et al., 2023).1101

4.2 Seasonal cycle and thermal versus non-thermal drivers1102

As a community, we have a good understanding of the mechanisms that drive pCO21103

seasonality in the Southern Ocean (Lenton et al., 2013), but we do not fully understand1104

their magnitudes, opposing or synergistic, in different seasons and regions (Mongwe et1105

al., 2018). Part of this lack of understanding is due to a lack of observations through-1106

out all seasons, though particularly acute during winter (Gray et al., 2018; Bushinsky1107

et al., 2019; Sutton et al., 2021). Further, complex biological processes affecting pCO21108

in summer are more difficult to accurately describe in GOBMs (Mongwe et al., 2018).1109

While pCO2 products require little to no understanding to reconstruct the seasonal1110

cycle, they may still suffer from a lack of data (Ritter et al., 2017). This may be shown1111

by the narrow ensemble spread of the pCO2-products during winter (Figure 7d-f), which1112

may result from poor sampling distribution. That being said, an observation system sim-1113

ulation experiment (OSSE) showed that the seasonal cycle in most of the Southern Ocean1114

is in fact well captured by one pCO2 product (Gloege et al., 2021). The narrower GOBM1115

spread of the non-thermal pCO2 component during winter may also suggest that winter-1116

time processes (circulation) are less complex than summer (circulation and biology, Fig-1117

ure 7d-f).1118

The introduction of biogeochemical Argo floats since the mid 2010’s has increased1119

the number of winter observations (relative to the available ship-based observations), al-1120

beit inferred from pH and estimated total alkalinity and thus associated with a higher1121

uncertainty (Williams et al., 2017). The machine learning approaches that include float-1122

based observations result in stronger winter outgassing (Figure 4, Bushinsky et al., 2019).1123

Direct pCO2 measurements showed that the years used to train the machine learning1124

model (2015-2018) may have had anomalously high pCO2 (Sutton et al., 2021). How-1125

ever, if this is in fact the case, and not related to sampling locations, this may indicate1126

much larger interannual variability in the Southern Ocean than the majority of the pCO2-1127

products currently estimate (Figure 8). Incorporating these data is thus potentially an1128
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important goal for pCO2-products, but it has proven difficult to incorporate the float-1129

based pCO2 estimates further back in time than 2015, the start of the BGC-float record1130

and account for their higher uncertainty (Bushinsky et al., 2019; Williams et al., 2017).1131

GOBMs also have a lower pCO2 ensemble spread during winter compared with sum-1132

mer and agree on the spatial location of the winter flux minimum (Figure 4). Neverthe-1133

less, the range in magnitude is still more than twice as large as those of the pCO2-products1134

(Figure 7d-f). Since the thermal component is well captured in GOBMs (Figure 7d-e),1135

the non-thermal physical drivers (i.e., circulation) determines the uncertainty observed1136

in winter. In summer, GOBMs have difficulty capturing the delicate balance between1137

biological and physical processes that leads to a large spread in model pCO2 and fluxes1138

(Mongwe et al., 2018). GOBMs may thus benefit from more process-based studies that1139

further our understanding of pCO2 drivers during summer, i.e., biological productivity,1140

respiration, remineralization and sinking of organic carbon as part of the biological car-1141

bon pump.1142

4.3 Temporal variability of CO2 fluxes1143

Our analysis reduces the previously reported discrepancy in variability of South-1144

ern Ocean air-sea CO2 fluxes between data classes (GOBMs and pCO2-product ensem-1145

ble means, Gruber, Landschützer, & Lovenduski, 2019). We relate the growing agree-1146

ment to the larger ensemble of pCO2-products in our study, with the newer additions1147

having a substantially lower variability than the two pCO2-products (Jena-CarboScope1148

and SOM-FFN) used by Gruber, Landschützer, and Lovenduski (2019). A recent study1149

using the same RECCAP data base also concluded that there is agreement on the mag-1150

nitude of interannual variability between GOBMs and pCO2-products (Mayot et al., 2023).1151

The interannual to decadal variability of Southern Ocean air-sea CO2 fluxes was1152

discussed extensively in the literature, and was often related to variations in the South-1153

ern Annual Mode (SAM) (Le Quéré et al., 2007; Lovenduski et al., 2007; Lenton & Matear,1154

2007; Hauck et al., 2013; Nicholson et al., 2022; Mayot et al., 2023). Also, regional wind1155

variability linked to the zonal wavenumber 3 was suggested as a driver of interannual CO21156

flux variability driving both the weakening in the 1990’s and the strengthening in the1157

2000’s (Landschützer et al., 2015; Keppler & Landschützer, 2019). The arguments of SAM1158

or wave number 3 as dominant drivers of CO2 flux interannual variability might not be1159

fully independent from each other, as previously a wave number 3 like pattern was re-1160

ported to describe MLD anomalies during positive SAM events (Sallée et al., 2010).1161

The fact that the maximum IAV of GOBMs is found in the SPSS Indo-Pacific sec-1162

tor (section 3.3, Figure S12) supports the argument of the above mentioned references1163

that upwelling of carbon-rich deep water and related outgassing of natural carbon in re-1164

sponse to a positive SAM and strengthening of westerly winds may be the dominant driver1165

of interannual variability (DeVries et al., 2017). This is further supported by studies of1166

atmospheric potential oxygen (APO), which can be used as a tracer of ocean-only pro-1167

cesses from measurements of CO2 and O2 at atmospheric stations (Stephens et al., 1998).1168

Nevison et al. (2020) showed that the interannual variations of APO seasonal minimum1169

from stations in the Southern Hemisphere were strongly correlated with the SAM dur-1170

ing years of positive phase. Further, they showed that GOBMs (as analyzed in this study)1171

can capture the variability of CO2 and APO fluxes driven by the SAM variations dur-1172

ing the austral winter months. However, the study of Nevison et al. (2020) also illustrated1173

that the SAM index variability cannot fully explain the changes in APO seasonal win-1174

ter minima suggesting that other factors or modes of variability such as ENSO could im-1175

pact the CO2 and O2 air-sea fluxes of the Southern Ocean as also previously suggested1176

in an ocean modeling study (Verdy et al., 2007).1177

On top of the interannual variability, on which pCO2 products and GOBMs seem1178

to reach reasonable agreement, discrepancies in the CO2 flux trend since 2000 have emerged1179
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(Figure 8, Friedlingstein et al., 2022). These discrepancies highlight a major knowledge1180

gap and urgently need to be resolved by critical analysis of potential biases in pCO2-products1181

as well as GOBMs (see section 4.1). While there is no evidence so far that adjustments1182

of CO2 fluxes based on model evaluation of interfrontal salinity and Revelle factor af-1183

fect the trend (Terhaar et al., 2023), data sparsity tends to lead to an overestimation of1184

decadal variability and trend in at least two of the pCO2-products (Gloege et al., 2021;1185

Hauck et al., 2023). Hence, both data classes need to be inspected for deficiencies.1186

4.4 Zonal asymmetry of the fluxes1187

While the primary spatial mode of variability in the Southern Ocean is from north1188

to south, zonal variability in the dynamics, biogeochemistry, and carbon fluxes have been1189

reported in the literature (Landschützer et al., 2015; Tamsitt et al., 2016; Rintoul, 2018;1190

Prend et al., 2022). Similarly, we find substantial zonal asymmetry in both the mean states,1191

and seasonal and interannual variability of the Southern Ocean CO2 fluxes (Figures S10,1192

S12); yet many of our results have been presented in a zonally-averaged perspective for1193

the sake of brevity.1194

In this work, we find that the largest zonal asymmetries in the Southern Ocean mean1195

air-sea CO2 flux occur in the SPSS biome (Figure 4b-e, S12). Here, the Pacific and In-1196

dian sectors are larger sources (or weaker sinks) of CO2 to the atmosphere than the At-1197

lantic sector. This is consistent with the pCO2-based products (Figure S12d-f). The float-1198

based pCO2-products amplify this winter outgassing dramatically. However, the GOBMs1199

and the assimilative model ensemble averages do not show a coherent and convincing in-1200

crease in outgassing in the Indian and Pacific relative to the Atlantic. The zonal asym-1201

metry reported in the observation-based products is consistent with a recent BGC-float-1202

based study that reported stronger outgassing in the Indian and Pacific sectors of the1203

Southern Ocean (Prend et al., 2022). The authors attributed this dominance to stronger1204

winter-time entrainment of deep waters to the surface in these regions. The zonal asym-1205

metry is also apparent in the air-sea CO2 fluxes decomposed into natural and anthro-1206

pogenic contributions (Figure S7). Here, too, the SPSS is the region with the greatest1207

asymmetry. In the Indian sector, the large natural outgassing fluxes of the ensemble mean1208

are nearly perfectly opposed by the anthropogenic uptake.1209

4.5 Link large-scale synthesis to observational programs1210

The analysis presented here provides a synthesis of large-scale datasets with a fo-1211

cus on budgets, spatial and temporal patterns of fluxes and carbon accumulation, and1212

a first-order assessment of large-scale processes (e.g., thermal versus non-thermal, an-1213

thropogenic vs natural carbon fluxes). In particular, it highlights spatio-temporal win-1214

dows for which discrepancies between data classes are largest (e.g., magnitude of win-1215

ter outgassing, delicate balance of physical versus biological processes in summer, mag-1216

nitude of decadal trend of the Southern Ocean carbon sink). Importantly, this synthe-1217

sis builds on contributions from many individual groups contributing repeat observations1218

of surface and interior ocean biogeochemical properties from research vessels and ships1219

of opportunity (e.g., Talley et al., 2016; Hoppema et al., 1998; van Heuven et al., 2014;1220

Metzl et al., 1999; Pardo et al., 2017). The ship-based observations form the cornerstone1221

for many of the data classes in this study: observation-based ocean interior estimates of1222

CO2 storage assess changes in deep ocean measurements of CO2, the surface pCO2 es-1223

timates use observations from ships of opportunity, and the GOBMs are evaluated against1224

ocean interior observations. And while sampling biases and gaps in the ship-based mea-1225

surements may be filled by autonomous platforms with lower accuracy (e.g., BGC-floats),1226

they will always require crossover validation measurements from the high-accuracy ship-1227

board measurements. This emphasizes that the ship-based observations need to continue1228

into the future to characterize the evolution of the Southern Ocean carbon cycle. This1229

will only become more important, once stabilization of atmospheric CO2 will lead to a1230
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larger weight on ocean processes for control of air-sea fluxes relative to the current quasi-1231

exponential growth rate of atmospheric CO2.1232

Further, detailed regional process studies employing a wide range of methodolo-1233

gies across disciplines are also important to further our holistic understanding of the South-1234

ern Ocean carbon cycle and to improve the description of biogeochemistry and ecosys-1235

tem dynamics in GOBMs, particularly in summer. One example for such an interdisci-1236

plinary field program is along the continental shelf west of the Antarctic Peninsula where1237

shipboard observations indicate a strong, near-shore summer undersaturation of surface1238

pCO2 (Eveleth et al., 2017) and seasonal reduction in surface dissolved inorganic car-1239

bon (Hauri et al., 2015). The seasonal trends in the ocean CO2 system on the shelf re-1240

flect a combination of biological net community production (Ducklow et al., 2018) and1241

meltwater input diluting surface dissolved inorganic carbon and alkalinity (Hauri et al.,1242

2015). Regional ocean biogeochemical models simulate similar onshore-offshore gradi-1243

ents in surface chlorophyll, biological productivity, dissolved inorganic carbon, and pCO21244

as well as the observed large interannual biophysical variability associated with year-to-1245

year variations in seasonal sea-ice advance and retreat phenology (Schultz et al., 2021).1246

Observed decadal trends for the region from the early 1990s to late 2010s indicate that1247

reduced sea-ice extent associated with climate change drives an increase in upper ocean1248

stability, phytoplankton biomass and biological dissolved inorganic carbon drawdown,1249

resulting in a growing net downward air-sea CO2 flux during summer (Brown et al., 2019).1250

Recent year-round, autonomous mooring observations of pCO2 and pH suggest a grad-1251

ual increase in surface ocean pCO2 and dissolved inorganic carbon over the fall and win-1252

ter, with CO2 outgassing during winter when pCO2 is supersaturated largely blocked1253

by sea-ice cover (Shadwick et al., 2021; M. Yang et al., 2021). Similar large-scale pro-1254

grams are needed in other parts of the Southern Ocean given its size and importance in1255

the global carbon cycle. On-going research activities, also as part of the Southern Ocean1256

Observing System (SOOS), e.g., in the Ross (Smith et al., 2021) and Weddell Seas (Arndt1257

et al., 2022) have the potential of being extended.1258

5 Conclusions1259

Here, we present a schematic overview that summarizes the main characteristics1260

of the Southern Ocean carbon cycle 1985-2018, as derived in this analysis and its sup-1261

plementary material (Figure 14). In general, the sink strength for atmospheric CO2 (net1262

CO2 flux, FCO2) increases from South to North, but with important zonal asymmetry.1263

The Atlantic and Indian Ocean sectors of the Subtropical Seasonally Stratified biome1264

(STSS) are the regions that act as strongest sinks. In the Subpolar Seasonally Stratifed1265

biome (SPSS), the Atlantic sector stands out as the only sector acting as an annual mean1266

CO2 sink. Also the seasonal cycle shows a distinct north-south gradient. In the ice-covered1267

biome (ICE) the peak uptake occurs in summer and is driven by the seasonal cycle of1268

dissolved inorganic carbon (DIC), i.e. by physical DIC transport and biological processes.1269

In contrast, the dominant driver of the seasonal cycle of CO2 uptake in the STSS is tem-1270

perature, and thus the season of peak uptake occurs in winter. Trends in net CO2 up-1271

take derived from Global Ocean Biogeochemistry Models (GOBMs) and surface ocean1272

pCO2 observation based products (pCO2-products) disagree in all biomes, but the dis-1273

crepancy is strongest in the Pacific sector of the STSS. In terms of anthropogenic CO21274

(Cant), the strongest uptake occurs in the SPSS. This is not visible in the map of net1275

CO2 flux, because the anthropogenic uptake manifests itself as a suppression of natu-1276

ral CO2 outgassing. The largest anthropogenic carbon storage occurs in the STSS and1277

northward.1278

Our analysis confirms the important role of the Southern Ocean in the global car-1279

bon cycle. We have highlighted key knowledge gaps that need to be closed through ex-1280

tended observation systems and augmented process descriptions in the dynamic mod-1281

els in order to further reduce uncertainties.1282
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Figure 14. Main characteristics of the Southern Ocean carbon cycle 1985-2018. The sur-

face ocean color shading depicts the net air-sea CO2 flux (FCO2) as the average of the ensemble

means from pCO2-products and Global Ocean Biogeochemistry Models (GOBMs). Blue color

denotes a CO2 flux into the ocean, and red color a flux out of the ocean. The zonal mean section

shows the anthropogenic carbon (Cant) accumulation in the ocean interior from GOBMs. ICE:

ice-covered biome, SPSS: Subpolar Seasonally Stratified Biome, STSS; Subtopical Seasonally

Stratified Biome.

–41–



manuscript submitted to Global Biogeochemical Cycles

Open Research Section1283

All RECCAP2 data is hosted on https://zenodo.org/. Link will be updated dur-1284

ing the review process.1285

Acknowledgments1286

Acknowledgments will be added during the review.1287

References1288

Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A., & Newsom, E. R. (2016).1289

Southern Ocean warming delayed by circumpolar upwelling and equatorward1290

transport. Nature Geoscience, 9 (7), 549–554. doi: 10.1038/ngeo27311291

Arndt, S., Janout, M., Biddle, L., Campbell, E., & Thomalla, S. (2022). The1292

Weddell Sea and Dronning Maud Land (WSDML) Regional Working Group1293

Virtual Science Workshop, 14–16 june 2022 (Tech. Rep.). Zenodo. Re-1294

trieved 2023-02-22, from https://zenodo.org/record/6931424 doi:1295

10.5281/ZENODO.69314241296

Arrigo, K. R., & van Dijken, G. L. (2007). Interannual variation in air-sea CO21297

flux in the Ross Sea, Antarctica: A model analysis. Journal of Geophysical Re-1298

search, 112 (C3), C03020. doi: 10.1029/2006JC0034921299
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(2019). Evaluation of an Online Grid-Coarsening Algorithm in a Global Eddy-1327

Admitting Ocean Biogeochemical Model. Journal of Advances in Modeling1328

Earth Systems, 11 (6), 1759–1783. doi: 10.1029/2019MS0016441329
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J. C., . . . Takano, Y. (2021). Quantifying Errors in Observationally Based1484

Estimates of Ocean Carbon Sink Variability. Global Biogeochemical Cycles,1485

35 (4), 1–14. doi: 10.1029/2020GB0067881486

Gloege, L., Yan, M., Zheng, T., & McKinley, G. A. (2022). Improved Quantification1487

of Ocean Carbon Uptake by Using Machine Learning to Merge Global Models1488

and pCO2 Data. Journal of Advances in Modeling Earth Systems, 14 (2), 1–19.1489

doi: 10.1029/2021MS0026201490

Good, S. A., Martin, M. J., & Rayner, N. A. (2013). EN4: Quality controlled1491

ocean temperature and salinity profiles and monthly objective analyses with1492

uncertainty estimates. Journal of Geophysical Research: Oceans, 118 (12),1493

6704–6716. doi: 10.1002/2013JC0090671494

Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L., Tal-1495

ley, L. D., . . . Sarmiento, J. L. (2018). Autonomous Biogeochemical1496

Floats Detect Significant Carbon Dioxide Outgassing in the High-Latitude1497

Southern Ocean. Geophysical Research Letters, 45 (17), 9049–9057. doi:1498

–45–



manuscript submitted to Global Biogeochemical Cycles

10.1029/2018GL0780131499

Gregor, L., & Gruber, N. (2021). OceanSODA-ETHZ: a global gridded data1500

set of the surface ocean carbonate system for seasonal to decadal studies1501

of ocean acidification. Earth System Science Data, 13 (2), 777–808. doi:1502

10.5194/essd-13-777-20211503

Gregor, L., Kok, S., & Monteiro, P. M. S. (2017). Empirical methods for the esti-1504

mation of Southern Ocean CO2: support vector and random forest regression.1505

Biogeosciences, 14 (23), 5551–5569. doi: 10.5194/bg-14-5551-20171506

Gregor, L., Lebehot, A. D., Kok, S., & Scheel Monteiro, P. M. (2019). A com-1507

parative assessment of the uncertainties of global surface ocean CO2 esti-1508

mates using a machine-learning ensemble (CSIR-ML6 version 2019a) - have1509

we hit the wall? Geoscientific Model Development , 12 (12), 5113–5136. doi:1510

10.5194/gmd-12-5113-20191511

Gruber, N., Bakker, D. C. E., DeVries, T., Gregor, L., Hauck, J., Landschützer,1512

P., . . . Müller, J. D. (2023). Trends and variability in the ocean car-1513

bon sink. Nature Reviews Earth & Environment , 4 (2), 119–134. Re-1514

trieved from https://doi.org/10.1038/s43017-022-00381-x doi:1515

10.1038/s43017-022-00381-x1516

Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S., Hoppema,1517

M., . . . Wanninkhof, R. (2019). The oceanic sink for anthropogenic1518

co2 from 1994 to 2007. Science, 363 (6432), 1193-1199. Retrieved from1519

https://www.science.org/doi/abs/10.1126/science.aau5153 doi:1520

10.1126/science.aau51531521

Gruber, N., Gloor, M., Mikaloff Fletcher, S. E., Doney, S. C., Dutkiewicz, S., Fol-1522

lows, M. J., . . . Takahashi, T. (2009). Oceanic sources, sinks, and transport1523

of atmospheric CO 2. Global Biogeochemical Cycles, 23 (1), n/a–n/a. doi:1524

10.1029/2008GB0033491525

Gruber, N., Landschützer, P., & Lovenduski, N. S. (2019). The Variable Southern1526

Ocean Carbon Sink. Annual Review of Marine Science, 11 (1), 159–186. doi:1527

10.1146/annurev-marine-121916-0634071528

Gruber, N., Sarmiento, J. L., & Stocker, T. F. (1996). An improved method for de-1529

tecting anthropogenic CO2 in the oceans. Global Biogeochemical Cycles, 10 (4),1530

809–837. Retrieved from http://doi.wiley.com/10.1029/96GB01608 doi: 101531

.1029/96GB016081532

Hauck, J., Nissen, C., Landschützer, P., Rödenbeck, C., Bushinsky, S., & Olsen,1533
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Key Points:23

• Ocean models and machine learning estimates agree on the mean Southern Ocean24

CO2 sink, but the trend since 2000 differs by a factor of two.25

• Compared with RECCAP1, the updated estimate for the Southern Ocean CO226

uptake is 50% smaller.27

• Large model spread in summer and winter indicates that sustained efforts are re-28

quired to understand driving processes in all seasons.29

Corresponding author: Judith Hauck, judith.hauck@awi.de

–1–



manuscript submitted to Global Biogeochemical Cycles

Abstract30

We assess the Southern Ocean CO2 uptake (1985-2018) using data sets gathered in the31

REgional Carbon Cycle Assessment and Processes Project phase 2 (RECCAP2). The32

Southern Ocean acted as a sink for CO2 with close agreement between simulation results33

from global ocean biogeochemistry models (GOBMs, 0.75±0.28 PgC yr−1) and pCO2-34

observation-based products (0.73±0.07 PgC yr−1). This sink is only half that reported35

by RECCAP1. The present-day net uptake is to first order a response to rising atmo-36

spheric CO2, driving large amounts of anthropogenic CO2 (Cant) into the ocean, thereby37

overcompensating the loss of natural CO2 to the atmosphere. An apparent knowledge38

gap is the increase of the sink since 2000, with pCO2-products suggesting a growth that39

is more than twice as strong and uncertain as that of GOBMs (0.26±0.06 and 0.11±40

0.03 Pg C yr−1 decade−1 respectively). This is despite nearly identical pCO2 trends in41

GOBMs and pCO2-products when both products are compared only at the locations where42

pCO2 was measured. Seasonal analyses revealed agreement in driving processes in win-43

ter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fun-44

damental in summer, when GOBMs exhibit difficulties in simulating the effects of the45

non-thermal processes of biology and mixing/circulation. Ocean interior accumulation46

of Cant points to an underestimate of Cant uptake and storage in GOBMs. Future work47

needs to link surface fluxes and interior ocean transport, build long overdue systematic48

observation networks and push towards better process understanding of drivers of the49

carbon cycle.50

Plain Language Summary51

The ocean takes up CO2 from the atmosphere and thus slows climate change. The52

Southern Ocean has been long known to be an important region for ocean CO2 uptake.53

Here, we bring together all available data sets that estimate the Southern Ocean CO254

uptake, from models that simulate ocean circulation and physical and biological processes55

that affect the ocean carbon cycle, from surface ocean observation-based estimates, from56

atmospheric transport models that ingest atmospheric CO2 observations, and from in-57

terior ocean biogeochemical observations. With these data sets, we find good agreement58

on the mean Southern Ocean CO2 uptake 1985-2018, which is 50% smaller than previ-59

ous estimates when recalculated for the time period and spatial extent used in the pre-60

vious estimate. However, the estimates of the temporal change of the Southern Ocean61

CO2 uptake differ by a factor of two and thus are not in agreement. We further high-62

light that knowledge gaps exist not only in winter when observations are typically rare,63

but equally in summer when biology plays a larger role, which is typically represented64

in a too simplistic fashion in the dynamic models.65

1 Introduction66

The Southern Ocean (Figure 1) is the primary conduit between the surface and the67

deep ocean (Talley, 2013; Morrison et al., 2022) making it a key region for the global car-68

bon cycle and the climate system across time-scales from paleo to present day and into69

the future (Canadell et al., 2021). Firstly, water mass formation of Antarctic surface wa-70

ter occurs during large-scale upwelling of deep, old and carbon-rich water masses due71

to strong westerly winds (Russell et al., 2006; Marshall & Speer, 2012). Part of this wa-72

ter moves northwards by Ekman transport and contributes to the formation of South-73

ern mode and intermediate waters (Ito et al., 2010; Sallée et al., 2012; Morrison et al.,74

2022) together with subtropical water masses (Iudicone et al., 2016). Another part moves75

southward and circulates in the large gyres of the Weddell and Ross Seas (Klatt et al.,76

2005). A fraction of these Antarctic surface waters densify on the Antarctic shelves through77

cooling and brine rejection during sea-ice formation on the Antarctic shelves to then flow78
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down the Antarctic slope and form Antarctic Bottom Water (Orsi et al., 1999; Jacobs,79

2004).80

Historically, in pre-industrial times, the Southern Ocean was a net source of CO281

to the atmosphere due to upwelling of carbon-rich deep waters (Mikaloff Fletcher et al.,82

2007). Importantly, the large-scale upwelling that drove the natural outgassing fluxes83

in the polar and subpolar Southern Ocean still occurs today. However, since industri-84

alisation, increasing atmospheric levels of CO2 have shifted the thermodynamic equilib-85

rium of CO2 partial pressure between the ocean and the atmosphere in the favor of the86

latter, thus overcompensating the natural outgassing(e.g., Hoppema, 2004). The con-87

temporary net flux in the Southern Ocean can thus be understood as the sum of the out-88

gassing of natural CO2 and uptake of anthropogenic CO2 (Gruber et al., 2009; Gruber,89

Landschützer, & Lovenduski, 2019). Importantly, the Southern Ocean has acted as the90

primary region of uptake for anthropogenic CO2 in the industrialized era (Sarmiento et91

al., 1992; Orr et al., 2001; Caldeira & Duffy, 2000; Khatiwala et al., 2009; Frölicher et92

al., 2015; Mikaloff Fletcher et al., 2006), which is attributed to upwelling of old water93

masses (with low anthropogenic carbon) in a region of high wind speeds, as well as sub-94

sequent transport of excess carbon from the surface into the ocean interior through the95

formation of Subantarctic Mode and Antarctic Intermediate Water (Waugh et al., 2006;96

Mikaloff Fletcher et al., 2006; Bopp et al., 2015; Langlais et al., 2017; Sallée et al., 2012).97

In the absence of evidence of substantial changes in the biological carbon pump over the98

past decades, the role of biology for anthropogenic carbon uptake is thought to be small99

(Murnane et al., 1999; Holzer & DeVries, 2022). However, the biological carbon pump100

can have a strong imprint on the net fluxes during the summer when primary produc-101

tion draws down natural CO2 at the surface (e.g., E. Jones et al., 2012, 2015).102

While the general importance of the Southern Ocean for the ocean carbon sink is103

recognised, it is also the region with the largest uncertainty in the mean and trend of104

the sink (Hauck et al., 2020; Friedlingstein et al., 2022). This is partly because the observation-105

based estimates and model-based estimates measure different components of the ocean106

carbon sink, and assumptions on fluxes associated with river discharge need to made,107

which carry high uncertainty themselves (Aumont et al., 2001; Lacroix et al., 2020). Fur-108

ther, the decadal variability of the Southern Ocean and the underlying mechanisms thereof109

are a key contributor to the uncertainty and are a topic of continued discussion (Le Quéré110

et al., 2007; Landschützer et al., 2015; Gruber, Landschützer, & Lovenduski, 2019; Hauck111

et al., 2020; McKinley et al., 2020; Canadell et al., 2021). A stagnation in the growth112

of the Southern Ocean carbon sink in the 1990s is commonly attributed to a strength-113

ening of the westerly winds and associated intensified upwelling of carbon- and nutrient-114

rich deep water (Le Quéré et al., 2007; Lovenduski et al., 2007; Hauck et al., 2013). In-115

deed, evidence for this stronger upwelling is indirectly observed by enhanced surface nu-116

trient concentrations in all Southern Ocean basins (Hoppema et al., 2015; Panassa et al.,117

2018; T. Iida et al., 2013; Ayers & Strutton, 2013; Pardo et al., 2017). The early 2000’s118

marked the start of the so-called reinvigoration of the Southern Ocean carbon sink (Landschützer119

et al., 2015). The strength of the reinvigoration is uncertain due to the observation-based120

products potentially overestimating the trends owing to data sparsity (Landschützer et121

al., 2015; Gloege et al., 2021; Hauck et al., 2023), while further analysis on the trends122

in the models is needed. Furthermore, the drivers of the reinvigoration are less well un-123

derstood than for the stagnation, but it may be linked to changes in the atmospheric forc-124

ing (Gruber, Landschützer, & Lovenduski, 2019) and/or changes in the overturning cir-125

culation (DeVries et al., 2017). There is also evidence that both the stagnation and the126

reinvigoration are part of a global response to variations in atmospheric CO2 growth rate,127

ocean temperature and circulation induced by the 1992 eruption of Mount Pinatubo (McKinley128

et al., 2020; Eddebbar et al., 2019).129

The Southern Ocean carbon sink is projected to continue to play an important role130

in the future carbon cycle as shown by Earth System Model simulations (Hauck et al.,131
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2015; Kessler & Tjiputra, 2016; Canadell et al., 2021; Terhaar et al., 2021). However,132

there are indications that system changes may occur, such as a shift to a larger propor-133

tion of the CO2 uptake occurring in the polar Southern Ocean (Hauck et al., 2015), and134

a strong sensitivity of Southern Ocean carbon storage to physical ventilation and warm-135

ing (Katavouta & Williams, 2021; Terhaar et al., 2021; Bourgeois et al., 2022).136

In this study, we aim to synthesize and assess information on the Southern Ocean137

carbon sink over the period 1985 to 2018 in the framework of the REgional Carbon Cy-138

cle Assessment and Processes project, phase 2 (RECCAP2). This work builds on a pre-139

vious assessment, RECCAP phase 1 (referred to as RECCAP1 for clarity), for the pe-140

riod 1990 to 2009 (Lenton et al., 2013). In RECCAP1, the Southern Ocean was defined141

as the ocean south of 44◦S (building on earlier classification in the atmospheric inver-142

sion community), which, however, cut through the major anthropogenic CO2 uptake re-143

gion at the northern edge of the Southern Ocean. The assessment was based on five global144

ocean biogeochemical models, eleven atmospheric inversions, ten ocean inversions and145

a single pCO2 observation-based data set, the climatology of Takahashi et al. (2009). REC-146

CAP1 resulted in a best estimate of the net Southern Ocean CO2 uptake (1990-2009)147

of 0.42±0.07 PgC yr−1 based on all models (including inversions), with a surface pCO2-148

based climatology (Takahashi et al., 2009) suggesting a lower number of 0.27±0.13 PgC yr−1
149

Lenton et al. (2013). The interannual variability was estimated to be ±25% around this150

mean value. The largest proportion of the mean flux occurred in the region 44-58◦S which151

spans large parts of the Subantarctic Zone and of the Polar Frontal Zone with similar152

contributions from the Atlantic, Pacific and Indian Ocean sectors. In the Antarctic Zone153

(south of 58◦S), individual estimates did not agree on the sign of the net CO2 flux.154

A major advance since RECCAP1 is the release and continued updating of the Sur-155

face Ocean CO2 Atlas (SOCAT Bakker et al., 2016), which currently provides 33.7 mil-156

lion quality-controlled and curated surface ocean pCO2 measurements with an accuracy157

of <5 µatm in the 2022 release (Bakker et al., 2022). The release of SOCAT allowed for158

the development of the surface ocean pCO2 observation-based products (pCO2-products)159

that interpolate and extrapolate sparse ship-based observations from SOCAT to global160

coverage. Based on these maps of surface pCO2, the air-sea CO2 flux is then calculated161

using gas-exchange parameterizations and input data fields such as sea surface temper-162

ature and wind fields (R. H. Wanninkhof, 2014). Since RECCAP1, a diverse set of sta-163

tistical and machine-learning approaches have been developed (e.g., Landschützer et al.,164

2014; Rödenbeck et al., 2014; Gregor et al., 2019; Chau et al., 2022). The pCO2-products165

allowed for observation-based investigation of interannual and decadal variability. They166

confirmed the reported stagnation of the Southern Ocean carbon sink in the 1990s (Le Quéré167

et al., 2007), and identified the aforementioned reinvigoration in the 2000s (Landschützer168

et al., 2015; Ritter et al., 2017). However, these pCO2-products have made the South-169

ern Ocean’s long-standing issue of sparse observations even more evident. Observation170

system simulation experiments (OSSEs) have shown that these methods are prone to re-171

gional and temporal biases (Denvil-Sommer et al., 2021) and some pCO2-products may172

overestimate the decadal variability by 30% (Gloege et al., 2021). In fact, a recent study173

showed that the SOM-FFN pCO2-product used in the reinvigoration study of Landschützer174

et al. (2015) overestimates the model-based decadal trend 2000-2018 by 130% in an ocean175

model subsampling experiment (Hauck et al., 2023). However, these OSSEs have also176

shown that augmenting ship-based observations with well-placed, high accuracy pCO2177

observations from autonomous platforms can reduce these biases (Denvil-Sommer et al.,178

2021; Djeutchouang et al., 2022; Hauck et al., 2023).179

The gap in ship-based pCO2 observations is slowly being addressed by a second180

major advance, that is autonomous measurement devices. Among these are pH-equipped181

biogeochemical Argo floats (BGC-floats) (Williams et al., 2016; Johnson et al., 2017).182

With this approach, float pH measurements are combined with multi-linear regression-183

derived alkalinity (Williams et al., 2016; Carter et al., 2016, 2018, 2021), to calculate es-184
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timates of pCO2. Although uncertainties of the BGC-float based estimates of pCO2 are,185

to date, higher (theoretical uncertainty of 11 µatm, Williams et al., 2017) than for di-186

rect pCO2 measurements (2µatm, Bakker et al., 2016), some of these indirect pCO2 es-187

timates fill critical gaps in the sparsely sampled winter months. These novel data, either188

on their own (Gray et al., 2018) or as additional input for pCO2-products (Bushinsky189

et al., 2019), reported a strong winter outgassing of CO2 in the subpolar Southern Ocean190

for the years 2015 through 2017 that also led to a substantially smaller estimate of the191

annual Southern Ocean CO2 uptake for these years. However, these larger-than-expected192

winter outgassing estimates were challenged by airborne flux estimates and direct pCO2193

measurements from a circumpolar navigation by an uncrewed sailing drone (Long et al.,194

2021; Sutton et al., 2021). The sailing drone observations were in agreement with ship-195

based pCO2-product estimates throughout all seasons (Sutton et al., 2021). The authors196

attributed the discrepancy between BGC-floats and other estimates to either a bias of197

the float measurement devices or interannual variability. In support of the latter argu-198

ment, the BGC-Argo-based air-sea CO2 flux in the years 2017-2019 also did not reveal199

the strong winter outgassing signal of the years 2015 and 2016 (Sutton et al., 2021).200

Another advance since RECCAP1 is that more global ocean biogeochemical mod-201

els (GOBMs) have become available with improvements in resolution and physical and202

biogeochemical process representation (R. H. Wanninkhof et al., 2013; Friedlingstein et203

al., 2022). While the ability of the GOBMs to capture interannual variability of air-sea204

CO2 fluxes (FCO2) was questioned by the larger variability of pCO2-product estimates205

(Le Quéré et al., 2018), the lower interannual variability of GOBMs now falls within the206

range of the larger ensemble of pCO2-products (McKinley et al., 2020; Hauck et al., 2020).207

For the decadal variability of FCO2, there is a moderate agreement between GOBMs and208

pCO2-products on a stagnation of the sink in the 1990s and an increase of the sink in209

2002-2011 but with a larger amplitude of the multi-year/decadal variability in the pCO2-210

products (McKinley et al., 2020; Hauck et al., 2020; Gruber et al., 2023). Although the211

GOBMs compare reasonably well to global and Southern Ocean observations of surface212

ocean pCO2 (Hauck et al., 2020), their estimates of the global ocean carbon sink remain213

below those of interior ocean anthropogenic carbon accumulation estimates from 1994214

to 2007 (Gruber, Clement, et al., 2019), atmospheric inversions, observed O2/N2 ratios215

(Friedlingstein et al., 2022; Tohjima et al., 2019), and a similar underestimation was found216

in Earth System Models (Terhaar et al., 2022).217

The final major advance in the last decade are regional and global data-assimilating218

global ocean biogeochemistry models (Verdy & Mazloff, 2017; Carroll et al., 2020). These219

models bring together the process-based knowledge from GOBMs, but use data assim-220

ilation schemes to minimize mismatches between simulated fields, and physical and bio-221

geochemical observations.222

Despite these recent advances in observations and models, the Southern Ocean is223

still the region with the largest discrepancy in mean CO2 flux (although within the un-224

certainty of the fluxes associated with river discharge which are implicitly included in225

the observation-based estimates, but not in the models, see sections 2.2.1 and 2.3.1) and226

variability, as well as largest model spread (Friedlingstein et al., 2022; Canadell et al.,227

2021). In this study, we aim to quantify the Southern Ocean (following the RECCAP2228

biome shown in Figure 1) surface CO2 fluxes and interior storage of anthropogenic car-229

bon over the period 1985-2018 from different classes of models and observations, and to230

identify knowledge gaps and ways forward.231

This study is organized in the following way. In our methods, we describe the re-232

gion (section 2.1), the datasets that we use throughout this synthesis (section 2.2), and233

how the data were processed (section 2.3). Our results contain first the estimates of the234

mean fluxes 1985-2018 and their decomposition into anthropogenic and natural fluxes,235

and atmospheric CO2 versus climate effects (section 3.1). This is followed by an anal-236

ysis of summer and winter fluxes and the full seasonal cycle, where we also decompose237
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pCO2 into seasonal thermal and non-thermal contributions (section 3.2). We then anal-238

yse the regionally averaged temporal trends of CO2 flux and also of pCO2 in compar-239

ison with in situ pCO2 observations, as well as atmospheric CO2 and climate effects as240

drivers of the trends (section 3.3). In the final part of the results, the study then eval-241

uates the GOBM simulation results with observation-based estimates of ocean interior242

storage of anthropogenic carbon in the Southern Ocean (section 3.4). The discussion first243

summarizes the results with a comparison of the RECCAP1 and RECCAP2 results (sec-244

tion 4.1). We also discuss the drivers of the seasonal cycle (section 4.2), the interannual245

and decadal variability (section 4.3), and the zonal asymmetry of the fluxes in the South-246

ern Ocean (section 4.4). Lastly, we discuss how our study links with and can inform ob-247

servational programs (section 4.5), before presenting a conceptual characterization of the248

Southern Ocean carbon cycle in the conclusions (section 5).249

2 Methods250

2.1 Regions251

We use the RECCAP2 regions (DeVries, 2022) to define the Southern Ocean and252

its northern boundary (Figure 1). This definition of the Southern Ocean covers the sub-253

tropical seasonally stratified biome (STSS), the subpolar seasonally stratified biome (SPSS),254

and the ice biome (ICE) and is based on the global open ocean biome classification of255

Fay and McKinley (2014). This covers a larger area than the definition used in REC-256

CAP1 (44-58◦S, 58-75◦S Lenton et al., 2013) and has the advantage that it does not cut257

through the subtropical region with its large CO2 flux into the ocean. The northernmost258

extent of the Southern Ocean in this definition is 35◦S. For parts of our analysis, we fur-259

ther separate the Atlantic, Indian, and Pacific Ocean sectors along longitudes of 20◦E,260

147◦E, and 290◦E (Figure 1).261

2.2 Data sets262

Here, we introduce data sets across four different data classes that are used for the263

assessment of the Southern Ocean CO2 fluxes and storage, namely: ocean biogeochem-264

istry models (14), surface pCO2-based data-products (11), data assimilated and ocean265

inverse models (3), and atmospheric inversion models (6).266

2.2.1 Ocean biogeochemistry models267

We used 13 global ocean biogeochemistry models (GOBMs) and 1 regional ocean268

biogeochemistry model (Table 1). These models simulate ocean circulation and biogeo-269

chemical fluxes caused by physics (advection, mixing, gas-exchange) and by biological270

processes. They are forced with atmospheric fields from reanalysis products, e.g., by ei-271

ther heat and freshwater fluxes directly or by air temperature, wind speed, precipitation272

and humidity, which are converted to heat and freshwater fluxes using bulk formulae (see273

references in Table 1; Large et al., 1994). From these 14 models, eleven models are global274

ocean models with roughly 1◦×1◦ resolution, and two global models (FESOM REcoM HR275

and ORCA025-GEOMAR) and the regional model (ROMS-SouthernOcean-ETHZ) are276

available in ca. 0.25◦×0.25◦ resolution. Details of global model set-ups are given in (DeVries277

et al., 2023). The ROMS-based regional Southern Ocean model has a northern bound-278

ary at 24◦S.279

For the ocean-models listed above, up to four different simulations were provided280

(see also Table S1 and DeVries et al., 2023). These differ in whether atmospheric CO2281

and all other atmospheric forcing variables vary on interannual time scales, are repeated282

for a single year, or follow a multi-year climatology. In simulation A, the historical run,283

both atmospheric CO2 and all other physical forcing variables vary on interannual time284

scales. In simulation B, the preindustrial control run, a repeated year or climatological285
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Table 1. Overview of data sets used in this paper. Sorted by data class, here: Global Ocean

Biogeochemistry Models (GOBMs), Regional Ocean Biogeochemistry Model, and data assimi-

lated models.

Data set Time period Specific infor-

mation

Reference

Global Ocean Biogeochemistry Models Simulations

CCSM-WHOI 1985-2017 A, B, C, D Doney et al. (2009)

CESM-ETHZ 1985-2018 A, B, C, D Lindsay et al. (2014);

S. Yang and Gruber (2016)

CNRM-ESM2-1 1985-2018 A, B, C, D Séférian et al. (2019);

Berthet et al. (2019);

Séférian et al. (2020)

EC-Earth3 1985-2018 A, B, C, D Döscher et al. (2022)

FESOM REcoM HR 1985-2018 A, B Hauck et al. (2013);

Schourup-Kristensen et

al. (2014, 2018)

FESOM REcoM LR 1985-2018 A, B, C, D Hauck et al. (2013);

Schourup-Kristensen et al.

(2014); Hauck et al. (2020)

MOM6-Princeton 1985-2018 A, B Liao et al. (2020); Stock et

al. (2020)

MPIOM-HAMOCC 1985-2018 A, B, C, D Ilyina et al. (2013); Paulsen

et al. (2017); Mauritsen et

al. (2019)

MRI-ESM2-1 1985-2018 A, B, C, D Urakawa et al. (2020)

NorESM-OC1.2 1985-2018 A, B, C, D Schwinger et al. (2016)

ORCA025-GEOMAR 1985-2018 A, B, C, D Madec and the NEMO team

(2016); Kriest and Oschlies

(2015); Chien et al. (2022)

ORCA1-LIM3-PISCES

(IPSL-NEMO-PISCES)

1985-2018 A, B, C, D Aumont et al. (2015)

PlankTOM12 1985-2018 A, B, C, D Le Quéré et al. (2016);

Buitenhuis et al. (2019);

Wright et al. (2021)

Regional Ocean Biogeochemical Models Simulations

ROMS-SouthernOcean-

ETHZ

1985-2018 A, B, D A. Haumann (2016); Nissen

et al. (2018)

Data-assimilated models

B-SOSE 2013-2018 Verdy and Mazloff (2017)

ECCO-Darwin 1992-2017 Carroll et al. (2020, 2022)

OCIMv2021 1780-2018 A, B, C DeVries (2022)
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Table 2. Overview of data sets used in this paper (continued). Sorted by data class, here:

pCO2-products and atmospheric inversions. The atmospheric inversions were provided only since

1990.

Data set Time pe-

riod

Specific infor-

mation

Reference

pCO2-products

AOML EXTRAT 1998-2018 R. Wanninkhof (2023)

CMEMS-LSCE-

FFNN

1985-2018 Chau et al. (2022)

CSIR-ML6 1985-2018 Gregor et al. (2019)

Jena-CarboScope

(Mixed Layer

Scheme)

1985-2018 Rödenbeck et al. (2013, 2022)

JMA-MLR 1985-2018 Y. Iida et al. (2021)

LDEO-HPD 1985-2018 Gloege et al. (2022)

NIES-ML3 1985-2018 Zeng et al. (2022)

OceanSODA-ETHZ 1985-2018 Gregor and Gruber (2021)

MPI-SOM-FFN 1985-2018 Landschützer et al. (2016, 2020)

Jena-CarboScope

(SOCCOM)

2015-2018 Bushinsky et al. (2019) updated

MPI-SOM-FFN

(SOCCOM)

2015-2018 Bushinsky et al. (2019) updated

Watson2020 1988-2018 Watson et al. (2020)

LDEO climatology

(Takahashi legacy)

climatology Takahashi et al. (2009)

Atmospheric inversions Ocean prior

Jena CarboScope 1957-2020

(1990-2020)

CarboScope

pCO2-product

Rödenbeck et al. (2018)

CAMS 1979-2020

(1990-2020)

CMEMS-

LSCE-FFNN

pCO2-product

Chevallier et al. (2005)

NISMON-CO2 1990-2020 JMA-MLR

pCO2-product

Niwa et al. (2017)

CarbonTrackerEurope

(CTE)

2001-2020 CarboScope

pCO2-product

van der Laan-Luijkx et al. (2017)

UoE 2001-2020 Takahashi cli-

matology

Feng et al. (2016)

CMS-Flux 2010-2020 MOM6 GOBM Liu et al. (2021)
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35°S

44°S

58°S

147°E

20°E

70°W

Atlantic STSS

Atlantic SPSS

Atlantic ICE

Indian STSS

Indian SPSS

Indian ICE

Pacific STSS

Pacific SPSS

Pacific ICE

Figure 1. Study region. The Southern Ocean covers three biomes: The subtropical seasonally

stratified (STSS), the subpolar seasonally stratified (SPSS), and the ice (ICE) biome. The biomes

are defined following Fay and McKinley (2014). We further consider the Atlantic, Pacific, and

Indian Ocean sectors separately in parts of the analysis. The dashed lines show the RECCAP2

Southern Ocean northernmost extent (35◦S), the RECCAP1 Southern Ocean northernmost

extent (44◦S), and RECCAP1’s boundary for the circumpolar region (58◦S).

physical atmospheric forcing is used, and the atmospheric CO2 levels are held constant286

at pre-industrial levels. In simulation C, the atmospheric CO2 varies interannually and287

only the physical atmospheric forcing is climatological. In simulation D, the atmospheric288

CO2 levels are held constant at pre-industrial levels, whereas the physical atmospheric289

forcing varies interannually. These simulations allow for the separation of the effects of290

the increase in atmospheric CO2 and climate change and variability on air-sea CO2 fluxes:291

the steady-state and non-steady state components of both natural and anthropogenic292

carbon. Here anthropogenic refers to the direct effect of increasing atmospheric CO2 and293

non-steady state encompasses the effects of climate change and variability. For a detailed294

explanation, please see DeVries et al. (2023) and further explanation in Le Quéré et al.295

(2010); McNeil and Matear (2013); Hauck et al. (2020); Crisp et al. (2022); Gruber et296

al. (2023). Simulation A includes all components of the carbon fluxes. In the control sim-297

ulation B, only the steady-state component of natural carbon is considered. In simula-298

tion C, only the steady-state components of both natural and anthropogenic carbon are299

accounted for. Lastly, in simulation D, only the steady state and non-steady state com-300

ponents of natural carbon are represented.301

The majority of models do not account for the river-induced outgassing of carbon302

(DeVries et al., 2023; Terhaar et al., 2023), hence the air-sea CO2 flux in simulation A303

corresponds to the SOCEAN definition used in the Global Carbon Budget (Friedlingstein304

et al., 2022), which differs from pCO2-product estimates by the river-induced term. Note305

that the river-induced term will be discussed in greater detail in section 4.1. In addition,306

simulation A may include a model bias (mean offset) and drift (temporally changing off-307

set). We assess the model drift of the air-sea CO2 flux by calculating the linear trend308

of the integrated CO2 flux time series for the period 1985-2018 in simulation B for each309

model and each biome. The time series plots and the linear trends reported in Figure310
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8 are drift corrected by subtracting the trend from simulation B. We note that this drift-311

correction only marginally impacts the reported trends in the result section, as the trends312

in simulation B are small compared to the mean fluxes for all models (see supplemen-313

tary material: Text S1 and Figure S1). In contrast to a global bias (any deviation of the314

global mean CO2 flux from 0 in simulation B, see Hauck et al., 2020), the regional bias315

in the simulated flux cannot be assessed by the set of simulations as it cannot be sep-316

arated from the natural steady-state air-sea CO2 flux (Terhaar et al., 2023), which is non317

zero on a regional level.318

We use the full suite of models in all analyses, with two exceptions. Firstly, we ex-319

cluded the MPIOM-HAMOCC model in all seasonal analyses (Fig. 4-7) because its am-320

plitude of the seasonal cycle is a factor 3-6 larger than in the other models in the three321

main Southern Ocean biomes (Figure S2), and including this outlier would skew the en-322

semble mean disproportionately. The exaggerated seasonal cycle in the MPIOM-HAMOCC323

model was found in earlier studies and is attributed to excessive net primary production324

in the Southern Ocean (Mongwe et al., 2018). Secondly, the decomposition into natu-325

ral and anthropogenic CO2 fluxes was not possible with GOBMs that only provided sim-326

ulations A and B (MOM6-Princeton and FESOM-REcoM-HR). See section 2.3.4 for fur-327

ther restrictions on GOBM use and interpretation for the interior ocean anthropogenic328

carbon accumulation.329

2.2.2 Surface pCO2-based data-products330

As a second data class, we use surface ocean pCO2 observation-based data prod-331

ucts (pCO2-products) (Table 2, for more details see DeVries et al., 2023). These pCO2-332

products extrapolate or interpolate sparse ship-based measurements of pCO2 using sta-333

tistical modeling approaches. All pCO2-based data-products use SOCAT as the target334

dataset. The majority of pCO2-products use similar gridded prediction datasets to fill335

the gaps, including sea surface temperature, sea surface salinity, mixed-layer depth, and336

chlorophyll-a estimates for the open ocean. We use 8 such pCO2-products that all cover337

the full time-series 1985-2018 for the ensemble mean of pCO2-products. AOML EXTRAT338

covers a shorter period, and is thus not included in the ensemble mean 1985-2018, but339

is included in the ensemble mean 2015-2018. The largest methodological difference be-340

tween the pCO2-products stems from the algorithm choice. The majority of the meth-341

ods use regression approaches (a.k.a. machine learning) such as artificial neural networks342

(e.g, MPI-SOM-FFN) and gradient boosted decision trees (e.g., CSIR-ML6) to capture343

the relationship between the ship-based measurements and the predictor variables. The344

Jena-CarboScope product includes a mechanistic understanding of mixing, entrainment,345

and fluxes of CO2 into and out of the mixed layer (Rödenbeck et al., 2014). The HPD-346

LDEO method adjusts global ocean biogeochemistry model estimates of pCO2 to be closer347

to observed ship-based measurements and is thus an observation-based posterior correc-348

tion to the GOBM estimates (Gloege et al., 2022).349

Further, two additional variants of MPI-SOM-FFN and Jena-CarboScope by Bushinsky350

et al. (2019, ship+float estimates are used here) include additional BGC-float-derived351

pCO2 for the Southern Ocean (referred to as BGC-float pCO2-products, 2015-2018). We352

also use the Watson2020 product, which is a neural network approach (based on MPI-353

SOM-FFN) but applies an adjustment to SOCAT pCO2 that accounts for the difference354

between ship intake temperature and satellite sea surface temperature (Watson et al.,355

2020). The BGC-float pCO2-products (2015-2018) and Watson2020 (1988-2018) are not356

included in the pCO2-product ensemble averages, as they are based on fundamentally357

different pCO2 values. We also use a monthly climatology product (LDEO-clim) that358

is centered on the year 2010 (Takahashi et al., 2009).The LDEO-clim product fills the359

gaps using a combination of inverse distance weighted interpolation and a diffusive-advective360

interpolation scheme (Takahashi et al., 2009). Note that this product is only used in rep-361

resentations of the seasonal cycle, and not for trend analyses. All these pCO2-products362
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estimate the bulk air-sea CO2 flux with:363

FCO2 = K0 · kw · (pCO2
sea − pCO2

atm) · (1− ice) (1)

where K0 is the solubility of CO2 in seawater, kw is the gas transfer velocity, pCOsea
2 is364

the oceanic estimate of pCO2 from the pCO2-product, pCO2atm is the atmospheric pCO2,365

and ice is the sea-ice fraction, with the majority of the open ocean having a fraction of366

0. Other than pCOsea
2 , kw is the largest source of uncertainty in the calculation of bulk367

air-sea CO2 fluxes R. H. Wanninkhof (2014); Fay et al. (2021). However, most of the pCO2-368

products use a quadratic formulation of kw as described by R. Wanninkhof et al. (1993)369

meaning that the product spread is reduced due to similar choices – details are shown370

in Global chapter’s Table S2 (DeVries et al., 2023). An exception is the Watson2020 prod-371

uct (Watson et al., 2020) that calculates air sea CO2 fluxes using the formulation described372

in Woolf et al. (2016) where a cool and salty skin adjustment is applied.373

2.2.3 Data-assimilated models374

We use three data-assimilating models (Table 1). The Biogeochemical Southern375

Ocean State Estimate (B-SOSE Verdy & Mazloff, 2017) is an eddy-permitting 1/6-degree376

resolution data-assimilating model, which assimilates the data from Southern Ocean Car-377

bon and Climate Observations and Modelling (SOCCOM) BGC-Argo floats as well as378

shipborne and other autonomous observations (i.e., GLODAP and SOCAT) over the pe-379

riod 2013-2018. In situ and satellite observations of the physical state are also assimi-380

lated. B-SOSE is based on the MIT general circulation model (MITgcm Campin et al.,381

2011) and uses software developed by the consortium for Estimating the Circulation and382

Climate of the Ocean (ECCO Stammer et al., 2002; Wunsch & Heimbach, 2013) to build383

on the SOSE physical model framework by adding the Nitrogen version of the Biogeo-384

chemistry with Light, Iron, Nutrients, and Gases (N-BLING; evolved from Galbraith et385

al., 2010) biogeochemical model. Consistency with the data is achieved by systemati-386

cally adjusting the model initial conditions and the atmospheric state through the 4D-387

Var assimilation methodology. This B-SOSE assimilation methodology does not break388

the model biogeochemical or physical budgets. The budgets are closed, which allows one389

to understand signal attribution, though limits the control we have over the solution. For390

this reason B-SOSE is only consistent with the data on the timescales longer than ap-391

proximately 90 days; the mesoscale eddies are reproduced statistically and not determin-392

istically. Even with this assimilation methodology some seasonal biases still exist, and393

B-SOSE is still a work in progress.394

The ECCO-Darwin data-assimilation model (Carroll et al., 2020) is based on a global395

ocean and sea ice configuration (about 1/3 degree) of the MIT general circulation model396

and is available from January 1992 to December 2017. Besides being global and cover-397

ing a longer duration than B-SOSE, this product also uses a different biogeochemical model398

and assimilation technique. The ECCO circulation estimates used in this version are cou-399

pled online with the Darwin ecosystem model (Dutkiewicz et al., 2009), which represents400

the planktonic ecosystem dynamics coupled with biogeochemical cycles in the ocean. The401

R. Wanninkhof (1992) parameterization of gas transfer velocity is used and pCOatm
2 is402

the National Oceanic and Atmospheric Administration Marine Boundary Layer Refer-403

ence product (Dlugokencky et al., 2021). The biogeochemical observations used to eval-404

uate and adjust ECCO-Darwin include (1) surface ocean fugacity (fCO2) from the monthly405

gridded Surface Ocean CO2 Atlas (SOCATv5 Bakker et al., 2016), (2) GLODAPv2 ship-406

based profiles of NO3, PO4, SiO2, O2, dissolved inorganic carbon (DIC), and alkalinity407

(Olsen et al., 2016), and (3) BGC-Argo float profiles of NO3 and O2 (Drucker & Riser,408

2016; Riser et al., 2018). To adjust the model’s fit to the global biogeochemical obser-409

vations, the Green’s function approach is used to adjust biogeochemical initial conditions410

and model parameters.411

–11–



manuscript submitted to Global Biogeochemical Cycles

OCIMv2021 is an inverse model that assimilates observations of temperature, salin-412

ity, CFCs and radiocarbon to achieve an estimate of the climatological mean ocean cir-413

culation (DeVries, 2022). This steady-state circulation model is used together with an414

abiotic carbon cycle model and atmospheric CO2 forcing to simulate anthropogenic car-415

bon uptake and its redistribution within the ocean. It uses a monthly time-step and sim-416

ulates the period 1780 to 2018. No assimilation takes place during this period.417

2.2.4 Atmospheric inversions418

Six atmospheric inversions are available for our analysis (Table 2). Atmospheric419

inversions make use of the worldwide network of atmospheric CO2 observations. They420

ingest a dataset of fossil fuel emissions, which are assumed to be well known, into an at-421

mospheric transport model and then solve for the spatio-temporal distribution of land422

and ocean CO2 fluxes while minimizing the mismatch with atmospheric CO2 observa-423

tions (Friedlingstein et al., 2022). Thus, the resulting land and ocean carbon fluxes are424

bound to the atmospheric CO2 growth rate, but the estimated regional fluxes depend425

on the number of stations in the observational network. The inversions also start from426

prior estimates of land and ocean fluxes. For four inversion data sets that we use here,427

the ocean prior is taken from pCO2 -products that are used in this analysis as well (Ta-428

ble 2). One inversion (UoE) uses the Takahashi climatology as a prior and one (CMS-429

Flux) an ocean biogeochemical model. The atmospheric inversions are thus not indepen-430

dent from the other data classes (Friedlingstein et al., 2022, their Table A4). The atmo-431

spheric inversion data were submitted for RECCAP in the same version as in the Global432

Carbon Budget 2021 (Friedlingstein et al., 2022), but only since 1990. The three inver-433

sions starting later (2001 or 2010) are only included in averages reported for 2015-2018434

(Figures 4 and 5), and as individual lines in the time-series figure (Figure 8).435

2.3 Processing436

Throughout this study, we report the air-sea CO2 exchange as the net flux (FCO2),437

which is the sum of natural, anthropogenic and river-induced air-sea CO2 flux (see e.g.,438

DeVries et al., 2023; Hauck et al., 2020; Crisp et al., 2022). As the GOBMs vary widely439

in their choices on river carbon and nutrient input into the ocean and burial at the seafloor440

(see DeVries et al., 2023; Terhaar et al., 2023), an adjustment is applied to make all data441

classes comparable.442

2.3.1 River flux adjustment443

Globally, the majority of GOBMs produce a small imbalance of riverine carbon in-444

flow and burial globally (<0.14 PgC yr−1), which is smaller than the current best esti-445

mate of river-induced CO2 ocean outgassing of 0.65 PgC yr−1 (Regnier et al., 2022). The446

imbalances are due to manifold choices and illustrate the lack of a closed land-ocean car-447

bon loop in the GOBMs. As the GOBMs do not adequately account for the river dis-448

charge and its fate within the ocean, and thus for river-derived ocean CO2 outgassing449

(Terhaar et al., 2023), we account for this outgassing by using the spatial patterns of river-450

induced air-sea CO2 fluxes from Lacroix et al. (2020) that are scaled to the global value451

of 0.65 PgC yr−1 (Regnier et al., 2022). Southern Ocean outgassing from rivers amounts452

to 0.04 PgC yr−1, i.e., around 6% of the global river flux. It is distributed over the South-453

ern Ocean biomes as follows (positive outgassing): 0.00036 PgC yr−1 in the ICE biome,454

0.053 PgC yr−1 (SPSS biome), -0.014 (STSS biome). The estimated riverine CO2 fluxes455

were added to biome-integrated fluxes in simulation A for all GOBMs, so that these are456

comparable to the pCO2-products. They are not added to spatial maps of CO2 fluxes457

due to large uncertainties in the regional attribution by Lacroix et al. (2020). The river-458

ine fluxes are one (ICE) to multiple (SPSS, STSS) orders of magnitude smaller than the459
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mean fluxes quantified in this study. The uncertainty associated with the river flux ad-460

justment is discussed in section 4.1.461

2.3.2 Treatment of different area coverage462

Air-sea CO2 fluxes in all data classes were integrated over the area available for each463

GOBM, pCO2-product etc., i.e., fluxes were not scaled to the same ocean area here. Rel-464

ative to the ocean area in the RECCAP mask, the covered ocean areas in the GOBMs465

and data-assimilating models corresponds to 96.2-100% (minimum for CCSM-WHOI)466

and to 95.6-100% in the pCO2-products (minimum for JMA-MLR). These differences467

mainly stem from the ICE biome. We assume that the discrepancy arising from differ-468

ences in covered area are smaller than the uncertainty arising from any extrapolation to469

the same area.470

2.3.3 pCO2 decomposition471

To separate temperature driven changes in pCO2 from biological processes and mixing-472

driven entrainment, pCO2 is decomposed into thermal and non-thermal components (Takahashi473

et al., 1993). The thermal component (pCOT
2 ) is calculated as474

pCOT
2 = pCO2 · e(0.0423·∆T ) (2)

where pCO2 is the annual mean of pCO2 and ∆T difference of the monthly mean tem-475

perature from the annual mean temperature. The non-thermal contribution (pCOnonT
2 )476

is estimated as the difference of the thermal contribution (pCOT
2 ) from the monthly-averaged477

pCO2. The first derivatives of these two components are subtracted from each other to478

create the pCO2 seasonal driver metric, denoted as λpCO2:479

λpCO2 =

∣∣∣∣pCOT
2

δt

∣∣∣∣− ∣∣∣∣pCOnonT
2

δt

∣∣∣∣ (3)

Here, positive values indicate periods when the thermal component is a larger contrib-480

utor to pCO2, and negative values show where the DIC processes (non-thermal) play a481

dominant role in surface pCO2 changes. We also denote the first derivatives as pCOT ′

2482

and pCOnonT ′

2 for brevity.483

2.3.4 Anthropogenic carbon inventories484

Anthropogenic CO2 (Cant) is defined as the change in ocean dissolved inorganic485

carbon (DIC) since preindustrial times due to the direct effect of increasing CO2 con-486

centration in the atmosphere. It is computed as the DIC difference between experiments487

A and D. The accumulation of Cant can be separated into a steady-state component (Css
ant,488

DIC difference between experiments C and B), that is influenced only by the increased489

atmospheric CO2, and a non-steady-state component (Cns
ant), which considers the effect490

of climate variability and change on Cant (and which is maximally 10-20% of Cant, Text491

S2 and Figures S3-S4). Here we focus mainly on the change in Cant that has occurred492

over the period 1994-2007 (hereafter ∆Cant), to correspond to the years covered by the493

eMLR(C*) observation-based estimate (Gruber, Clement, et al., 2019). The eMLR(C*)494

method (Clement & Gruber, 2018) uses ocean measurements of DIC from GLODAP2495

(Olsen et al., 2016) over more than 30 years as the foundation to determine ∆Cant be-496

tween nominal years 1994 and 2007. The method has been shown to be accurate at global497

and basin scales, but is more uncertain at sub-basin scales and should not be used be-498

low 3000 m depth. The (2 sigma) uncertainty of the eMLR(C*) product is estimated to499

be around 19% for the Southern Hemisphere (Gruber, Clement, et al., 2019). The eMLR(C*)500

method differs fundamentally from past indirect or model-based methods used to esti-501

mate Cant accumulated since pre-industrial times (Gruber et al., 1996; Sabine et al., 2004;502

Waugh et al., 2006; DeVries, 2014). Of these, we used the 1800-1994 cumulative Cant503
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estimate based on (Sabine et al., 2004), which is characterized by an uncertainty of about504

20% globally (Sabine et al., 2004; Matsumoto & Gruber, 2005). In terms of GOBMs, we505

used all those listed in Table 1, with the exception of FESOM-REcoM-HR and MOM6-506

Princeton who provided only experiments A and B. For most GOBMs, we analyze Ctot
ant,507

to allow for a more accurate comparison with the observation-based data set (eMLR(C*)).508

However, for MPIOM-HAMOCC and CNRM-ESM2-1 it was only possible to compute509

Css
ant, because of physical forcing inconsistencies between experiments A and D. We be-510

lieve that the advantage of including all GOBMs in the analysis outweighs the disadvan-511

tages of having an incoherent definition of Cant among GOBMs. It should be noted that512

the spin-up procedure of ROMS-SouthernOcean-ETHZ, which uses atmospheric CO2 from513

1969 to 1978 (for a ten year spin-up of the biogeochemical component), makes it suit-514

able only for the analysis of ∆Cant between 1994 and 2007, and not of cumulative Cant515

until 1994 nor of air-sea Cant fluxes in specific years. As explained in the RECCAP2 model516

evaluation chapter (Terhaar et al., 2023), all GOBMs are forced with a very similar at-517

mospheric CO2 mixing ratio (xCO2) over the historical period. However, the atmospheric518

xCO2 in the pre-industrial control simulations across the GOBM ensemble varies between519

278 ppm and 287.4 ppm, leading to an underestimate of the Cant storage for those mod-520

els with a late starting date (Terhaar et al., 2023).521

3 Results522

3.1 Mean air-sea CO2 fluxes 1985-2018523

We start with a comparison of the average air-sea CO2 flux in the two data classes524

(GOBMs, pCO2-products) that cover the full period 1985-2018. We exclude data classes525

with fewer products for the sake of robustness, and show the comparison between all data526

classes in sections 3.2 and 3.3. The mean net Southern Ocean air-sea CO2 flux 1985-2018527

by the GOBM ensemble is -0.75± 0.28 PgC yr−1 and −0.73 ±0.07 PgC yr−1 (flux into528

the ocean) for the pCO2-product ensemble mean (Figure 2a). While both ensemble means529

result in an almost identical ocean uptake of CO2, the GOBM ensemble spread is four530

times larger.531

All Southern Ocean regions are sinks of CO2 based on the ensemble averages of the532

GOBMs and pCO2-products (Figure 2). The subtropical seasonally stratified biome (STSS),533

which is a subduction area with deep winter mixed layer depth and intermediate chloro-534

phyll concentration (Fay & McKinley, 2014), is the largest sink according to all data sets535

(GOBMs: -0.53±-0.17 PgC yr−1, pCO2-based products:-0.62±0.06 PgC yr −1, Figure536

2a). Second is the subpolar seasonally stratified biome (SPSS) (GOBMs: -0.13± 0.14 PgC yr−1,537

pCO2-products: -0.07± 0.02 PgC yr−1), which is characterized by upwelling of old wa-538

ter, rich in natural carbon but with low anthropogenic carbon content. The upwelled wa-539

ter is also rich in nutrients, and thus a region with important biological activity. Note540

that three GOBMs simulate the SPSS to be a source of CO2 to the atmosphere. The marginal541

sea ice (ICE) biome is the weakest CO2 sink (GOBMs: -0.09±0.13 PgC yr−1; pCO2-products:542

-0.05±0.02 PgC yr−1) due to sea ice acting as a lid that prevents carbon outgassing in543

winter, and is the smallest of all three biomes covering an area of about 60% the size of544

STSS or SPSS (Fay & McKinley, 2014). Four individual models suggest that the ICE545

biome is a weak outgassing region, but no other data set supports this.546

In a zonal mean view (Figure 2b), the smallest uptake occurs between 62 and 55◦S547

and the largest uptake around 40◦S. However, the amplitude differs between data classes,548

with the pCO2-products having a larger difference between minima and maxima (1.96 mol C m−2 yr−1),549

than the GOBM ensemble mean (1.19 mol C m−2 yr−1). Some of the individual GOBMs550

deviate from this pattern (see supplementary figure S5a for zonal means of individual551

models).552
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Figure 2. Temporal average of the Southern Ocean CO2 net flux (FCO2). A positive flux

denotes outgassing from ocean to atmosphere. The temporal average is calculated over the period

1985 to 2018 for the global ocean biogeochemistry models (GOBMs) and pCO2-products (Table

1). (a) The green and blue bar plots show the ensemble mean of the GOBMs and pCO2-based

data-products, and open circles indicate the individual GOBMs and pCO2-products. The en-

semble standard deviation (1σ) is shown by the error bars. The river flux adjustment added to

the GOBMs is small (0.04 PgC yr−1), its distribution over the biomes is described in section

2.3.1. (b) zonal mean flux density of the different data sets. Thick green and blue lines show the

ensemble means, and thin green and blue lines show the individual GOBMs and pCO2-products.

Approximate boundaries for biomes are marked with black points on the x-axis. (c-d) maps of

spatial distribution of net CO2 flux for ensemble means of GOBMs, and pCO2-products.
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Figure 3. Decomposition of the modeled net air-sea CO2 flux 1985-2018 into natural and

anthropogenic CO2 fluxes; as well as into CO2 and climate effects. See method section 2.2.1 for

explanation on this decomposition. The separation into natural and anthropogenic CO2 fluxes is

not possible for FESOM-REcoM-HR and MOM6-Princeton models as only simulations A and B

are available. These models are only shown as crosses for net FCO2 but not used for averaging.

Hence, separation within this figure is coherent, but the net FCO2 is slightly different from the

net FCO2 in Figure 2.

Regionally, significant differences emerge between the Atlantic, Indian and Pacific553

sectors of the Southern Ocean (Figure 2c-d). Within the STSS, large CO2 fluxes into554

the ocean occur in the Atlantic and Indian sector across all data classes (Figure 2b-c,555

mean flux density: -1.93 mol C m−2 yr−1 and -2.05 mol C m−2 yr−1 for GOBMs and556

pCO2-products, respectively, in the Atlantic sector, -1.44 mol C m−2 yr−1 and -1.89 mol C m−2 yr−1
557

in the Indian sector, and -1.22 mol C m−2 yr−1 and -1.54 mol C m−2 yr−1 in the Pa-558

cific sector). CO2 outgassing locations differ across the data classes. In the GOBM en-559

semble mean, the outgassing is mainly confined to the Indian sector of the SPSS, whereas560

it is more widely spread in the pCO2-product ensemble mean covering the Pacific and561

Indian Ocean sectors of the SPSS and the Indian sector in the ICE biome. The smooth562

appearance of the outgassing signal in the GOBM and pCO2-product ensemble means563

may be partly attributable to averaging over multiple data sets and months and years.564

3.1.1 Decomposition into anthropogenic and natural carbon fluxes and565

climate versus atmospheric CO2 effects on the mean CO2 flux566

With the aid of the additional model simulations, we can decompose the net South-567

ern Ocean air-sea CO2 flux into natural and anthropogenic components, and separate568

the indirect effects of physical climate change and the direct geochemical effect of increas-569

ing atmospheric CO2 mixing ratios. The GOBM ensemble mean indicates that the nat-570

ural Southern Ocean carbon cycle without anthropogenic perturbation would be a small571

CO2 source to the atmosphere of 0.05 PgC yr−1, although with a large model spread as572

indicated by the standard deviation of 0.25 PgC yr−1 (Figure 3). In fact, six GOBMs573

simulate negative natural CO2 fluxes, i.e., into the ocean, and six GOBMs simulate pos-574

itive natural fluxes, i.e., out of the ocean. This also illustrates that the GOBM spread575

of net fluxes (standard deviation: 0.28 PgC yr−1) is, to the first order, dominated by the576

model differences of natural fluxes (standard deviation: 0.25 PgC yr−1), which may con-577

tain artifacts from model biases and drift (Terhaar et al., 2023). The spread of anthro-578
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pogenic fluxes is smaller (0.13 PgC yr−1). The small natural outgassing signal in the en-579

semble mean is a balance of natural CO2 uptake in the STSS (-0.26±0.14 PgC yr−1) and580

outgassing in the SPSS (0.21±0.11 PgC yr−1) and ICE (0.10± 0.12 PgC yr−1) biomes.581

This is in qualitative agreement with the patterns of natural CO2 fluxes by Mikaloff Fletcher582

et al. (2007).583

The anthropogenic perturbation (-0.79±0.13 PgC yr−1) has turned the SPSS and584

ICE biomes, and possibly the entire Southern Ocean, from source to sink. The large an-585

thropogenic flux contribution in the SPSS (-0.38±0.08 PgC yr−1) suppresses the nat-586

ural CO2 outgassing flux. The STSS is a sink for both natural and anthropogenic flux587

components. The direct effect of increasing atmospheric CO2 enhances the Southern Ocean588

sink by -0.74±0.11 PgC yr−1 and is the largest signal in the anthropogenic perturbation.589

A smaller component stems from the climate change effect on this steady state CO2-induced590

flux (Figure S6). The direct CO2 effect is largest in the SPSS (-0.34±0.06 PgC yr−1) where591

old water masses reach the surface that are undersaturated in anthropogenic carbon, fol-592

lowed by the STSS and ICE biomes (-0.23±0.03 PgC yr−1 and -0.17±0.03 PgC yr−1).593

In the upwelling regions, the primary effect of rising atmospheric CO2 is thus to suppress594

the outgassing of natural carbon.595

The effect of physical climate change and variability, i.e., warming and changes in596

wind speed patterns and strength that provoke changes in circulation (Le Quéré et al.,597

2007; Lovenduski et al., 2007; Hauck et al., 2013), reduces the CO2 flux into the ocean598

(+0.04±0.07 PgC yr−1), but is overall small in comparison to the direct CO2 effect. This599

climate change induced outgassing stems nearly entirely from the SPSS (+0.04±0.04 PgC yr−1),600

with the largest contribution from the Indian sector followed by the Pacific (Figure S7).601

Thus, the climate change effect amplifies the natural CO2 outgassing, which is also the602

largest in the Indian and Pacific sectors of the SPSS. The climate effect is a combina-603

tion of climate effects on natural and anthropogenic CO2 fluxes, which partly oppose each604

other (Figure S6).605

3.2 The seasonal cycle of air-sea CO2 fluxes in the Southern Ocean606

We now shift our focus to seasonal fluxes by separating fluxes into separate win-607

ter (Figure 4) and summer (Figure 5) mean CO2 fluxes. For this, we examine the pe-608

riod 2015-2018, for which all data sets are available (see Figure S8 for an annual mean609

figure for 2015-2018).610

3.2.1 Winter611

In winter, all but two data sets (one GOBM and BGC-float pCO2-products) agree612

that the Southern Ocean is a sink of CO2 (GOBMs: -0.83±0.40 PgC yr−1, pCO2 prod-613

ucts: -0.48±0.08 PgC yr−1; Figure 4a). The general pattern of strong uptake towards614

the north and a reduction towards the south is common to all data classes, though ex-615

ceptions for individual GOBMs do exist (Figure 4a,b). Expounding on this, the strong616

uptake in the STSS is shown by all data sets, but further south the coherence disinte-617

grates. Within the SPSS, there is considerable variation in position and magnitude of618

maximum outgassing with some GOBMs being a sink along the entire zonal mean (Fig-619

ure 4a,b). Towards the southern reaches of the ICE biome, fluxes are more coherent as620

they are constrained by sea-ice cover in winter (Figure 4b). For the zonal means of in-621

dividual GOBMs, see Figure S5.622

The divergence between data class average flux estimates for the Southern Ocean623

are explained nearly entirely by differences in the SPSS (GOBMs: -0.15±0.32 PgC yr−1
624

and pCO2 products: 0.15±0.09 PgC yr−1, in Figure 4a). Note also that the spread of625

the individual GOBMs is the largest in the SPSS (0.32 PgC yr−1), although it is also626

substantial in the other biomes (STSS: 0.29 PgC yr−1, ICE: 0.13 PgC yr−1) (Figure 5a).627
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Figure 4. Average winter (June-August) air-sea CO2 fluxes (FCO2) in the period 2015-2018,

(a) averaged over biomes, (b) zonal mean flux density, (c-f) maps of flux density. Same as Figure

2, but including also data sets with shorter coverage, and a map of the CO2 flux from the BGC-

float pCO2-products (panel e), and B-SOSE (f), and hence focussing on the period 2015-2018 for

all data sets for comparability. Note that the MPI model is excluded here. The zonal mean of

individual models are presented in Figure S5c.
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The SPSS is also where we see the largest impact of the inclusion of floats in the BGC-628

float pCO2-products (Figure 4d,e), with the mean outgassing flux more than doubling629

that of the regular pCO2-product ensemble.630

The zonal differences and features of fluxes between data classes are also most dis-631

tinct in the SPSS (Figures 4c-f). In short, the Atlantic sector of the SPSS has the low-632

est flux (weak source or even sink), while the Indian and Pacific sectors dominate the633

outgassing. The data-assimilated model B-SOSE has stronger localized outgassing com-634

pared with the other data classes but bear in mind that B-SOSE is only one data sets635

(Figure 4f), while the other data classes (Figures 4c-e) represent up to 13, thus poten-636

tially averaging out local signals. The outgassing hotspot at the boundary between the637

Atlantic and Indian sectors of the SPSS can also be recognized in the pCO2-products638

(Figure 4d). The second hotspot in the western Pacific SPSS is not distinguishable in639

the other data sets.640

3.2.2 Summer641

In summer, GOBMs, pCO2-products and inversions largely show CO2 uptake within642

the three Southern Ocean biomes, and outgassing north of the STSS (Figure 5a-b). In643

contrast to winter, the GOBM ensemble mean for summer 2015-2018 (-1.04±0.77 PgC yr−1)644

underestimates the CO2 uptake relative to the pCO2-product ensemble mean (-1.46±0.18 PgC yr−1,645

Figure 5a). This also holds true for the data-assimilated models, where B-SOSE even646

simulates outgassing in the SPSS (Figure 5a,b,f). Otherwise, the data-assimilated mod-647

els, B-SOSE and ECCO-Darwin, deviate substantially from the other data classes. The648

differences between pCO2-products with and without BGC-float data are hardly appar-649

ent in summer (Figure 5a, compared to 4a). This could be due to a smaller discrepancy650

between float and ship-data in summer, and/or a dominance of SOCAT data in sum-651

mer for the ship+float estimate. For context, for the period 2015 through 2018, BGC-652

float data account for up to 70% of winter pCO2 monthly by 1◦×1◦ measurements in653

the Southern Ocean (SOCAT + floats), while in summer the floats represent only 20%654

(Bakker et al., 2016; Bushinsky et al., 2019).655

While the STSS was a region of coherence between data classes in winter (Figure656

4), it is the main source of the discrepancy between the GOBM and pCO2-product en-657

semble means in summer (GOBMs: -0.40±0.28 PgC yr−1, pCO2-products: -0.73±0.08 PgC yr−1).658

The discrepancy is comparatively smaller in the SPSS (GOBMs: -0.33±0.34 PgC yr−1,659

pCO2-products: -0.42±0.06 PgC yr−1). We note that CO2 fluxes for both GOBMs and660

pCO2-products show less variation from ICE to STSS in summer compared to winter661

(Figure 4b vs 5b, respectively). There is, nevertheless, an offset with lower GOBM CO2662

uptake than in pCO2-products north of 55◦S, and vice versa to the south. Also, the GOBM663

spread in the represented magnitude of the fluxes is large. In absolute terms, the GOBM664

ensemble spread of fluxes in summer (from -2.03 to +0.28 PgC yr−1) is larger than in665

winter (from -1.36 to 0.12 PgC yr−1) or than the spread in the annual mean (from -1.30666

to -0.38 PgC yr−1; see Figure S5b for zonal means of individual GOBMs). This mirrors667

the difficulty in representing the balance between physical and biological processes in sum-668

mer, which is further assessed in the next two sections 3.2.3 and 3.2.4.669

3.2.3 The full seasonal cycle670

We diagnose distinctly different seasonal cycles in the three biomes. The ICE biome671

has a rather clear maximum uptake in summer in the GOBM and pCO2-product ensem-672

ble means, as well as most individual data sets (Figure 6a). In the STSS, the pCO2-products673

suggest a weak seasonal cycle with a maximum uptake in autumn (Figure 6c), while the674

majority of GOBMs simulate a maximum CO2 uptake in winter and a substantially smaller675

flux in summer. The largest disagreement occurs in the SPSS, where the seasonal cy-676

cle transitions from winter outgassing in the ICE biome to summer outgassing in the STSS677
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Figure 5. Average summer (December-February) air-sea CO2 fluxes (FCO2) in the period

2015-2018. Same as Figure 4, but for summer. The zonal mean of individual models are pre-

sented in Figure S5b.
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Figure 6. The seasonal cycle of air-sea CO2 flux in the Southern Ocean separated by biomes

for all data sets as indicated in the legend, a) subtropical seasonally stratified (STSS) biome, b)

subpolar seasonally stratified (SPSS) biome, c) ice (ICE) biome. Thin green and blue lines depict

individual GOBMs and pCO2-products, and thick lines indicate their ensemble means. Note that

the MPI model is excluded here. The ensemble standard deviation (1σ) is shown by the bars

for each month. Panels (d-u) present the season of maximum CO2 uptake per grid cell in the

individual GOBMs, data-assimilated models and the ensemble mean of the pCO2-products over

the period indicated in the panels (varies by data set). See Figure S9 for the individual pCO2-

products (panel d-u equivalents) and Figure S10 for the seasonal cycle in all nine subregions

(equivalent to panels a-c but further split into Atlantic, Pacific and Indian Ocean sectors).
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biomes. Here, atmospheric inversions and pCO2-products (including the BGC-float pCO2678

products), suggest the maximum CO2 uptake to be in summer. In winter, the BGC-float679

pCO2-products more than double the estimates of outgassing relative to the other pCO2680

products (Figure 6b). The GOBM ensemble average roughly agrees with this seasonal681

pattern, but simulates a reduced seasonal cycle amplitude (Figure 6b). The GOBM spread682

is large, not only in terms of magnitude but also phasing of the seasonal cycle in the SPSS683

(8 out of 13 GOBMs simulate the maximum uptake between November and January;684

Figure 6d-r). This illustrates how the transition between the different seasonal cycle regimes685

affects particularly the representation of the seasonality in the SPSS. In summary, most686

GOBMs and pCO2-products agree on a summer peak in the ICE biome (but exceptions687

exist, Figure 6d-r), and a winter peak to the north of the Southern Ocean biomes. The688

largest discrepancy between data sets is where and how swift this transition occurs. While689

the use of static biomes adds to the discrepancies seen in the averaged seasonal cycles690

(Figure 6a-c), the disagreement between the phasing of individual GOBMs is likely a much691

larger contributor to these discrepancies (Figure 6d-p). We now turn to an investigation692

of the thermal and non-thermal effects on the seasonal cycle, which may help explain these693

discrepancies.694

3.2.4 Thermal versus non-thermal effects on the seasonal cycle695

The seasonal cycle of CO2 fluxes in the Southern Ocean is a balancing act between696

competing thermal and non-thermal drivers (Mongwe et al., 2016, 2018; Prend et al., 2022).697

DIC drawdown by biological production leads to a summer maximum in CO2 uptake,698

whereas upwelling and entrainment of DIC-rich water into the mixed layer in autumn699

and winter leads to a minimum in CO2 uptake or even outgassing (Metzl et al., 2006;700

Mongwe et al., 2018). Seasonal variations in mixed layer temperature further affect the701

solubility of CO2, with lower (higher) temperatures increasing (decreasing) solubility and702

thus promoting CO2 uptake (outgassing) (Takahashi et al., 2002).703

The thermal and non-thermal components of pCO2 can be decomposed to deter-704

mine the dominant driver on monthly timescales (Figure 7; Mongwe et al., 2018). Here,705

we do this by estimating the absolute difference of the rate of change of the thermal and706

non-thermal components (Figure 7; Eq. 3). The contribution of salinity and total alka-707

linity to seasonal pCO2 changes are small in the Southern Ocean and compensate for each708

other on a seasonal scale (e.g., Sarmiento & Gruber, 2006; Lauderdale et al., 2016), thus709

we here consider the non-thermal component to be predominantly DIC-driven.710

In general, the seasonal cycle phasing of the thermal component of the GOBMs agrees711

well with those of the pCO2-products (Figure 7a-c). This should not come as a surprise,712

as GOBMs are forced by atmospheric reanalyses which assimilate observed SST (Doney713

et al., 2007). As a result, the thermal component of the pCO2 seasonal cycle in the GOBMs714

(forced by reanalyses) compare much better to the thermal component derived from the715

pCO2-products than fully coupled Earth System Models (Mongwe et al., 2016, 2018).716

The non-thermal contribution is thus the primary reason for the spread between GOBMs,717

and for the differences between GOBMs and pCO2-products (Fig. 7a-c). Thus, we group718

GOBMs based on whether they are predominantly DIC or thermally driven across all719

three biomes (Fig. 7d-f, Table S2), which we term DIC-dominant or DIC-weak respec-720

tively.721

In DIC-weak GOBMs, the strong underestimation of the non-thermal component722

causes these models to be too strongly temperature driven across the year (Figure 7).723

This then tends to shift the timing of uptake towards the colder months (when CO2 sol-724

ubility is largest), while the role of biologically driven uptake in spring and summer is725

suppressed in favor of warming driven outgassing. This effect is largely confined to the726

SPSS and to a lesser extent also the STSS, and can account for the mismatch in the sea-727

sonal cycle seen in some GOBMs. For example, in the SPSS, nearly all GOBMs and specif-728
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Figure 7. (a-c): Seasonal cycle of the rate of change of the thermal (pCOT ′
2 , dashed lines)

and non-thermal (pCOnonT ′
2 , solid lines) components of ocean surface pCO2 on monthly time

scales given in µatm month−1 (Eq. 2). The bars on the bottom show standard deviations of the

non-thermal component. Models have been grouped into DIC dominant/weak, where the DIC

weak models have a thermal contribution >0 for the mean of the STSS and SPSS (shown in d-f;

see Figure S11 for individual global and regional ocean biogeochemistry models, and Table S2 for

the DIC dominant/weak model groups). (d-f): λpCO2, the difference of the thermal and non-

thermal (DIC) components of ocean surface pCO2 as in Mongwe et al. (2018). When λpCO2 >

0 (red) indicates temperature dominance, and λpCO2 < 0 (blue) indicates that the non-thermal

component (i.e., DIC) is dominant. The MPI model is excluded in this analysis.
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ically all DIC-weak GOBMs have a shifted season of maximum uptake from summer to729

spring/winter, i.e., towards the colder months. (Fig. 6 and Table S2). In terms of the730

underlying mechanisms driving the too weak non-thermal component, we hypothesize731

that a lack of deep vertical mixing in winter leads to too little entrainment of DIC-rich732

deep waters, while simultaneously allowing for too early primary production (which may733

then shift the growing season earlier and reduce biologically driven summer uptake). No-734

tably, the bias in pCO2 is largest in summer (DJF), followed by autumn (MAM), and735

is about twice as large in the DIC-weak GOBMs than in the DIC-dominant GOBMs (Fig-736

ure S13). This further supports the lesser importance of thermal processes in the STSS737

and SPSS regions evident in the pCO2-products.738

In the ICE biome GOBMs and pCO2-products tend to agree much more closely739

in terms of their representation of the seasonal cycle (Fig. 6a). This is likely related to740

the strong role the seasonal advance and retreat of sea ice plays in air-sea CO2 fluxes,741

both through its effect as a physical barrier, as well as through its effect on vertical mix-742

ing and light availability (thus impacting both physical and biological pathways of DIC743

into and out of the mixed layer, (Bakker et al., 2008; Shadwick et al., 2021; M. Yang et744

al., 2021)).745

3.3 Temporal variability and trends in Southern Ocean air-sea CO2 flux746

We next inspect the temporal evolution of the air-sea CO2 fluxes from 1985-2018747

(Figure 8). In this annually-resolved perspective, we also discuss the mean fluxes for data748

sets that are not available for the full time-period. While the STSS was a net-sink re-749

gion throughout the period, the SPSS and ICE have turned from neutral (around 0 PgC yr−1)750

to net sink regions since 1985, based on GOBM and pCO2-product ensemble mean es-751

timates. This also holds for most individual GOBMs as only two of them simulate ei-752

ther the ICE or the SPSS biome to still be regions of outgassing at the end of the time753

series (CCSM-WHOI and EC-Earth3).754

Acknowledging some agreement between GOBMs and pCO2-based product ensem-755

ble means despite large spread across GOBMs (Figure 8 bars), substantial deviations among756

individual data sets appear. B-SOSE (2015-2018) suggests a 0.25 PgC yr−1 smaller up-757

take than the GOBM and pCO2-product ensemble means for the entire Southern Ocean758

(Figure 8a). ECCO-Darwin has the largest flux estimate into the ocean in the SPSS and759

the entire Southern Ocean (1.30 PgC yr−1, 1985-2018). Notably, the two data-assimilated760

models B-SOSE and ECCO-Darwin differ by a factor of 2 for the Southern Ocean wide761

estimate. In agreement with previous reports (Bushinsky et al., 2019), BGC-float pCO2-762

products suggest Southern Ocean uptake to be 40% (0.4 PgC yr−1) smaller than the pCO2-763

products without BGC-float data (2015-2018). This discrepancy originates largely in the764

SPSS, where the BGC-float pCO2-products estimate outgassing of 0.14 PgC yr−1, and765

the ensemble mean of the SOCAT-only-based pCO2-products estimate a CO2 uptake of766

-0.13 PgC yr−1. Smaller contributions to the deviation stem from the STSS and ICE biomes767

where BGC-float pCO2-products report a smaller uptake by 0.14 PgC yr−1 when com-768

pared with the regular pCO2-products. The Watson2020-product is generally close to769

the other pCO2-products, with the exception of the SPSS where it suggests a flux of -770

0.18 PgC yr−1 (1985-2018), which is larger than any other pCO2-product. The origin771

of the large SPSS difference in Watson2020 could, in part, be attributed to subtle dif-772

ferences in method choices in addition to different flux parameterisations (Watson et al.,773

2020). The atmospheric inversions produce a somewhat lower sink (-0.64 PgC yr−1, av-774

erage over three inversions 1985-2018), but are generally close to the pCO2-products, as775

they mostly use surface pCO2-products as a prior (Table 2 and Friedlingstein et al., 2022).776

There is also slightly higher interannual variability in the atmospheric inversion ensem-777

ble mean, but this is likely due to the small ensemble size.778
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Figure 8. Temporal evolution of the Southern Ocean air-sea CO2 flux for a) the entire South-

ern Ocean, and the b) subtropical seasonally stratified, c) subpolar seasonally stratified, and d)

ice biomes. The ensemble standard deviation (1σ) averaged over the whole time series, is shown

by the bars. Panels (e-h) are the same as panels (a-d) for the GOBM ensemble average and

pCO2-product ensemble average only, with linear trends between 1985-2000 and 2001-2018 as

the dashed and dotted lines, respectively. The uncertainty range of the trend is calculated as one

standard deviation of the trends across all GOBMs and pCO2-products, respectively. Note the

different y-axis scales. The separation into Atlantic, Pacific and Indian Ocean sectors is shown in

Figure S12.
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The temporal variability is quantified as the amplitude of ‘interannual variability’779

(IAV). This is calculated as the standard deviation of the detrended time-series, as de-780

fined in Rödenbeck et al. (2015); Friedlingstein et al. (2022) which, in reality, captures781

both interannual and decadal variability components. Following this definition, the pCO2-782

products have a larger interannual variability for the Southern Ocean wide integrated783

flux (0.09 PgC yr−1, range 0.04 to 0.16 PgC yr−1) compared to the GOBMs (0.06 PgC yr−1,784

range 0.03 to 0.10 PgC yr−1). Notably, the MPI-SOM-FFN pCO2-product, which formed785

the basis of previous reports on Southern Ocean decadal variability (Landschützer et al.,786

2015), has the largest IAV of 0.16 PgC yr−1, about 60% larger than the next largest pCO2-787

product IAV. This is in line with previous studies that found that the MPI-SOM-FFN788

approach may overestimate Southern Ocean variability by 30% (Gloege et al., 2021) and789

the decadal trend 2000-2018 by 130% (Hauck et al., 2023). Within the Southern Ocean,790

the strongest IAV is found in the SPSS region (0.04 PgC yr−1 GOBMs, 0.05 PgC yr−1pCO2-791

products), followed by the STSS (0.02 PgC yr−1 GOBMs, 0.03 PgC yr−1 pCO2-products)792

and ICE biome (0.02 PgC yr−1 for both data classes). Within the subpolar biome, the793

Indo-Pacific sector has a higher IAV (0.02 PgC yr−1) than the Atlantic sector (0.01 PgC yr−1).794

The large contribution to interannual variability in the SPSS may well be linked to the795

largest amplitude of the seasonal cycle of CO2 flux (see section 3.2.3).796

To assess the decadal-scale trends, we fit linear trends to the periods 1985-2000 and797

2001-2018 (Figure 8e-h) with the year 2000 marking roughly the mid of the considered798

time period and the inflection point in global ocean CO2 uptake (Gruber et al., 2023;799

Landschützer et al., 2016). The pCO2-products suggest a stagnation of the flux in the800

STSS, and even a flux decrease in the SPSS prior to 2000. In contrast, GOBMs suggest801

a continued increase in the sink in the STSS and SPSS in the same period. In the ICE802

biome, GOBMs and pCO2-products result in an increasing trend (Figure 8h). After 2000,803

pCO2-products and GOBMs agree on a trend towards more CO2 uptake, which is sig-804

nificantly different from zero in all biomes except for pCO−2-products in the ICE biome805

(see numbers in Figure 8e-h). However, they differ substantially in magnitude between806

GOBM and pCO2-product ensemble means, particularly in the STSS (Figure 8f). The807

discrepancies in the magnitude of the trend act to decrease the gap between GOBM and808

pCO2-product ensemble means in the SPSS and ICE biomes, but lead to the divergence809

in the flux estimate in the STSS.810

On a sub-biome level (i.e., Atlantic, Indian, and Pacific sectors), all three sectors811

in the STSS were CO2 sinks throughout the period and had weaker trends (less nega-812

tive) before 2000 compared to the period after 2000 (Figure S12). In the SPSS, the In-813

dian and Pacific sectors are characterized by intermittent outgassing and uptake patterns,814

in line with observations from BGC-floats (Prend et al., 2022). In the SPSS, only the815

Atlantic sector has a net uptake throughout the period, and the Indian Ocean sector shows816

the largest model spread of all three sectors (as in the STSS). In the ICE biome, a con-817

sistent quasi-linear evolution is apparent in all sectors. We further analyze divergence818

and drivers of trends in section 3.3.2.819

3.3.1 Comparison with in-situ pCO2820

Here, we evaluate the accuracy of pCO2 across data classes since pCO2 is the dom-821

inant driver of air-sea CO2 flux variability at a monthly scale (Landschützer et al., 2016).822

All data sets are compared with observations (monthly gridded SOCAT v2022 data set823

Sabine et al., 2013; Bakker et al., 2016, 2022). The RECCAP2 data sets are subsampled824

to match the SOCAT observations in time and space, meaning that we do not assess sam-825

pling biases, but rather the mismatch between the observed and estimated pCO2.826

The comparison of the RECCAP2 GOBMs and pCO2-products with gridded in-827

situ pCO2 from SOCAT v2022 shows relatively good agreement (Figure 9a). The SO-828

CAT pCO2 data shows large interannual variability due to spatially and temporally vary-829

–26–



manuscript submitted to Global Biogeochemical Cycles

1990 1995 2000 2005 2010 2015

40

20

0

20

40

60

pC
O

2 
bi

as
 (µ

at
m

)

b

1990 1995 2000 2005 2010 2015

20

40

60

80

pC
O

2 
R

M
S

D
 (µ

at
m

)

c

0

1000

2000

3000

S
O

C
AT

 n
um

be
r o

f 
ob

se
rv

at
io

ns
 p

er
 y

ea
r

1986 1990 1994 1998 2002 2006 2010 2014 2018

320

340

360

380

pC
O

2 
(µ

at
m

)

GOBMs
ECCO-Darwin
BSOSE

pCO2 products
BGC-float pCO2 prod.
SOCAT pCO2

Subsampled to SOCAT Full Southern Oceana Subsampled to SOCAT Full Southern Ocean

Figure 9. Comparison of surface mean pCO2 for the whole Southern Ocean between global

ocean biogeochemistry models (GOBMs) and pCO2-products with in situ observations (gridded

SOCAT v2022 data set Sabine et al., 2013). (a) Time-series of annually-averaged pCO2 from

GOBMs (green), data-assimilated models (grays), and pCO2–products (blue). The darker shaded

lines show the annual mean as calculated from the data sets subsampled to match the historic

SOCAT sampling. The lighter shades show the annual mean calculated for the full coverage. The

dark red line depicts the annual mean pCO2 from SOCAT observations without interpolation.

The assimilation products (ECCO-Darwin and B-SOSE) are kept separate as they have different

time series lengths (shown by dashed and solid gray lines respectively). The light red area plot

(right y-axis) shows the number of monthly by 1◦×1◦ gridded SOCAT observations per year. (b)

The bias of pCO2 for all data classes (subsampled to match SOCAT observations, dark lines in

a) relative to SOCAT pCO2 observations (solid dark red line in a). (c) The root mean squared

difference (RMSD) between SOCAT observations and estimates for all data classes. Bias and

RMSD were calculated on a monthly by 1◦×1◦ resolution, and the bias and RMSD were averaged

to annual means afterwards. A plot of RMSE and bias for SPSS and STSS biomes and different

seasons is presented in supplementary Figure S13.
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ing sampling efforts from year to year, particularly prior to 2000 when samples are fewer830

and thus carry more weight (Figure 9a). For example, in 1997, SOCAT pCO2 is anoma-831

lously low due to high sampling density in the Ross Sea during summer when primary832

production drives intense CO2 drawdown (Arrigo & van Dijken, 2007). The pCO2 prod-833

ucts have a lower bias and a narrower spread than the GOBMs prior to 2000 (1.7±4.3µatm834

and 10.7±8.0µatm respectively), with the bias and the spread decreasing after 2000 for835

both classes (-0.3±2.6µatm and -0.9±3.9µatm, Figure 9b). This comparison of simulated836

to observed pCO2 at observation sites demonstrates that GOBMs are capable of repro-837

ducing SOCAT pCO2 and its temporal evolution on large spatial and annual time-scales.838

Thus, for the period after 2000, the differences in CO2 flux trend for the entire South-839

ern Ocean between GOBMs and pCO2-products (Figure 8) cannot be attributed to dif-840

ferences in pCO2 in the regions where observations were taken. Instead, the differences841

arise primarily from areas where no pCO2 observations exist, as also concluded in Hauck842

et al. (2020). The pCO2 time-series calculated from the full coverage results in a lower843

pCO2 value in the pCO2-products than in the GOBMs (Figure 9a), which could explain844

the stronger CO2 flux trend in the pCO2-products (Figure 8). This discrepancy between845

pCO2-products and GOBMs is larger in the last ten years (2009-2019: 5.8 µatm) than846

the previous decade (1999-2008: 2.8 µatm, Figure 9a). Nevertheless, the RMSD calcu-847

lated from monthly mean data is higher in GOBMs than in pCO2-products (Figure 9c).848

This is expected as the pCO2-products are trained to fit the observations and further849

illustrates the GOBMs’ deficiencies in simulating seasonal and spatial variability of the850

CO2 uptake.851

The assimilation model, ECCO-Darwin, has a negative bias after 2000 (-13.5±3.0 µatm;852

Figure 4b), but this negative bias is not strongly reflected in the mean of the non-subsampled853

data, with the mean pCO2 still being larger than that of the pCO2-products, which do854

not underestimate the pCO2 relative to SOCAT. This further emphasizes that sampling855

distribution may play an important role in the magnitude of the biases calculated in any856

model. The pCO2 summer sampling bias in the Southern Ocean has long been recog-857

nised as a potential source of biases in pCO2 estimates, particularly for the pCO2-products858

that rely heavily on the in-situ data (Metzl et al., 2006; Gregor et al., 2017; Ritter et al.,859

2017; Djeutchouang et al., 2022). The SOCCOM project increased the number of win-860

ter samples with pH-enabled profiling floats (from 2014), suggesting stronger outgassing861

during winter than previously shown (Gray et al., 2018). In RECCAP2, the B-SOSE as-862

similation model and the BGC-float pCO2-products both make use of this data (Verdy863

& Mazloff, 2017; Bushinsky et al., 2019). Both of these estimates overestimate pCO2 rel-864

ative to SOCAT pCO2 highlighting the challenge in consolidating ship-based SOCAT865

and BGC-float data.866

3.3.2 Climate versus CO2 effects on trends in CO2 flux867

Our analysis so far has indicated that the GOBMs reproduce seasonal tempera-868

ture effects on CO2 flux reasonably well (Figure 7), and a larger uncertainty is associ-869

ated with imprints of circulation and biological activity. Next, we inspect the zonal mean870

and spatial patterns of the CO2 flux trend 1985-2018 (Figure 10). The pCO2-products871

place the largest trend towards more CO2 uptake in the entire ICE biome; however, data872

in this region is sparse and there is larger variability between pCO2 products here (see873

also Figure 8). The pCO2-products show a secondary peak in the STSS between about874

40 to 45◦S. The GOBMs in contrast have a large meridional gradient in the ICE biome875

with a peak in the trend between 60 and 65◦S that is reduced in magnitude towards Antarc-876

tica. The secondary peak in the STSS is hardly apparent and also displaced southwards877

compared to the pCO2-products. In addition, the pCO2-products exhibit trends towards878

less CO2 uptake in the Pacific and eastern Indian sector of the SPSS (Figure 10a-b). Al-879

though the difference in flux density between GOBMs and pCO2-products is larger in880

the ICE biome, the discrepancy in the STSS contributes more to the total flux trend dis-881

crepancy due to the larger area of the STSS biome (Figure 8). The trend over 1985-2018882
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Figure 10. CO2 flux trend between 1985 and 2018. (a-b) Spatial maps of the net CO2 flux

trend, for (a) the global ocean biogeochemistry models and (b) the pCO2-products. (c) Zonal

mean CO2 flux trend 1985-2018 for the net CO2 flux (blue: pCO2-products, green: GOBMs) and

the GOBM flux of Fnat,ss and Fant,ss, i.e., the flux as expected from increasing atmospheric CO2

alone (green, dashed). (d) The sea surface temperature (SST) trend 1985-2018 in the GOBMs

(green) and in the observational data set (black, NOAA Extended Reconstructed Sea Surface

Temperature, ERSST, Version 5 (Huang et al., 2017)). Supplementary figures split this analysis

in the periods 1985-2000 (Figure S14) and 2001-2018 (Figure S15). Individual GOBM trends for

Fnet, as well as Fnat,ss plus Fant,ss and SST are shown in Figure S16.
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includes some compensation between the trends over 1985-2000 and 2001-2018 (see Fig-883

ures S14-S15). While the GOBMs show similar weak trends towards more uptake be-884

fore and after 2000, the pCO2-products show a trend towards less uptake in the earlier885

period 1985-2000 throughout the Southern Ocean except in the Weddell and Ross Seas.886

In the later period 2001-2018, the pCO2 products estimate a much stronger trend to-887

wards more CO2 uptake everywhere, as also shown in Figure 8. The CO2 flux trends in888

the GOBMs are largely driven by increasing atmospheric CO2 levels (simulation C in889

Figure 10c). However, the trend is reduced by climate change and variability through-890

out the SPSS and strengthened in the northern part of the ICE biome (compare sim-891

ulations A that represents net FCO2 and C that represents only steady state natural and892

anthropogenic fluxes, in Figure 10c). The effect of climate change and variability is sub-893

stantially smaller than the uncertainty in the pCO2-products. In line with GOBMs cap-894

turing the thermally-driven component of the pCO2 seasonal cycle (Figure 8), we can895

also demonstrate that the GOBMs simulate sea surface temperature trends 1985-2018896

rather well (Figure 10d). This is related to the choice of forcing the GOBMs with reanal-897

ysis data that itself depends on sea surface temperature observations (Doney et al., 2007).898

In contrast to fully coupled Earth System models in CMIP6 (Beadling et al., 2020), the899

suite of models used here capture the decadal trend pattern of warming along the north-900

ern flank of the Antarctic Circumpolar Current (ACC), and cooling in the south (Figure901

10, Armour et al., 2016; F. Haumann et al., 2020). The lack of warming south of 50◦S902

was previously related to the wind-driven upwelling of deep water that had not yet been903

exposed to anthropogenic warming and by northward heat transport (Armour et al., 2016).904

More recently, the cooling was suggested to be caused by increased freshwater export from905

the ice region, which increases stratification and thus reduces the upward heat flux from906

below by warm water masses (F. Haumann et al., 2020). While the GOBM ensemble mean907

captures the latitudinal structure of the SST trend well, it underestimates the magni-908

tude of peak cooling at around 60◦S as well as peak warming north of 40◦S. Overall, how-909

ever, the GOBM ensemble mean captures the latitudinal structure of the SST trend well.910

We can therefore not relate the discrepancies in the trend of the CO2 flux to temper-911

ature biases. This leaves data sparsity as a reason for potential biases in the trend in the912

pCO2-products, and biases in ocean circulation, sea ice and biology as possible reasons913

for biases in GOBMs.914

3.4 Interior ocean storage of anthropogenic carbon915

The focus of this section is the anthropogenic perturbation of dissolved inorganic916

carbon (DIC) in a subset of the GOBMs (see section 2.2.1), and in particular its accu-917

mulation rate over the period 1994 to 2007 (∆Cant), in comparison with the eMLR(C*)918

observational estimate (Gruber, Clement, et al., 2019) and the ocean inverse model OCIMv2021919

(DeVries, 2022). The eMLR(C*) product uses a multiple linear regression approach to920

estimate ∆Cant and captures both the influence of CO2-driven and climate-driven change921

in sea-air CO2 fluxes and transports, whereas OCIMv2021 captures only the CO2-driven922

changes.923

All data classes agree in having the largest ∆Cant inventories within and to the north924

of the STSS biome (Figure 11), whose southern boundary approximately corresponds925

to the northern edge of the ACC. This pattern is related to the mechanisms by which926

Cant is taken up at the surface and exported to depth (Mikaloff Fletcher et al., 2006; Mor-927

rison et al., 2022; Bopp et al., 2015). Subpolar upwelling exposes old Cant-poor waters928

to elevated atmospheric CO2 concentrations and this, combined with strong winds, drives929

a large influx of Cant in the SPSS biome (Figure 12a-c). A small fraction of the Cant moves930

southward and is exported within Antarctic Bottom Waters, while the largest fraction931

is transported northward within the upper cell of the meridional overturning circulation.932

Cant air-sea fluxes remain elevated throughout the northward path, and are reinforced933

by the deep mixed layers in the regions where mode and intermediate waters are formed,934
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a) eMLR(C * ) 

0.0 0.2 0.4 0.6 0.8 1.0
Cant accumulation rate [mol m 2 yr 1]

b) OCIM-v2021 

c) GOBMs high d) GOBMs low 

Figure 11. ∆Cant yearly accumulation rate over the period 1994-2007 integrated until 3000

m depth in the observationally-constrained estimates a) eMLR(C*) (Gruber et al., 2019) and b)

OCIM-v2021, in c) “GOBMs high” and in d) “GOBMs low” (individual GOBMs shown in Fig.

S4). The robustness of the patterns has been tested as explained in Text S4 of the Supplement.

Contours show the boundaries of the ICE, SPSS and STSS biomes. Values below 3000 m are not

shown because of the low signal-to-uncertainty ratio in eMLR(C*).
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Figure 12. Zonal integrals of ∆Cant yearly accumulation rate from 1994 to 2007 and of

air-sea Cant fluxes (positive downwards) averaged between 1994 and 2007 for a,d) eMLR(C*),

b,e) OCIM-v2021 and c,f) GOBMs. a-c) (black line) ∆Cant column inventory (0-3000 m) and

(grey line) air-sea Cant fluxes; for the GOBMs, the distinction is made between “GOBMs high”

(full lines) and “GOBMs low” (dashed lines). g-i) Anomalies of ∆Cant accumulation rates in g)

OCIM-v2021 with respect to eMLR(C*), h) GOBMs with respect to eMLR(C*) and i) GOBMs

with respect to OCIM-v2021. In all sections, contours show mean potential density (with a

0.03 kg m−3 spacing) referenced to the surface in World Ocean Atlas 2018 (Boyer et al., 2018),

where thick lines indicate the 1026.9 kg m−3 and 1027.5 kg m−3 isopycnals. Anomalies of in-

dividual GOBMs shown in Fig. S18 (with respect to eMLR(C*) and Fig. S19 (with respect to

OCIMv2021).
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Figure 13. Scatter plots showing relationships between ∆Cant accumulation rates between

1994 and 2007 (integrated to 3000 m) and different quantities namely a) the cumulative Cant in

1994 integrated over the Southern Ocean, b) air-sea Cant fluxes averaged between 1994 and 2007

and integrated over the Southern Ocean, c) sea surface salinity (SSS) horizontally averaged over

the SPSS and STSS biomes (which show consistent SSS anomaly patterns, Fig. S17). Shown are

a subset of the GOBMs (see 2.3), the OCIM-v2021 data-assimilated model, the observation-based

cumulative Cant until 1994 (C* method, Sabine et al., 2004) and the 1994-2007 ∆Cant from

(eMLR(C*) method, Gruber, Clement, et al., 2019), and SSS from EN4.2.1 (Good et al., 2013).

Thin black lines show the linear fit of the data for the GOBMs only, with the explained variance

(R2) and the p-value indicated for each regression. The grey shading in a) indicates the 19%

uncertainty levels around the mean of eMLR(C*) (Southern Hemisphere uncertainty estimate,

based on Table 1, Gruber, Clement, et al., 2019) and the green shading the 20% uncertainty

levels around the C*-based estimate of cumulative Cant until 1994 (global uncertainty estimate

Sabine et al., 2004; Matsumoto & Gruber, 2005). Models that have a ∆Cant storage higher than

the average of the two observationally-constrained data sets (“GOBMs high”) are shown in red,

whereas the models in which it is lower (“GOBMs low”) are shown in blue. Because of its differ-

ent spin-up procedure, ROMS-SouthernOcean-ETHZ is shown in the plots but has been excluded

from the regression analysis. For OCIM-v2021, CNRM-ESM2-1 and MPIOM-HAMOCC the

∆Css
ant is shown, whereas in others the sum of steady state and non steady state is shown. As

discussed in Text S2, ∆Cns
ant accumulation rates are about 10-20% of the total ∆Cant.
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which results in a secondary peak at around 40◦S in some GOBMs, diluted by the en-935

semble mean (Fig. 12c).936

The effective transport of Cant into the ocean interior relies on a number of phys-937

ical processes, the dominant of which is the northward transport by the overturning cir-938

culation of the Cant ventilated in the ocean interior by deep winter mixing (Frölicher et939

al., 2015; Morrison et al., 2022). The absorbed Cant spreads northward along density sur-940

faces within mode and intermediate waters (Figure 12d-f) and is circulated within and941

out of the Southern Ocean by the subtropical gyres (Frölicher et al., 2015; D. C. Jones942

et al., 2016; Waugh et al., 2019). As a result, the largest Cant inventories are displaced943

to the north with respect to the maximum air-sea Cant influx (Figure 12b,c). Another944

pathway by which the Cant inventory can build up without a corresponding surface in-945

flux is by southward advection and subsequent subduction of high-Cant Subtropical Wa-946

ters (Iudicone et al., 2016; Morrison et al., 2022).947

The observation-based product eMLR(C*) and the ocean inverse model OCIM-v2021948

have similar ∆Cant accumulation rates when integrated over the Southern Ocean for the949

period 1994 through 2007 (0.52 PgC yr−1 and 0.47 PgC yr−1, respectively, Figure 13),950

but differ in their horizontal (Figure 11) and vertical (Figure 12) patterns. The eMLR(C*)951

exhibits particularly low ∆Cant values at subpolar and high latitudes (Figure 12g), es-952

pecially in the Pacific sector (Figure 11). The GOBMs multi-model-mean of ∆Cant ac-953

cumulation rates over the same 1994 through 2007 period and integrated within the South-954

ern Ocean (Figure 13) is 0.46±0.11 PgC yr−1, i.e., 7% lower than the mean of the two955

observational estimates considered here. 6 out of the 12 GOBMs fall within the 19% range956

of the observational eMLR(C*) uncertainty. Two thirds of all GOBMs (hereafter “GOBMs957

low”) have lower than observed ∆Cant accumulation rates (0.39±0.11 PgC yr−1, about958

20% lower than the observational estimates). The remaining GOBMs (hereafter “GOBMs959

high”) have higher than observed ∆Cant accumulation rates (0.58±0.07 PgC yr−1, about960

17% higher than the observational estimates). “GOBMs high” have a higher ∆Cant stor-961

age than “GOBMs low” throughout the Southern Ocean (Figures 11c,d and 12c), higher962

Cant air-sea fluxes (Figure 12c), higher sea surface salinity (SSS) in the SPSS and STSS963

biomes and mixed layer depths especially in the SPSS biome (Text S3, S4 and Figure964

S17). Along the zonal mean section, all GOBMs show a southward shift in ∆Cant with965

respect to eMLR(C*) shown by a north-south dipole in the upper 1 km (Figure 12h),966

as similarly found in the comparison between OCIM-v2021 and eMLR(C*) (Figure 12g).967

With respect to OCIM-v2021, GOBMs show higher ∆Cant above 1000 m depth and lower968

∆Cant beneath (Figure 12i). This could point to insufficient ventilation of Cant in “GOBMs969

low” models (Figure S19), which represent the majority of the GOBMs. The amount of970

spread and the overall underestimate of ∆Cant in the GOBMs is consistent with Earth971

System Models analyzed by Frölicher et al. (2015) and Terhaar et al. (2021), support-972

ing the argument that biased ocean model dynamics and water mass properties rather973

than biases in the atmospheric forcing cause the Cant underestimate (Terhaar et al., 2021;974

Bourgeois et al., 2022).975

Integrated over the Southern Ocean, we find that the model spread in ∆Cant ac-976

cumulation rates from 1994 to 2007 can be largely explained (81% variance explained)977

by the spread in accumulated Cant until 1994 (Figure 13), suggesting a coherent scal-978

ing between long-term and recent Cant accumulation rates. The model spread in ∆Cant979

accumulation rates is also related with the spread in Cant air-sea fluxes averaged over980

1994-2007 (78% variance explained). These results show that past long-term ∆Cant ac-981

cumulation rates are a better predictor for present ∆Cant accumulation rate than present982

Cant air-sea fluxes. The reason for this is that Cant air-sea fluxes are linked to changes983

in Cant storage through ocean transport, which may differ substantially between mod-984

els (Frölicher et al., 2015; Terhaar et al., 2021; Bourgeois et al., 2022). This becomes ob-985

vious when considering the myriad of processes involved, including the strength of the986

overturning circulation, the strength of the subtropical gyres, the isopycnal stirring by987
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Table 3. Comparison of the Southern Ocean carbon sink estimate with the estimate presented

in RECCAP1 (Lenton et al., 2013), which used a different definition of the Southern Ocean

region (44-75◦S) and covered a different period (1990-2009). GOBMs: Global Ocean Biogeochem-

istry Models. Reported numbers are means ± one standard deviation. Note for RECCAP1 the

median of all models is reported.

Estimate GOBMs Observation-based

RECCAP2 1985-2018 -0.75 ± 0.28 PgC yr−1 -0.73 ± 0.07 PgC yr−1

RECCAP2 1985-2018 (44◦-75◦S) -0.39 ± 0.24 PgC yr−1 -0.30 ± 0.04 PgC yr−1

RECCAP2 1990-2009 (44◦-75◦S) -0.22 ± 0.25 PgC yr−1 -0.14 ± 0.09 PgC yr−1

RECCAP1 1990-2009 (44◦-75◦S) -0.43 ± 0.38 PgC yr−1 -0.27 ± 0.13 PgC yr−1

mesoscale eddies, and localized subduction dynamics (Sallée et al., 2012; Morrison et al.,988

2022). The different way in which the GOBMs simulate these transport processes is pos-989

sibly linked to the large model spread in ∆Cant accumulation rates among GOBMs. Past990

studies have found that SSS affects the surface ocean density in the formation regions991

of mode and intermediate waters and could be used as a constraint of the Cant air-sea992

fluxes, and thus of the Cant storage within the recently-ventilated water masses (Terhaar993

et al., 2021). In this study and in Terhaar et al. (2023), we find that SSS explains a lower994

variance in the ∆Cant accumulation rates (R2=61%; Figure 13) and in the Cant air-sea995

fluxes (R2=57% Terhaar et al., 2023) with respect to the ESMs (R2=0.74) analyzed by996

Terhaar et al. (2021). The relationship may be weaker due to the different suite of mod-997

els used in the ESM and GOBM ensembles and remaining biases associated with incom-998

plete spin-up (Terhaar et al., 2023).999

4 Discussion1000

4.1 Summary and progress since RECCAP11001

We provide an updated estimate of the Southern Ocean carbon sink (see Figure1002

1 for regional extent). The numbers we present (Table 3) are not directly comparable1003

with the RECCAP1 estimate (Lenton et al., 2013) due to different region definitions (Fig-1004

ure 1) and periods (1990-2009 vs. 1985-2018). The RECCAP1 regional definition of the1005

Southern Ocean (44-75◦S) cut across and missed a large part of the strong CO2 uptake1006

north of the Subantarctic Front. Recalculating the RECCAP2 numbers for the REC-1007

CAP1 region would reduce the Southern Ocean CO2 sink to 52% (GOBMs) or 41% (pCO2-1008

products) of its original value (Table 3). Adjusting RECCAP2 numbers for the 1990-1009

2009 period would further reduce fluxes by about another 50%. Compared on equal foot-1010

ing (44◦-75◦S and 1990-2009), we find the Southern Ocean to be a weaker carbon sink1011

in RECCAP2 compared to RECCAP1.1012

The observational and modeling communities have made substantial progress on1013

quantifying and characterizing the Southern Ocean carbon sink since RECCAP1 (Lenton1014

et al., 2013). The creation of the Surface Ocean CO2 Atlas and its annual updates have1015

marked a step-change by facilitating the development of statistical models (a.k.a. pCO2-1016

products). The large and diverse ensemble of pCO2-products help to identify the robust1017

features of the Southern Ocean carbon sink. The pCO2-products have a relatively small1018

spread compared to the global ocean biogeochemistry models in terms of mean and sea-1019

sonal cycle, indicating that the uncertainty from differences in mapping methods is small.1020

However, the spread in the trend estimates is in fact larger in the products than in the1021

GOBMs (Figure 10). Further, the narrow spread in mean and seasonal cycle does not1022
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include the uncertainties due to sparse pCO2 observations in the Southern Ocean, par-1023

ticularly in winter and before the 2000’s (Ritter et al., 2017). In addition, pCO2-products1024

share the uncertainties associated with the bulk formulation of air-sea CO2 exchange (R. H. Wan-1025

ninkhof et al., 2009; Fay et al., 2021). While they do have their shortcomings, the pCO21026

products are an advance for constraining the Southern Ocean carbon sink compared to1027

the atmospheric inversions that were used in RECCAP1 (Lenton et al., 2013). This is1028

because the surface ocean pCO2 observations provide a more direct constraint on the1029

air-sea CO2 flux than the relatively small atmospheric CO2 signals over the ocean that1030

form the basis of the atmospheric inversions.1031

The larger GOBM ensemble provides a more representative process-based estimate1032

and the spread in GOBMs has been reduced since RECCAP1 (see Table 3 Lenton et al.,1033

2013). The remaining spread is nevertheless large and points towards critical need for1034

model development, where the largest sources of uncertainty stem from biological pro-1035

cess description and circulation, which vary in importance depending on flux component1036

(natural, anthropogenic, etc.), and spatio-temporal scale of interest. In terms of the an-1037

thropogenic component, the 12 GOBMs analyzed here have a 24% spread (standard de-1038

viation around the mean) in the Cant accumulation rates, which is marginally larger than1039

the ∼ 20% uncertainty associated with the observational estimates of ∆Cant and Cant1040

(even though caution is warranted when directly comparing the uncertainty estimates,1041

which are computed formally different across data classes; Gruber, Clement, et al., 2019;1042

Sabine et al., 2004). Overall, the GOBM ensemble mean underestimates the observation-1043

based estimates of the Cant accumulation up to 1994 by 19% and the change between1044

1994-2007 by 7%. Admittedly, the GOBM ensemble analyzed here is relatively small,1045

and the underestimation of Cant and ∆Cant is in the range of the uncertainty ranges of1046

the observational estimates. We can nonetheless speculate that the detected underes-1047

timation is likely related to a combination of physical, chemical and methodological fac-1048

tors. First, our results point to too little or too shallow ventilation of mode and inter-1049

mediate waters (Figure 12i), the causes of which can be related to insufficient vertical1050

mixing or too sluggish northward export of the subducted waters (Morrison et al., 2022).1051

However, while sea-surface salinity (SSS) was singled out as a strong predictor of Cant1052

air-sea fluxes in an ESM ensemble analyzed by (Terhaar et al., 2021), in our study and1053

in (Terhaar et al., 2023), SSS was not found to be a clear constraint of the anthropogenic1054

CO2 uptake and its interior storage in the GOBMs. Rather, Terhaar et al. (2023) find1055

that biases in the normalized surface Revelle factor could explain the underestimation1056

of Cant uptake. Finally, the relatively high pre-industrial CO2 mixing ratios related to1057

late starting dates in several GOBMs are likely causing an underestimation of the cu-1058

mulative Cant storage, which is especially large in the Southern Ocean (Terhaar et al.,1059

2023). For the natural carbon fluxes, the difficulty in capturing the delicate balance be-1060

tween physical and biological processes is clearly manifested by the large model spread1061

(Figure 3). In addition, the different spin-up procedures could play a role. Terhaar et1062

al. (2023) indicate that the natural CO2 flux component may be biased towards uptake1063

that is too strong, possibly related to GOBMs not being in steady-state (Terhaar et al.,1064

2023), which is particularly relevant in the Southern Ocean where old water masses resur-1065

face. While long preindustrial spin-ups would bring the GOBMs closer to steady-state1066

and thus reduce drift, they may come at the cost of less realistic surface conditions and1067

their response to climate change and variability (Séférian et al., 2016). Interestingly, the1068

two data-assimilated GOBMs differ to a large extent, illustrating that dynamical pro-1069

cesses in these models may still override information gained from assimilated observa-1070

tions.1071

The averages of the GOBM and pCO2-product ensembles agree for many key es-1072

timates, showing progress over the past 10 years: the mean and spatial distribution of1073

the sink is in good agreement (Figure 2), although discrepancies of the magnitude and,1074

particularly, the trends still persist (Figures 8 and 10; see also Canadell et al., 2021). The1075

fact that these ensemble means agree so well in many respects provides some confidence1076
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in the Southern Ocean CO2 flux estimates because they are nearly independent. How-1077

ever, the agreement of GOBMs and pCO2-products on the mean CO2 flux is partly a1078

result of compensation of regional and seasonal discrepancies (Figures 4, 5, 8). The agree-1079

ment is also highly susceptible to the choice of river flux adjustment that either locates1080

most outgassing of river-derived carbon in the Southern Ocean (Aumont et al., 2001)1081

or in the tropical Atlantic (Lacroix et al., 2020). Reasons for the discrepancy between1082

Aumont et al. (2001) and Lacroix et al. (2020) may be because of specific choices in nu-1083

trient and carbon input, lability of organic matter, resulting ocean model transport (see1084

also the discussion in Terhaar et al., 2023). We here chose to use the river flux adjust-1085

ment of Lacroix et al. (2020), scaled up to a global value of 0.65 PgC yr−1, resulting in1086

a small adjustment for the Southern Ocean of 0.04 PgC yr−1. In contrast, the South-1087

ern Ocean (south of 20◦S) adjustment based on Aumont et al. (2001) that is so far used1088

in the Global Carbon Budget is higher by one order of magnitude (0.32 PgC yr−1) and1089

can explain the large mismatch in the mean flux (but not its trend) between GOBMs1090

and pCO2 products in the Southern Ocean in the Global Carbon Budget (Friedlingstein1091

et al., 2022). The discrepancies in the trend cannot be explained by GOBM biases in warm-1092

ing trends as these are well reproduced (Figure 10). Similarly, the GOBM ensemble is1093

not systematically biased towards formation of mode and intermediate waters that is too1094

weak, in contrast to the ESMs, and an effect on the trend of the ocean carbon sink could1095

not be evidenced (Terhaar et al., 2023). Further potential candidates for GOBM biases,1096

which were not explored here, are stratification (Bourgeois et al., 2022), mixing, and mixed1097

layer dynamics, which could also lead to excess carbon accumulation in the surface layer1098

and thus may be the driver for the overestimation of the surface Revelle factor. In the1099

pCO2-products, the trend might be biased by data sparsity (Gloege et al., 2021; Hauck1100

et al., 2023).1101

4.2 Seasonal cycle and thermal versus non-thermal drivers1102

As a community, we have a good understanding of the mechanisms that drive pCO21103

seasonality in the Southern Ocean (Lenton et al., 2013), but we do not fully understand1104

their magnitudes, opposing or synergistic, in different seasons and regions (Mongwe et1105

al., 2018). Part of this lack of understanding is due to a lack of observations through-1106

out all seasons, though particularly acute during winter (Gray et al., 2018; Bushinsky1107

et al., 2019; Sutton et al., 2021). Further, complex biological processes affecting pCO21108

in summer are more difficult to accurately describe in GOBMs (Mongwe et al., 2018).1109

While pCO2 products require little to no understanding to reconstruct the seasonal1110

cycle, they may still suffer from a lack of data (Ritter et al., 2017). This may be shown1111

by the narrow ensemble spread of the pCO2-products during winter (Figure 7d-f), which1112

may result from poor sampling distribution. That being said, an observation system sim-1113

ulation experiment (OSSE) showed that the seasonal cycle in most of the Southern Ocean1114

is in fact well captured by one pCO2 product (Gloege et al., 2021). The narrower GOBM1115

spread of the non-thermal pCO2 component during winter may also suggest that winter-1116

time processes (circulation) are less complex than summer (circulation and biology, Fig-1117

ure 7d-f).1118

The introduction of biogeochemical Argo floats since the mid 2010’s has increased1119

the number of winter observations (relative to the available ship-based observations), al-1120

beit inferred from pH and estimated total alkalinity and thus associated with a higher1121

uncertainty (Williams et al., 2017). The machine learning approaches that include float-1122

based observations result in stronger winter outgassing (Figure 4, Bushinsky et al., 2019).1123

Direct pCO2 measurements showed that the years used to train the machine learning1124

model (2015-2018) may have had anomalously high pCO2 (Sutton et al., 2021). How-1125

ever, if this is in fact the case, and not related to sampling locations, this may indicate1126

much larger interannual variability in the Southern Ocean than the majority of the pCO2-1127

products currently estimate (Figure 8). Incorporating these data is thus potentially an1128
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important goal for pCO2-products, but it has proven difficult to incorporate the float-1129

based pCO2 estimates further back in time than 2015, the start of the BGC-float record1130

and account for their higher uncertainty (Bushinsky et al., 2019; Williams et al., 2017).1131

GOBMs also have a lower pCO2 ensemble spread during winter compared with sum-1132

mer and agree on the spatial location of the winter flux minimum (Figure 4). Neverthe-1133

less, the range in magnitude is still more than twice as large as those of the pCO2-products1134

(Figure 7d-f). Since the thermal component is well captured in GOBMs (Figure 7d-e),1135

the non-thermal physical drivers (i.e., circulation) determines the uncertainty observed1136

in winter. In summer, GOBMs have difficulty capturing the delicate balance between1137

biological and physical processes that leads to a large spread in model pCO2 and fluxes1138

(Mongwe et al., 2018). GOBMs may thus benefit from more process-based studies that1139

further our understanding of pCO2 drivers during summer, i.e., biological productivity,1140

respiration, remineralization and sinking of organic carbon as part of the biological car-1141

bon pump.1142

4.3 Temporal variability of CO2 fluxes1143

Our analysis reduces the previously reported discrepancy in variability of South-1144

ern Ocean air-sea CO2 fluxes between data classes (GOBMs and pCO2-product ensem-1145

ble means, Gruber, Landschützer, & Lovenduski, 2019). We relate the growing agree-1146

ment to the larger ensemble of pCO2-products in our study, with the newer additions1147

having a substantially lower variability than the two pCO2-products (Jena-CarboScope1148

and SOM-FFN) used by Gruber, Landschützer, and Lovenduski (2019). A recent study1149

using the same RECCAP data base also concluded that there is agreement on the mag-1150

nitude of interannual variability between GOBMs and pCO2-products (Mayot et al., 2023).1151

The interannual to decadal variability of Southern Ocean air-sea CO2 fluxes was1152

discussed extensively in the literature, and was often related to variations in the South-1153

ern Annual Mode (SAM) (Le Quéré et al., 2007; Lovenduski et al., 2007; Lenton & Matear,1154

2007; Hauck et al., 2013; Nicholson et al., 2022; Mayot et al., 2023). Also, regional wind1155

variability linked to the zonal wavenumber 3 was suggested as a driver of interannual CO21156

flux variability driving both the weakening in the 1990’s and the strengthening in the1157

2000’s (Landschützer et al., 2015; Keppler & Landschützer, 2019). The arguments of SAM1158

or wave number 3 as dominant drivers of CO2 flux interannual variability might not be1159

fully independent from each other, as previously a wave number 3 like pattern was re-1160

ported to describe MLD anomalies during positive SAM events (Sallée et al., 2010).1161

The fact that the maximum IAV of GOBMs is found in the SPSS Indo-Pacific sec-1162

tor (section 3.3, Figure S12) supports the argument of the above mentioned references1163

that upwelling of carbon-rich deep water and related outgassing of natural carbon in re-1164

sponse to a positive SAM and strengthening of westerly winds may be the dominant driver1165

of interannual variability (DeVries et al., 2017). This is further supported by studies of1166

atmospheric potential oxygen (APO), which can be used as a tracer of ocean-only pro-1167

cesses from measurements of CO2 and O2 at atmospheric stations (Stephens et al., 1998).1168

Nevison et al. (2020) showed that the interannual variations of APO seasonal minimum1169

from stations in the Southern Hemisphere were strongly correlated with the SAM dur-1170

ing years of positive phase. Further, they showed that GOBMs (as analyzed in this study)1171

can capture the variability of CO2 and APO fluxes driven by the SAM variations dur-1172

ing the austral winter months. However, the study of Nevison et al. (2020) also illustrated1173

that the SAM index variability cannot fully explain the changes in APO seasonal win-1174

ter minima suggesting that other factors or modes of variability such as ENSO could im-1175

pact the CO2 and O2 air-sea fluxes of the Southern Ocean as also previously suggested1176

in an ocean modeling study (Verdy et al., 2007).1177

On top of the interannual variability, on which pCO2 products and GOBMs seem1178

to reach reasonable agreement, discrepancies in the CO2 flux trend since 2000 have emerged1179
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(Figure 8, Friedlingstein et al., 2022). These discrepancies highlight a major knowledge1180

gap and urgently need to be resolved by critical analysis of potential biases in pCO2-products1181

as well as GOBMs (see section 4.1). While there is no evidence so far that adjustments1182

of CO2 fluxes based on model evaluation of interfrontal salinity and Revelle factor af-1183

fect the trend (Terhaar et al., 2023), data sparsity tends to lead to an overestimation of1184

decadal variability and trend in at least two of the pCO2-products (Gloege et al., 2021;1185

Hauck et al., 2023). Hence, both data classes need to be inspected for deficiencies.1186

4.4 Zonal asymmetry of the fluxes1187

While the primary spatial mode of variability in the Southern Ocean is from north1188

to south, zonal variability in the dynamics, biogeochemistry, and carbon fluxes have been1189

reported in the literature (Landschützer et al., 2015; Tamsitt et al., 2016; Rintoul, 2018;1190

Prend et al., 2022). Similarly, we find substantial zonal asymmetry in both the mean states,1191

and seasonal and interannual variability of the Southern Ocean CO2 fluxes (Figures S10,1192

S12); yet many of our results have been presented in a zonally-averaged perspective for1193

the sake of brevity.1194

In this work, we find that the largest zonal asymmetries in the Southern Ocean mean1195

air-sea CO2 flux occur in the SPSS biome (Figure 4b-e, S12). Here, the Pacific and In-1196

dian sectors are larger sources (or weaker sinks) of CO2 to the atmosphere than the At-1197

lantic sector. This is consistent with the pCO2-based products (Figure S12d-f). The float-1198

based pCO2-products amplify this winter outgassing dramatically. However, the GOBMs1199

and the assimilative model ensemble averages do not show a coherent and convincing in-1200

crease in outgassing in the Indian and Pacific relative to the Atlantic. The zonal asym-1201

metry reported in the observation-based products is consistent with a recent BGC-float-1202

based study that reported stronger outgassing in the Indian and Pacific sectors of the1203

Southern Ocean (Prend et al., 2022). The authors attributed this dominance to stronger1204

winter-time entrainment of deep waters to the surface in these regions. The zonal asym-1205

metry is also apparent in the air-sea CO2 fluxes decomposed into natural and anthro-1206

pogenic contributions (Figure S7). Here, too, the SPSS is the region with the greatest1207

asymmetry. In the Indian sector, the large natural outgassing fluxes of the ensemble mean1208

are nearly perfectly opposed by the anthropogenic uptake.1209

4.5 Link large-scale synthesis to observational programs1210

The analysis presented here provides a synthesis of large-scale datasets with a fo-1211

cus on budgets, spatial and temporal patterns of fluxes and carbon accumulation, and1212

a first-order assessment of large-scale processes (e.g., thermal versus non-thermal, an-1213

thropogenic vs natural carbon fluxes). In particular, it highlights spatio-temporal win-1214

dows for which discrepancies between data classes are largest (e.g., magnitude of win-1215

ter outgassing, delicate balance of physical versus biological processes in summer, mag-1216

nitude of decadal trend of the Southern Ocean carbon sink). Importantly, this synthe-1217

sis builds on contributions from many individual groups contributing repeat observations1218

of surface and interior ocean biogeochemical properties from research vessels and ships1219

of opportunity (e.g., Talley et al., 2016; Hoppema et al., 1998; van Heuven et al., 2014;1220

Metzl et al., 1999; Pardo et al., 2017). The ship-based observations form the cornerstone1221

for many of the data classes in this study: observation-based ocean interior estimates of1222

CO2 storage assess changes in deep ocean measurements of CO2, the surface pCO2 es-1223

timates use observations from ships of opportunity, and the GOBMs are evaluated against1224

ocean interior observations. And while sampling biases and gaps in the ship-based mea-1225

surements may be filled by autonomous platforms with lower accuracy (e.g., BGC-floats),1226

they will always require crossover validation measurements from the high-accuracy ship-1227

board measurements. This emphasizes that the ship-based observations need to continue1228

into the future to characterize the evolution of the Southern Ocean carbon cycle. This1229

will only become more important, once stabilization of atmospheric CO2 will lead to a1230
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larger weight on ocean processes for control of air-sea fluxes relative to the current quasi-1231

exponential growth rate of atmospheric CO2.1232

Further, detailed regional process studies employing a wide range of methodolo-1233

gies across disciplines are also important to further our holistic understanding of the South-1234

ern Ocean carbon cycle and to improve the description of biogeochemistry and ecosys-1235

tem dynamics in GOBMs, particularly in summer. One example for such an interdisci-1236

plinary field program is along the continental shelf west of the Antarctic Peninsula where1237

shipboard observations indicate a strong, near-shore summer undersaturation of surface1238

pCO2 (Eveleth et al., 2017) and seasonal reduction in surface dissolved inorganic car-1239

bon (Hauri et al., 2015). The seasonal trends in the ocean CO2 system on the shelf re-1240

flect a combination of biological net community production (Ducklow et al., 2018) and1241

meltwater input diluting surface dissolved inorganic carbon and alkalinity (Hauri et al.,1242

2015). Regional ocean biogeochemical models simulate similar onshore-offshore gradi-1243

ents in surface chlorophyll, biological productivity, dissolved inorganic carbon, and pCO21244

as well as the observed large interannual biophysical variability associated with year-to-1245

year variations in seasonal sea-ice advance and retreat phenology (Schultz et al., 2021).1246

Observed decadal trends for the region from the early 1990s to late 2010s indicate that1247

reduced sea-ice extent associated with climate change drives an increase in upper ocean1248

stability, phytoplankton biomass and biological dissolved inorganic carbon drawdown,1249

resulting in a growing net downward air-sea CO2 flux during summer (Brown et al., 2019).1250

Recent year-round, autonomous mooring observations of pCO2 and pH suggest a grad-1251

ual increase in surface ocean pCO2 and dissolved inorganic carbon over the fall and win-1252

ter, with CO2 outgassing during winter when pCO2 is supersaturated largely blocked1253

by sea-ice cover (Shadwick et al., 2021; M. Yang et al., 2021). Similar large-scale pro-1254

grams are needed in other parts of the Southern Ocean given its size and importance in1255

the global carbon cycle. On-going research activities, also as part of the Southern Ocean1256

Observing System (SOOS), e.g., in the Ross (Smith et al., 2021) and Weddell Seas (Arndt1257

et al., 2022) have the potential of being extended.1258

5 Conclusions1259

Here, we present a schematic overview that summarizes the main characteristics1260

of the Southern Ocean carbon cycle 1985-2018, as derived in this analysis and its sup-1261

plementary material (Figure 14). In general, the sink strength for atmospheric CO2 (net1262

CO2 flux, FCO2) increases from South to North, but with important zonal asymmetry.1263

The Atlantic and Indian Ocean sectors of the Subtropical Seasonally Stratified biome1264

(STSS) are the regions that act as strongest sinks. In the Subpolar Seasonally Stratifed1265

biome (SPSS), the Atlantic sector stands out as the only sector acting as an annual mean1266

CO2 sink. Also the seasonal cycle shows a distinct north-south gradient. In the ice-covered1267

biome (ICE) the peak uptake occurs in summer and is driven by the seasonal cycle of1268

dissolved inorganic carbon (DIC), i.e. by physical DIC transport and biological processes.1269

In contrast, the dominant driver of the seasonal cycle of CO2 uptake in the STSS is tem-1270

perature, and thus the season of peak uptake occurs in winter. Trends in net CO2 up-1271

take derived from Global Ocean Biogeochemistry Models (GOBMs) and surface ocean1272

pCO2 observation based products (pCO2-products) disagree in all biomes, but the dis-1273

crepancy is strongest in the Pacific sector of the STSS. In terms of anthropogenic CO21274

(Cant), the strongest uptake occurs in the SPSS. This is not visible in the map of net1275

CO2 flux, because the anthropogenic uptake manifests itself as a suppression of natu-1276

ral CO2 outgassing. The largest anthropogenic carbon storage occurs in the STSS and1277

northward.1278

Our analysis confirms the important role of the Southern Ocean in the global car-1279

bon cycle. We have highlighted key knowledge gaps that need to be closed through ex-1280

tended observation systems and augmented process descriptions in the dynamic mod-1281

els in order to further reduce uncertainties.1282
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Figure 14. Main characteristics of the Southern Ocean carbon cycle 1985-2018. The sur-

face ocean color shading depicts the net air-sea CO2 flux (FCO2) as the average of the ensemble

means from pCO2-products and Global Ocean Biogeochemistry Models (GOBMs). Blue color

denotes a CO2 flux into the ocean, and red color a flux out of the ocean. The zonal mean section

shows the anthropogenic carbon (Cant) accumulation in the ocean interior from GOBMs. ICE:

ice-covered biome, SPSS: Subpolar Seasonally Stratified Biome, STSS; Subtopical Seasonally

Stratified Biome.
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Heuven, S. M., Völker, C., . . . Hauck, J. (2018). Variability of nutrients1790

and carbon dioxide in the Antarctic Intermediate Water between 1990 and1791

2014. Ocean Dynamics, 68 (3), 295–308. doi: 10.1007/s10236-018-1131-21792

Pardo, P. C., Tilbrook, B., Langlais, C., Trull, T. W., & Rintoul, S. R. (2017).1793

Carbon uptake and biogeochemical change in the Southern Ocean, south of1794

Tasmania. Biogeosciences, 14 (22), 5217–5237. doi: 10.5194/bg-14-5217-20171795

Paulsen, H., Ilyina, T., Six, K. D., & Stemmler, I. (2017). Incorporating a prognostic1796

representation of marine nitrogen fixers into the global ocean biogeochemical1797

model HAMOCC. Journal of Advances in Modeling Earth Systems, 9 , 438–1798

464. doi: 10.1002/2016MS000737.Received1799
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Introduction  

• The supplementary material contains additional information and analysis. In 
particular, we present additional analysis, resolved to show results of individual data sets 
and further separation into Atlantic, Pacific and Indian Ocean sectors of the Southern 
Ocean. 

Text S1. Linear CO2 flux trends in the control simulation 
In the whole Southern Ocean, the linear trend in simulation B (Figure S1) is smaller 

than 10 TgC yr-1 decade-1 for 10 out of the 14 models; larger than 10 TgC yr-1 decade-1 

for the other four (maximum 55 TgC yr-1 decade-1). Overall, the trend in simulation B is 
thus small compared to the mean fluxes in simulation A.   

 

Text S2. Non steady state component of ∆Cant accumulation rates 
 
In Figures 11-13 we show the steady state ΔCant for OCIMv2021 and two GOBMs 

(CNRM, and MPIOM-HAMOCC), since it is the only one available, whereas the total ΔCant 
(i.e. the sum of the steady state and non-steady components) is shown for the other data 



 
 

2 
 

sets. This warrants a closer inspection at the non-steady ∆Cant (Fig. S3) in relation to the 
steady ∆Cant. Indeed, total ∆Cant accumulation rates between 1994-1007 patterns may be 
affected by decadal changes in ocean circulation occurring over that period, which would 
affect its non-steady component (but not its steady component). As it can be seen from 
Fig. S3, ∆Cant

ns is around 10-20% of the total ∆Cant (Fig. S4). The spatial patterns of ∆Cant
ns 

are quite diverse among GOBMs (despite having an overall tendency towards increased 
∆Cant uptake in the Weddell Sea), which is surprising considering that GOBMs are forced 
by similar atmospheric reanalysis products. It can be concluded that other factors, such 
as model internal variability and the individual strategy to perform a steady-state 
simulation, play a role in driving ∆Cant

ns
. 

 
Text S3. Computation of annual MLD diagnostic 

Given its important role in ventilating the deep ocean (Morrison et al., 2022), we 
include here an assessment of mixed layer depth (MLD) across different GOBMs. In 
addition to the user-defined fixed-threshold September MLD provided by all of GOBMs, 
we additionally computed MLDs based on the interior temperature and salinity values 
using a variable density threshold method (Holte et al., 2017). Because, following the 
RECCAP-2 protocol, most GOBMs provided only annually-averaged temperature and 
salinity values, we call this diagnostic an annual MLD diagnostic. Monthly means would 
have been the preferred choice, considering the large seasonal variations in the upper 
ocean temperature and salinity, but this diagnostic has the advantage of being 
computed uniformly across all GOBMs and of using a variable density threshold, which 
has been shown to provide a more realistic picture especially at high latitudes (Holte et 
al., 2017). 3D monthly fields were only available for two hindcast models (NEMO-
PlankTOM12 and CCSM-WHOI) and for the observed World Ocean Atlas 2018 (WOA18 
climatology). An analysis of the impact of using annual means instead of monthly means 
of temperature and salinity, shows an underestimation of annual MLD diagnostic with 
respect to the monthly MLD diagnostic of around 45%-50% but no significant 
differences in spatial patterns.   
 
Text S4. Composite analysis of “GOBMs high” and “GOBMs low” 

To gain a better understanding of the factors driving the inter-model spread in 
∆Cant accumulation rates, we analyzed composites for GOBMs overestimating (hereafter 
“GOBMs high”, Figure 11c) and underestimating (hereafter “GOBMs low”, Figure 11d) 
∆Cant with respect to the average of the two observationally-constrained estimates. A 
consistent pattern of higher ∆Cant accumulation rates in the “GOBMs high” with respect 
to “GOBMs low” emerges (Fig. 11c,d,  Figure S4). Composite anomalies with respect to 
the multi-model-mean of different physical variables (Fig. S17) can help interpret the 
drivers of the different ∆Cant accumulation rates in “GOBMs high” and “GOBMs low”. 
“GOBMs high” consistently show positive anomalies of Cant air-sea fluxes throughout the 
Southern Ocean (except for some areas around Antarctica), associated with higher-than-
average sea surface salinity (SSS) and deeper mixing in the STSS and SPSS biomes. 
Mixing anomalies are distributed more uniformly when using the annual MLD diagnostic 
(Text S3) than when using the user-defined September MLD. The clear dependence of 



 
 

3 
 

Cant air-sea fluxes on SSS in the STSS and SPSS biomes is in line with Terhaar et al. (2021) 
and with results from the Evaluation Chapter of RECCAP-2 (Terhaar et al., 2023) where a 
tight relationship is found between Cant air-sea fluxes and SSS averaged between the 
Polar Front (approximately the southern edge of the SPSS biome) and the Subtropical 
Front (approximately the northern edge of the STSS biome). Interestingly, “GOBMs high” 
models have lower-than-average SSS in the ICE biome, possibly because of thicker sea 
ice (Fig. S17), which impedes the formation of polynyas and associated brine rejection. By 
construction, the anomalies of “GOBMs low” provide a specular picture with respect to 
“GOBMs high”. 

 
 

 
 

Figure S1. CO2 flux in simulation B (control) for each individual GOBM for the (a) 
Southern Ocean, (b) STSS, (c) SPSS, and (d) ICE biomes. 

 

 

Figure S2. Same as Figure 6a-c, but with MPIOM-HAMOCC included. Note the different 
y-axes scales compared to Figure 6. 
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Figure S3. Non-steady state anthropogenic carbon (∆Cant
ns) accumulation rates over the 

period 1994-2007. Shown are only models where this decomposition is possible. 
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Figure S4. ∆Cant accumulation rate from 1994 to 2007 integrated to 3000 m depth for 
individual models. ∆Cant

tot is shown for “GOBMs high” models CESM-ETHZ, MRI-ESM2-1, 
NorESM-OC1.2, and NEMO-PlankTOM12 (top row), for “GOBMs low” models CCSM-
WHOI, CNRM-ESM2-1, EC-Earth3, FESOM_REcoM_LR, ORCA025-GEOMAR, ORCA1-LIM3-
PISCES, and MPIOM-HAMOCC and for the regional model ROMS-SouthernOcean-ETHZ 
(middle and bottom rows). ∆Cant

ss is shown for MPIOM-HAMOCC and CNRM-ESM2-1 (as 
justified in the main text and Text S2). Biome boundaries are shown as contours. 
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Figure S5: Zonal mean of flux density for individual GOBMs in the period 2015-2018. We 
show the (a) annual, (b) summer, and (c) winter zonal averages. The black markers on the 
x-axes show the mean location of the biome boundaries with the names of the biomes 
shown in gray. The MPIOM-HAMOCC model is excluded in panels b and c because of an 
overly strong seasonal amplitude.   
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Figure S6: Same as Figure 3, but separating the total climate effect on CO2 fluxes (gray) 
into the climate effect on natural (yellow) and anthropogenic (dark red) CO2 fluxes. The 
climate effects on natural and anthropogenic CO2 fluxes partly compensate each other. 
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Figure S7: Same as Figure 3, but further split into Atlantic, Pacific and Indian Ocean 
sectors. The sub-biome-scale natural–anthropogenic decomposition of the air-sea CO2 
fluxes from the Global Ocean Biogeochemical Models in the Southern Ocean for the (a) 
Subtropical Seasonally Stratified, (b) Subpolar Seasonally Stratified, and (c) ICE biomes. 
The bars show the model ensemble mean, the circles show the individual models, and 
the error bars represent one standard deviation around the mean.  
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Figure S8. Temporal average of the contemporary Southern Ocean CO2 flux (FCO2) 
2015-2018. A positive flux denotes outgassing from ocean to atmosphere. GOBMs: 
global ocean biogeochemistry models.  (a) The green and blue bar plots show the 
ensemble mean of the GOBMs and pCO2-products, and open circles indicate the 
individual GOBMs and pCO2- products. The ensemble standard deviation (1σ) is shown 
by the error bars. The other bars show other individual estimates as indicated in the 
legend (see also methods), (b-d) maps of spatial distribution of net CO2 flux for 
ensemble means of GOBMs, pCO2- products and of the data-assimilated regional model 
B-SOSE. (e) zonal mean flux of the different data sets. Thick green and blue lines show 
the ensemble means, and thin green and blue lines show the individual GOBMs and p 
CO2-products. Other colors as in panel a. Approximate boundaries for biomes are 
marked with black points on the x axis. 
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Figure S9: The season of maximum CO2 uptake per grid cell for the pCO2-products over 
the period indicated in the panels. 
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Figure S10: Seasonal cycle monthly climatology of FCO2 for the nine subregions of the 
Southern Ocean (see Figure 1). The top, middle and bottom rows show the STSS, SPSS 
and ICE biomes respectively, while the left, center and right columns represent the 
Atlantic, Indian, and Pacific sectors of each biome respectively. The standard deviation of 
the GOBMs (solid green) and pCO2-products (solid blue) are shown in the narrow lower 
panels of each subplot. Data has not been centered to a specific year, and each dataset 
has the start and end years as noted in Table 1. 
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Figure S11: Same as Figure 7d-f, but showing all individual global and regional ocean 
biogeochemistry models and data assimilating models. 

 

 
 

Figure S12: Same as Figure 8b-d, but further split into Atlantic, Pacific and Indian Ocean 
sectors of the biomes.   
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Figure S13: Comparison of surface ocean pCO2 from DIC-dominant (blue), DIC-weak 
(yellow) global and regional ocean biogeochemistry models (see Table S1) and pCO2-
products (blue) to pCO2 from gridded SOCAT v2022 data set (see also Figure 9 for full 
Southern Ocean analysis, and section 3.3.1). Here, we calculate bias and RMSE for all 
observations for a given season and region. The bias is the sum of the residuals while the 
RMSE is the square root of the sum of the squared residuals. 
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Figure S14: Same as Figure 10, but CO2 flux trend shown here for the period 1985 to 
2000. Note different scales than in Figure 10. 
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Figure S15: Same as Figure 10, but CO2 flux trend shown here for the period 2001 to 
2018. Note different scales than in Figure 10. 
 



 
 

16 
 

 
Figure S16: CO2 flux and temperature trends1985-2018 for individual models. (a) Net 
CO2 flux trend from simulation A, (b) Steady state CO2 flux trend (Fnat,ss and Fant,ss) from 
simulation, (c) sea surface temperature (SST) trend in simulation A. 
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Figure S17: Composite anomalies averaged over years 1994-1007 of a,b)  Cant flux, c,d) 
sea surface salinity, e,f) MLD annual diagnostic using variable density threshold, g,h) 
user-defined September MLD with fixed density threshold, and i,j) sea ice concentration 
for models with ∆Cant higher (“GOBMs high”, left column) and lower (“GOBMs low”, right 
column) than the average of the observation-based products eMLRC* and OCIM-v2021. 
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Shown are anomalies with respect to the multi-model-mean of these nine models. The 
“GOBMs high” models are CESM-ETHZ, MRI-ESM-1, NorESM-OC1.2, and NEMO-
PlankTOM12. The “GOBMs low” models are: CCSM-WHOI, CNRM-ESM2-1, EC-Earth3, 
FESOM-REcoM-LR, ORCA025-GEOMAR, ORCA1-LIM3-PISCES and MPIOM-HAMOCC. 
CNRM-ESM2 was excluded from the composite analysis because it shows areas of 
negative ∆Cant ; ROMS-SouthernOcean-ETHZ was also excluded because it has a different 
spin-up procedure with respect to other models (see Methods Section). The robustness 
of the patterns has been tested by removing in turn one model from the list. The 
patterns are retained even when the two models at the higher end (NorESM-OC1.2) and 
lower end (CCSM-WHOI) are removed from the composites. By construction, the sum of 
anomaly patterns in GOBMs high and GOBMs low is zero (in other words, the patterns 
are specular with respect to the multi model mean). 
 

 
Figure S18: Anomalies, computed with respect to eMLR(C*), of ∆Cant accumulation rates 
for the “GOBMs high” (top row) , for “GOBMs low” and for the regional model ROMS-
SouthernOcean-ETHZ (middle and bottom rows). Contours show, for each model, the 
zonally-averaged potential density for the period 1994-2007 (with a 0.02 kg m-3 spacing), 
where the thick contour indicates the 1027.6 kg m-3 isopycnal. 
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Figure S19: Anomalies, computed with respect to OCIM-v2021, of ∆Cant accumulation 
rates for the “GOBMs high” (top row) , for  “GOBMs low” and for the regional model 
ROMS-SouthernOcean-ETHZ (middle and bottom rows). Contours show, for each model, 
the zonally-averaged potential density for the period 1994-2007 (with a 0.02 kg m-3 
spacing), where the thick contour indicates the 1027.6 kg m-3 isopycnal. 
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Table S1. Illustration of the Global Ocean Biogeochemistry Models (GOBMs) simulations 
A to D. Simulation A and C are forced with interannual varying atmospheric CO2 as in 
historical observations, and simulations B and D are forced with constant (preindustrial 
atmospheric CO2. Climate forcing varies interannually in simulations A and D, and a 
repeated single year or multi-year climatology is used in simulations B and C. Fnet: net 
air-sea CO2 flux. Flux components: Cant: anthropogenic carbon, Cnat: natural carbon, ss: 
steady state, ns: non steady state. See main text for explanation.  

 

Table S2. Refers to the classification of models in Figure 7 into those that have a strong 
or weak DIC seasonal cycle contribution to pCO2. We refer to these as DIC dominant or 
DIC weak rather than thermal or non-thermal as the thermal contribution is relatively 
similar for all models as the RECCAP2 models use atmospheric forcing, resulting in well-
constrained temperature contributions.  
 
 Global and regional ocean biogeochemistry models 
DIC dominant CCSM WHOI, CESM ETHZ, MRI-ESM2, NorESM-OC1, 

ORCA025-GEOMAR, ROMS-SouthernOcean-ETHZ 
DIC weak CNRM-ESM2, EC-Earth3, FESOM-REcoM-HR, FESOM-

REcoM-LR, MOM6-Princeton, ORCA1-LIM3-PISCES, 
PlankTOM12 

 
 


