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Abstract

Ecosystems around the globe are experiencing increased variability due to land use and climate change. In response, ecologists
are increasingly using near-term, iterative ecological forecasts to predict how ecosystems will change in the future. To date,
many near-term, iterative forecasting systems have been developed using high temporal frequency (minute to hourly resolution)
data streams for assimilation. However, this approach may be cost-prohibitive or impossible for forecasting ecological variables
that lack high-frequency sensors or have high data latency (i.e., a delay before data are available for modeling after collection).
To explore the effects of data assimilation frequency on forecast skill, we developed water temperature forecasts for a eutrophic
drinking water reservoir and conducted data assimilation experiments by selectively withholding observations to examine the
effect of data availability on forecast accuracy. We used in-situ sensors, manually collected data, and a calibrated water quality
ecosystem model driven by forecasted weather data to generate future water temperature forecasts using FLARE (Forecasting
Lake And Reservoir Ecosystems), an open-source water quality forecasting system. We tested the effect of daily, weekly,
fortnightly, and monthly data assimilation on the skill of 1 to 35-day-ahead water temperature forecasts. We found that forecast
skill varied depending on the season, forecast horizon, depth, and data assimilation frequency, but overall forecast performance
was high, with a mean 1-day-ahead forecast root mean square error (RMSE) of 0.94°C, mean 7-day RMSE of 1.33°C, and mean
35-day RMSE of 2.15°C. Aggregated across the year, daily data assimilation yielded the most skillful forecasts at 1-7-day-ahead
horizons, weekly data assimilation resulted in the most skillful forecasts at 8-35-day-ahead horizons. Within a year, daily to
fortnightly data assimilation substantially outperformed monthly data assimilation in the stratified summer period, whereas all
data assimilation frequencies resulted in skillful forecasts across depths in the mixed spring/autumn periods for shorter forecast
horizons. Our results suggest that lower-frequency data (i.e., weekly) may be adequate for developing accurate forecasts in
some applications, further enabling the development of forecasts broadly across ecosystems and ecological variables without
high-frequency sensor data.
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Abstract:  13 

Ecosystems around the globe are experiencing increased variability due to land use and climate 14 

change. In response, ecologists are increasingly using near-term, iterative ecological forecasts to 15 

predict how ecosystems will change in the future. To date, many near-term, iterative forecasting 16 

systems have been developed using high temporal frequency (minute to hourly resolution) data 17 

streams for assimilation. However, this approach may be cost-prohibitive or impossible for 18 

forecasting ecological variables that lack high-frequency sensors or have high data latency (i.e., a 19 

delay before data are available for modeling after collection). To explore the effects of data 20 

assimilation frequency on forecast skill, we developed water temperature forecasts for a 21 

eutrophic drinking water reservoir and conducted data assimilation experiments by selectively 22 

withholding observations to examine the effect of data availability on forecast accuracy. We used 23 
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in-situ sensors, manually collected data, and a calibrated water quality ecosystem model driven 24 

by forecasted weather data to generate future water temperature forecasts using FLARE 25 

(Forecasting Lake And Reservoir Ecosystems), an open-source water quality forecasting system. 26 

We tested the effect of daily, weekly, fortnightly, and monthly data assimilation on the skill of 1 27 

to 35-day-ahead water temperature forecasts. We found that forecast skill varied depending on 28 

the season, forecast horizon, depth, and data assimilation frequency, but overall forecast 29 

performance was high, with a mean 1-day-ahead forecast root mean square error (RMSE) of 30 

0.94°C, mean 7-day RMSE of 1.33°C, and mean 35-day RMSE of 2.15°C. Aggregated across 31 

the year, daily data assimilation yielded the most skillful forecasts at 1-7-day-ahead horizons, but 32 

weekly data assimilation resulted in the most skillful forecasts at 8-35-day-ahead horizons. 33 

Within a year, daily to fortnightly data assimilation substantially outperformed monthly data 34 

assimilation in the stratified summer period, whereas all data assimilation frequencies resulted in 35 

skillful forecasts across depths in the mixed spring/autumn periods for shorter forecast horizons. 36 

Our results suggest that lower-frequency data (i.e., weekly) may be adequate for developing 37 

accurate forecasts in some applications, further enabling the development of forecasts broadly 38 

across ecosystems and ecological variables without high-frequency sensor data. 39 

 40 

Key Words: data collection frequency; FLARE; high-frequency sensors; initial conditions; 41 

observations; uncertainty; water temperature 42 

 43 

Introduction 44 

 In the face of increasing ecological variability due to climate and land use change (e.g., 45 

Gilarranz et al., 2022, Malhi et al., 2020), ecological forecasting is increasingly being used for 46 
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understanding and predicting future ecological change (Carey et al., 2022d, Lewis et al., 2022). 47 

Here, we define ecological forecasts as predictions of future environmental conditions with 48 

quantified uncertainty (see Carey et al., 2022d, Lewis et al., 2022). Applications of ecological 49 

forecasts can improve understanding of ecosystem processes (e.g., carbon cycling, Bett et al., 50 

2020), quantify predictability of environmental variables (e.g., rodent abundances, White et al., 51 

2019), and inform management of ecosystem services (e.g., fisheries management, Lindegren et 52 

al., 2010). Because of their broad utility, forecasts are increasingly being developed by the 53 

research community to predict population, community, and ecosystem dynamics (Lewis et al., 54 

2022). For example, an ongoing, community-based forecasting challenge organized by the 55 

Ecological Forecasting Initiative’s Research Coordination Network has received thousands of 56 

ecological forecast submissions of National Ecological Observatory Network (NEON) data (e.g., 57 

lake water temperature, tick abundances, forest net ecosystem production, beetle communities) 58 

before the data have been collected (Thomas et al., 2023a).  59 

Many near-term (daily to decadal) ecological forecasts are produced using the iterative, 60 

near-term forecasting cycle, in which models are updated as new observational data become 61 

available to generate forecasts into the future with quantified uncertainty (Dietze et al., 2018). 62 

The process of updating forecast models with newly available data, termed data assimilation 63 

(DA), is a critical component of the iterative, near-term forecast cycle (Dietze et al., 2018, Luo et 64 

al., 2011). DA allows for iterative updating of ecological hypotheses and models as forecasts are 65 

continuously assessed and updated with the most recent ecosystem observations (Dietze et al., 66 

2018; White et al., 2019). DA can also improve forecast accuracy by updating forecast model 67 

initial conditions (i.e., starting values given to the model), states, and/or parameters at the 68 

timestep that the new observations become available (Cho et al., 2020, Gottwald and Reich, 69 
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2021, Luo et al., 2011, Niu et al., 2014). For example, McClure et al. (2021) developed 1 to 2-70 

week-ahead forecasts of reservoir methane emissions with and without weekly DA and found 71 

that the accuracy of forecasts with DA was 44 - 128% higher than forecasts without DA over a 72 

five-month forecasting period. Despite the usefulness of DA for improving forecasts, however, 73 

the optimal frequency of observations for updating ecological models to produce skillful 74 

forecasts is not well characterized. 75 

While there are a number of best practices proposed for applying the near-term, iterative 76 

forecast cycle in ecology (e.g., Clark et al., 2001, Harris et al., 2018, Lewis et al., 2022, White et 77 

al., 2019), few recommendations exist for choosing the optimal frequency of DA to produce 78 

accurate forecasts. Specifically, determining the appropriate frequency of observations for DA 79 

across a range of ecological variables is needed to improve the scalability of ecological 80 

forecasting, particularly if accurate forecasts can be developed using lower frequency 81 

observations. For example, if weekly or fortnightly DA yielded similarly accurate lake dissolved 82 

oxygen forecasts as daily DA, then water quality forecasting systems could be developed for 83 

lakes that have weekly or fortnightly routine monitoring program data without needing expensive 84 

high-frequency sensors, thereby enabling forecasts to be generated for many waterbodies 85 

globally.  86 

Currently, many automated ecological forecasting systems rely on high-frequency 87 

sensors to assimilate data at each time step and generate accurate forecasts (e.g., Baracchini et 88 

al., 2020b, Corbari et al., 2019, Marj and Meijerink, 2011, Page et al., 2018, Tanut et al., 2021), 89 

but it is possible that high-frequency sensor data collection may not be needed for DA. 90 

Moreover, deployment of high-frequency sensors is not always feasible for all ecological 91 

variables (e.g., zooplankton abundance, biogeochemical concentrations, Marcé et al., 2016) and 92 



 

5 

some remote locations have additional logistical constraints for maintaining autonomous sensor 93 

operation (Steere et al., 2000). Furthermore, some remotely sensed variables may only be 94 

available as satellite orbits and weather conditions (e.g., cloud cover) allow (e.g., Herrick et al., 95 

2023). Thus, identifying how best to integrate observational data collected at different temporal 96 

frequencies into forecast models has emerged as a critical need for ecological forecasters 97 

(LaDeau et al., 2017).  98 

 Studies on the frequency of DA for environmental forecasts have generally shown that 99 

more temporally frequent DA improves forecast accuracy, but not always, which may be related 100 

to the sensitivity of forecasts to model initial conditions. For example, DA occurring every 24 101 

hours using in-situ snow data (e.g., snow depth, density, snow water equivalent) resulted in 102 

better predictions of these snow variables in an alpine snowpack model compared to DA 103 

occurring every 3 hours (Piazzi et al., 2018). Conversely, DA ‘experiments’ performed for 104 

NOAA (National Oceanic and Atmospheric Administration)’s Global Forecasting System using 105 

meteorological observations collected at different frequencies showed that DA occurring every 2 106 

hours resulted in more accurate air temperature and wind speed forecasts compared to DA 107 

occurring every 6 hours (He et al., 2020). These differences are likely because uncertainty in 108 

meteorological forecasts is primarily driven by the forecast model’s initial conditions. Thus, 109 

more frequent DA, which constrains the model’s initial conditions, will almost always improve 110 

the skill of meteorological forecasts (e.g., Clark et al., 2016, He et al., 2020, Simonin et al., 111 

2017). In contrast, for forecasts of environmental systems in which model process uncertainty 112 

and model driver data uncertainty are more important sources of uncertainty (e.g., Dietze, 2017a, 113 

Heilman et al., 2022, Lofton et al., 2022, Thomas et al., 2020), it is unknown whether more 114 
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frequent DA can improve forecast skill by generating initial conditions more consistent with 115 

observations.  116 

To the best of our knowledge, there have been only a few ecological DA experiments that 117 

have tested the effects of different observation frequencies on forecast skill (e.g., Massoud et al., 118 

2018, Piazzi et al., 2018, Weng and Luo, 2011, Ziliani et al., 2019), and none that have 119 

considered how the frequency of data used for assimilation affects forecast skill across both 120 

spatial and temporal scales. Weng & Luo (2011) assimilated eight different carbon datasets (e.g., 121 

root biomass, litter fall, soil respiration), each with different collection frequencies, to identify 122 

the relative importance of these data sources in constraining long-term carbon dynamics, but did 123 

not consider how different frequencies of the same dataset could affect forecast skill. Piazzi et al. 124 

(2018) assimilated multiple snow observations at two different frequencies (3 and 24 hours) for 125 

predicting different snow-related variables (e.g., depth, density, and snow water equivalent), and 126 

Ziliani et al. (2019) performed DA tests using 1-20 second assimilation of water depth data to 127 

assess water level forecast skill, but neither considered the effect of less frequent assimilation 128 

(e.g., >24 hours). Massoud et al. (2018) performed DA tests using a wider range of temporal 129 

frequencies (e.g., ~3-34-day abundance data) to predict plankton community dynamics, but did 130 

not consider the effects of DA across spatial scales (i.e., how DA affects forecast skill across 131 

multiple sites or depths in an aquatic ecosystem). As a result, further work is needed to quantify 132 

the utility of increased observation and DA frequency over both time and space to forecast 133 

performance in ecological systems with varying sensitivities to initial conditions. 134 

 Among ecosystems, freshwater lakes and reservoirs are particularly important systems 135 

for developing near-term forecasts because they provide essential ecosystem services, including 136 

drinking water, food, irrigation, and recreation (Carpenter et al., 2011, Meyer et al., 1999, 137 
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Williamson et al., 2016). Because freshwaters are experiencing greater variability and adverse 138 

water quality issues in response to land use and climate change (e.g., O’Reilly et al., 2015, Paerl 139 

and Paul, 2012, Woolway et al., 2021), some water managers have used forecasts to 140 

preemptively address poor water quality events (reviewed by Lofton et al., 2023). To date, 141 

iterative, near-term freshwater forecasts have been developed for a number of water quality 142 

variables, including water temperature (e.g., Carey et al., 2022d, Thomas et al., 2023b), 143 

dissolved oxygen (e.g., Wang et al., 2016), and phytoplankton (e.g., Page et al., 2017, Woelmer 144 

et al., 2022). These forecasts have been developed using DA with observations collected by 145 

high-frequency sensors at intervals ranging from 4 minutes to 24 hours. However, most manual-146 

sampling water quality monitoring programs collect observations on weekly to fortnightly scales 147 

(e.g., Francy et al., 2015, Kirchner and Neal, 2013, Romero et al., 2002), currently precluding the 148 

scaling of existing forecasting systems broadly and underscoring the need to determine whether 149 

less frequent observations can be used to produce accurate forecasts.  150 

To quantify how DA at different frequencies affects forecast skill up to 35 days into the 151 

future, we performed DA experiments in which we separately assimilated daily, weekly, 152 

fortnightly, and monthly data into reservoir water temperature forecasts. Water temperature 153 

forecasts are used to inform management decisions on water extraction depth and preemptive 154 

water quality interventions (Georgakakos et al., 2005; Kehoe et al., 2015; Mi et al., 2020), and 155 

thus our study has much utility for both informing how best to forecast complex ecosystem 156 

dynamics, as well as manage drinking water supplies. Our research questions were: 1) Which 157 

frequency of DA generates the most skillful water temperature forecasts? 2) How does forecast 158 

skill vary across time (specifically focusing on the mixed vs. stratified seasons within a year) and 159 

space (i.e., reservoir depth)? and 3) How does DA frequency influence total forecast uncertainty 160 
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and what is the relative contribution of initial condition uncertainty to total forecast uncertainty? 161 

As previous work has suggested that reservoir water temperature forecasts can sometimes exhibit 162 

sensitivity to initial conditions (Thomas et al. 2020), we expected that less frequent DA would 163 

result in decreased forecast skill and increased total uncertainty. In addition, we expected that 164 

forecast skill would be better at deeper depths, especially during thermally-stratified periods 165 

(e.g., Mercado-Bettín et al. 2021; Thomas et al. 2020). 166 

 167 

Methods 168 

Forecasting system overview   169 

We applied the Forecasting Lake And Reservoir Ecosystems (FLARE) forecasting 170 

system (Thomas et al., 2020) to Beaverdam Reservoir, Virginia, USA to produce daily water 171 

temperature forecasts for 1-35 days into the future (hereafter referred to as forecast horizon) 172 

during 1 January 2021 - 31 December 2021. FLARE is an open-source forecasting system that 173 

incorporates real-time water quality sensor data, DA, ensemble-based forecasts, and uncertainty 174 

quantification to predict near-term water quality conditions (Thomas et al., 2020).  175 

Forecast generation via FLARE can be summarized by four steps (Figure 1). First, 10-176 

min resolution water temperature data were collected by sensors deployed in the reservoir 177 

(Figure 1 step 1). Second, these data were transferred to the cloud and stored in a GitHub 178 

repository, where they were downloaded daily and made available for DA (Figure 1 step 2). 179 

Simultaneously, 1 to 35-day-ahead NOAA meteorological forecasts were downloaded daily as 180 

driver data for the reservoir hydrodynamic model to generate the water temperature forecasts. 181 

Third, during the forecast generation step, DA was used to update initial conditions and 182 

parameters with the most recent observations using an ensemble Kalman filter, a numerical 183 
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approach that allows for the updating of model states and parameters using data (Evensen, 2003) 184 

(Figure 1 step 3a). Following DA, the reservoir hydrodynamic model was initialized with the 185 

updated model states and parameters to produce 1-35-day-ahead forecasts for each 0.5 m depth 186 

interval across the water column (Figure 1 step 3b). Finally, forecast skill was assessed by 187 

comparing observed vs. predicted water temperatures for each daily forecast at each depth 188 

(Figure 1 step 4). We repeated steps 3a-4 for daily, weekly, fortnightly, and monthly intervals of 189 

DA throughout the year as part of the DA experiments to compare forecast skill over time. 190 

 191 

Study site and monitoring 192 

Beaverdam Reservoir (BVR) is a small (0.28 km2), shallow (Zmax = 11 m), dimictic, 193 

eutrophic reservoir in southwestern Virginia, USA (37.31° N, 79.82° W; Figure 2). BVR is 194 

managed by the Western Virginia Water Authority as a secondary drinking water supply and is 195 

located in a deciduous forest catchment (Doubek et al., 2019). During a typical year, BVR is 196 

stratified from mid-March to late October and mixed from November to early March (Hounshell 197 

et al., 2021). BVR experiences summer hypolimnetic anoxia and cyanobacterial blooms, both of 198 

which are controlled by water temperature and thermal stratification (Doubek et al., 2019; Hamre 199 

et al., 2018), making forecasts of water temperature important for water quality management.  200 

Water quality monitoring of BVR includes both manual sampling and high-frequency 201 

sensors. From 2014-present, manual water quality sampling occurred weekly to fortnightly 202 

during the summer stratified period and fortnightly to monthly during the remainder of the year 203 

(Carey et al., 2022c). Starting in June 2020, high-frequency sensors were deployed in the 204 

reservoir, enabling a range of DA frequencies to be compared in this study. We deployed 205 

NexSens T-Node FR Temperature Sensors (NexSens Technology, Fairborn, OH, USA) at 1 m 206 
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intervals from the surface to sediments and a YSI EXO2 sonde (YSI Incorporated, Yellow 207 

Springs, OH, USA) that monitored temperature at 1.5 m at the deepest site in BVR (Figure 1; see 208 

Carey et al., 2023 for sensor information). These sensors collected data every 10 minutes, which 209 

was transmitted every 3 to 9 hours via secure sensor gateways to a Git repository in the cloud 210 

(Carey et al., 2023, Daneshmand et al., 2021). We removed observations collected during 211 

periods of sensor maintenance, as well as depth-adjusted the data using an offset calculated from 212 

a CS451 Stainless-Steel Pressure Transducer (Campbell Scientific, Logan, UT, USA) to account 213 

for water level changes (Wander et al., 2023b). Because of this range in latency, or the time that 214 

it takes for data to become available for modeling after they are initially collected, we used the 215 

daily mean in our forecasting application. Following quality checks, these data were integrated 216 

into the FLARE forecasting system to produce depth-specific daily water temperature forecasts. 217 

 218 

Hydrodynamic model configuration 219 

For modeling reservoir hydrodynamics, we used the General Lake Model (GLM) v.3.3.0 220 

(Hipsey et al., 2022) to forecast water temperature in BVR. GLM is an open source, 1-D process-221 

based hydrodynamic model commonly used within the freshwater research community to 222 

simulate water quality in lakes and reservoirs (Hipsey et al., 2019). GLM uses a Lagrangian 223 

approach for simulating different water layers and has been applied to a variety of lakes 224 

worldwide for modeling (e.g., Bruce et al., 2018, Read et al., 2014) and forecasting 225 

hydrodynamics (e.g., Thomas et al., 2020, 2023b). 226 

We configured GLM for BVR using historical bathymetric data (Carey et al., 2022b) and 227 

water temperature observations for initial conditions (Carey et al., 2023). We configured GLM 228 

with two sediment zones to simulate epilimnetic (surface) and hypolimnetic (bottom) sediment 229 
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temperature dynamics following Carey et al. (2022a). GLM requires meteorological and 230 

reservoir inflow observations as driver data to run the model. Because we were applying GLM 231 

for forecasting, meteorological forecasts, not observed meteorology, were used as driver data in 232 

the model, as described below. Additionally, we set the inflow to equal outflow in this study 233 

given limited inflow data for validation and the relatively short forecast horizons (≤ 35 days). We 234 

initiated the model using its default parameter set (Hipsey et al., 2019) and performed calibration 235 

via a 35-day spin-up period with DA to tune parameters before the start of our focal forecasting 236 

period (described below). 237 

 238 

FLARE configuration for DA and uncertainty 239 

 We configured FLARE for BVR following its application to other lakes and reservoirs 240 

(Thomas et al., 2020, 2023b). We set the number of forecast ensemble members to 256 to ensure 241 

an adequate representation of uncertainty and prevent the ensemble Kalman filter from 242 

developing erroneous correlations among ensemble members that can occur with low ensemble 243 

sizes (Duc et al., 2021, Machete and Smith, 2016). While we used default values for most GLM 244 

parameters, we used the ensemble Kalman filter in FLARE to tune three model parameters that 245 

we identified as important for water temperature simulations using GLM in a similar, nearby 246 

reservoir (Carey et al., 2022a, Thomas et al., 2020): 1) the longwave radiation scaling factor 247 

(hereafter, longwave); 2) epilimnetic sediment temperature parameter (hereafter, epi_sed_temp); 248 

and 3) hypolimnetic sediment temperature parameter (hereafter, hypo_sed_temp).  249 

We used state augmentation to tune the three parameters in the ensemble Kalman filter 250 

(Thomas et al. 2020). Specifically, correlations between the parameter values and the model 251 

states with observations (i.e., water temperatures at the depths with sensor observations) were 252 
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used to adjust parameters to be consistent with the most recent data used in DA. The three tuned 253 

parameters were initially calibrated during a spin-up period from 27 November to 31 December 254 

2020 and were subsequently updated via DA throughout the forecasting period. To avoid the 255 

common issue of artificially low parameter uncertainty in sequential DA (Dietze, 2017a), we 256 

specified the standard deviation of a normal distribution for each parameter (1.0°C for the 257 

sediment temperature parameters and 0.02 for the longwave radiation scaling factor). Initial 258 

exploration of parameter fitting in this study indicated that the application of FLARE over the 259 

full year resulted in low parameter uncertainty, necessitating us to specify the standard deviation 260 

a priori rather than estimating it using DA. The distributions we chose were adapted from a prior 261 

application of FLARE that estimated the standard deviation of parameter distributions across six 262 

lakes (Thomas et al., 2023b).  263 

FLARE uses a numerical ensemble-based approach to simulate and propagate forecast 264 

uncertainty (Thomas et al., 2020). We represented the contribution of uncertainty from 265 

meteorological driver data, initial conditions, model process, and model parameters using the 266 

256-member ensemble, following Thomas et al. (2020). First, to represent the contribution of 267 

meteorological driver data uncertainty, we assigned each of the 256 FLARE ensemble members 268 

one of the 30 ensemble members from the 1-35-day-ahead meteorological forecasts (National 269 

Oceanic and Atmospheric Administration’s Global Ensemble Forecasting System) to drive GLM 270 

for forecasting. Second, we represented uncertainty in the initial conditions of the forecasts using 271 

the spread in model states among the 256 ensemble members on the first day of each forecast. 272 

This spread was determined by either using the prior day’s forecast as a starting point for the 273 

next day’s forecast (when no data were available for DA) or the updated states following DA 274 

(when data were available for DA). We set the observation uncertainty standard deviation to 275 
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0.1°C, determined from the standard deviation of temperature observations and following prior 276 

applications of FLARE (Thomas et al. 2020). Third, we represented model process uncertainty 277 

by adding random noise to the water temperature predictions from each of the 256 FLARE 278 

ensemble members at each daily time-step in a 1-35-day-ahead forecast horizon. The random 279 

noise for each modeled depth within an ensemble member was drawn from a normal distribution 280 

with a standard deviation of 0.75°C, as used in a previous application of FLARE that reported 281 

well-calibrated forecast uncertainty (Thomas et al. 2020). The random noise was spatially 282 

correlated so that it was most similar for nearby depths and most different for further-apart 283 

depths. The strength of the spatial correlation was determined by the exponential decay of the 284 

correlation strength with distance (Thomas et al., 2023b). Fourth, we represented parameter 285 

uncertainty using the standard deviations of the distributions for the three tuned GLM parameters 286 

described above. A unique parameter value drawn from each of the three distributions was 287 

assigned to each of the 256 FLARE ensemble members. The parameter value assigned to an 288 

ensemble member was only updated when DA occurred. Parameters not tuned by the ensemble 289 

Kalman filter were assumed to have fixed values and uncertainty in these parameters was not 290 

calculated.  291 

To determine whether there was a relationship between the magnitude of initial 292 

conditions uncertainty and the sensitivity of forecast skill to more frequent DA (following Clark 293 

et al., 2016, He et al., 2020, Simonin et al., 2017), we quantified the contribution of initial 294 

conditions uncertainty to total forecast uncertainty in our DA forecasts for all DA frequencies. 295 

For this analysis, we isolated the magnitude of initial conditions uncertainty by generating the 296 

water temperature forecasts for all 365 days with and without initial conditions uncertainty and 297 

compared the variance among all 256 ensemble members. We also calculated the proportion of 298 
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initial conditions uncertainty within total forecast uncertainty for all depths, horizons, and 299 

stratified vs. mixed periods. 300 

 301 

Data assimilation experiments 302 

 To quantify the effect of DA at different frequencies on forecast skill, we conducted DA 303 

experiments in BVR from 1 January to 31 December 2021 (n = 365 days). As noted above, we 304 

used a spin-up period from 27 November - 31 December 2020 (n = 35 days) during which DA 305 

occurred, but no forecasts were generated. During the one-year forecast period in 2021, we 306 

forecasted daily water temperature at 23 depths in the reservoir (spanning 0.1 to 11 m depth at 307 

0.5 m intervals) and assessed forecast performance relative to observations across each forecast’s 308 

daily predictions for 1 to 35-day-ahead horizons and depth intervals. We focused on three focal 309 

depths (1, 5, and 9 m) when reporting results, as these depths are representative of the surface, 310 

middle, and bottom layers of the water column, respectively. We chose 9 m to represent the 311 

bottom of the reservoir because deeper depths were not always observed due to variability in 312 

water levels throughout the year (within ~1 m due to seasonality in flows). 313 

We performed DA experiments using four different DA frequencies (daily, weekly, 314 

fortnightly, and monthly) to represent different data collection latencies that are commonly used 315 

by water quality monitoring programs (e.g., Engelhardt and Kirillin, 2014, Francy et al., 2015, 316 

Kirchner and Neal, 2013, Liu et al., 2019, Romero et al., 2002). We assimilated water 317 

temperature data across different temporal frequencies by downsampling from the high-318 

frequency observations collected by our sensors. This resulted in four different temporal 319 

frequencies for which DA occurred, corresponding to either daily (representing standard FLARE 320 

DA), weekly, fortnightly, or monthly DA (see Data Assimilation Experiments box in Figure 1 321 
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and Appendix S1: Figure S1 for visualization of DA frequencies). For example, for the weekly 322 

DA frequency, observations were selected every seven days starting on 4 January 2021 and 323 

ending on 31 December 2021. In this example, DA only occurred once per week; the forecasts 324 

that were generated on the six other days in the same week did not include DA (i.e., no DA 325 

occurred during 5 January - 10 December 2021 even though forecasts were still generated daily 326 

during this interval; Figure 1). Fortnightly and monthly DA occurred every 14 days and 30 days, 327 

respectively, throughout the year. 328 

We generated 365 daily forecasts starting on 1 January 2021 for each of the four DA 329 

frequencies. While we recognize that we are producing hindcasts for a historical period, because 330 

the model was forced with only forecasted drivers and out-of-sample forecast evaluation 331 

occurred, we refer to these retrospective forecasts or hindcasts as forecasts throughout for 332 

consistency (following Jolliffe and Stephenson, 2012).  333 

 334 

Analysis 335 

Question 1: For all n = 1460 forecasts produced (365 forecasts generated daily over a 336 

year for four different DA frequencies), we used root mean square error (RMSE) and continuous 337 

ranked probability score (CRPS; Gneiting et al., 2005) to quantify forecast skill. We defined 338 

skillful water temperature forecasts as those with an RMSE < 2℃, a commonly-used threshold 339 

for lake and reservoir hydrodynamic modeling following Bruce et al. (2018), Read et al. (2014), 340 

and many others. Mean full water column RMSE was calculated for each of the 35 days across 341 

all forecast horizons for each DA frequency regardless of whether data were assimilated the day 342 

the forecast was generated. We aggregated RMSE across depths and dates to determine the 343 

lowest temporal frequency of DA required to generate the most skillful water temperature 344 
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forecasts across the full water column and throughout the entire forecast period. We focus on 345 

RMSE in the results and all CRPS values are reported in the SI. 346 

Question 2: Using RMSE and CRPS, we compared forecast skill across depths and 347 

seasons to identify how the frequency of DA affected forecast accuracy over space and time. To 348 

quantify spatial forecast performance, we calculated RMSE and CRPS for each depth (1-11 m) at 349 

each forecast horizon (1-35 days ahead) and DA frequency in BVR. To quantify temporal 350 

forecast performance, we compared forecast skill at each horizon aggregated within thermally-351 

stratified vs. mixed periods in BVR. The stratified period began on the first day that the water 352 

density difference between the reservoir surface (0.1 m) and the maximum depth observed for 353 

the reservoir on each day (e.g., between 9-11 m) was ≥ 0.1 kg/m3 for at least three consecutive 354 

days (following Ladwig et al., 2021). Conversely, the mixed period began on the first day that 355 

surface and bottom water density differences were < 0.1 kg/m3 for at least three consecutive 356 

days. Altogether, we compared forecast skill between stratified vs. mixed periods; among depths 357 

(1, 5, and 9 m), and among forecast horizons (focusing in on 1, 7, and 35-day-ahead forecasts) 358 

for each of the four DA frequencies.  359 

Question 3: We quantified total forecast uncertainty for each day in the 1-35-day forecast 360 

horizon using the variance of the 256-member FLARE ensemble. The relative contribution of 361 

initial condition uncertainty to total forecast uncertainty was calculated for each forecasted day 362 

by comparing the variance in the 256-member FLARE ensemble between the set of forecasts 363 

with initial condition uncertainty included and the set without initial condition uncertainty. 364 

All statistical analyses were conducted in R v.4.2.0 (R Core Team, 2022). All R code and 365 

data files used to run these analyses are archived and available in the Zenodo repository (Wander 366 

et al., 2023a, 2023b).367 
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Results: 368 

BVR water temperature dynamics  369 

BVR exhibited typical annual water temperature dynamics during the forecasting period 370 

in 2021. Water temperature throughout the water column ranged from 1.4 to 29.9℃ during the 371 

year. The summer stratified period began on 12 March and ended on 7 November 2021, and the 372 

reservoir was mixed from 1 January - 11 March and 8 November - 31 December (Figure 3). 373 

Thermocline deepening occurred throughout the summer stratified period, starting at 1.5 m in 374 

March with stratification onset and deepening to 9.5 m in November before fall turnover (Figure 375 

3). During the winter, there were three brief periods of ice cover of one to three days in duration 376 

in January and February when inverse stratification occurred (Figure 3; Carey and Breef-Pilz, 377 

2022). We removed these few ice-cover days from the analysis and grouped mixed (n = 118 378 

days) vs. summer stratified data (n = 241 days) for analysis.  379 

 380 

Data assimilation frequency altered forecast output and parameters over time  381 

We were able to successfully forecast water temperature throughout the water column 382 

over the year using DA to update model states and parameters (Figures 4-5). Across all depths, 383 

DA constrained uncertainty by updating initial conditions with the most recent water temperature 384 

observations. Forecast uncertainty for the lower DA frequencies was strongly dependent on the 385 

time since last assimilation (Figure 4). On average, forecast variance at the one-day horizon 386 

across 2021 for forecasts with daily DA was 1.56℃ while mean forecast variance at the one-day 387 

horizon for forecasts with monthly DA was 3.25℃.  388 

We observed that DA frequency altered parameter evolution of the forecasts (Figure 5). 389 

The daily DA frequency resulted in more variable parameter estimates through time for all three 390 
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tuned parameters, reflecting the more frequent adjustment that occurred each time data were 391 

assimilated. Importantly, parameter evolution for forecasts with daily DA yielded very different 392 

estimates than the weekly, fortnightly, and monthly DA forecast frequencies (Figure 5). For 393 

example, the evolution of the longwave radiation scaling parameter (longwave) over the 365-day 394 

forecast period showed that forecasts with weekly, fortnightly, and monthly DA frequencies 395 

converged at ~0.91 by December 2021, whereas the longwave parameter for forecasts with daily 396 

DA was at ~0.85 by the end of the year (Figure 5a). Similarly, the parameter controlling the 397 

surface layer sediment temperature (epi_sed_temp) in daily DA forecasts began to diverge from 398 

the other DA frequencies in early April (Figure 5c). The non-daily DA frequencies (i.e., weekly, 399 

fortnightly, monthly DA) surface sediment layer temperature parameter (epi_sed_temp) values 400 

ranged from 13.51 to 15.62℃, whereas the daily DA frequency epi_sed_temp values ranged 401 

from 13.29℃ to 17.0℃ during April-December. For the parameter controlling the bottom layer 402 

sediment (hypo_sed_temp), daily DA forecasts exhibited much more variable values (ranging 403 

from 10.24℃ to 11.21℃) than forecasts for any other DA frequency (range 10.65℃ to 10.72℃; 404 

Fig 5b) from April to December.   405 

 406 

Question 1: Which frequency of data assimilation generates the most skillful water temperature 407 

forecasts?  408 

Aggregated among depths and time periods, weekly DA resulted in the most skillful 409 

water temperature forecasts of the four DA frequencies for the greatest number of 1-35-day-410 

ahead horizons (Figure 6). Among horizons, we observed that the frequency of DA needed to 411 

produce skillful forecasts varied (Figure 6). At shorter horizons (1-7 days ahead), daily DA 412 
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resulted in the most skilled forecasts, but at longer horizons (8-35 days ahead), weekly DA 413 

resulted in the most skilled forecasts (Figure 6).  414 

The skill of all forecasts degraded as the forecast horizon increased, but the decrease in 415 

performance was greatest for daily DA forecasts, such that forecasts generated using monthly, 416 

fortnightly, and weekly DA all outperformed daily DA forecasts by the 19-day forecast horizon 417 

(Figure 6), when aggregating across all depths and time periods. The daily DA forecasts 418 

exceeded the 2℃ RMSE metric of skill on the 28-day-ahead horizon, whereas the weekly, 419 

fortnightly, and monthly forecasts never exceeded that metric for any of the 1-35-day-ahead 420 

horizons. These results were consistent across forecast evaluation metrics, including the CRPS 421 

metric that evaluates the full ensemble forecast (Appendix S1: Figure S2).  422 

 423 

Question 2: How does forecast skill vary across time and space? 424 

Aggregated across depths, horizons, and DA frequencies over the year, forecast skill 425 

overall was high, with a mean water temperature forecast RMSE of 1.53 ± 1.86°C (1 S.D.). 426 

Forecast skill was generally best at 9 m regardless of horizon or DA frequency. Aggregated 9 m 427 

forecast skill was 1.29 ± 1.80℃, followed by aggregated 5 m forecast skill (1.63 ± 1.85℃), and 428 

aggregated 1 m forecast skill (1.69 ± 1.82℃). As expected, forecast skill generally decreased 429 

with horizon, with a mean 1-day-ahead forecast RMSE of 0.80 ± 1.20°C, mean 7-day RMSE of 430 

1.15 ± 1.60°C, and mean 35-day RMSE of 1.99 ± 2.17°C. However, we observed an exception to 431 

this pattern for 1 m mixed forecasts, which is further described below. 432 

On average, forecast skill was slightly better (as indicated by smaller RMSE) during the 433 

stratified period than during the mixed period, aggregated among all depths and horizon 434 

regardless of DA frequency (aggregated mixed RMSE = 1.59 ± 1.57°C, stratified RMSE = 1.46 435 
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± 2.13°C; Figure 7). Forecast skill was more variable among forecast horizons than depths in the 436 

mixed period, whereas forecast skill was variable across both depths and horizons in the 437 

stratified period (Figure 7). In the stratified period, forecast skill was best at 9 m, with relatively 438 

similar skill over the forecast horizon (Figure 7f). In the mixed period, forecast skill varied very 439 

little among depths aggregated across horizons (Figure 7a, c, e), with consistently greater 440 

decreases in skill with increasing horizon than in the stratified period, except for at 1 m. Forecast 441 

skill at 1 m decreased rapidly until ~the 19-day horizon, after which forecast skill remained 442 

constant for the daily DA and increased for the weekly, fortnightly, and monthly DA frequencies 443 

until the end of the forecast horizon (Figure 7a). 444 

While daily DA always resulted in the best forecast skill for 1-day-ahead horizons, lower 445 

frequency DA typically outperformed daily DA as the forecast horizon increased. An exception 446 

was for 9 m stratified forecasts, when daily DA resulted in the lowest RMSE for all forecast 447 

horizons and never exceeded 1.51℃ for the duration of the 35-day forecast horizon (Figure 7f). 448 

Additionally, 9 m stratified forecasts were the only forecasts where skillful (RMSE < 2℃) 449 

forecasts were produced for all DA frequencies and horizons (Figure 7f).  450 

 451 

Question 3. How does DA frequency influence total forecast uncertainty and what is the relative 452 

contribution of initial condition uncertainty to total forecast uncertainty? 453 

Lower frequency DA forecasts consistently had more total uncertainty (Figure 8). We 454 

found that the differences between uncertainty for daily and monthly DA were largest at 1-day-455 

ahead horizons and largely converged by the end of the 35-day horizon (Figure 8). At 1 m depth, 456 

total uncertainty was similar between the mixed and stratified periods across the 35-day horizon, 457 

but at 5 and 9 m, total uncertainty was on average higher in the stratified than mixed period. Both 458 
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RMSE and total variance were similar for forecasts run with and without initial conditions 459 

uncertainty included (Appendix S1: Figures S3-S4). 460 

Forecasts with less frequent DA had a greater contribution of initial condition uncertainty 461 

to total forecast uncertainty during the first few days of the forecast horizon. However, overall, 462 

initial conditions uncertainty contributed a minimal proportion of the total uncertainty for 463 

forecasts generated with daily DA (Figure 9). At the 1-day-ahead forecast horizon, daily DA 464 

initial conditions uncertainty was 0% of total uncertainty, whereas initial conditions uncertainty 465 

contributed 55 - 71% of total forecast uncertainty in forecasts for all other DA frequencies 466 

(Figure 9). The role of initial conditions uncertainty for all depths in the mixed period and 467 

surface forecasts in the stratified period was minimal (< 1%) across all DA frequencies after the 468 

10-day horizon (Figure 9a-c, e). Conversely, initial conditions uncertainty made up a larger 469 

proportion of total forecast uncertainty for stratified 5 m and 9 m forecasts for forecast horizons 470 

between 10 and 20 days (ranging from 5-10%; Figure 9d, f). 471 

 472 

Discussion: 473 

Across a year of water temperature forecasts in our focal reservoir, we found that weekly 474 

DA generally resulted in the most skillful water temperature forecasts. However, skill varied 475 

among depths, forecast horizons, and time of year, suggesting that DA frequency should be 476 

chosen based on the specific forecast application. For example, if water temperature forecasts are 477 

specifically needed to guide decision-making that involves the deeper reservoir layers (e.g., 5 m 478 

or 9 m) at short time horizons (e.g., <5 days ahead), daily DA might be most advantageous 479 

(Figure 7). Conversely, if water temperature forecasts are needed for the surface water at 20-35 480 

day-ahead horizons, then weekly to monthly DA may be sufficient (Figure 7). Despite the 481 
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usefulness of DA for improving forecast skill, more frequent DA did not always lead to more 482 

skillful water temperature forecasts, in part because initial conditions uncertainty only comprised 483 

a significant proportion of total forecast uncertainty within the first few days of the forecast 484 

horizon (Figure 9). Below, we interpret our results for each research question and make 485 

recommendations for considering which DA frequency might be appropriate for different 486 

ecological forecast applications.  487 

 488 

Q1: Which frequency of data assimilation generates the most skillful water temperature 489 

forecasts? 490 

In this study we found that less frequent DA (e.g., weekly, fortnightly, and monthly DA) 491 

sometimes led to more skillful water temperature forecasts than daily DA for all depths during 492 

the mixed period. This pattern of weekly DA outperforming daily DA forecast skill during the 493 

mixed period is likely because daily DA led to parameter overfitting, as indicated by the greater 494 

short-term variability in parameter estimates over time (Figure 5). Because water temperatures 495 

are fairly stable at deeper depths, and thus daily observations can consistently predict tomorrow’s 496 

water temperature accurately, parameter overfitting was less problematic for daily DA at 497 

hypolimnetic depths (Figure 7f). As a result, hypolimnetic forecast skill was best with daily DA 498 

during stratified conditions, but this pattern did not extend to other depths or the mixed period 499 

(Figure 7).  500 

Our work is consistent with studies that have found that the optimal DA frequency often 501 

matches that of the forecast model timestep (e.g., Derot et al., 2020, Woelmer et al., 2022). For 502 

example, during both the mixed and stratified periods, daily DA was always better for 1-day-503 

ahead forecasts, but was often outperformed by weekly DA at 8-day-ahead forecast horizons 504 
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(Figure 6). Because water temperatures were homogenous among all depths during the mixed 505 

period, water temperature variability among all depths was likely driven by air temperature 506 

variability, ultimately making it more challenging to predict water temperature across depths as 507 

the forecast horizon increased. During the stratified period, however, less frequent DA could still 508 

generate accurate surface and mid-depth water temperature forecasts. The increased importance 509 

of daily DA at bottom depths during the stratified period is likely because of the increased 510 

thermal stability at bottom depths associated with thermal stratification (Figure 7). This pattern is 511 

in contrast with other water temperature forecasting studies that have found daily DA necessary 512 

for improving the skill of forecasts in the middle of the water column around the thermocline 513 

(Baracchini et al., 2020a), but is likely explained by the overfitting of both the daily longwave 514 

radiation and the epilimnetic sediment temperature parameters (Figure 5).  515 

We note that there are many ways to quantify skill beyond the 2℃ RMSE threshold used 516 

here. We chose to use RMSE because it is a commonly used metric by lake modelers to 517 

determine the deviation between observed vs. modeled values (Bruce et al., 2018, Read et al., 518 

2014). However, forecast skill could also be quantified by other metrics, such as the correlation 519 

coefficient, Nash–Sutcliffe model efficiency coefficient, percent relative error, normalized mean 520 

absolute error, or others (Bennett et al., 2013). While 2℃ RMSE is a subjective criterion of 521 

forecast skill, we note that CRPS results followed similar patterns as our RMSE metric 522 

(Appendix S1: Figure S2), further supporting our results when evaluating the full distribution of 523 

the forecasts. 524 

 525 

Q2: How does forecast skill vary across time and space? 526 

Our use of a 35-day forecast horizon allowed us to compare water temperature 527 
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predictability across multiple horizons at different depths and times of year, thereby elucidating 528 

patterns in ecosystem predictability across both space and time. We generally observed expected 529 

declines in forecast skill with increasing horizon, as noted in many other studies. However, 1-m 530 

forecast skill during the mixed period increased with lower frequency DA (weekly, fortnightly, 531 

and monthly), while forecast skill with daily DA leveled off at 19-35-day horizons (Figure 7a). 532 

Improved forecast skill for lower frequency DA suggests that our forecasts are capturing surface 533 

water temperature dynamics in the mixed period at longer horizons better than other depths, 534 

particularly those during the stratified period. This may be due to the smaller range in water 535 

temperature variation that occurs in the mixed period relative to the stratified period over a 35-536 

day interval, allowing variance to level off at longer forecast horizons as water temperature 537 

observations better matched predicted values (Figures 7-8). While improved forecast skill at 538 

longer horizons has been observed in the literature (e.g., Wheeler et al., 2023), this pattern is 539 

often associated with variables that have predictable, cyclical patterns at long horizons (e.g., 540 

annual tree leaf-out). 541 

Overall, we observed generally high forecast skill across all depths and times of year for 542 

most forecast horizons. Across DA frequencies, depths, and times of year, RMSE was only 543 

consistently above the 2℃ threshold for daily DA at 28-35-day horizons (Figure 6). By the end 544 

of the 35-day forecast horizon, daily DA forecast skill for most depths and times of the year was 545 

>2℃, except 9 m stratified forecasts, which had a mean RMSE of 1.29 ± 1.8℃ across DA 546 

frequencies. The higher forecast skill at 9 m is likely because fluctuations in bottom water 547 

temperatures were minimal during stratification (Figure 3).  548 

Our findings are similar to other water temperature lake and reservoir forecasting studies. 549 

First, the pattern of increased forecast skill in the bottom waters is consistent with Mercado-550 
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Bettín et al. (2021) and Thomas et al. (2020), who both found that the bottom water forecasts 551 

were more skillful than surface water forecasts. This is likely because bottom waters are not 552 

changing as much as surface waters throughout the year due to less atmospheric exchange. 553 

However, Clayer et al. (2023) found that surface water temperatures were more accurately 554 

simulated than bottom water temperatures, suggesting that the complex lake characteristics that 555 

control bottom water temperatures were not captured as well as the air temperature dynamics 556 

controlling surface water temperatures. Second, our finding that forecast skill was greater in the 557 

stratified period rather than mixed period is similar to the results of Thomas et al. (2020), likely 558 

due to the fact that water temperature dynamics were changing less among depths in stratified 559 

than mixed periods (Figure 3). Because of the variability in water temperature dynamics among 560 

seasons and depths, determining the conditions in which we can most accurately forecast water 561 

temperature can improve our understanding of ecosystem processes and functioning. Moreover, 562 

accurately forecasting water temperature is critical for forecasting additional lake and reservoir 563 

variables that are strongly driven by water temperature, such as phytoplankton biomass, 564 

dissolved oxygen concentrations, and greenhouse gas emissions (e.g., McClure et al. 2021). 565 

 566 

Q3: How does DA frequency influence forecast uncertainty? 567 

We found that initial conditions uncertainty contributed a substantial proportion of total 568 

uncertainty for weekly, fortnightly, and monthly DA, but only during the first few days of the 569 

forecast horizon. From 6-23 day-ahead horizons, the contribution of initial conditions decreased 570 

to <1% across all DA frequencies, depths, and times of year (Figure 9). We observed that high-571 

frequency DA was required for skillful 9 m stratified forecasts, while weekly DA was sufficient 572 

for other depths and times. This finding may be because the contribution of initial conditions 573 
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uncertainty decreases more rapidly within the first few days of the forecast horizon for the daily 574 

DA forecasts at 9 m in the stratified period. For all other depths and times of the year, the rate at 575 

which initial conditions uncertainty decreases is greater for weekly, fortnightly, and monthly 576 

DA, resulting in more similar performance of daily and weekly DA early in the forecast horizon 577 

(Figure 9). However, more frequent DA may not always improve forecast performance, 578 

especially when initial conditions uncertainty is not the dominant source of uncertainty, as seen 579 

at longer horizons. Given that initial conditions uncertainty predominated at the beginning of the 580 

forecast horizon, it is likely that total forecast uncertainty at longer horizons was primarily 581 

influenced by uncertainty in model process, model parameters, and/or meteorological driver data 582 

(Figure 9). Conversely, the dominant source of uncertainty for weather forecasting is typically 583 

initial conditions uncertainty given the inherent instability of atmospheric processes (Dietze, 584 

2017b), which is why more frequent DA often substantially improves meteorological forecast 585 

skill.  586 

Other lake and reservoir water quality forecasting studies have found that model driver 587 

data and process uncertainty were the dominant sources of total forecast uncertainty (Lofton et 588 

al., 2022, McClure et al., 2021, Thomas et al., 2020). Therefore, constraining other sources of 589 

uncertainty by using an ensemble approach or different forecasting models would likely further 590 

improve water temperature forecast skill. Additionally, using a different DA technique that uses 591 

a Bayesian approach to estimate a posterior distribution, rather than assuming that the parameters 592 

and model states are normally distributed, may also reduce uncertainty (e.g., particle filter; Wang 593 

et al., 2023). Because the dominant source of uncertainty in ecological forecasts will likely differ 594 

depending on the variable being forecasted, different DA techniques may not improve forecast 595 

skill equally among all ecological variables.  596 
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 597 

Recommendations for setting up DA for other forecasting systems 598 

Determining whether an ecological forecasting application requires high-frequency 599 

sensors is necessary for increasing the scalability of ecological forecasting across ecosystems and 600 

variables. While high-frequency sensor data may improve forecast skill in some cases, sensor 601 

deployment is often costly, which limits the application of high-frequency data in some 602 

forecasting systems. Moreover, even if high-frequency sensors are deployed, identifying the 603 

minimum frequency of data required to make skillful ecological forecasts can be a useful 604 

exercise because high-frequency sensors malfunction and require maintenance, which can result 605 

in data gaps (e.g., Herrick et al., 2023). Many water quality forecasting applications to date have 606 

relied on high-frequency sensor data for assimilation to produce skillful forecasts of different 607 

variables (Cho and Park, 2019, Derot et al., 2020, Page et al., 2018). In this study, we found that 608 

daily DA only produced the most skillful 9 m stratified period water temperature forecasts, 609 

whereas weekly DA generally produced the most skillful surface and middle layer water 610 

temperature forecasts (Figure 7). Our findings indicate that high-frequency sensors may not be 611 

needed for accurate mixed period water temperature forecasts or surface layer forecasts in the 612 

stratified period. 613 

The minimum frequency of DA needed to set up fully operational forecasting systems is 614 

likely to vary based on the ecosystem or forecast variable of interest. Depending on the water 615 

quality forecast application, different frequencies of data collection may be necessary to fully 616 

understand and predict water quality dynamics over time. For example, George and Hurley 617 

(2004) found that fortnightly observations were required to discern gradual trends in 618 

phytoplankton productivity, but monthly data were adequate for capturing declines in 619 
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phytoplankton biomass over a 30-year period. Despite many successful applications of high-620 

frequency DA in the literature for forecasting (e.g., Cho et al., 2020, Gottwald and Reich, 2021, 621 

Luo et al., 2011, Niu et al., 2014), not all ecological variables benefit from frequent DA, as not 622 

all variables are similarly forecastable. 623 

In addition to the frequency of data collection, data latency can also affect the frequency 624 

of DA. Even for forecasting systems with high-frequency sensor data, data latency may reduce 625 

forecast skill if data are not immediately transmitted to forecasting workflows (e.g., they require 626 

a manual download) (Dietze et al., 2018). In cases with high data latency of the forecast variable 627 

(e.g., microscope counts of phytoplankton requiring laboratory analysis), data fusion approaches 628 

that assimilate multiple data sources may improve forecast skill (e.g., Baracchini et al., 2020b, 629 

Chen et al., 2021). For example, some studies have assimilated both in-situ measurements and 630 

remote sensing data to forecast reservoir water quality variables, including chlorophyll a and 631 

conductivity (Abdul Wahid and Arunbabu, 2022, Chen et al., 2021). 632 

Finally, understanding the contributions of different sources of uncertainty can be useful 633 

for determining the DA frequency that generates the most skillful forecasts. Specifically, 634 

knowing the relative contribution of initial conditions uncertainty can inform sampling frequency 635 

needed to improve ecological forecast skill. For forecasts with total uncertainty dominated by 636 

process, parameter, or driver uncertainty, improving forecast skill may require modifying 637 

processes used for forecasting the ecological variable of interest, further constraining parameters 638 

by collecting more data, or improving weather forecast driver data (e.g., Grönquist et al., 2021).  639 

 640 

 641 

 642 
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Study Limitations 643 

Our results suggest that weekly DA may suffice for some lake and reservoir water 644 

temperature forecasting applications, with the caveat that more frequent DA often improved 645 

water temperature forecast performance at short forecast horizons. However, we only assessed 646 

forecast skill for a single reservoir and ecological variable for only one year, and therefore note 647 

the limitations of extending these results to other systems and variables. Additionally, updating 648 

model parameters and initial conditions too regularly can lead to overprediction biases when 649 

forecasting, which may explain why weekly rather than daily DA resulted in more skillful water 650 

temperature forecasts in the mixed period (see Lin et al., 2021). Finally, because we did not 651 

quantify the contribution of all sources of uncertainty, we can only identify the relative role that 652 

DA has on reducing initial conditions uncertainty. Future studies that consider the role of other 653 

sources of uncertainty will improve our understanding of DA on total forecast uncertainty.  654 

 655 

Conclusions 656 

This study emphasizes the importance of DA for improving ecological forecast skill and 657 

has implications for forecasting efforts among a wide range of ecosystems and ecological 658 

variables. We argue that weekly observations of water temperature are likely “good enough” to 659 

set up a skillful forecasting system for many reservoir management applications, while daily DA 660 

would be most useful for applications requiring high forecast accuracy in the bottom waters or at 661 

short (< 5 - 7 day) forecast horizons. Because water temperature dynamics control many 662 

biological, chemical, and physical lake processes (Magnuson et al., 1979, Read et al., 2019, 663 

Yvon-Durocher et al., 2012), water temperature must be accurately forecasted before we can 664 

forecast other water quality variables. Therefore, determining ways to improve water 665 
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temperature forecasts will have broad utility for advancing the development of many additional 666 

water quality forecasting systems.  667 

Because near-term, iterative forecasts are particularly well suited to address ecological 668 

questions (Carey et al., 2022d, Dietze et al., 2018, White et al., 2019), determining how best to 669 

design and deploy ecological near-term, iterative forecasting systems is a pressing need (Diez et 670 

al., 2012, Ibáñez et al., 2013, Moustahfid et al., 2021). With the increasing deployment of high-671 

frequency sensor networks (e.g., National Ecological Observatory Network (NEON) and Global 672 

Lake Ecological Observatory Network (GLEON); Mantovani et al., 2020, Marcé et al., 2016, 673 

Park et al., 2020) comes a growing need to understand how best to use these sensor data for 674 

forecasting. In response, we advocate for using DA experiments across ecosystems and 675 

ecological variables to determine how best to integrate observational data into iterative 676 

forecasting systems.  677 
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Figure Captions 1004 

Figure 1: Forecasting Lake And Reservoir Ecosystems (FLARE) workflow showing the step-by-1005 

step process for generating daily water temperature forecasts, starting with data collection from 1006 

thermistors deployed in the reservoir (step 1), then data access for running the forecast model 1007 

(step 2), then generation of forecasts with data assimilation (step 3), and ending with forecast 1008 

skill assessment (step 4). During the data assimilation steps (3a-b), data assimilation experiments 1009 

were performed with four different data assimilation frequencies (daily, weekly, fortnightly, and 1010 

monthly; see dashed line box). Steps 1-4 occurred throughout the entire forecast period (1 1011 

January - 31 December 2021). Buoy figure via NexSens Technology Inc., CC by 2.0 1012 

https://creativecommons.org/licenses/by/2.0/ 1013 

 1014 

Figure 2: Map of Beaverdam Reservoir, Vinton, VA (37.31° N, 79.82° W). The map shows the 1015 

surrounding forested watershed; the point represents the reservoir monitoring site where high-1016 

frequency sensor data were collected. 1017 

 1018 

Figure 3: Observed water temperature for all depths with high-frequency sensors during the 1019 

forecasting period of 1 January - 31 December 2021 in Beaverdam Reservoir (BVR). The gray 1020 

background indicates the mixed period (1 January - 11 March, 8 November - 31 December 1021 

2021), while the white background indicates the thermally-stratified period (12 March - 7 1022 

November 2021), defined by a <0.1 kg/m3 density differential between surface and bottom 1023 

layers. 1024 

 1025 
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Figure 4: Example of water temperature forecasts at 1 m (a), 5 m (b), and 9 m (c) generated for 1026 

1-35 days into the future in Beaverdam Reservoir. Data assimilation (DA) frequencies are 1027 

depicted by colors; shading shows 95% confidence intervals around the mean predicted 1028 

temperature for each day. Black points represent water temperature observations. Colored points 1029 

represent the most recent day that data was assimilated for each DA frequency. In this example, 1030 

data were most recently assimilated on the day that the forecasts were generated: 25 June for the 1031 

monthly DA scenario, 9 July for the fortnightly DA scenario, 16 July for the weekly DA 1032 

scenario, and 22 July for the daily DA scenario. 1033 

 1034 

Figure 5: Parameter evolution during the forecast period (1 January - 31 December 2021) for 1035 

daily, weekly, fortnightly, and monthly data assimilation (DA) frequencies at 1-day-ahead 1036 

forecast horizons. Longwave (a) is the longwave radiation scaling parameter, hypo_sed_temp (b) 1037 

is the hypolimnetic sediment temperature parameter, and epi_sed_temp (c) is the epilimnetic 1038 

sediment temperature parameter. 1039 

 1040 

Figure 6: Root mean square error (RMSE) of mean forecasted water temperature compared to 1041 

observations for 1-35 day-ahead forecast horizons in Beaverdam Reservoir, aggregated for all 1042 

depths in the water column and days within the 365-day forecast period. RMSE for each forecast 1043 

horizon was averaged from forecasts generated during 1 January - 31 December 2021. Colored 1044 

lines represent different data assimilation (DA) frequencies. The dotted line depicts the 2℃ 1045 

threshold for skillful water temperature forecasts. 1046 

 1047 



 

47 

Figure 7: Root mean square error (RMSE) of mean forecasted water temperature compared to 1048 

observations for 1-35-day-ahead forecast horizons in Beaverdam Reservoir during the mixed 1049 

(panels a, c, e) vs. stratified (panels b, d, f) periods at 1 m (a, b), 5 m (c, d), and 9 m (e, f). RMSE 1050 

for each forecast horizon was averaged across the 365-day forecast period (1 January - 31 1051 

December 2021). Colored lines correspond to different data assimilation (DA) frequencies 1052 

(daily, weekly, fortnightly, and monthly); dotted horizontal lines depict the 2℃ threshold for 1053 

skillful forecasts. 1054 

 1055 

Figure 8: Mean water temperature forecast variance across horizons (1-35 days ahead) in 1056 

Beaverdam Reservoir during the mixed (panels a, c, e) vs. stratified (panels b, d, f) periods for 1 1057 

m (a, b), 5 m (c, d), and 9 m (e, f). Variance for each forecast horizon was averaged from all 365 1058 

forecasts generated during the forecast period (1 January - 31 December 2021). Colored lines 1059 

correspond to different data assimilation (DA) frequencies (daily, weekly, fortnightly, and 1060 

monthly). 1061 

 1062 

Figure 9: Proportion of initial conditions uncertainty relative to total forecast uncertainty 1063 

averaged across all forecasts generated with each DA frequency calculated using forecast 1064 

variance across 1 January - 31 December 2021. Colored lines depict data assimilation (DA) 1065 

frequencies (daily, weekly, fortnightly, and monthly). Panels a, c, and e represent mixed period 1066 

forecasts, panels b, d, and f represent stratified period forecasts. Depths (1, 5, and 9 m) are 1067 

indicated by gray facet labels.  1068 
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Figure S1: Frequencies for daily, weekly, fortnightly, and monthly data assimilation (DA); lines 

indicate the dates when DA occurred. For example, daily DA occurred every day from 27 

November 2020 to 31 December 2021, whereas monthly DA occurred 14 times during the 14-

month period of November 2020 to January 2022. 
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Figure S2: Water temperature forecast continuous ranked probability score (CRPS) across 

different depths (1 m: a, b; 5 m: c, d; and 9 m: e, f) and horizons in Beaverdam Reservoir during 

the mixed (a, c, e) vs. stratified (b, d, f) periods. Each grouping of bars represents a different data 

assimilation (DA) frequency (daily, weekly, fortnightly, monthly). Depths are indicated in the 

right y-axis labels; horizons are depicted by colored boxplots.  
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Figure S3: Root mean square error (RMSE) calculated from comparing water temperature 

observations with forecasts that did not include initial conditions uncertainty for 1-35-day-ahead 

forecasts in Beaverdam Reservoir during the mixed (a, c, e) vs. stratified (b, d, f) periods at 1 m 

(a, b), 5 m (c, d), and 9 m (e, f). RMSE for each forecast horizon was averaged across the 365-

day forecast period (1 January - 31 December 2021). Colored lines correspond to different data 

assimilation (DA) frequencies (daily, weekly, fortnightly, and monthly); dotted horizontal lines 

depict the 2℃ RMSE threshold for skillful forecasts. 
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Figure S4: Variance for forecasts that did not include initial conditions uncertainty across 

horizons (1-35 days ahead) in Beaverdam Reservoir during the mixed (a, c, e) vs. stratified (b, d, 

f) periods for 1 m (a, b), 5 m (c, d), and 9 m (e, f). Variance for each forecast horizon was 

averaged from all 365 forecasts generated during the forecast period (1 January - 31 December 

2021). Colored lines correspond to different data assimilation (DA) frequencies (daily, weekly, 

fortnightly, and monthly). 


