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Gravitational potential energy is conserved along neutral surfaces in
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Abstract

It is recapitulated that the gravitational potential energy that is conserved along the neutral surfaces needs two terms, one from

buoyancy and the other from gravity. I also show a mathematical identity for the time change of this gravitational potential

energy which can be interpreted as exchange of energy amongst kinetic, internal, and gravitational potential forms. Movements

along the neutral surface conserve the gravitational potential energy and it is shown that not only conversions into and out of

the gravitational potential energy balance, but that each of the conversion terms is zero.

Introduction

A water parcel in ocean is affected by gravity via two kinds of dynamic forces. One is buoyancy which is
the sum of pressure (local force in contact) from surrounding seawater. The other is gravity from the Earth
(remote force with distance). The distinction is not always clear because ocean is mostly in the hydrostatic
balance where these two forces exactly balance.5

In ocean, there locally exists a plane along which the fluid parcel can be moved “without experiencing a
buoyant restoring force” (McDougall., 1987). This is the definition of neutral surfaces. Movements along
this surface consume “no gravitational potential energy” (McDougall., 1987).
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Figure 1: Approximate neutral density γn (Jackett & McDougall, 1987) along the GO-SHIP P14S section
occupied in 2012. Vertical black lines show the positions of measurements. Black patch is bottom topography.

Figure 1 shows a meridional section of approximate neutral surfaces γn (Jackett & McDougall, 1987) along
174◦E (GO-SHIP P14S section1). A water parcel on γn = 1028.11 (kg m−3) around 58◦S at 3200 m can10

be lifted up to a depth shallower than 1000 m further south (64◦S) along the approximate neutral surface
without change of gravitational potential energy.

Such sloping neutral surfaces as seen in Fig.1 are exlained as a response to the westerly wind over the ocean
which transports near-surface water northward – the Ekman pumping. If no wind force is applied at the
sea surface, the neutral surfaces are horizontal (along the geoid, strictly speaking). From this situation, the15

sloping neutral surfaces cannot be produced without vertical movement of water parcels, which is across
the initial neutral surfaces (“diapycnal”) thus accompanied by change of gravitational potential energy.
The tilting of the neutral surfaces in Fig.1 is therefore energetically maintained by the surface wind force,
but water movements along the neutral surfaces (“isopycnal”) do not require energy unless accelerated or
decelerated.20

Definition of gravitational potential energy

The total energy of oceanic water parcel (a compressible binary solution) is the sum of kinetic, internal, and
potential energy. This total energy is the Bernoulli function. We define the gravitational potential energy
by subtracting internal and kinetic energies from the exact total energy conservation.

We follow the notation and derivation by (Young, 2010) (Y10 thereafter);

D

Dt

(
1

2
|U |2 + g0Z + e+

P

ρ

)
=

1

ρ

∂P

∂t
, (1)

where U is velocity, g0 is acceleration due to gravity, Z is geopotential height, e is internal energy, P is25

pressure, ρ is density. External forcings are omitted. As Y10 points out,

1https://cchdo.ucsd.edu/cruise/49NZ20121128
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the term on the right means that the Bernoulli function does not satisfy an exact conservation
equation. Nonconservation of the Bernoulli density resulting from the unsteady pressure term is
a well-known issue with the full equations of motion.

Obviously the kinetic energy is |U |2/2 and the internal energy is e, which leaves

Pρ+g0Z

(2)

as the gravitational potential energy.30

Movements along neutral surface

Suppose a small seawater parcel at (Θ1, S1, p1) is carried along a neutral surface to (Θ2, S2, p2). Here Θi

and Si are conservative temperature and Absolute Salinity, respectively. This movement is without heating
or mixing such that Θ1 and S1 are conserved. The water parcel at the new location r2 at pressure p2 with
small area δA and height δz satisfies the equation of motion35

ρ(Θ1, S1, p2)δA · δz d
2r2

dt2 = (p2(z)δA− p2(z + δz)δA)k̂ − ρ(Θ1, S1, p2)gδz · δAk̂,
(3)

where k̂ is vertical unit vector. The first two terms on the right-hand side are buoyancy force (local force in
contact) and the last term is gravity (remote force from the Earth). Since the movement is along the neutral
surface, the system is in equilibrium at r2 and the left-hand side is zero. This equation with hydrostacy for
the surrounding water40

∂p2

∂z
= −ρ(Θ2, S2, p2)g (4)

gives

ρ(Θ2, S2, p2) = ρ(Θ1, S1, p2).
(5)

This is equivalent to the definition of neutral surface

3
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(
∂ρ
∂Θ

)
S,p
∇Θ +

(
∂ρ
∂S

)
Θ,p
∇S = 0

(6)

introduced by (McDougall., 1987).

A small change in the potential energy (2) with this movement satisfies

45

δ
(
P
ρ + g0Z

)
= δP

ρ + g0δZ − P
ρ2 δρ = 0

(7)

because the first two terms balance in the hydrostatic pressure field and the last term is zero thanks to (5).

Energy conversion

Noting that Z does not depend on time,

DZ

Dt
= U · ∇(0, 0, Z) = w

(8)

we rewrite time change of the gravitational potential energy as

50

D
Dt(Pρ +g0Z)=M−C+ 1

ρ
∂P
∂t

(9)

where

M = P
D

Dt

1

ρ
=
P

ρ
∇ ·U (10)

and

C = −
(
U

ρ
· ∇P + g0U · ∇(0, 0, Z)

)
. (11)

Mathematically, this is just an identity. In terms of physics, the kinetic energy equation (vector inner product
of U and (18) of Y10),

4
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D
Dt

|U|2
2 =C

(12)

and the internal energy conservation (Eq.(20) of Y10)

De

Dt
= −M (13)

demonstrate that M is conversion from the internal energy to the gravitational potential energy and C is
conversion from the gravitational potential energy to the kinetic energy. We note movements along the
neutral surface do not change density ρ (see (5)) such that M = 0. It was shown previously that the left55

hand side of (9) is zero for such movements. We therefore conclude that C = 0 for such movements.

Boussinesq approximation

The arguments above can be paraphrased under the Boussinesq approximation by following the rigorous
formulation by Y10. By separating out the small terms in density and pressure

ρ = ρ0 −
ρ0

g0
b

P = P0 − g0ρ0Z + ρ0p

where b = g0(1 − ρ/ρ0) is buoyancy. and the last terms on the right-hand sides are much smaller than the60

other terms, the pressure term in the potential energy (2) becomes

P

ρ
≈ P0

ρ0
− (g0 + b)Z +

P0

ρ0g0
b+ p, (14)

which is Eq.(A1) of (Young, 2010). Then the potential energy (2) under the Boussinesq approximation is

P
ρ+g0Z≈P0

ρ0
−bZ+

P0
ρ0g0

b+p.

(15)

A small change of this quantity along a neutral surface satisfy

(
P0

ρ0g0
− Z

)
δb+ δp− bδZ = 0.

(16)

The first term vanishes because δb = 0 (see Eq.(5)). We assume that the perturbation is hydrostatic such
that the last two terms on the left-hand side balance.65
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A time change of the Boussinesq gravitational potential energy (15) in arbitrary direction is

D
Dt

(
P0
ρ0
−bZ+

P0
ρ0g0

b+p
)

=
(

P0
ρgg0

−Z
)
Db
Dt−b

DZ
Dt +Dp

Dt .

(17)

The rightmost two terms can be identified as the conversion between the kinetic energy and the gravitational
potential energy;

C ′ = −
(
−bDz

Dt
+∇(up)

)
, (18)

which is Eq.(15) of Y10. Under the Boussinesq approximation, the kinetic energy equation (12) becomes70

D

Dt

(
|u|2

2

)
= C ′,

(19)

where u is incompressible part of the velocity (i.e. U under the Boussinesq approximation).

Under the Boussinesq approximation, a key thermodynamic quantity is the Boussinesq dynamic enthalpy

h‡(Θ, Z, S) =

∫ 0

Z

b(Θ, Z ′, S)dZ ′. (20)

From h‡, the Boussinesq internal energy is defined as

e‡ = h‡ + Zb.
(21)

Time change of the internal energy is

De‡

Dt
= −M ′, (22)

where75

M ′ = −ZDb
Dt

(23)

which is Eq.(A4) of Y10. As noted in Eq.(40) of Y10, the quantity M ′ can be neglected under the Boussinesq
approximation but serves as a diagnostics for the divergent component of the velocity field U . This explains

6
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why the first term on the right-hand side in (17) can be neglected. Alternatively, one can argue that
P0/(ρ0g0) ≈ 10 m such that |Z| � P0/(ρ0g0) for deep water parcels.

In summary, under the Boussinesq approximation the gravitational potential energy satisfies80

D

Dt

(
P0

ρ0
− bZ +

P0

ρ0g0
b+ p

)
= M ′ − C ′, (24)

where M ′ > 0 is the conversion from the internal energy to the gravitational potential energy and C ′ > 0 is
the conversion from the gravitational potential energy to the kinetic energy.

Discussion

When discussing ocean energetics (Hughes et al., 2009; Zemskova et al., 2015), gravitational potential energy
is defined as ρgz. Thus, movement of water parcel along the neutral surface does not conserve the gravi-85

tational potential energy because it is the form (2) that is conserved along the neutral surface. Change of
ρgz along the neutral surface is compensated by the energy input from the westerly wind which drives the
diapycnal upwelling, as discussed in the thought experiment in Introduction. The energy in the P/ρ part of
(2) is counted as part of the internal energy in (Hughes et al., 2009; Zemskova et al., 2015).

The definition in (21) implies that it is more natural to use enthalpy

h =
P

ρ
+ e (25)

than internal energy e. Indeed, enthalpy is closely related the well-conserved quantity, conservative temper-90

ature Θ (McDougall, 2003) and has physically appealing interpretation (See Eq.(33) of Y10 and following
paragraphs). In this formulation with enthalpy, the graviational potental energy is simply ρgz. Again, a water
parcel moving along a neutral surface does not conserve this quantity as δ(ρgz) = (δρ)gz+ ρg(δz) = ρg(δz).
The purpose of this short note is to point out this ambiguity of the term ”gravitational potential energy”.
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