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Abstract

Recently, rainfall-runoff simulations in small headwater basins have been improved by methodological advances such as deep

neural networks (NNs) and hybrid physics-NN models — particularly, a genre called differentiable modeling that intermingles

NNs with physics to learn relationships between variables. However, hydrologic routing, necessary for simulating floods in

stem rivers downstream of large heterogeneous basins, had not yet benefited from these advances and it was unclear if the

routing process can be improved via coupled NNs. We present a novel differentiable routing model that mimics the classical

Muskingum-Cunge routing model over a river network but embeds an NN to infer parameterizations for Manning’s roughness

(n) and channel geometries from raw reach-scale attributes like catchment areas and sinuosity. The NN was trained solely on

downstream hydrographs. Synthetic experiments show that while the channel geometry parameter was unidentifiable, n can

be identified with moderate precision. With real-world data, the trained differentiable routing model produced more accurate

long-term routing results for both the training gage and untrained inner gages for larger subbasins (>2,000 km2) than either

a machine learning model assuming homogeneity, or simply using the sum of runoff from subbasins. The n parameterization

trained on short periods gave high performance in other periods, despite significant errors in runoff inputs. The learned n

pattern was consistent with literature expectations, demonstrating the framework’s potential for knowledge discovery, but the

absolute values can vary depending on training periods. The trained n parameterization can be coupled with traditional models

to improve national-scale flood simulations.
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Abstract 14 

Recently, rainfall-runoff simulations in small headwater basins have been improved by methodological 15 

advances such as deep neural networks (NNs) and hybrid physics-NN models --- particularly, a genre 16 

called differentiable modeling that intermingles NNs with physics to learn relationships between 17 

variables. However, hydrologic routing, necessary for simulating floods in stem rivers downstream of 18 

large heterogeneous basins, had not yet benefited from these advances and it was unclear if the routing 19 

process can be improved via coupled NNs. We present a novel differentiable routing model that mimics 20 

the classical Muskingum-Cunge routing model over a river network but embeds an NN to infer 21 

parameterizations for Manning’s roughness (n) and channel geometries from raw reach-scale attributes 22 

like catchment areas and sinuosity. The NN was trained solely on downstream hydrographs. Synthetic 23 

experiments show that while the channel geometry parameter was unidentifiable, n can be identified 24 

with moderate precision. With real-world data, the trained differentiable routing model produced more 25 

accurate long-term routing results for both the training gage and untrained inner gages for larger 26 

subbasins (>2,000 km2) than either a machine learning model assuming homogeneity, or simply using 27 

the sum of runoff from subbasins. The n parameterization trained on short periods gave high 28 

performance in other periods, despite significant errors in runoff inputs. The learned n pattern was 29 

consistent with literature expectations, demonstrating the framework’s potential for knowledge 30 

discovery, but the absolute values can vary depending on training periods. The trained n 31 

parameterization can be coupled with traditional models to improve national-scale flood simulations.  32 

 33 

Main points: 34 

1. A novel differentiable routing model can learn effective river routing parameterization, 35 

recovering channel roughness in synthetic runs. 36 

2. With short periods of real training data, we can improve streamflow in large rivers compared to 37 

models not considering routing. 38 

3. For basins >2,000 km2, our framework outperformed deep learning models that assume 39 

homogeneity, despite bias in the runoff forcings.  40 

mailto:cshen@engr.psu.edu


2 
 

1. Introduction 41 

 42 

Riverine floods pose a major risk to human safety and infrastructure (Douben, 2006; François et al., 43 

2019; International Panel on Climate Change (IPCC), 2012; Koks & Thissen, 2016) and are linked to 44 

stream channel characteristics. Riverine floods along large stem rivers occur when the peak flow rate 45 

exceeds the stem river conveyance capacity. The timing of flood convergence and peak flood rates are 46 

influenced by the channel’s geometries and flow resistance properties (Candela et al., 2005; Kalyanapu 47 

et al., 2009). In recent years, we have witnessed many deadly riverine floods, e.g., in the Mississippi 48 

River, USA (Rice, 2019) and India (France-Presse, 2022), with such disasters expected to rise significantly 49 

based on future climate projections (Dottori et al., 2018; Prein et al., 2017; Winsemius et al., 2016). The 50 

ability to better account for flood convergence and streamflow processes is urgently needed to help us 51 

better inform society of stem river flood magnitudes and timing.  52 

 53 

In hydrologic modeling, routing describes how the stream network conveys runoff downstream while 54 

accounting for mass balances and the speed of flood wave propagation (Mays, 2010). Most routing 55 

models are based on the principle of continuity (or mass conservation) but they differ in how the 56 

momentum equation or flow velocity is calculated. For example, the widely-applied Muskingum-Cunge 57 

(MC) (Cunge, 1969) routing method is a center-in-space center-in-time finite difference solution to the 58 

continuity equation, assuming a prismatic flood wave as the constitutive relationship to simplify the 59 

momentum equation. In some other cases, the momentum equation is solved in conjunction with the 60 

continuity equation (Ji et al., 2019) with a range of simplifying assumptions, e.g., ignoring inertia (Shen & 61 

Phanikumar, 2010), ignoring both inertia and pressure gradient (only slope remaining) (Mizukami et al., 62 

2016), or including additional formulations to handle effects of scale, e.g., Li et al. (2013). In each case, 63 

these models have parameters that need to be determined from lookup tables or calibration, e.g., 64 

roughness parameters that serve as resistance to flow. 65 

 66 

Although routing parameters often rank among the important ones for discharge simulation (Khorashadi 67 

Zadeh et al., 2017; L. Liu et al., 2022), they been difficult to parameterize at large scales, especially in a 68 

way to both sensibly represent basin-internal spatial heterogeneity and adapt to discharge data. Using 69 

traditional roughness values tabulated for various land covers (Arcement & Schneider, 1989) requires in-70 

situ scouting, e.g., to determine if channels have pools, weeds, grass, etc., which is currently impractical 71 

for large-scale applications. Many calibration exercises (Khorashadi Zadeh et al., 2017; L. Liu et al., 2022; 72 



3 
 

Mizukami et al., 2016) have used only one set of parameters for an entire basin, neglecting fine-scale 73 

spatial heterogeneity in river-reach characteristics. Some studies have employed Manning’s roughness, 74 

n (a coefficient representing a channel’s resistance to flow), as a linear function of river depth or other 75 

characteristics (Getirana et al., 2012; H.-Y. Li et al., 2022), but it is unclear if these relationships 76 

accurately represent the available data.  77 

 78 

While the accuracy of basin rainfall-runoff models has improved substantially in recent years with 79 

machine learning (ML) (Adnan et al., 2021; Feng et al., 2020; Kratzert et al., 2019; Sun et al., 2022; Xiang 80 

et al., 2020), these methods have not been applied to routing modules in order to benefit the simulation 81 

of stem river floods. Neural networks (NNs) like long short-term memory (LSTM), GraphWaveNet (Sun et 82 

al., 2021), or convolutional networks (Duan et al., 2020) have demonstrated their prowess in learning 83 

hydrologic dynamics from big data. They are applicable not only to streamflow hydrology but also to 84 

variables across the entire hydrologic cycle (Shen, Chen, et al., 2021; Shen & Lawson, 2021) such as soil 85 

moisture (Fang et al., 2017, 2019; J. Liu et al., 2022; O & Orth, 2021), groundwater (Wunsch et al., 2022), 86 

snow (Meyal et al., 2020), longwave radiation (Zhu et al., 2021), and water quality parameters like water 87 

temperature, dissolved oxygen and nitrogen (He et al., 2022; Hrnjica et al., 2021; Lin et al., 2022; 88 

Rahmani, Lawson, et al., 2021; Saha et al., 2023; Zhi et al., 2021). However, these approaches are mostly 89 

suitable for relatively homogeneous headwater basins; spatial heterogeneities in forcings and basin 90 

characteristics are generally not well represented in these approaches. In our previous studies we 91 

observed that large basins often turned out to have poorer performance for LSTM models. The routing 92 

module is the key component that allows us to consider how runoff from heterogeneous subbasins 93 

converge and contribute to the stem river floods, and could be extended to support reactive transport 94 

modeling in the river network. 95 

 96 

A recent development in integrating ML with physical understanding is the use of differentiable, physics-97 

informed machine learning models, which can approach the performance of purely data-driven ML 98 

models but also provide interpretable fluxes and states (Feng, Liu, et al., 2022). "Differentiable” models 99 

can rapidly and accurately compute the gradients of the model outputs with respect to any input, 100 

enabling the combined training of NNs to approximate complex or unknown functions from big data 101 

while keeping physical priors. Such models can be simply supported by automatic differentiation (AD), 102 

which tracks each elementary operation of tensors through the use of a computational graph, then uses 103 

derivative rules to compute the gradient of each tensor operation (Baydin et al., 2018). This enables 104 
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hybrid frameworks to learn and incorporate complex and potentially unknown functions from big data 105 

while retaining physical formulations. By connecting deep networks to reimplemented process-based 106 

models (or their NN surrogates), Tsai et al. (2021) developed a NN-based parameterization pipeline that 107 

infers physical parameters for process-based models. Differentiable models can also extrapolate better 108 

in space and time than purely data-driven deep networks (Feng, Beck, et al., 2022). These methods are 109 

also applicable to estimating parameters in ecosystem modeling (Aboelyazeed et al., 2022), and allow us 110 

to flexibly discover variable relationships within the model based on big data, enabling improved 111 

transparency compared to standard deep learning models.  112 

 113 

Nevertheless, it was unclear if differentiable modeling could effectively learn relationships in a highly 114 

complex river network, which convolves and integrates processes over large scales and thus render 115 

small-scale processes unidentifiable. The river network forms a hierarchical graph, which is not unlike 116 

the graph networks for applications like social recommendations (Fan et al., 2019), but with a 117 

predefined spatial topology (due to a fixed river network) and a converging cascade. A complex river 118 

graph can have many nodes, which, when coupled with many time steps, could potentially lead to a 119 

training issue known as the vanishing gradient (Hochreiter, 1998), where the gradients with respect to 120 

the parameters are vanishingly small and the system becomes very difficult to train. Moreover, runoff 121 

data (required as an input for routing) are generally not available seamlessly for all subbasins and must 122 

be estimated by models, but models for runoff could incur substantial errors. It was unclear if the 123 

routing parameters could be learned, given such errors. It was further unclear if downstream discharge 124 

data alone has enough information to enable learning of reach-scale relationships. In other words, a 125 

reach-scale relationship may or may not be identifiable using downstream observations which integrate 126 

the signals from the entire catchment area.  127 

 128 

In this work, we developed a novel differentiable modeling framework to perform routing and to learn a 129 

“parameterization scheme” (a systematic way of inferring parameters from more rudimentary 130 

information) for routing flows on the river network. Such a physically-based routing method has never 131 

been combined with NNs before. A NN-based parameterization scheme for Manning’s n and river 132 

bathymetry shape (q) is integrated with MC routing and is applied throughout the river network to 133 

provide improved understanding of both the model and the modeled system. We designed synthetic 134 

and real data experiments to answer the following research questions: 135 
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1. Given substantial errors with estimated runoff as inputs to the routing module, can we learn 136 

effective routing parameterization schemes that can produce reliable results for long-term 137 

simulations in large river networks? 138 

2. Does the learned parameterization perform well for both trained and untrained internal gages 139 

and how does the performance vary as a function of basin area? 140 

3. Do short periods of downstream discharge contain sufficient information to train a reliable 141 

parameterization scheme or to identify the parameterization for channel roughness and 142 

hydraulic geometries? 143 

 144 

2. Data and Methods 145 

2.1 Overview 146 

As an overview, we describe a differentiable model that routes runoff through a river network (or 147 

“graph” in the ML terminology) similar to the traditional Muskingum-Cunge (MC) method. But unlike the 148 

traditional MC, our differentiable model is able to incorporate and train neural networks to provide 149 

reach-scale parameterization. This new routing model can be perceived as a physics-informed graph 150 

neural network (GNN) from an ML perspective. The nodes of the graph are spaced ~2000 m apart to 151 

ensure stability. We trained an embedded a Multilayer Perceptron (MLP) NN to generate spatially-152 

distributed river parameters for each reach (or “edge” in the GNN terminology) in the river network 153 

(Figure 1b). The loss function (the model’s goal is to minimize the output of this) was calculated at the 154 

furthest downstream node of the graph. To disentangle rainfall-runoff (required information for routing) 155 

from the routing processes, lateral inflow of combined overland and groundwater flow was obtained 156 

from a pre-trained LSTM streamflow prediction model (reported in previous work). The runoff values 157 

were then disaggregated to hourly time steps via interpolation and routed throughout the river network 158 

using the proposed differentiable routing model (Figure 1a). We provide the details in the subsections 159 

that follow. 160 

 161 
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162 

 163 
 164 

Figure 1: (a) An abstract overview of how inputs move through our workflow to eventually be run 165 

through the differentiable MC function. MC utilizes lateral flow inputs based on LSTM predictions, NN 166 

predicted river parameters n and q, and other river attributes to generate predictions. (b) An illustration 167 

of how we traverse the graph (dark blue circles) using MC to make a discharge prediction for the final 168 

node (orange circle). 169 

 170 
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2.2 The River Graph 171 

We constructed a river network (or graph) for the Juniata River Basin (JRB) in the northeastern United 172 

States (Figure 2), by processing the United States Geological Survey’s (USGS’s) National Hydrography 173 

Dataset (NHDplus v2) (HorizonSystems, 2016; Moore & Dewald, 2016) which provide topology and some 174 

attributes of the river reaches such as upstream catchment area. We ensured stability of the MC scheme 175 

by discretizing the river network into approximately 2-km reaches, resulting in 544 junction points (or 176 

nodes) and 582 river reaches (or edges). These reaches are where the physical parameters like 177 

Manning’s roughness and channel shape coefficients are defined. To reduce computational demand, we 178 

selected a subset of NHDplus v2 river reaches based on a stream density threshold (total stream 179 

length/watershed area), choosing rivers with the longest length until a stream density of 0.2 km/km2 180 

was reached. We then calculated slope and sinuosity for the reaches by overlaying NHDplus v2 with 10-181 

m resolution digital elevation data (USGS ScienceBase-Catalog, 2022). Prior work describes the bulk of 182 

the extraction procedure that prepares input data for a physically-based surface-subsurface processes 183 

model (Ji et al., 2019; Shen et al., 2013, 2014, 2016; Shen & Phanikumar, 2010).  184 

 185 

The hydrograph at the furthest downstream JRB gage, USGS gage 01563500 (node 4809 in our graph) on 186 

the Juniata River at Mapleton Depot, PA, was chosen as the training target (Figure 2a). This gage has a 187 

catchment area of 5,212 km2 contributed from the 582 simulated reaches upstream. Seven USGS gages 188 

are located upstream of this node which enables further validation of the simulations. 189 

 190 



8 
 

191 

 192 
 193 

 194 

Figure 2: (a) A map of the Juniata River Basin’s (JRB’s) river network and HUC10 watersheds. Each eight-195 

digit number corresponds to a USGS gage. (b) A histogram showing the distribution of HUC10 196 

watersheds in the JRB. The x-axis shows the distribution of the HUC10 watershed area in square 197 

kilometers. The left y-axis shows the number of HUC10s that fall within the area ranges (corresponding 198 

with the blue bars), and the right y-axis shows a cumulative density function (CDF) distribution of the 199 

areas, corresponding with the red dashed line. 200 

 201 
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2.3 Implementing River Routing with Muskingum-Cunge 202 

2.3.1 Muskingum-Cunge 203 

The Muskingum-Cunge (MC) method is a widely-used flood routing technique that combines the 204 

Muskingum storage routing concept  with the continuity and momentum equation for a river reach 205 

(Cunge, 1969), solved using a center-in-space, center-in-time finite difference scheme for each reach, at 206 

time steps t and t+1:  207 

 𝑄𝑡+1 = 𝑐1𝐼𝑡+1 + 𝑐2𝐼𝑡 + 𝑐3𝑄𝑡 + 𝑐4𝑄′ (1) 

 
𝑐1 =

Δ𝑡 − 2𝐾𝑋

2𝐾(1 − 𝑋) + Δ𝑡
 

(2) 

 
𝑐2 =

Δ𝑡 + 2𝐾𝑋

2𝐾(1 − 𝑋) + Δ𝑡
 

(3) 

 
𝑐3 =

2𝐾(1 − 𝑋)–  𝛥𝑡

2𝐾(1 − 𝑋) + 𝛥𝑡
 

(4) 

 
𝑐4 =

2𝛥𝑡

2𝐾(1 − 𝑋) + 𝛥𝑡
 

(5) 

Where 𝐼𝑡 and 𝑄𝑡 are the inflow and outflow of the reach at time step t, respectively, and 𝐼𝑡+1 and  𝑄𝑡+1 208 

are the inflow and outflow at the next time step, t+1. K represents travel time based on reach length 209 

and wave celerity, X is a dimensionless inflow/outflow weighing parameter, and Q’ represents lateral 210 

inflow of the incremental catchment area of the reach, and can also include tributary inflows. We 211 

adopted the simple linear form of the Muskingum equation: X is constant and K= 𝛥𝑥/𝑣  where 𝛥𝑥 is 212 

length of the reach and 𝑣 is the discharge velocity (m/s) of the current time step. More complex 213 

nonlinear forms of the MC equation could be tested in the future (Mays, 2019). To simulate a river 214 

network, we divide the network into a series of reaches to route the flow of water from upstream to 215 

downstream. The outflow from a reach is the inflow of the next downstream reach. 216 

 217 

2.3.2 MC parameter values and variable channel dimensions  218 

To implement MC, we chose an hourly time step (Δt) and a weighing coefficient (X) of 0.3, which was 219 

based on regional expectations, for Equations 2-5. Since discharge velocity v and stream top width w 220 

vary over time, they need to be updated in each time step with respect to discharge Q, which was done 221 

here with the help of a constitutive relationship used to close the equations. For this, because at-a-site 222 
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hydraulic geometries (Gleason, 2015; Leopold & Maddock, 1953) leads to a power-law relation between 223 

top width (w [m]) and depth (d [m]), we can assume such a relationship:  224 

 𝑤 = 𝑝𝑑𝑞 (6) 

where p [m] and q [-] are linear and exponential parameters, respectively, that are potentially spatially 225 

heterogeneous and represent the shape of the channel’s cross-sectional area. For a rectangular channel, 226 

q=0, and for a triangular channel, q=1. The cross-sectional area 𝐴𝐶𝑆 is the integral of w with respect to d 227 

(Equation 7). To simplify the task (and because it is not sensitive based on our observations), we 228 

assumed p=21 based on preliminary data fitting to USGS hydraulic geometries from field surveys of 229 

gages in the JRB. Note that even though we make this assumption here for model completeness, we do 230 

not posit that q is invertible from available data because it may not be that significant for the 231 

downstream discharge. Moving forward with these assumptions, we can write these relationships as 232 

Equation 7: 233 

 
𝐴𝐶𝑆 = ∫ 𝑤

𝑑

0

𝜕𝑑 = ∫ 𝑝𝑑𝑞
𝑑

0

𝜕𝑑 =
𝑝𝑑𝑞+1

𝑞 + 1
 

(7) 

Combining Equation 7 with Manning’s n Equation, we come up with Equation 8a. Reorganizing, we 234 

derive a function that estimates d from Q (Equation 8b). With d, p, and q, we can estimate v and K using 235 

the linear form of Muskingum equation as in Equations 7, 8c, and 8d which close the equations.  236 

 

 𝑄 = 𝑣𝐴𝐶𝑆 =
1

𝑛
𝑅2/3𝑆0

1
2

𝑝𝑑𝑞+1

𝑞 + 1
=

𝑝𝑑𝑞+
5
3𝑆0

1
2

𝑛(𝑞 + 1)
     

(8a) 

 

 𝑑 = [
𝑄𝑡𝑛(𝑞 + 1)

𝑝𝑆0

1
2

]

3
5+3𝑞

 

(8b) 

 
 𝑣 =

𝑄𝑡

𝐴𝐶𝑆
     

(8c) 

 
 𝐾 =

∆𝑥

𝑣
 

(8d) 

Here, S0 represents the reach slope, 𝑄𝑡 represents the discharge exiting the reach at time t, and ∆𝑥 is 237 

the reach length.   238 

 239 

2.3.3 Differentiable modeling   240 
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By implementing MC on a differentiable coding platform (PyTorch, Tensorflow, Julia, etc.), we can train a 241 

coupled NN in an “online” way to produce physical reach-scale river parameters for the routing model, 242 

much like our earlier work in differentiable parameter learning (dPL) (Tsai et al., 2021). Here we include 243 

a NN into the MC routing framework to optimize equation parameters based on big data while 244 

maintaining physical consistency and mass balances. In this case, a Multilayer Perceptron (MLP) (Leshno 245 

et al., 1993) is incorporated. The MLP, featuring two hidden layers and a sigmoid activation function in 246 

the output layer, accepts a normalized array of attributes (𝑐) for each reach (Table A2). Based on initial 247 

results, we saw no need to add further complexity (additional hidden layers). The network then outputs 248 

the Manning's roughness coefficient (n) and channel bathymetry shape coefficient (q): 249 

 𝑛, 𝑞 = 𝑁𝑁(𝑐) (9) 

where n represents a channel’s resistance to flow and q represents the shape of the channel’s cross-250 

sectional area. These parameters are inferred for each reach using the attributes of that reach prior to 251 

routing, since we assumed n and q to be time-invariant. This produces r number of n and q values 252 

specific to each reach for all timesteps where r is the number of river reaches. The weights of the MLP 253 

are updated using backpropagation and the Adam optimizer (Kingma & Ba, 2017). 254 

 255 

2.4 Lateral streamflow inputs 256 

Since spatially-distributed runoff is needed to predict runoff in downstream basins, but there is no such 257 

data, we employed a pretrained LSTM (Hochreiter & Schmidhuber, 1997) rainfall-runoff model. This 258 

LSTM model was similar to those developed and reported in previous streamflow and water quality 259 

studies (Feng et al., 2020; Ouyang et al., 2021; Rahmani, Lawson, et al., 2021; Rahmani, Shen, et al., 260 

2021), and we refer the reader to these publications for a more detailed description of these models. 261 

After the initial training was done, we chose not to further update the LSTM in order to disentangle the 262 

rainfall-runoff and routing parts of the modeling process, testing the robustness of the methodology in 263 

the face of errors with simulated runoff. In addition, the test could tell us if other rainfall-runoff models 264 

could be used instead. Updating LSTM further could lead to its co-adaptation with the routing module, 265 

making the procedure complex.  266 

 267 

To briefly summarize, the LSTM model used a combination of basin-averaged attributes, daily 268 

meteorological forcings, and volumetric streamflow observations as inputs, and output daily basin 269 

discharge. Meteorological forcings (total annual precipitation, downward long-wave radiation flux, 270 
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downward short-wave radiation flux, pressure, temperature) were obtained from the NASA NLDAS-2 271 

Forcing Data set (Xia et al., 2009, 2012). We selected 29 basin attributes (Table A1 in the Appendix) 272 

similar to those chosen in previous LSTM studies (Ouyang et al., 2021). Consistent with Ouyang et al. 273 

(2021), we focused on training the LSTM on 3213 gages selected from the USGS Geospatial Attributes of 274 

Gages for Evaluating Streamflow II (GAGES-II) dataset (Falcone, 2011) with input data between 275 

1990/01/01 - 1999/12/31. We developed the workflow to obtain forcing data and inputs seamlessly for 276 

any small basin in the conterminous United States (CONUS). In this case, we extracted data from HUC8 277 

subbasins and HUC10 watersheds to gather inputs to train our LSTM model and predict discharge, 278 

respectively.   279 

 280 

When evaluated on the gaging stations in the study area, the model achieved a median daily Nash-281 

Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970) of 0.7849 for the eight gauging stations in the JRB. 282 

After training during the period of 1990/01/01 – 1999/12/31, the model was run from 2000/01/01-283 

2009/12/31 to predict discharge for the 17 HUC10 watersheds in the study area:  284 

 𝑄′ = 𝐿𝑆𝑇𝑀(𝑥𝐻𝑈𝐶10, 𝐴𝐻𝑈𝐶10) (10) 

where Q’ [m3/s] is the daily runoff for the HUC10 basin, and xHUC10 and AHUC10 are HUC10-averaged 285 

atmospheric forcings and static attribute variables, respectively. Lastly, we computed a mass transfer 286 

matrix, which tabulates the fraction of a subbasin draining into a river reach. Each row of the matrix is 287 

obtained by dividing the incremental catchment area of reaches inside a subbasin by the total area of 288 

that subbasin. Runoff can be distributed to river reaches via a simple matrix multiplication.  289 

 290 

Due to the nature of the data used to train the LSTM, it could produce seamless (having no gaps) runoff 291 

estimates for the JRB but only on a daily, not hourly, scale. Because MC routing needs to operate on 292 

smaller time steps, we quadratically interpolated (Virtanen et al., 2020) daily data into hourly time steps, 293 

where each daily measurement occurs at 12:00 hours. For training and evaluating the routing model, we 294 

collected observed discharge data for nodes intersecting USGS GAGES-II monitoring stations. Only some 295 

time periods of the most downstream gage station were used for training, and other stations were only 296 

used for evaluation. The observed discharge data were similarly disaggregated to hourly data. 297 

 298 
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2.5 Inverse-routing and hyperparameters   299 

There are time zone differences between the forcing data (recorded using UTC) and USGS streamflow 300 

(recorded in UTC-5). To address this, we first shifted the LSTM-produced runoff outputs by 5 hours.  301 

Because LSTM was trained to predict runoff at the outlet of a basin, with catchment area being an 302 

impactful input to the model, it already implicitly considers the time of concentration to the outlet. 303 

However, as our modeled river network extends into the subbasins and contains smaller rivers, the 304 

routing module explicitly simulates the within-basin concentration process. Ideally, we can use an 305 

inverse-routing approach to revert LSTM-predicted runoff to the time before it enters the river network. 306 

However, as inverse-routing methods (Pan & Wood, 2013) can be quite involved and were not the focus 307 

of the study, we opted for a simple approach that shifted the runoff back in time by 𝜏 hours. 𝜏 is 308 

considered a hyperparameter. To avoid overfitting, we used the same 𝜏 value for all the subbasins and 309 

all experiments, and determined this value by manually tuning based on the training period. We found 310 

𝜏 = 9 (hours) to be a good choice.  More complicated procedures could be employed in the future, but 311 

this straightforward approach proved to be effective in our case. 312 

 313 

Hyperparameters and training period sizes for our differentiable routing model were chosen through 314 

repetitive trial and error based on the training period. These trials led us to choose a hidden size of 6 for 315 

our MLP, and a training size of eight weeks. Parameters were tuned for 50 epochs for synthetic and real 316 

data experiments. Mean Squared Error (MSE) was chosen as our loss function. Since our differentiable 317 

model at t=0 assumes no inflow to the river network and relies exclusively on Q’ for flow inputs, a period 318 

of 72 hours is employed to “warm up” the model states in the river network, and the loss function and 319 

NSE are not calculated within this period. 320 

 321 

2.6 Experiments 322 

2.6.1 Synthetic Parameter Recovery 323 

We first ran multiple synthetic parameter recovery experiments to check if the dataset and the 324 

framework could indeed recover assumed relationships with small training periods of eight weeks. Our 325 

first experiment tested if we could correctly recover a single, spatially-constant set of assumed values 326 

for both n and q for the whole river network, resulting in only two degrees of freedom. We assumed 327 

ranges from 0.01 – 0.3 and 0-3 for the synthetic values of n and q, respectively, to give a realistic value 328 

range for the MLP to learn parameters. n and q model parameters were initialized to be at the 90th and 329 

20th percentiles for the first and second set of synthetic experiments, respectfully.  330 
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 331 

In our second experiment, we assumed constant n throughout the reaches but set the trained model as 332 

n,q = NN(c) (Equation 9) so that the n, q values could be different from reach to reach. In this case, 333 

ideally, the NN would learn to output a constant value regardless of the inputs.  334 

 335 

Our third synthetic experiment examined if we could retrieve simple assumed relationships within 336 

realistic literature bounds (inverse-linear or power-law) [Equation 9-10] between n, q, and drainage area 337 

(DA), given that the MLP had far more inputs than just DA. The trained model is still utilizing Equation 9, 338 

as we assumed we did not know the functional relationship a priori.  339 

  𝑛 = 0.06 − 8 × 10−6(𝐷𝐴) 

𝑞 = 2 − 0.00018(𝐷𝐴)  

(11) 

 
𝑛 =

0.0915

(𝐷𝐴)0.131 

𝑞 =
2.1

(𝐷𝐴)0.357 

(12) 

2.6.2 Observational Data Experiments. 340 

We trained our differentiable model (updating the weights in NN as in equation 6) against observed 341 

USGS data. We utilized eight-week training periods from different years and checked whether the 342 

resulting parameters led to satisfactory routing in other years at both the training gage and untrained, 343 

inner, gages. Training periods were selected based on times when the LSTM had high accuracy and when 344 

there were frequent discharge peaks. Routing frequently fluctuating discharge through a river network 345 

introduces more variance into the MLP, allowing it to perform better when testing over a longer time 346 

period. Additionally, high LSTM accuracy reduces the noise --- we hypothesize the system has some 347 

tolerance to the runoff errors but outsized errors can invalidate the model. Periods of such “high 348 

flashiness” in the JRB occurred during both 02/01-03/29 and 11/01-12/26, while the years 2001, 2005, 349 

2007, and 2008 had high LSTM accuracy, giving us eight time periods on which to train NN models. We 350 

then trained the differentiable routing models on all eight selected time periods to determine the 351 

sensitivity of the model performance to the selected training time period. 352 

 353 

When interpreting model performance at inner gages, we compared results with the LSTM that modeled 354 

the whole JRB as a uniform basin and a simple summation of the 𝜏-shifted LSTM runoff inputs (Q’). We 355 

also explored whether using a combination of inner gages, along with the furthest downstream gage, 356 
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inside of the loss function would improve model performance on all gages throughout the study area. 357 

The gages used were USGS 01560000 (edge 1053) and 01563200 (edge 2689). Internal gages were 358 

selected based on NSE metrics when using only the furthest-downstream gage in the loss calculation; we 359 

chose basins with middle-level metrics so as to not overfit the model if using highly predictive internal 360 

gages. 361 

  362 

3. Results and Discussion 363 

In the following, we first discuss our synthetic experiments (Section 3.1) which explore our routing 364 

framework’s potential to retrieve assumed parameters from our differentiable GNN. Next, we show the 365 

results of confronting our model with LSTM-simulated runoff as observed streamflow at the furthest 366 

downstream gage, expanding the training period to other time ranges, then applying our models to 367 

different years for observation (Section 3.2). Furthermore, we discuss the stability of our trained models 368 

over several years of testing (Section 3.3). Lastly, we analyze the n parameters recovered for the trained 369 

models and discuss their implications (Section 3.4). 370 

 371 

3.1 Synthetic experiments 372 

Our first synthetic experiment (with constant parameters and only 2 degrees of freedom for the search) 373 

recovered the assumed n values with moderate accuracy, but not the channel geometry parameter q 374 

(Table 1). Recovered n values were within a small range of the assumed ones, with minor fluctuations, 375 

while recovered q values mostly stayed similar the initial guesses, showing slight changes after a number 376 

of iterations. This result was consistent across 10 runs, each with different "synthetic truth" values for n 377 

and q. The training led n to the assumed values rapidly, typically within 20 epochs (Figure A1). The non-378 

identifiability of q was likely because q has only a small influence on the storage capacity of the stream 379 

and the simulated discharge is not sensitive to q, making dL/dq (where L is the loss function) negligible. 380 

While it is a pity that hydraulic geometry parameters cannot be estimated, the results also implied that 381 

they would not influence the routing results noticeably. Thus, in our efforts, we focused on n.  382 

Table 1: Results from the constant synthetic n and q parameter recovery experiments 383 

 
Run 

n q 

Initial 
Guess 

Synthetic 
Truth 

Recovered 
Parameter 

Initial 
Guess 

Synthetic 
Truth 

Recovered 
Parameter 

1 0.271 0.03 0.028 2.7 2 2.327 
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2 0.271 0.04 0.035 2.7 2 2.37 

3 0.271 0.05 0.046 2.7 2.5 2.390 

4 0.271 0.06 0.059 2.7 2.5 2.456 

5 0.271 0.07 0.070 2.7 3 2.480 

6 0.068 0.03 0.030 0.6 1.0 0.574 

7 0.068 0.04 0.042 0.6 1.0 0.592 

8 0.068 0.05 0.055 0.6 1.5 0.730 

9 0.068 0.06 0.067 0.6 1.5 0.777 

10 0.068 0.07 0.087 0.6 2.5 0.690 

 384 

Our second synthetic experiment (assuming constant n to be recovered by NN(A)) showed that we were 385 

able to recover the constant value that was set using an NN, but there was some scattering for the 386 

headwater reaches (Figure 3c, 3f). We noticed trends associated with drainage area (DA), which is 387 

correlated with reach positioning in the watershed; small DA often indicates a headwater reach, while 388 

large DA often indicates a reach much further downstream. There were some visible differences 389 

between the synthetic hydrographs resulting from different assumed n values (comparing Figures 3a 390 

and 3c), which allowed the recovered n values to mostly center around the assumed value. However, 391 

the scattering of points toward the lower-DA part of Figures 3b and 3d alluded to the fact that the 392 

downstream discharge was strong enough to completely constraint on the model. n in different ranges 393 

can fluctuate around the mean to generate essentially the same pattern as a constant n value. 394 

 395 

In our third set of synthetic experiments, the simple functions could be roughly recovered for most of 396 

the reaches, while there may have been increased uncertainty for the furthest downstream reaches 397 

(Figure 3f & 3h). There were again noticeable differences in the hydrographs (Figures 3e & 3g) from 398 

previous ones.  When the power-law relationship was assumed, the hydrograph matched the synthetic 399 

one almost completely (Figure 3e), and the estimated n outputs from the MLP overlapped to a great 400 

extent with the value to be retrieved (Figure 3f). The headwater reaches (small-DA) showed a rapid 401 

decline in n with respect to increasing DA. In the middle ranges of DA, the curve followed the assumed 402 

one almost exactly. Toward the higher range of DA, the recovered values were lower than the assumed 403 

relationship, but the deviation was not huge because the power-law formulation became flat in this 404 
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range. Based on the closeness of hydrographs in all of Figure 3, we do not anticipate that further 405 

optimization can bring significant improvement to the estimations. Similar to the two-constant-406 

parameter retrieval experiment, the q parameter was not recoverable and thus is not shown here. 407 

 408 

Based on these simple experiments, it seems training on the river graphs has some promise but also 409 

some limitations. It is promising because it is likely that n is related to DA which is, to some extent, 410 

recoverable. It is simultaneously challenging because, as a large number of reaches contribute to one 411 

gage, it is an underdetermined system. This method was not able to fully reproduce the drastic change 412 

in the low-DA range presumably because this sharp slope was inconsistent with the rest of the curve, 413 

and NNs generally do not output extreme values. It also ran into difficulty toward the high-DA range 414 

because there were simply far fewer reaches with large DA so their roles in routing were relatively 415 

minor, making the curve unconstrained in this range. This experiment informed us we should not expect 416 

values of reach-scale n, particularly in the high-DA range, to be reliable, but the overall trend may have 417 

merit, especially when we also have other constraints. These findings formed the basis for the next 418 

stage of the work where we trained n=NN(c) for real-world data. We thus expected to extract the overall 419 

patterns of n distribution but for the recovered q not to be meaningful. 420 
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 421 
 422 

Figure 3: Synthetic discharge distribution experiments. (a, c, e, g) Synthetic and modeled discharge over 423 

time for various assumed relationships between n and drainage area. (b, d, f, h) Synthetic modeled 424 

values of n with respect to the reach’s total drainage area (km2). The NN can recover the overall pattern 425 

but is not accurate near sharp changes or for reaches with large drainage areas. Each dot in the scatter 426 

plots represents a 2-km river reach in the river network. 427 

 428 

3.2. Training on eight weeks of real data 429 

The real-world data experiment showed satisfactory streamflow routing in the training period, with 430 

improvements compared to approaches that did not employ the routing scheme, even though there 431 
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was significant bias in the rainfall input (Figure 4a). The hydrograph generated by the differentiable 432 

routing model is, as expected, smoothed and delayed compared to the summation of runoffs during the 433 

training period. Unlike the direct summation of the runoff, which has a timing difference from the 434 

observation, the peaks of the routed hydrograph are placed almost exactly under the observed peaks, 435 

leading to a high training NSE of 0.834. We noticed a substantial low bias in this training period, 436 

witnessed by much lower peaks with the simulated flow compared to the observed flow. This is due to 437 

bias in the rainfall-runoff modeling component and the mass-balance dictated by the MC formulation, 438 

which prevents the model from adding or removing mass to remove the bias. In traditional hydrologic 439 

model calibration, bias can be a significant concern as it can distorts other parameters. In this case, we 440 

found the model performed well even with such bias, and appropriately focused on adjusting the timing 441 

of the flood waves. This is because the allowable adjustments were limited to routing parameters, which 442 

blocked the model from distorting other processes.  443 

 444 

 445 

Figure 4: (a) Results from training the differentiable model during an eight-week period (2001) against 446 

USGS observations compared with the summation of lateral inputs (denoted by Q’). (b) Results from 447 

testing the trained model from Figure 4(a) over a year period (2001) compared with the summation of 448 

lateral inputs. A percent error has been overlaid to the graph to show how river routing is more stable 449 

than using a summation of lateral inputs.   450 
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 451 

The year-long test of the differentiable model yielded high metrics compared to the alternatives (Figure 452 

4b), suggesting a short calibration period could yield parameterization suitable for long-term 453 

simulations. The differentiable model obtained a year-long NSE of 0.857, which is consistent with the 454 

median NSE in the JRB. In contrast, the summation of 𝑄′(𝜏 = 9) and the whole-basin 𝐿𝑆𝑇𝑀 were at 455 

0.756 and 0.801, respectively. This comparison shows that if we merely added the runoffs together 456 

(which already resolved spatial heterogeneity in runoff but not the flow process), the error due to timing 457 

could reduce NSE at the downstream gage. While the model had success with correctly timing the peak 458 

flows, it could not compensate for LSTM's errors, resulting in significant underestimation of the peak 459 

events. By design, the routing module should be detached from the errors in the runoff module.  460 

 461 

Interestingly, without specific instructions, the scheme recovered a power-law-like relationship between  462 

n and drainage area (DA) (Figure 5), similar to the one assumed in the synthetic case (Figure 3e &3f). The 463 

n values were highest (near n=0.04) for smaller DA and declined gradually, approaching 0.015 at the 464 

lower end. The change rate of n as a function of DA then became more gentle as DA increased. This 465 

distribution agreed well with the general understanding that headwater streams running down ridges 466 

(this region is characterized by Ridge and Valley formations) have larger slopes, higher roughness, more 467 

vegetation, and thus higher n, while the high-order streams in the valley tend to have smaller slopes and 468 

smoother beds, corresponding with lower n. In most hydrologic handbooks (Mays, 2019), a smaller n is 469 

prescribed for larger rivers. 470 

 471 
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 472 

Figure 5: The learned relationship between n and drainage area (square kilometers) for the Juniata River 473 

basin according to the trained GNN. (a) The distribution on a linear scale. (b) The distribution on a 474 

logarithmic scale. The network was trained for the period of 2001/02/01-2001/03/29. Each dot in the 475 

scatter plot represents a 2-km river reach. 476 

 477 

3.3. Inner gage evaluation and effects of different training periods 478 

Evaluating the model on the inner, untrained gages showed that the routing scheme became more 479 

competitive compared to benchmark levels as for downstream gages (Table 2). As for the benchmarks, 480 

the uniform LSTM (the catchment area of each gage is consider a basin and basin-averaged 481 

forcing/attributes were used as inputs to the trained LSTM to simulate flow at the gage) already 482 

attempts to consider routing internally but does not consider rainfall/attribute spatial heterogeneity, 483 

while the summation of Q’ (runoffs were simulated from multiple HUC10 basins and added together) 484 

considers the spatial heterogeneity but not routing in the stem river. For 2 of the 4 gages with larger 485 

than ~2000 km2 of catchment area, the differentiable routing model performed noticeably better than 486 

the uniform LSTM models for them (for the other two, they were about the same). For the three 487 

midsized subbasins (500-2000 km2), the comparisons were mixed. For the small subbasins, and 488 

especially gage 01557500 (94.8 km2), the uniform LSTM was noticeably better. The subbasin for 489 

01557500 is smaller than our runoff-producing unit (HUC10s, with the smallest one ~200 km2). This 490 

means predictions below this threshold can be error-prone. Our model was also better than the 491 
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summation of Q’ for 7 of the 8 gages and the gap was larger for downstream gages (Table 2), suggesting 492 

the flow convergence process matters more and more as we go downstream.  493 

 494 

When we used multiple internal gages within the NN loss function, results improved very slightly at 495 

smaller DA gages, while degraded barely noticeably at larger DA reaches. Overall, the differences are too 496 

small to have real-world implications, but we can still observe the pattern that the multi-gage calibration 497 

appears to produce a slightly more balanced model that improves simulations at some previously 498 

weakly-simulated tributaries, at a (very minor) cost at the most downstream one. This small tradeoff 499 

may be due to spatial errors in forcing data. As the model explicitly simulates flows in all modeled 500 

reaches, the differentiable model provides a way to absorb data from as many stations as possible, if the 501 

ungauged regions are important to the users.   502 

 503 

Table 2: Internal gage NSE values for the year 2001, with the rows ranked by the size of the subbasin 504 

from small to large. The differentiable routing model was trained on the period from 2001/02/01-505 

2001/03/29 calculating loss from the final gage but the LSTM was trained using >3000 CONUS gages. 506 

We include the LSTM NSE to show how the use of routing compares to just using LSTM predictions. Bold 507 

font indicates the top performing model for each gage. 508 

Edge 

ID 

Gage 

Number 

Basin Drainage 

Area (km2) 

Uniform 

LSTM  

 

Q` Runoff NSE 

 (𝜏 = 9) 

Differentiable 

routing model 

(𝜏 = 9) 

Multiple Gage Loss 

for differentiable 

routing  

(𝜏 = 9) 

1280 01557500 94.8 0.8149 0.5575  0.5623  0.5627  

1053 01560000 440.5 0.7028 0.6054  0.6578  0.6625  

2799 01558000 542.1 0.8201 0.7473  0.6963  0.6981  

4780 01556000 723.5 0.6624 0.6568  0.6937  0.6957  

2662 01562000 1943.5 0.7957 0.6857  0.7942  0.7977  

4801 01559000 2103.0 0.7815 0.7449  0.8136  0.8172  
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2689 01563200 2482.9 0.5703 0.6497  0.7831  0.7773  

4809 01563500 5212.8 0.8024 0.7563  0.857  0.8546  

 509 

The above comparisons informed us of the favorable and unfavorable ranges of applicability for our 510 

workflow: the differentiable model found competitive advantages for stem rivers with catchments 511 

greater than 2,000 km2, but may run into issues for scales smaller than the smallest runoff-producing 512 

unit (HUC10, around 200 km2). The issues for the smallest basins could be attributed to the procedure 513 

that transfers mass from subbasin to regular grids on the river network, which should be improved in 514 

future work. As a result, the smallest headwater basins are best to be directly simulated by the uniform 515 

LSTM models. Also, smaller runoff-generating units could be used in the future to mitigate this issue. 516 

The advantages of the differentiable routing model over the uniform LSTM for larger basins were due to 517 

resolving the heterogeneity in rainfall and basin static attributes as well as better representing routing. 518 

The uniform LSTM can internally represent some flow lags but it appears less effective as basin size 519 

increases.  520 

 521 

The results imply that the advantages will increase for even larger basins, where currently LSTM does 522 

not apply well, along with basins where rainfall heterogeneity makes a big difference. The JRB is situated 523 

in the northeastern part of the CONUS; many other regions may exhibit more prominent effects of 524 

heterogeneity. For example, past studies have always found it difficult to simulate large basins on the 525 

northern and central Great Plains (Feng et al., 2020; Martinez & Gupta, 2010), potentially due to 526 

spatially-concentrated rainfall and runoff generation (Fang & Shen, 2017). Also, in the mountainous 527 

areas of the CONUS Northwest and Southeast, orographic precipitation could have significant spatial 528 

concentration. We hypothesize applying models to smaller basins and incorporating the routing scheme 529 

will allow these regions to be better modeled.  530 

 531 

As expected, the training periods selected can exert an influence on the model, but as long as we used 532 

reasonable training periods, the results were acceptable. When the scheme was trained on eight-week 533 

periods from different years, it generated somewhat different but mostly functional parameterizations 534 

(Figure A2 in the Appendix), unless it was trained in some unreasonable training periods where the 535 

LSTM had drastic differences from the observed outflows (Table 3). The maximum achievable NSEs for 536 

the years of 2001, 2005, 2007, and 2008 were 0.857, 0.87, 0.827, and 0.787, respectively, with all 537 
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models outperforming Q` NSE values for their respective periods (Table A3 in the Appendix). We found 538 

that if the models were trained on other periods (2001a, 2001b, 2005b, 2007a), the test NSEs were 539 

mostly decent, and at least not drastically worse. However, choosing 2007b or 2008a led to notably 540 

inferior results (Figure 6b-e). Examining the characteristics of the different training periods, we see that 541 

the problematic training periods did not contain full flood rise and recession phases (Figure 6a & 6b). As 542 

a result, 2007b and 2008a as training periods led to either the lowest or the highest n values and also 543 

had relatively low NSE values (Figure A2 in the Appendix). Similarly, training period 2005a gave relatively 544 

large n values which also resulted in suboptimal (although still decent) results in all the years. Hence, we 545 

need to pick periods that (i) contain full flood rise and recession phases; and (ii) have high runoff NSEs. 546 

In addition, even though the routing simulation can be improved by short training periods, the spread of 547 

estimated n again shows that the identification of n via small training periods can be difficult. Future 548 

work could employ longer training periods to compromise across different periods and obtain broadly-549 

performant parameterization. However, another possibility is that n itself can vary over time, which 550 

would be an orthodoxy but not unthinkable idea. 551 

 552 

 553 

 554 

Table 3. The NSE values correspond to testing differentiable models on different test years. Bold font 555 

indicates the highest NSE, while underlined metrics indicate the lowest (noticeably worse than obtained 556 

from other periods) for the testing period. 557 

 558 

 
 
 
Testing 
Period 

Training Period 

2001a  
 
02/01- 
3/29 

2001b   
           
11/01- 
12/26 

2005a  
            
02/01- 
3/29 

2005b              
11/01- 
12/26 

2007a   
           
02/01- 
3/29 

2007b       
11/01- 
12/26 

2008a   
           
02/01- 
3/29 

2008b   
           
11/01- 
12/26 

2001 0.857 0.845 0.850 0.853 0.857 0.831 0.782 0.856 

2005 0.797 0.828 0.843 0.870 0.816 0.713 0.785 0.785 

2007 0.815 0.812 0.821 0.827 0.819 0.774 0.753 0.813 

2008 0.643 0.715 0.723 0.762 0.676 0.534 0.787 0.623 

Average 0.778 0.800 0.809 0.828 0.792 0.713 0.777 0.769 
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      559 

 560 

 561 

Figure 6: (a) Two training periods: 2005 and 2007a. The former contains a full rising-recession cycle while 562 

the latter does not have a complete cycle for training, thus leading to larger errors during test. The solid 563 

line indicates the training of Model 2005b while the dashed line indicates Model 2007b during the time 564 

period of 11/01-12/27 during the years 2005 and 2007, respectively. (b-c) Test periods for these two 565 

models: (b) 2001, (c) 2005, (d) 2007, and (e) 2008. For (b-e) the solid line indicates discharge while the 566 

dashed line indicates percent error of each model’s output compared with the observations. 567 

 568 

3.4. Further discussion 569 

Although the estimated n values were both functional for routing streamflow and physically meaningful, 570 

the results suggest the downstream discharge only poses a moderate constraint on the n values, and 571 

short training periods may not be sufficient to identify the true n values. Hence, while our procedure can 572 
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obtain n parameterization performant for long-term simulations, we do not claim that the procedure 573 

retrieved the “true” n parameterization. Especially considering there are many input variables to the NN 574 

that covary in space, it may be difficult to disentangle causation from correlation. Due to the lack of 575 

ground truth for n in the real-data case, we leave this evaluation for future effort as we compile more 576 

measurement data. Recall that we were able to retrieve the overall pattern of n in the synthetic 577 

experiments but faced large uncertainties in some areas of the parameter space. This is attributed to the 578 

numerous degrees of freedom (a high-dimensional input space for the NN, influencing many reaches) 579 

constrained by only one downstream output with a relatively short training period. Nevertheless, this 580 

training is valuable because discharge data can be widely available, and we will be able to employ it in 581 

conjunction with other constraints, e.g., scattered measurements or expert-specified relationships.  582 

 583 

Regarding other potential recoverable parameters, we suspect the dimensionless MC inflow/outflow 584 

weighing parameter X, which indicates the shape of the assumed flood prism, cannot be identified for 585 

the same reason as q --- the geometries of the channel do not impact flow rates in a meaningful way. 586 

Future work could investigate if learning it produces any benefit. Similarly, linear channel coefficient p 587 

values were also never recoverable in single parameter tests and decreased resulting NSE values when 588 

used as a tunable parameter. Thus, we did not include it in this study. In addition, we hypothesize using 589 

more complex MC formula, e.g., the nonlinear form of the Cunge equation (the celerity is defined as 590 

dQ/dA), which might add to numerical challenges for large-scale simulations, would lead to different n 591 

values, as the recovered values are inherently linked to the inverse model employed. 592 

 593 

Here we employed a static parameterization scheme for n, following the conventional approach. 594 

However, the framework allows for the use of a dynamic n (likely dependent on Q). It is not clear if we 595 

must use a static parameterization as done conventionally, as some previous studies have found a 596 

dynamic n to offer better results (Ye et al., 2018). In the future, it will be interesting to see if a dynamical 597 

n parameterization could significantly impact the routing results. On another note, we chose an eight-598 

week time period as our training length as a probe to assess the required training duration and selection 599 

criteria for such periods. We trained eight different models (Section 3.3) on different time periods and 600 

showed that the choice of training period timing, and LSTM performance for the inputs played 601 

important roles. Future effort should include longer training periods to most robustly estimate the 602 

parameters.  603 

 604 
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When investigating the impact of multiple gages, rather than a single downstream-most gage (in model 605 

loss calculation and parameter updates), results were very similar in terms of NSE score and recovered 606 

Manning’s n parameters. We believe this may be because the JRB is a relatively small river network, so 607 

internal gage observations are highly correlated in discharge volume (m3/s) and fluctuation (storm event 608 

timing). Adding more gages could be useful if flows in different parts of the basin need to be accurately 609 

reported, but may be less important if only the downstream gage is of concern.  610 

 611 

Our approach, akin to a classical routing scheme, is modular --- the trained weights of the NN that 612 

generates n are not tied to a particular runoff model. Our work can be coupled to traditional models in 613 

multiple ways. Firstly, the trained network can be used to generate n for traditional models. In this way, 614 

no change is required on the part of the traditional models. Secondly, the neural network and the 615 

trained weights can be ported to other programming environments like Fortran. This makes it possible 616 

to use the trained parameterizations as a built-in module in continental-scale models (Greuell et al., 617 

2015; Johnson et al., 2019; Regan et al., 2018). An alternative approach is to lump both the routing and 618 

runoff simulations into one problem and optimize them together, as demonstrated in some other 619 

studies (Jia et al., 2021). In our case, this would mean that we would train both the runoff LSTM and the 620 

routing module together. In many big-data DL case studies, lumped models tend to have higher 621 

performance compared to a workflow that separates the tasks into multiple minor tasks. However, in 622 

our case here, this leads to coadaptation concerns. Moreover, our approach is modular so it can be 623 

easily coupled to other runoff models, e.g., a non-differentiable traditional model, or a differentiable 624 

one (Feng, Beck, et al., 2022; Feng, Liu, et al., 2022).  625 

 626 

4. Conclusions 627 

In this work, we used a combination of a pre-trained LSTM rainfall-runoff model and Muskingum-Cunge 628 

routing to create a learnable routing model, or, from the perspective of machine learning, a physics-629 

informed graph neural network. This model predicts streamflow in stem rivers and learn river 630 

parameters throughout a river network, which is urgently needed to improve the next-generation large-631 

scale hydrologic models. Because our framework is built on physical principles and estimates widely-632 

used n values, it can be easily ported to work with other models. For example, the trained NN and the 633 

weights can be loaded into Fortran or C programs to support traditional hydrologic models or routing 634 

schemes, e.g. (H. Li et al., 2013; Mizukami et al., 2016). Our synthetic experiments recovered the overall 635 

spatial pattern of n with moderate accuracy but could not recover the channel cross-sectional geometry 636 
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parameter (q). Furthermore, our synthetic experiments yielded promising results in recovering synthetic 637 

n and drainage area relationships, implying there is potential to learn reach-scale physics in the river 638 

network using differentiable modeling. 639 

 640 

With the real-world data, short-term training periods of downstream hydrographs can produce n 641 

parameterization that improve long-term routing results, but may be insufficient to constrain the n 642 

values more precisely than a general spatial pattern. Eight weeks of real-world data produced decent 643 

long-term streamflow routing and improved upon approaches that did not use routing, yet training on 644 

different periods could result in somewhat different distributions. When looking at the n vs drainage 645 

area distribution attained by our trained model against USGS observations, we found that the n values 646 

agreed with the literature bounds for the area, but the absolute magnitudes may fluctuate depending 647 

on the training period. Besides using longer training periods to obtain n values that compromise across 648 

periods, future work should also consider if n should be treated as dynamic in time. Further work can 649 

expand this analysis to other basins with different conditions (streams outside of the Ridge and Valley 650 

physiographic division of the CONUS) to see if the model can still identify their trends correctly. 651 

Reviewing the internal gage NSE scores over a full year of data showed a correlation between drainage 652 

area and the relative advantage of our routing scheme, highlighting the impacts of heterogeneity and 653 

flow convergence.  654 

 655 

 656 

Open Research 657 

The LSTM streamflow model code (Feng et al., 2020; Ouyang et al., 2021) relevant to this work can be 658 

accessed via Zenodo (Shen, Fang, et al., 2021). The differentiable routing model will be made available 659 

to reviewers upon a paper revision request, and a new Zenodo release will be published upon paper 660 

acceptance. All datasets used are publicly available, including the GAGES-II dataset (Falcone, 2011), 661 

NHDPlus (HorizonSystems, 2016), and NLDAS (Xia et al., 2012). Other data sources can be found in Table 662 

A1. 663 
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Appendix 944 

 945 
 946 

Figure A1: The synthetic parameter recovery of Manning’s n after each epoch run, with each colored line 947 

representing a different recovered value. (a) The initial value of n is set to 0.068 (b) the initial value of n 948 

is set to 0.271 949 

 950 

 951 
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Figure A2: Histograms visualizing the frequency, and variability, of Manning’s n values for all river 952 

reaches (582 total) for all eight GNN models. The lower bound is 0.01, while the upper bound contains 953 

all Manning’s n values >0.14. 954 

 955 

 956 

Figure A3: Results from q parameter recovery experiments. We tried to recover both constant and 957 

distributed parameters, but were unable to ever recover the synthetic truth.  958 

 959 

Table A1: The attributes and forcings used by the pre-trained LSTM to predict streamflow. Links to the 960 

data can be found below the table  961 

Attribute/Meteorological Forcing Unit Dataset Citation 

Mean Elevation m SRTMGL1 (Carabajal & 
Harding, 2006) 

Mean Slope unitless SRTMGL1 (Carabajal & 
Harding, 2006) 
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Basin Area km2 SRTMGL1 (Carabajal & 
Harding, 2006) 

Dominant Land Cover Class MODIS (Friedl & Sulla-

Menashe, 

2019) 

Dominant Land Cover Fraction Percent MODIS (Friedl & Sulla-

Menashe, 

2019) 

Forest Fraction Percent MODIS (Friedl & Sulla-

Menashe, 

2019) 

Root Depth (50) m MODIS (Friedl & Sulla-

Menashe, 

2019) 

Soil Depth m MODIS (Friedl & Sulla-

Menashe, 

2019) 

Ksat (0-5) log10(cm/
hr) 

POLARIS (Chaney et al., 

2019) 

Ksat (5-15) log10(cm/
hr) 

POLARIS (Chaney et al., 

2019) 

Theta s (0-5) m3/m3 POLARIS (Chaney et al., 

2019) 

Theta s (5-15) m3/m3 POLARIS (Chaney et al., 

2019) 

Theta r (5-15) m3/m3 POLARIS (Chaney et al., 

2019) 

Ksat average (0-15)  log10(cm/
hr) 

POLARIS (Chaney et al., 

2019) 

Ksat e (0-5) cm/hr POLARIS (Chaney et al., 

2019) 
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Ksat e (5-15) cm/hr POLARIS (Chaney et al., 

2019) 

Ksat average e (0-15)  cm/hr POLARIS (Chaney et al., 

2019) 

Theta average s (0-15) em3/m3 POLARIS (Chaney et al., 

2019) 

Theta average r (0-15) em3/m3 POLARIS (Chaney et al., 

2019) 

Porosity Percent GLHYMPS (Huscroft et al., 

2018) 

Permeability Permafrost m2 GLHYMPS (Huscroft et al., 

2018) 

Permeability Permafrost (Raw) m2 GLHYMPS (Huscroft et al., 

2018) 

Major Number of Dams Unitless GAGES-II (Falcone, 2011) 

General Purpose of Dam Unitless National 
Inventory of 
Dams (NID) 

(US Army Corps 
of Engineers, 
2018) 

Max of Normal Storage Acre-ft National 
Inventory of 
Dams (NID) 

(US Army Corps 
of Engineers, 
2018) 

Standard Deviation of Normal Storage Unitless National 
Inventory of 
Dams (NID) 

(US Army Corps 
of Engineers, 
2018) 

Number of dams within river (2009) Unitless  GAGES-II (Falcone, 2011) 

Normal Storage (2009) Acre-ft National 
Inventory of 
Dams (NID) 

(US Army Corps 
of Engineers, 
2018) 

Precipitation hourly total kg/m2 NLDAS2 (Xia et al., 
2012) 

Surface downward longwave radiation W/m2 NLDAS2 (Xia et al., 
2012) 
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Surface downward shortwave radiation W/m2 NLDAS2 (Xia et al., 
2012) 

Pressure Pa NLDAS2 (Xia et al., 
2012) 

Air Temperature K NLDAS2 (Xia et al., 
2012) 

 962 

SRTMGL1:  https://doi.org/10.14358/PERS.72.3.287 963 

MODIS: https://modis.gsfc.nasa.gov/data/dataprod/mod12.php 964 

POLARIS: https://doi.org/10.1029/2018WR022797  965 

GLHYMPS: https://doi.org/10.5683/SP2/DLGXYO 966 

NID: https://nid.usace.army.mil/ 967 

NLDAS2: https://ldas.gsfc.nasa.gov/nldas/v2/forcing 968 

 969 

Table A2: The constant attributes (c) used by the MLP to predict n and q: n,q = NN(c). 970 

Attribute Unit 

Reach Width m 

Average-Reach Elevation m  

Slope m/m  

Reach Area km2 

Total Drainage Area km2 

Reach Length m 

Sinuosity m/m 

Bank Elevation m 

 971 

Table A3: The Σ Q` (𝜏 = 9) NSE scores for all eight training time periods for the most downstream gage. 972 

Since Q` routing is a pure forward simulation using the trained LSTM, we report the NSE values for each 973 

period.  974 

 975 

 
 
 
 

Periods 

2001a 
 
 

2001b 
 
 

2005a 
 
 

2005b 
 

2007a 
 
 

2007b 
 

2008a 
 
 

2008b 
 
 

NSE 0.5958 0.3534 -0.7868 -0.1687 0.6830 0.0558 -0.4297 0.3792 

https://modis.gsfc.nasa.gov/data/dataprod/mod12.php
https://doi.org/10.1029/2018WR022797
https://doi.org/10.5683/SP2/DLGXYO
https://nid.usace.army.mil/
https://ldas.gsfc.nasa.gov/nldas/v2/forcing
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Abstract 14 

Recently, rainfall-runoff simulations in small headwater basins have been improved by methodological 15 

advances such as deep neural networks (NNs) and hybrid physics-NN models --- particularly, a genre 16 

called differentiable modeling that intermingles NNs with physics to learn relationships between 17 

variables. However, hydrologic routing, necessary for simulating floods in stem rivers downstream of 18 

large heterogeneous basins, had not yet benefited from these advances and it was unclear if the routing 19 

process can be improved via coupled NNs. We present a novel differentiable routing model that mimics 20 

the classical Muskingum-Cunge routing model over a river network but embeds an NN to infer 21 

parameterizations for Manning’s roughness (n) and channel geometries from raw reach-scale attributes 22 

like catchment areas and sinuosity. The NN was trained solely on downstream hydrographs. Synthetic 23 

experiments show that while the channel geometry parameter was unidentifiable, n can be identified 24 

with moderate precision. With real-world data, the trained differentiable routing model produced more 25 

accurate long-term routing results for both the training gage and untrained inner gages for larger 26 

subbasins (>2,000 km2) than either a machine learning model assuming homogeneity, or simply using 27 

the sum of runoff from subbasins. The n parameterization trained on short periods gave high 28 

performance in other periods, despite significant errors in runoff inputs. The learned n pattern was 29 

consistent with literature expectations, demonstrating the framework’s potential for knowledge 30 

discovery, but the absolute values can vary depending on training periods. The trained n 31 

parameterization can be coupled with traditional models to improve national-scale flood simulations.  32 

 33 

Main points: 34 

1. A novel differentiable routing model can learn effective river routing parameterization, 35 

recovering channel roughness in synthetic runs. 36 

2. With short periods of real training data, we can improve streamflow in large rivers compared to 37 

models not considering routing. 38 

3. For basins >2,000 km2, our framework outperformed deep learning models that assume 39 

homogeneity, despite bias in the runoff forcings.  40 

mailto:cshen@engr.psu.edu
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1. Introduction 41 

 42 

Riverine floods pose a major risk to human safety and infrastructure (Douben, 2006; François et al., 43 

2019; International Panel on Climate Change (IPCC), 2012; Koks & Thissen, 2016) and are linked to 44 

stream channel characteristics. Riverine floods along large stem rivers occur when the peak flow rate 45 

exceeds the stem river conveyance capacity. The timing of flood convergence and peak flood rates are 46 

influenced by the channel’s geometries and flow resistance properties (Candela et al., 2005; Kalyanapu 47 

et al., 2009). In recent years, we have witnessed many deadly riverine floods, e.g., in the Mississippi 48 

River, USA (Rice, 2019) and India (France-Presse, 2022), with such disasters expected to rise significantly 49 

based on future climate projections (Dottori et al., 2018; Prein et al., 2017; Winsemius et al., 2016). The 50 

ability to better account for flood convergence and streamflow processes is urgently needed to help us 51 

better inform society of stem river flood magnitudes and timing.  52 

 53 

In hydrologic modeling, routing describes how the stream network conveys runoff downstream while 54 

accounting for mass balances and the speed of flood wave propagation (Mays, 2010). Most routing 55 

models are based on the principle of continuity (or mass conservation) but they differ in how the 56 

momentum equation or flow velocity is calculated. For example, the widely-applied Muskingum-Cunge 57 

(MC) (Cunge, 1969) routing method is a center-in-space center-in-time finite difference solution to the 58 

continuity equation, assuming a prismatic flood wave as the constitutive relationship to simplify the 59 

momentum equation. In some other cases, the momentum equation is solved in conjunction with the 60 

continuity equation (Ji et al., 2019) with a range of simplifying assumptions, e.g., ignoring inertia (Shen & 61 

Phanikumar, 2010), ignoring both inertia and pressure gradient (only slope remaining) (Mizukami et al., 62 

2016), or including additional formulations to handle effects of scale, e.g., Li et al. (2013). In each case, 63 

these models have parameters that need to be determined from lookup tables or calibration, e.g., 64 

roughness parameters that serve as resistance to flow. 65 

 66 

Although routing parameters often rank among the important ones for discharge simulation (Khorashadi 67 

Zadeh et al., 2017; L. Liu et al., 2022), they been difficult to parameterize at large scales, especially in a 68 

way to both sensibly represent basin-internal spatial heterogeneity and adapt to discharge data. Using 69 

traditional roughness values tabulated for various land covers (Arcement & Schneider, 1989) requires in-70 

situ scouting, e.g., to determine if channels have pools, weeds, grass, etc., which is currently impractical 71 

for large-scale applications. Many calibration exercises (Khorashadi Zadeh et al., 2017; L. Liu et al., 2022; 72 
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Mizukami et al., 2016) have used only one set of parameters for an entire basin, neglecting fine-scale 73 

spatial heterogeneity in river-reach characteristics. Some studies have employed Manning’s roughness, 74 

n (a coefficient representing a channel’s resistance to flow), as a linear function of river depth or other 75 

characteristics (Getirana et al., 2012; H.-Y. Li et al., 2022), but it is unclear if these relationships 76 

accurately represent the available data.  77 

 78 

While the accuracy of basin rainfall-runoff models has improved substantially in recent years with 79 

machine learning (ML) (Adnan et al., 2021; Feng et al., 2020; Kratzert et al., 2019; Sun et al., 2022; Xiang 80 

et al., 2020), these methods have not been applied to routing modules in order to benefit the simulation 81 

of stem river floods. Neural networks (NNs) like long short-term memory (LSTM), GraphWaveNet (Sun et 82 

al., 2021), or convolutional networks (Duan et al., 2020) have demonstrated their prowess in learning 83 

hydrologic dynamics from big data. They are applicable not only to streamflow hydrology but also to 84 

variables across the entire hydrologic cycle (Shen, Chen, et al., 2021; Shen & Lawson, 2021) such as soil 85 

moisture (Fang et al., 2017, 2019; J. Liu et al., 2022; O & Orth, 2021), groundwater (Wunsch et al., 2022), 86 

snow (Meyal et al., 2020), longwave radiation (Zhu et al., 2021), and water quality parameters like water 87 

temperature, dissolved oxygen and nitrogen (He et al., 2022; Hrnjica et al., 2021; Lin et al., 2022; 88 

Rahmani, Lawson, et al., 2021; Saha et al., 2023; Zhi et al., 2021). However, these approaches are mostly 89 

suitable for relatively homogeneous headwater basins; spatial heterogeneities in forcings and basin 90 

characteristics are generally not well represented in these approaches. In our previous studies we 91 

observed that large basins often turned out to have poorer performance for LSTM models. The routing 92 

module is the key component that allows us to consider how runoff from heterogeneous subbasins 93 

converge and contribute to the stem river floods, and could be extended to support reactive transport 94 

modeling in the river network. 95 

 96 

A recent development in integrating ML with physical understanding is the use of differentiable, physics-97 

informed machine learning models, which can approach the performance of purely data-driven ML 98 

models but also provide interpretable fluxes and states (Feng, Liu, et al., 2022). "Differentiable” models 99 

can rapidly and accurately compute the gradients of the model outputs with respect to any input, 100 

enabling the combined training of NNs to approximate complex or unknown functions from big data 101 

while keeping physical priors. Such models can be simply supported by automatic differentiation (AD), 102 

which tracks each elementary operation of tensors through the use of a computational graph, then uses 103 

derivative rules to compute the gradient of each tensor operation (Baydin et al., 2018). This enables 104 
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hybrid frameworks to learn and incorporate complex and potentially unknown functions from big data 105 

while retaining physical formulations. By connecting deep networks to reimplemented process-based 106 

models (or their NN surrogates), Tsai et al. (2021) developed a NN-based parameterization pipeline that 107 

infers physical parameters for process-based models. Differentiable models can also extrapolate better 108 

in space and time than purely data-driven deep networks (Feng, Beck, et al., 2022). These methods are 109 

also applicable to estimating parameters in ecosystem modeling (Aboelyazeed et al., 2022), and allow us 110 

to flexibly discover variable relationships within the model based on big data, enabling improved 111 

transparency compared to standard deep learning models.  112 

 113 

Nevertheless, it was unclear if differentiable modeling could effectively learn relationships in a highly 114 

complex river network, which convolves and integrates processes over large scales and thus render 115 

small-scale processes unidentifiable. The river network forms a hierarchical graph, which is not unlike 116 

the graph networks for applications like social recommendations (Fan et al., 2019), but with a 117 

predefined spatial topology (due to a fixed river network) and a converging cascade. A complex river 118 

graph can have many nodes, which, when coupled with many time steps, could potentially lead to a 119 

training issue known as the vanishing gradient (Hochreiter, 1998), where the gradients with respect to 120 

the parameters are vanishingly small and the system becomes very difficult to train. Moreover, runoff 121 

data (required as an input for routing) are generally not available seamlessly for all subbasins and must 122 

be estimated by models, but models for runoff could incur substantial errors. It was unclear if the 123 

routing parameters could be learned, given such errors. It was further unclear if downstream discharge 124 

data alone has enough information to enable learning of reach-scale relationships. In other words, a 125 

reach-scale relationship may or may not be identifiable using downstream observations which integrate 126 

the signals from the entire catchment area.  127 

 128 

In this work, we developed a novel differentiable modeling framework to perform routing and to learn a 129 

“parameterization scheme” (a systematic way of inferring parameters from more rudimentary 130 

information) for routing flows on the river network. Such a physically-based routing method has never 131 

been combined with NNs before. A NN-based parameterization scheme for Manning’s n and river 132 

bathymetry shape (q) is integrated with MC routing and is applied throughout the river network to 133 

provide improved understanding of both the model and the modeled system. We designed synthetic 134 

and real data experiments to answer the following research questions: 135 
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1. Given substantial errors with estimated runoff as inputs to the routing module, can we learn 136 

effective routing parameterization schemes that can produce reliable results for long-term 137 

simulations in large river networks? 138 

2. Does the learned parameterization perform well for both trained and untrained internal gages 139 

and how does the performance vary as a function of basin area? 140 

3. Do short periods of downstream discharge contain sufficient information to train a reliable 141 

parameterization scheme or to identify the parameterization for channel roughness and 142 

hydraulic geometries? 143 

 144 

2. Data and Methods 145 

2.1 Overview 146 

As an overview, we describe a differentiable model that routes runoff through a river network (or 147 

“graph” in the ML terminology) similar to the traditional Muskingum-Cunge (MC) method. But unlike the 148 

traditional MC, our differentiable model is able to incorporate and train neural networks to provide 149 

reach-scale parameterization. This new routing model can be perceived as a physics-informed graph 150 

neural network (GNN) from an ML perspective. The nodes of the graph are spaced ~2000 m apart to 151 

ensure stability. We trained an embedded a Multilayer Perceptron (MLP) NN to generate spatially-152 

distributed river parameters for each reach (or “edge” in the GNN terminology) in the river network 153 

(Figure 1b). The loss function (the model’s goal is to minimize the output of this) was calculated at the 154 

furthest downstream node of the graph. To disentangle rainfall-runoff (required information for routing) 155 

from the routing processes, lateral inflow of combined overland and groundwater flow was obtained 156 

from a pre-trained LSTM streamflow prediction model (reported in previous work). The runoff values 157 

were then disaggregated to hourly time steps via interpolation and routed throughout the river network 158 

using the proposed differentiable routing model (Figure 1a). We provide the details in the subsections 159 

that follow. 160 

 161 
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162 

 163 
 164 

Figure 1: (a) An abstract overview of how inputs move through our workflow to eventually be run 165 

through the differentiable MC function. MC utilizes lateral flow inputs based on LSTM predictions, NN 166 

predicted river parameters n and q, and other river attributes to generate predictions. (b) An illustration 167 

of how we traverse the graph (dark blue circles) using MC to make a discharge prediction for the final 168 

node (orange circle). 169 

 170 
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2.2 The River Graph 171 

We constructed a river network (or graph) for the Juniata River Basin (JRB) in the northeastern United 172 

States (Figure 2), by processing the United States Geological Survey’s (USGS’s) National Hydrography 173 

Dataset (NHDplus v2) (HorizonSystems, 2016; Moore & Dewald, 2016) which provide topology and some 174 

attributes of the river reaches such as upstream catchment area. We ensured stability of the MC scheme 175 

by discretizing the river network into approximately 2-km reaches, resulting in 544 junction points (or 176 

nodes) and 582 river reaches (or edges). These reaches are where the physical parameters like 177 

Manning’s roughness and channel shape coefficients are defined. To reduce computational demand, we 178 

selected a subset of NHDplus v2 river reaches based on a stream density threshold (total stream 179 

length/watershed area), choosing rivers with the longest length until a stream density of 0.2 km/km2 180 

was reached. We then calculated slope and sinuosity for the reaches by overlaying NHDplus v2 with 10-181 

m resolution digital elevation data (USGS ScienceBase-Catalog, 2022). Prior work describes the bulk of 182 

the extraction procedure that prepares input data for a physically-based surface-subsurface processes 183 

model (Ji et al., 2019; Shen et al., 2013, 2014, 2016; Shen & Phanikumar, 2010).  184 

 185 

The hydrograph at the furthest downstream JRB gage, USGS gage 01563500 (node 4809 in our graph) on 186 

the Juniata River at Mapleton Depot, PA, was chosen as the training target (Figure 2a). This gage has a 187 

catchment area of 5,212 km2 contributed from the 582 simulated reaches upstream. Seven USGS gages 188 

are located upstream of this node which enables further validation of the simulations. 189 

 190 
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191 

 192 
 193 

 194 

Figure 2: (a) A map of the Juniata River Basin’s (JRB’s) river network and HUC10 watersheds. Each eight-195 

digit number corresponds to a USGS gage. (b) A histogram showing the distribution of HUC10 196 

watersheds in the JRB. The x-axis shows the distribution of the HUC10 watershed area in square 197 

kilometers. The left y-axis shows the number of HUC10s that fall within the area ranges (corresponding 198 

with the blue bars), and the right y-axis shows a cumulative density function (CDF) distribution of the 199 

areas, corresponding with the red dashed line. 200 

 201 
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2.3 Implementing River Routing with Muskingum-Cunge 202 

2.3.1 Muskingum-Cunge 203 

The Muskingum-Cunge (MC) method is a widely-used flood routing technique that combines the 204 

Muskingum storage routing concept  with the continuity and momentum equation for a river reach 205 

(Cunge, 1969), solved using a center-in-space, center-in-time finite difference scheme for each reach, at 206 

time steps t and t+1:  207 

 𝑄𝑡+1 = 𝑐1𝐼𝑡+1 + 𝑐2𝐼𝑡 + 𝑐3𝑄𝑡 + 𝑐4𝑄′ (1) 

 
𝑐1 =

Δ𝑡 − 2𝐾𝑋

2𝐾(1 − 𝑋) + Δ𝑡
 

(2) 

 
𝑐2 =

Δ𝑡 + 2𝐾𝑋

2𝐾(1 − 𝑋) + Δ𝑡
 

(3) 

 
𝑐3 =

2𝐾(1 − 𝑋)–  𝛥𝑡

2𝐾(1 − 𝑋) + 𝛥𝑡
 

(4) 

 
𝑐4 =

2𝛥𝑡

2𝐾(1 − 𝑋) + 𝛥𝑡
 

(5) 

Where 𝐼𝑡 and 𝑄𝑡 are the inflow and outflow of the reach at time step t, respectively, and 𝐼𝑡+1 and  𝑄𝑡+1 208 

are the inflow and outflow at the next time step, t+1. K represents travel time based on reach length 209 

and wave celerity, X is a dimensionless inflow/outflow weighing parameter, and Q’ represents lateral 210 

inflow of the incremental catchment area of the reach, and can also include tributary inflows. We 211 

adopted the simple linear form of the Muskingum equation: X is constant and K= 𝛥𝑥/𝑣  where 𝛥𝑥 is 212 

length of the reach and 𝑣 is the discharge velocity (m/s) of the current time step. More complex 213 

nonlinear forms of the MC equation could be tested in the future (Mays, 2019). To simulate a river 214 

network, we divide the network into a series of reaches to route the flow of water from upstream to 215 

downstream. The outflow from a reach is the inflow of the next downstream reach. 216 

 217 

2.3.2 MC parameter values and variable channel dimensions  218 

To implement MC, we chose an hourly time step (Δt) and a weighing coefficient (X) of 0.3, which was 219 

based on regional expectations, for Equations 2-5. Since discharge velocity v and stream top width w 220 

vary over time, they need to be updated in each time step with respect to discharge Q, which was done 221 

here with the help of a constitutive relationship used to close the equations. For this, because at-a-site 222 
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hydraulic geometries (Gleason, 2015; Leopold & Maddock, 1953) leads to a power-law relation between 223 

top width (w [m]) and depth (d [m]), we can assume such a relationship:  224 

 𝑤 = 𝑝𝑑𝑞 (6) 

where p [m] and q [-] are linear and exponential parameters, respectively, that are potentially spatially 225 

heterogeneous and represent the shape of the channel’s cross-sectional area. For a rectangular channel, 226 

q=0, and for a triangular channel, q=1. The cross-sectional area 𝐴𝐶𝑆 is the integral of w with respect to d 227 

(Equation 7). To simplify the task (and because it is not sensitive based on our observations), we 228 

assumed p=21 based on preliminary data fitting to USGS hydraulic geometries from field surveys of 229 

gages in the JRB. Note that even though we make this assumption here for model completeness, we do 230 

not posit that q is invertible from available data because it may not be that significant for the 231 

downstream discharge. Moving forward with these assumptions, we can write these relationships as 232 

Equation 7: 233 

 
𝐴𝐶𝑆 = ∫ 𝑤

𝑑

0

𝜕𝑑 = ∫ 𝑝𝑑𝑞
𝑑

0

𝜕𝑑 =
𝑝𝑑𝑞+1

𝑞 + 1
 

(7) 

Combining Equation 7 with Manning’s n Equation, we come up with Equation 8a. Reorganizing, we 234 

derive a function that estimates d from Q (Equation 8b). With d, p, and q, we can estimate v and K using 235 

the linear form of Muskingum equation as in Equations 7, 8c, and 8d which close the equations.  236 

 

 𝑄 = 𝑣𝐴𝐶𝑆 =
1

𝑛
𝑅2/3𝑆0

1
2

𝑝𝑑𝑞+1

𝑞 + 1
=

𝑝𝑑𝑞+
5
3𝑆0

1
2

𝑛(𝑞 + 1)
     

(8a) 

 

 𝑑 = [
𝑄𝑡𝑛(𝑞 + 1)

𝑝𝑆0

1
2

]

3
5+3𝑞

 

(8b) 

 
 𝑣 =

𝑄𝑡

𝐴𝐶𝑆
     

(8c) 

 
 𝐾 =

∆𝑥

𝑣
 

(8d) 

Here, S0 represents the reach slope, 𝑄𝑡 represents the discharge exiting the reach at time t, and ∆𝑥 is 237 

the reach length.   238 

 239 

2.3.3 Differentiable modeling   240 
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By implementing MC on a differentiable coding platform (PyTorch, Tensorflow, Julia, etc.), we can train a 241 

coupled NN in an “online” way to produce physical reach-scale river parameters for the routing model, 242 

much like our earlier work in differentiable parameter learning (dPL) (Tsai et al., 2021). Here we include 243 

a NN into the MC routing framework to optimize equation parameters based on big data while 244 

maintaining physical consistency and mass balances. In this case, a Multilayer Perceptron (MLP) (Leshno 245 

et al., 1993) is incorporated. The MLP, featuring two hidden layers and a sigmoid activation function in 246 

the output layer, accepts a normalized array of attributes (𝑐) for each reach (Table A2). Based on initial 247 

results, we saw no need to add further complexity (additional hidden layers). The network then outputs 248 

the Manning's roughness coefficient (n) and channel bathymetry shape coefficient (q): 249 

 𝑛, 𝑞 = 𝑁𝑁(𝑐) (9) 

where n represents a channel’s resistance to flow and q represents the shape of the channel’s cross-250 

sectional area. These parameters are inferred for each reach using the attributes of that reach prior to 251 

routing, since we assumed n and q to be time-invariant. This produces r number of n and q values 252 

specific to each reach for all timesteps where r is the number of river reaches. The weights of the MLP 253 

are updated using backpropagation and the Adam optimizer (Kingma & Ba, 2017). 254 

 255 

2.4 Lateral streamflow inputs 256 

Since spatially-distributed runoff is needed to predict runoff in downstream basins, but there is no such 257 

data, we employed a pretrained LSTM (Hochreiter & Schmidhuber, 1997) rainfall-runoff model. This 258 

LSTM model was similar to those developed and reported in previous streamflow and water quality 259 

studies (Feng et al., 2020; Ouyang et al., 2021; Rahmani, Lawson, et al., 2021; Rahmani, Shen, et al., 260 

2021), and we refer the reader to these publications for a more detailed description of these models. 261 

After the initial training was done, we chose not to further update the LSTM in order to disentangle the 262 

rainfall-runoff and routing parts of the modeling process, testing the robustness of the methodology in 263 

the face of errors with simulated runoff. In addition, the test could tell us if other rainfall-runoff models 264 

could be used instead. Updating LSTM further could lead to its co-adaptation with the routing module, 265 

making the procedure complex.  266 

 267 

To briefly summarize, the LSTM model used a combination of basin-averaged attributes, daily 268 

meteorological forcings, and volumetric streamflow observations as inputs, and output daily basin 269 

discharge. Meteorological forcings (total annual precipitation, downward long-wave radiation flux, 270 
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downward short-wave radiation flux, pressure, temperature) were obtained from the NASA NLDAS-2 271 

Forcing Data set (Xia et al., 2009, 2012). We selected 29 basin attributes (Table A1 in the Appendix) 272 

similar to those chosen in previous LSTM studies (Ouyang et al., 2021). Consistent with Ouyang et al. 273 

(2021), we focused on training the LSTM on 3213 gages selected from the USGS Geospatial Attributes of 274 

Gages for Evaluating Streamflow II (GAGES-II) dataset (Falcone, 2011) with input data between 275 

1990/01/01 - 1999/12/31. We developed the workflow to obtain forcing data and inputs seamlessly for 276 

any small basin in the conterminous United States (CONUS). In this case, we extracted data from HUC8 277 

subbasins and HUC10 watersheds to gather inputs to train our LSTM model and predict discharge, 278 

respectively.   279 

 280 

When evaluated on the gaging stations in the study area, the model achieved a median daily Nash-281 

Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970) of 0.7849 for the eight gauging stations in the JRB. 282 

After training during the period of 1990/01/01 – 1999/12/31, the model was run from 2000/01/01-283 

2009/12/31 to predict discharge for the 17 HUC10 watersheds in the study area:  284 

 𝑄′ = 𝐿𝑆𝑇𝑀(𝑥𝐻𝑈𝐶10, 𝐴𝐻𝑈𝐶10) (10) 

where Q’ [m3/s] is the daily runoff for the HUC10 basin, and xHUC10 and AHUC10 are HUC10-averaged 285 

atmospheric forcings and static attribute variables, respectively. Lastly, we computed a mass transfer 286 

matrix, which tabulates the fraction of a subbasin draining into a river reach. Each row of the matrix is 287 

obtained by dividing the incremental catchment area of reaches inside a subbasin by the total area of 288 

that subbasin. Runoff can be distributed to river reaches via a simple matrix multiplication.  289 

 290 

Due to the nature of the data used to train the LSTM, it could produce seamless (having no gaps) runoff 291 

estimates for the JRB but only on a daily, not hourly, scale. Because MC routing needs to operate on 292 

smaller time steps, we quadratically interpolated (Virtanen et al., 2020) daily data into hourly time steps, 293 

where each daily measurement occurs at 12:00 hours. For training and evaluating the routing model, we 294 

collected observed discharge data for nodes intersecting USGS GAGES-II monitoring stations. Only some 295 

time periods of the most downstream gage station were used for training, and other stations were only 296 

used for evaluation. The observed discharge data were similarly disaggregated to hourly data. 297 

 298 
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2.5 Inverse-routing and hyperparameters   299 

There are time zone differences between the forcing data (recorded using UTC) and USGS streamflow 300 

(recorded in UTC-5). To address this, we first shifted the LSTM-produced runoff outputs by 5 hours.  301 

Because LSTM was trained to predict runoff at the outlet of a basin, with catchment area being an 302 

impactful input to the model, it already implicitly considers the time of concentration to the outlet. 303 

However, as our modeled river network extends into the subbasins and contains smaller rivers, the 304 

routing module explicitly simulates the within-basin concentration process. Ideally, we can use an 305 

inverse-routing approach to revert LSTM-predicted runoff to the time before it enters the river network. 306 

However, as inverse-routing methods (Pan & Wood, 2013) can be quite involved and were not the focus 307 

of the study, we opted for a simple approach that shifted the runoff back in time by 𝜏 hours. 𝜏 is 308 

considered a hyperparameter. To avoid overfitting, we used the same 𝜏 value for all the subbasins and 309 

all experiments, and determined this value by manually tuning based on the training period. We found 310 

𝜏 = 9 (hours) to be a good choice.  More complicated procedures could be employed in the future, but 311 

this straightforward approach proved to be effective in our case. 312 

 313 

Hyperparameters and training period sizes for our differentiable routing model were chosen through 314 

repetitive trial and error based on the training period. These trials led us to choose a hidden size of 6 for 315 

our MLP, and a training size of eight weeks. Parameters were tuned for 50 epochs for synthetic and real 316 

data experiments. Mean Squared Error (MSE) was chosen as our loss function. Since our differentiable 317 

model at t=0 assumes no inflow to the river network and relies exclusively on Q’ for flow inputs, a period 318 

of 72 hours is employed to “warm up” the model states in the river network, and the loss function and 319 

NSE are not calculated within this period. 320 

 321 

2.6 Experiments 322 

2.6.1 Synthetic Parameter Recovery 323 

We first ran multiple synthetic parameter recovery experiments to check if the dataset and the 324 

framework could indeed recover assumed relationships with small training periods of eight weeks. Our 325 

first experiment tested if we could correctly recover a single, spatially-constant set of assumed values 326 

for both n and q for the whole river network, resulting in only two degrees of freedom. We assumed 327 

ranges from 0.01 – 0.3 and 0-3 for the synthetic values of n and q, respectively, to give a realistic value 328 

range for the MLP to learn parameters. n and q model parameters were initialized to be at the 90th and 329 

20th percentiles for the first and second set of synthetic experiments, respectfully.  330 
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 331 

In our second experiment, we assumed constant n throughout the reaches but set the trained model as 332 

n,q = NN(c) (Equation 9) so that the n, q values could be different from reach to reach. In this case, 333 

ideally, the NN would learn to output a constant value regardless of the inputs.  334 

 335 

Our third synthetic experiment examined if we could retrieve simple assumed relationships within 336 

realistic literature bounds (inverse-linear or power-law) [Equation 9-10] between n, q, and drainage area 337 

(DA), given that the MLP had far more inputs than just DA. The trained model is still utilizing Equation 9, 338 

as we assumed we did not know the functional relationship a priori.  339 

  𝑛 = 0.06 − 8 × 10−6(𝐷𝐴) 

𝑞 = 2 − 0.00018(𝐷𝐴)  

(11) 

 
𝑛 =

0.0915

(𝐷𝐴)0.131 

𝑞 =
2.1

(𝐷𝐴)0.357 

(12) 

2.6.2 Observational Data Experiments. 340 

We trained our differentiable model (updating the weights in NN as in equation 6) against observed 341 

USGS data. We utilized eight-week training periods from different years and checked whether the 342 

resulting parameters led to satisfactory routing in other years at both the training gage and untrained, 343 

inner, gages. Training periods were selected based on times when the LSTM had high accuracy and when 344 

there were frequent discharge peaks. Routing frequently fluctuating discharge through a river network 345 

introduces more variance into the MLP, allowing it to perform better when testing over a longer time 346 

period. Additionally, high LSTM accuracy reduces the noise --- we hypothesize the system has some 347 

tolerance to the runoff errors but outsized errors can invalidate the model. Periods of such “high 348 

flashiness” in the JRB occurred during both 02/01-03/29 and 11/01-12/26, while the years 2001, 2005, 349 

2007, and 2008 had high LSTM accuracy, giving us eight time periods on which to train NN models. We 350 

then trained the differentiable routing models on all eight selected time periods to determine the 351 

sensitivity of the model performance to the selected training time period. 352 

 353 

When interpreting model performance at inner gages, we compared results with the LSTM that modeled 354 

the whole JRB as a uniform basin and a simple summation of the 𝜏-shifted LSTM runoff inputs (Q’). We 355 

also explored whether using a combination of inner gages, along with the furthest downstream gage, 356 
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inside of the loss function would improve model performance on all gages throughout the study area. 357 

The gages used were USGS 01560000 (edge 1053) and 01563200 (edge 2689). Internal gages were 358 

selected based on NSE metrics when using only the furthest-downstream gage in the loss calculation; we 359 

chose basins with middle-level metrics so as to not overfit the model if using highly predictive internal 360 

gages. 361 

  362 

3. Results and Discussion 363 

In the following, we first discuss our synthetic experiments (Section 3.1) which explore our routing 364 

framework’s potential to retrieve assumed parameters from our differentiable GNN. Next, we show the 365 

results of confronting our model with LSTM-simulated runoff as observed streamflow at the furthest 366 

downstream gage, expanding the training period to other time ranges, then applying our models to 367 

different years for observation (Section 3.2). Furthermore, we discuss the stability of our trained models 368 

over several years of testing (Section 3.3). Lastly, we analyze the n parameters recovered for the trained 369 

models and discuss their implications (Section 3.4). 370 

 371 

3.1 Synthetic experiments 372 

Our first synthetic experiment (with constant parameters and only 2 degrees of freedom for the search) 373 

recovered the assumed n values with moderate accuracy, but not the channel geometry parameter q 374 

(Table 1). Recovered n values were within a small range of the assumed ones, with minor fluctuations, 375 

while recovered q values mostly stayed similar the initial guesses, showing slight changes after a number 376 

of iterations. This result was consistent across 10 runs, each with different "synthetic truth" values for n 377 

and q. The training led n to the assumed values rapidly, typically within 20 epochs (Figure A1). The non-378 

identifiability of q was likely because q has only a small influence on the storage capacity of the stream 379 

and the simulated discharge is not sensitive to q, making dL/dq (where L is the loss function) negligible. 380 

While it is a pity that hydraulic geometry parameters cannot be estimated, the results also implied that 381 

they would not influence the routing results noticeably. Thus, in our efforts, we focused on n.  382 

Table 1: Results from the constant synthetic n and q parameter recovery experiments 383 

 
Run 

n q 

Initial 
Guess 

Synthetic 
Truth 

Recovered 
Parameter 

Initial 
Guess 

Synthetic 
Truth 

Recovered 
Parameter 

1 0.271 0.03 0.028 2.7 2 2.327 
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2 0.271 0.04 0.035 2.7 2 2.37 

3 0.271 0.05 0.046 2.7 2.5 2.390 

4 0.271 0.06 0.059 2.7 2.5 2.456 

5 0.271 0.07 0.070 2.7 3 2.480 

6 0.068 0.03 0.030 0.6 1.0 0.574 

7 0.068 0.04 0.042 0.6 1.0 0.592 

8 0.068 0.05 0.055 0.6 1.5 0.730 

9 0.068 0.06 0.067 0.6 1.5 0.777 

10 0.068 0.07 0.087 0.6 2.5 0.690 

 384 

Our second synthetic experiment (assuming constant n to be recovered by NN(A)) showed that we were 385 

able to recover the constant value that was set using an NN, but there was some scattering for the 386 

headwater reaches (Figure 3c, 3f). We noticed trends associated with drainage area (DA), which is 387 

correlated with reach positioning in the watershed; small DA often indicates a headwater reach, while 388 

large DA often indicates a reach much further downstream. There were some visible differences 389 

between the synthetic hydrographs resulting from different assumed n values (comparing Figures 3a 390 

and 3c), which allowed the recovered n values to mostly center around the assumed value. However, 391 

the scattering of points toward the lower-DA part of Figures 3b and 3d alluded to the fact that the 392 

downstream discharge was strong enough to completely constraint on the model. n in different ranges 393 

can fluctuate around the mean to generate essentially the same pattern as a constant n value. 394 

 395 

In our third set of synthetic experiments, the simple functions could be roughly recovered for most of 396 

the reaches, while there may have been increased uncertainty for the furthest downstream reaches 397 

(Figure 3f & 3h). There were again noticeable differences in the hydrographs (Figures 3e & 3g) from 398 

previous ones.  When the power-law relationship was assumed, the hydrograph matched the synthetic 399 

one almost completely (Figure 3e), and the estimated n outputs from the MLP overlapped to a great 400 

extent with the value to be retrieved (Figure 3f). The headwater reaches (small-DA) showed a rapid 401 

decline in n with respect to increasing DA. In the middle ranges of DA, the curve followed the assumed 402 

one almost exactly. Toward the higher range of DA, the recovered values were lower than the assumed 403 

relationship, but the deviation was not huge because the power-law formulation became flat in this 404 
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range. Based on the closeness of hydrographs in all of Figure 3, we do not anticipate that further 405 

optimization can bring significant improvement to the estimations. Similar to the two-constant-406 

parameter retrieval experiment, the q parameter was not recoverable and thus is not shown here. 407 

 408 

Based on these simple experiments, it seems training on the river graphs has some promise but also 409 

some limitations. It is promising because it is likely that n is related to DA which is, to some extent, 410 

recoverable. It is simultaneously challenging because, as a large number of reaches contribute to one 411 

gage, it is an underdetermined system. This method was not able to fully reproduce the drastic change 412 

in the low-DA range presumably because this sharp slope was inconsistent with the rest of the curve, 413 

and NNs generally do not output extreme values. It also ran into difficulty toward the high-DA range 414 

because there were simply far fewer reaches with large DA so their roles in routing were relatively 415 

minor, making the curve unconstrained in this range. This experiment informed us we should not expect 416 

values of reach-scale n, particularly in the high-DA range, to be reliable, but the overall trend may have 417 

merit, especially when we also have other constraints. These findings formed the basis for the next 418 

stage of the work where we trained n=NN(c) for real-world data. We thus expected to extract the overall 419 

patterns of n distribution but for the recovered q not to be meaningful. 420 
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 421 
 422 

Figure 3: Synthetic discharge distribution experiments. (a, c, e, g) Synthetic and modeled discharge over 423 

time for various assumed relationships between n and drainage area. (b, d, f, h) Synthetic modeled 424 

values of n with respect to the reach’s total drainage area (km2). The NN can recover the overall pattern 425 

but is not accurate near sharp changes or for reaches with large drainage areas. Each dot in the scatter 426 

plots represents a 2-km river reach in the river network. 427 

 428 

3.2. Training on eight weeks of real data 429 

The real-world data experiment showed satisfactory streamflow routing in the training period, with 430 

improvements compared to approaches that did not employ the routing scheme, even though there 431 
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was significant bias in the rainfall input (Figure 4a). The hydrograph generated by the differentiable 432 

routing model is, as expected, smoothed and delayed compared to the summation of runoffs during the 433 

training period. Unlike the direct summation of the runoff, which has a timing difference from the 434 

observation, the peaks of the routed hydrograph are placed almost exactly under the observed peaks, 435 

leading to a high training NSE of 0.834. We noticed a substantial low bias in this training period, 436 

witnessed by much lower peaks with the simulated flow compared to the observed flow. This is due to 437 

bias in the rainfall-runoff modeling component and the mass-balance dictated by the MC formulation, 438 

which prevents the model from adding or removing mass to remove the bias. In traditional hydrologic 439 

model calibration, bias can be a significant concern as it can distorts other parameters. In this case, we 440 

found the model performed well even with such bias, and appropriately focused on adjusting the timing 441 

of the flood waves. This is because the allowable adjustments were limited to routing parameters, which 442 

blocked the model from distorting other processes.  443 

 444 

 445 

Figure 4: (a) Results from training the differentiable model during an eight-week period (2001) against 446 

USGS observations compared with the summation of lateral inputs (denoted by Q’). (b) Results from 447 

testing the trained model from Figure 4(a) over a year period (2001) compared with the summation of 448 

lateral inputs. A percent error has been overlaid to the graph to show how river routing is more stable 449 

than using a summation of lateral inputs.   450 
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 451 

The year-long test of the differentiable model yielded high metrics compared to the alternatives (Figure 452 

4b), suggesting a short calibration period could yield parameterization suitable for long-term 453 

simulations. The differentiable model obtained a year-long NSE of 0.857, which is consistent with the 454 

median NSE in the JRB. In contrast, the summation of 𝑄′(𝜏 = 9) and the whole-basin 𝐿𝑆𝑇𝑀 were at 455 

0.756 and 0.801, respectively. This comparison shows that if we merely added the runoffs together 456 

(which already resolved spatial heterogeneity in runoff but not the flow process), the error due to timing 457 

could reduce NSE at the downstream gage. While the model had success with correctly timing the peak 458 

flows, it could not compensate for LSTM's errors, resulting in significant underestimation of the peak 459 

events. By design, the routing module should be detached from the errors in the runoff module.  460 

 461 

Interestingly, without specific instructions, the scheme recovered a power-law-like relationship between  462 

n and drainage area (DA) (Figure 5), similar to the one assumed in the synthetic case (Figure 3e &3f). The 463 

n values were highest (near n=0.04) for smaller DA and declined gradually, approaching 0.015 at the 464 

lower end. The change rate of n as a function of DA then became more gentle as DA increased. This 465 

distribution agreed well with the general understanding that headwater streams running down ridges 466 

(this region is characterized by Ridge and Valley formations) have larger slopes, higher roughness, more 467 

vegetation, and thus higher n, while the high-order streams in the valley tend to have smaller slopes and 468 

smoother beds, corresponding with lower n. In most hydrologic handbooks (Mays, 2019), a smaller n is 469 

prescribed for larger rivers. 470 

 471 
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 472 

Figure 5: The learned relationship between n and drainage area (square kilometers) for the Juniata River 473 

basin according to the trained GNN. (a) The distribution on a linear scale. (b) The distribution on a 474 

logarithmic scale. The network was trained for the period of 2001/02/01-2001/03/29. Each dot in the 475 

scatter plot represents a 2-km river reach. 476 

 477 

3.3. Inner gage evaluation and effects of different training periods 478 

Evaluating the model on the inner, untrained gages showed that the routing scheme became more 479 

competitive compared to benchmark levels as for downstream gages (Table 2). As for the benchmarks, 480 

the uniform LSTM (the catchment area of each gage is consider a basin and basin-averaged 481 

forcing/attributes were used as inputs to the trained LSTM to simulate flow at the gage) already 482 

attempts to consider routing internally but does not consider rainfall/attribute spatial heterogeneity, 483 

while the summation of Q’ (runoffs were simulated from multiple HUC10 basins and added together) 484 

considers the spatial heterogeneity but not routing in the stem river. For 2 of the 4 gages with larger 485 

than ~2000 km2 of catchment area, the differentiable routing model performed noticeably better than 486 

the uniform LSTM models for them (for the other two, they were about the same). For the three 487 

midsized subbasins (500-2000 km2), the comparisons were mixed. For the small subbasins, and 488 

especially gage 01557500 (94.8 km2), the uniform LSTM was noticeably better. The subbasin for 489 

01557500 is smaller than our runoff-producing unit (HUC10s, with the smallest one ~200 km2). This 490 

means predictions below this threshold can be error-prone. Our model was also better than the 491 
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summation of Q’ for 7 of the 8 gages and the gap was larger for downstream gages (Table 2), suggesting 492 

the flow convergence process matters more and more as we go downstream.  493 

 494 

When we used multiple internal gages within the NN loss function, results improved very slightly at 495 

smaller DA gages, while degraded barely noticeably at larger DA reaches. Overall, the differences are too 496 

small to have real-world implications, but we can still observe the pattern that the multi-gage calibration 497 

appears to produce a slightly more balanced model that improves simulations at some previously 498 

weakly-simulated tributaries, at a (very minor) cost at the most downstream one. This small tradeoff 499 

may be due to spatial errors in forcing data. As the model explicitly simulates flows in all modeled 500 

reaches, the differentiable model provides a way to absorb data from as many stations as possible, if the 501 

ungauged regions are important to the users.   502 

 503 

Table 2: Internal gage NSE values for the year 2001, with the rows ranked by the size of the subbasin 504 

from small to large. The differentiable routing model was trained on the period from 2001/02/01-505 

2001/03/29 calculating loss from the final gage but the LSTM was trained using >3000 CONUS gages. 506 

We include the LSTM NSE to show how the use of routing compares to just using LSTM predictions. Bold 507 

font indicates the top performing model for each gage. 508 

Edge 

ID 

Gage 

Number 

Basin Drainage 

Area (km2) 

Uniform 

LSTM  

 

Q` Runoff NSE 

 (𝜏 = 9) 

Differentiable 

routing model 

(𝜏 = 9) 

Multiple Gage Loss 

for differentiable 

routing  

(𝜏 = 9) 

1280 01557500 94.8 0.8149 0.5575  0.5623  0.5627  

1053 01560000 440.5 0.7028 0.6054  0.6578  0.6625  

2799 01558000 542.1 0.8201 0.7473  0.6963  0.6981  

4780 01556000 723.5 0.6624 0.6568  0.6937  0.6957  

2662 01562000 1943.5 0.7957 0.6857  0.7942  0.7977  

4801 01559000 2103.0 0.7815 0.7449  0.8136  0.8172  
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2689 01563200 2482.9 0.5703 0.6497  0.7831  0.7773  

4809 01563500 5212.8 0.8024 0.7563  0.857  0.8546  

 509 

The above comparisons informed us of the favorable and unfavorable ranges of applicability for our 510 

workflow: the differentiable model found competitive advantages for stem rivers with catchments 511 

greater than 2,000 km2, but may run into issues for scales smaller than the smallest runoff-producing 512 

unit (HUC10, around 200 km2). The issues for the smallest basins could be attributed to the procedure 513 

that transfers mass from subbasin to regular grids on the river network, which should be improved in 514 

future work. As a result, the smallest headwater basins are best to be directly simulated by the uniform 515 

LSTM models. Also, smaller runoff-generating units could be used in the future to mitigate this issue. 516 

The advantages of the differentiable routing model over the uniform LSTM for larger basins were due to 517 

resolving the heterogeneity in rainfall and basin static attributes as well as better representing routing. 518 

The uniform LSTM can internally represent some flow lags but it appears less effective as basin size 519 

increases.  520 

 521 

The results imply that the advantages will increase for even larger basins, where currently LSTM does 522 

not apply well, along with basins where rainfall heterogeneity makes a big difference. The JRB is situated 523 

in the northeastern part of the CONUS; many other regions may exhibit more prominent effects of 524 

heterogeneity. For example, past studies have always found it difficult to simulate large basins on the 525 

northern and central Great Plains (Feng et al., 2020; Martinez & Gupta, 2010), potentially due to 526 

spatially-concentrated rainfall and runoff generation (Fang & Shen, 2017). Also, in the mountainous 527 

areas of the CONUS Northwest and Southeast, orographic precipitation could have significant spatial 528 

concentration. We hypothesize applying models to smaller basins and incorporating the routing scheme 529 

will allow these regions to be better modeled.  530 

 531 

As expected, the training periods selected can exert an influence on the model, but as long as we used 532 

reasonable training periods, the results were acceptable. When the scheme was trained on eight-week 533 

periods from different years, it generated somewhat different but mostly functional parameterizations 534 

(Figure A2 in the Appendix), unless it was trained in some unreasonable training periods where the 535 

LSTM had drastic differences from the observed outflows (Table 3). The maximum achievable NSEs for 536 

the years of 2001, 2005, 2007, and 2008 were 0.857, 0.87, 0.827, and 0.787, respectively, with all 537 
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models outperforming Q` NSE values for their respective periods (Table A3 in the Appendix). We found 538 

that if the models were trained on other periods (2001a, 2001b, 2005b, 2007a), the test NSEs were 539 

mostly decent, and at least not drastically worse. However, choosing 2007b or 2008a led to notably 540 

inferior results (Figure 6b-e). Examining the characteristics of the different training periods, we see that 541 

the problematic training periods did not contain full flood rise and recession phases (Figure 6a & 6b). As 542 

a result, 2007b and 2008a as training periods led to either the lowest or the highest n values and also 543 

had relatively low NSE values (Figure A2 in the Appendix). Similarly, training period 2005a gave relatively 544 

large n values which also resulted in suboptimal (although still decent) results in all the years. Hence, we 545 

need to pick periods that (i) contain full flood rise and recession phases; and (ii) have high runoff NSEs. 546 

In addition, even though the routing simulation can be improved by short training periods, the spread of 547 

estimated n again shows that the identification of n via small training periods can be difficult. Future 548 

work could employ longer training periods to compromise across different periods and obtain broadly-549 

performant parameterization. However, another possibility is that n itself can vary over time, which 550 

would be an orthodoxy but not unthinkable idea. 551 

 552 

 553 

 554 

Table 3. The NSE values correspond to testing differentiable models on different test years. Bold font 555 

indicates the highest NSE, while underlined metrics indicate the lowest (noticeably worse than obtained 556 

from other periods) for the testing period. 557 

 558 

 
 
 
Testing 
Period 

Training Period 

2001a  
 
02/01- 
3/29 

2001b   
           
11/01- 
12/26 

2005a  
            
02/01- 
3/29 

2005b              
11/01- 
12/26 

2007a   
           
02/01- 
3/29 

2007b       
11/01- 
12/26 

2008a   
           
02/01- 
3/29 

2008b   
           
11/01- 
12/26 

2001 0.857 0.845 0.850 0.853 0.857 0.831 0.782 0.856 

2005 0.797 0.828 0.843 0.870 0.816 0.713 0.785 0.785 

2007 0.815 0.812 0.821 0.827 0.819 0.774 0.753 0.813 

2008 0.643 0.715 0.723 0.762 0.676 0.534 0.787 0.623 

Average 0.778 0.800 0.809 0.828 0.792 0.713 0.777 0.769 
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      559 

 560 

 561 

Figure 6: (a) Two training periods: 2005 and 2007a. The former contains a full rising-recession cycle while 562 

the latter does not have a complete cycle for training, thus leading to larger errors during test. The solid 563 

line indicates the training of Model 2005b while the dashed line indicates Model 2007b during the time 564 

period of 11/01-12/27 during the years 2005 and 2007, respectively. (b-c) Test periods for these two 565 

models: (b) 2001, (c) 2005, (d) 2007, and (e) 2008. For (b-e) the solid line indicates discharge while the 566 

dashed line indicates percent error of each model’s output compared with the observations. 567 

 568 

3.4. Further discussion 569 

Although the estimated n values were both functional for routing streamflow and physically meaningful, 570 

the results suggest the downstream discharge only poses a moderate constraint on the n values, and 571 

short training periods may not be sufficient to identify the true n values. Hence, while our procedure can 572 
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obtain n parameterization performant for long-term simulations, we do not claim that the procedure 573 

retrieved the “true” n parameterization. Especially considering there are many input variables to the NN 574 

that covary in space, it may be difficult to disentangle causation from correlation. Due to the lack of 575 

ground truth for n in the real-data case, we leave this evaluation for future effort as we compile more 576 

measurement data. Recall that we were able to retrieve the overall pattern of n in the synthetic 577 

experiments but faced large uncertainties in some areas of the parameter space. This is attributed to the 578 

numerous degrees of freedom (a high-dimensional input space for the NN, influencing many reaches) 579 

constrained by only one downstream output with a relatively short training period. Nevertheless, this 580 

training is valuable because discharge data can be widely available, and we will be able to employ it in 581 

conjunction with other constraints, e.g., scattered measurements or expert-specified relationships.  582 

 583 

Regarding other potential recoverable parameters, we suspect the dimensionless MC inflow/outflow 584 

weighing parameter X, which indicates the shape of the assumed flood prism, cannot be identified for 585 

the same reason as q --- the geometries of the channel do not impact flow rates in a meaningful way. 586 

Future work could investigate if learning it produces any benefit. Similarly, linear channel coefficient p 587 

values were also never recoverable in single parameter tests and decreased resulting NSE values when 588 

used as a tunable parameter. Thus, we did not include it in this study. In addition, we hypothesize using 589 

more complex MC formula, e.g., the nonlinear form of the Cunge equation (the celerity is defined as 590 

dQ/dA), which might add to numerical challenges for large-scale simulations, would lead to different n 591 

values, as the recovered values are inherently linked to the inverse model employed. 592 

 593 

Here we employed a static parameterization scheme for n, following the conventional approach. 594 

However, the framework allows for the use of a dynamic n (likely dependent on Q). It is not clear if we 595 

must use a static parameterization as done conventionally, as some previous studies have found a 596 

dynamic n to offer better results (Ye et al., 2018). In the future, it will be interesting to see if a dynamical 597 

n parameterization could significantly impact the routing results. On another note, we chose an eight-598 

week time period as our training length as a probe to assess the required training duration and selection 599 

criteria for such periods. We trained eight different models (Section 3.3) on different time periods and 600 

showed that the choice of training period timing, and LSTM performance for the inputs played 601 

important roles. Future effort should include longer training periods to most robustly estimate the 602 

parameters.  603 

 604 
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When investigating the impact of multiple gages, rather than a single downstream-most gage (in model 605 

loss calculation and parameter updates), results were very similar in terms of NSE score and recovered 606 

Manning’s n parameters. We believe this may be because the JRB is a relatively small river network, so 607 

internal gage observations are highly correlated in discharge volume (m3/s) and fluctuation (storm event 608 

timing). Adding more gages could be useful if flows in different parts of the basin need to be accurately 609 

reported, but may be less important if only the downstream gage is of concern.  610 

 611 

Our approach, akin to a classical routing scheme, is modular --- the trained weights of the NN that 612 

generates n are not tied to a particular runoff model. Our work can be coupled to traditional models in 613 

multiple ways. Firstly, the trained network can be used to generate n for traditional models. In this way, 614 

no change is required on the part of the traditional models. Secondly, the neural network and the 615 

trained weights can be ported to other programming environments like Fortran. This makes it possible 616 

to use the trained parameterizations as a built-in module in continental-scale models (Greuell et al., 617 

2015; Johnson et al., 2019; Regan et al., 2018). An alternative approach is to lump both the routing and 618 

runoff simulations into one problem and optimize them together, as demonstrated in some other 619 

studies (Jia et al., 2021). In our case, this would mean that we would train both the runoff LSTM and the 620 

routing module together. In many big-data DL case studies, lumped models tend to have higher 621 

performance compared to a workflow that separates the tasks into multiple minor tasks. However, in 622 

our case here, this leads to coadaptation concerns. Moreover, our approach is modular so it can be 623 

easily coupled to other runoff models, e.g., a non-differentiable traditional model, or a differentiable 624 

one (Feng, Beck, et al., 2022; Feng, Liu, et al., 2022).  625 

 626 

4. Conclusions 627 

In this work, we used a combination of a pre-trained LSTM rainfall-runoff model and Muskingum-Cunge 628 

routing to create a learnable routing model, or, from the perspective of machine learning, a physics-629 

informed graph neural network. This model predicts streamflow in stem rivers and learn river 630 

parameters throughout a river network, which is urgently needed to improve the next-generation large-631 

scale hydrologic models. Because our framework is built on physical principles and estimates widely-632 

used n values, it can be easily ported to work with other models. For example, the trained NN and the 633 

weights can be loaded into Fortran or C programs to support traditional hydrologic models or routing 634 

schemes, e.g. (H. Li et al., 2013; Mizukami et al., 2016). Our synthetic experiments recovered the overall 635 

spatial pattern of n with moderate accuracy but could not recover the channel cross-sectional geometry 636 
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parameter (q). Furthermore, our synthetic experiments yielded promising results in recovering synthetic 637 

n and drainage area relationships, implying there is potential to learn reach-scale physics in the river 638 

network using differentiable modeling. 639 

 640 

With the real-world data, short-term training periods of downstream hydrographs can produce n 641 

parameterization that improve long-term routing results, but may be insufficient to constrain the n 642 

values more precisely than a general spatial pattern. Eight weeks of real-world data produced decent 643 

long-term streamflow routing and improved upon approaches that did not use routing, yet training on 644 

different periods could result in somewhat different distributions. When looking at the n vs drainage 645 

area distribution attained by our trained model against USGS observations, we found that the n values 646 

agreed with the literature bounds for the area, but the absolute magnitudes may fluctuate depending 647 

on the training period. Besides using longer training periods to obtain n values that compromise across 648 

periods, future work should also consider if n should be treated as dynamic in time. Further work can 649 

expand this analysis to other basins with different conditions (streams outside of the Ridge and Valley 650 

physiographic division of the CONUS) to see if the model can still identify their trends correctly. 651 

Reviewing the internal gage NSE scores over a full year of data showed a correlation between drainage 652 

area and the relative advantage of our routing scheme, highlighting the impacts of heterogeneity and 653 

flow convergence.  654 

 655 

 656 

Open Research 657 

The LSTM streamflow model code (Feng et al., 2020; Ouyang et al., 2021) relevant to this work can be 658 

accessed via Zenodo (Shen, Fang, et al., 2021). The differentiable routing model will be made available 659 

to reviewers upon a paper revision request, and a new Zenodo release will be published upon paper 660 

acceptance. All datasets used are publicly available, including the GAGES-II dataset (Falcone, 2011), 661 

NHDPlus (HorizonSystems, 2016), and NLDAS (Xia et al., 2012). Other data sources can be found in Table 662 

A1. 663 

 664 

Funding Acknowledgements 665 

Funding was awarded to Cooperative Institute for Research to Operations in Hydrology (CIROH) through 666 

the NOAA Cooperative Agreement with The University of Alabama (NA22NWS4320003). 667 

 668 



29 
 

 669 

References     670 

Aboelyazeed, D., Xu, C., Hoffman, F. M., Jones, A. W., Rackauckas, C., Lawson, K. E., & Shen, 671 

C. (2022). A differentiable ecosystem modeling framework for large-scale inverse 672 

problems: demonstration with photosynthesis simulations. Biogeosciences Discussions. 673 

https://doi.org/10.5194/bg-2022-211 674 

Adnan, R. M., Petroselli, A., Heddam, S., Santos, C. A. G., & Kisi, O. (2021). Comparison of 675 

different methodologies for rainfall–runoff modeling: machine learning vs conceptual 676 

approach. Natural Hazards, 105(3), 2987–3011. https://doi.org/10.1007/s11069-020-677 

04438-2 678 

Arcement, G. J., & Schneider, V. R. (1989). Guide for Selecting Manning’s Roughness 679 

Coefficients for Natural Channels and Flood Plains (Water-Supply Paper No. 2339). U.S. 680 

Geological Survey. Retrieved from https://pubs.usgs.gov/wsp/2339/report.pdf 681 

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation 682 

in machine learning: A survey. Journal of Machine Learning Research, 18(153), 1–43. 683 

Retrieved from http://jmlr.org/papers/v18/17-468.html 684 

Candela, A., Noto, L. V., & Aronica, G. (2005). Influence of surface roughness in hydrological 685 

response of semiarid catchments. Journal of Hydrology, 313(3), 119–131. 686 

https://doi.org/10.1016/j.jhydrol.2005.01.023 687 

Carabajal, C. C., & Harding, D. J. (2006). SRTM C-Band and ICEsat laser altimetry elevation 688 

comparisons as a function of tree cover and relief. Photogrammetric Engineering & 689 

Remote Sensing, 72(3), 287–298. https://doi.org/10/ggj69r 690 

Chaney, N. W., Minasny, B., Herman, J. D., Nauman, T. W., Brungard, C. W., Morgan, C. L. S., 691 

et al. (2019). POLARIS Soil Properties: 30-m Probabilistic Maps of Soil Properties Over 692 

the Contiguous United States. Water Resources Research, 55(4), 2916–2938. 693 

https://doi.org/10/ggj68b 694 



30 
 

Cunge, J. A. (1969). On the subject of a flood propagation computation method (Musklngum 695 

method). Journal of Hydraulic Research, 7(2), 205–230. 696 

https://doi.org/10.1080/00221686909500264 697 

Dottori, F., Szewczyk, W., Ciscar, J.-C., Zhao, F., Alfieri, L., Hirabayashi, Y., et al. (2018). 698 

Increased human and economic losses from river flooding with anthropogenic warming. 699 

Nature Climate Change, 8(9), 781–786. https://doi.org/10.1038/s41558-018-0257-z 700 

Douben, K.-J. (2006). Characteristics of river floods and flooding: a global overview, 1985–701 

2003. Irrigation and Drainage, 55(S1), S9–S21. https://doi.org/10.1002/ird.239 702 

Duan, S., Ullrich, P., & Shu, L. (2020). Using convolutional neural networks for streamflow 703 

projection in California. Frontiers in Water, 2. https://doi.org/10.3389/frwa.2020.00028 704 

Falcone, J. A. (2011). GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow 705 

[Data set]. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow. USGS 706 

Unnumbered Series, Reston, VA: U.S. Geological Survey. 707 

https://doi.org/10.3133/70046617 708 

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019, November 22). Graph neural 709 

networks for social recommendation. arXiv. https://doi.org/10.48550/arXiv.1902.07243 710 

Fang, K., & Shen, C. (2017). Full-flow-regime storage-streamflow correlation patterns provide 711 

insights into hydrologic functioning over the continental US. Water Resources Research, 712 

53(9), 8064–8083. https://doi.org/10.1002/2016WR020283 713 

Fang, K., Shen, C., Kifer, D., & Yang, X. (2017). Prolongation of SMAP to spatiotemporally 714 

seamless coverage of continental U.S. using a deep learning neural network. 715 

Geophysical Research Letters, 44(21), 11,030-11,039. 716 

https://doi.org/10.1002/2017gl075619 717 

Fang, K., Pan, M., & Shen, C. (2019). The value of SMAP for long-term soil moisture estimation 718 

with the help of deep learning. IEEE Transactions on Geoscience and Remote Sensing, 719 

57(4), 2221–2233. https://doi.org/10/gghp3v 720 



31 
 

Feng, D., Fang, K., & Shen, C. (2020). Enhancing streamflow forecast and extracting insights 721 

using long-short term memory networks with data integration at continental scales. 722 

Water Resources Research, 56(9), e2019WR026793. 723 

https://doi.org/10.1029/2019WR026793 724 

Feng, D., Liu, J., Lawson, K., & Shen, C. (2022). Differentiable, learnable, regionalized process-725 

based models with multiphysical outputs can approach state-of-the-art hydrologic 726 

prediction accuracy. Water Resources Research, 58(10), e2022WR032404. 727 

https://doi.org/10.1029/2022WR032404 728 

Feng, D., Beck, H., Lawson, K., & Shen, C. (2022). The suitability of differentiable, learnable 729 

hydrologic models for ungauged regions and climate change impact assessment. 730 

Hydrology and Earth System Sciences Discussions, 1–28. https://doi.org/10.5194/hess-731 

2022-245 732 

France-Presse, A. (2022, June 19). At least 59 dead and millions stranded as floods devastate 733 

India and Bangladesh. The Guardian. Retrieved from 734 

https://www.theguardian.com/world/2022/jun/18/at-least-18-dead-and-millions-stranded-735 

as-floods-devastate-india-and-bangladesh 736 

François, B., Schlef, K. E., Wi, S., & Brown, C. M. (2019). Design considerations for riverine 737 

floods in a changing climate – A review. Journal of Hydrology, 574, 557–573. 738 

https://doi.org/10.1016/j.jhydrol.2019.04.068 739 

Friedl, M., & Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly 740 

L3 Global 500m SIN Grid V006 [Data set]. 741 

https://doi.org/10.5067/MODIS/MCD12Q1.006 742 

Getirana, A. C. V., Boone, A., Yamazaki, D., Decharme, B., Papa, F., & Mognard, N. (2012). 743 

The Hydrological Modeling and Analysis Platform (HyMAP): Evaluation in the Amazon 744 

Basin. Journal of Hydrometeorology, 13(6), 1641–1665. https://doi.org/10/f4jbcx 745 



32 
 

Gleason, C. J. (2015). Hydraulic geometry of natural rivers: A review and future directions. 746 

Progress in Physical Geography. https://doi.org/10/f7dsqm 747 

Greuell, W., Andersson, J. C. M., Donnelly, C., Feyen, L., Gerten, D., Ludwig, F., et al. (2015). 748 

Evaluation of five hydrological models across Europe and their suitability for making 749 

projections under climate change. Hydrology and Earth System Sciences Discussions, 750 

12(10), 10289–10330. https://doi.org/10.5194/hessd-12-10289-2015 751 

He, M., Wu, S., Huang, B., Kang, C., & Gui, F. (2022). Prediction of total nitrogen and 752 

phosphorus in surface water by deep learning methods based on multi-scale feature 753 

extraction. Water, 14(10), 1643. https://doi.org/10.3390/w14101643 754 

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets and 755 

problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-756 

Based Systems, 06(02), 107–116. https://doi.org/10.1142/S0218488598000094 757 

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 758 

1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 759 

HorizonSystems. (2016). NHDPlus version 2 [Data set]. Retrieved from http://www.horizon-760 

systems.com/nhdplus/NHDplusV2_home.php 761 

Hrnjica, B., Mehr, A. D., Jakupović, E., Crnkić, A., & Hasanagić, R. (2021). Application of deep 762 

learning neural networks for nitrate prediction in the Klokot River, Bosnia and 763 

Herzegovina. In 2021 7th International Conference on Control, Instrumentation and 764 

Automation (ICCIA) (pp. 1–6). https://doi.org/10.1109/ICCIA52082.2021.9403565 765 

Huscroft, J., Gleeson, T., Hartmann, J., & Börker, J. (2018). Compiling and mapping global 766 

permeability of the unconsolidated and consolidated Earth: GLobal HYdrogeology MaPS 767 

2.0 (GLHYMPS 2.0). Geophysical Research Letters, 45(4), 1897–1904. 768 

https://doi.org/10.1002/2017GL075860 769 

International Panel on Climate Change (IPCC). (2012). Managing the Risks of Extreme Events 770 

and Disasters to Advance Climate Change Adaptation (p. 582). Retrieved from 771 



33 
 

https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-772 

advance-climate-change-adaptation/ 773 

Ji, X., Lesack, L., Melack, J. M., Wang, S., Riley, W. J., & Shen, C. (2019). Seasonal and inter-774 

annual patterns and controls of hydrological fluxes in an Amazon floodplain lake with a 775 

surface-subsurface processes model. Water Resources Research, 55(4), 3056–3075. 776 

https://doi.org/10/gghp4s 777 

Jia, X., Zwart, J., Sadler, J., Appling, A., Oliver, S., Markstrom, S., et al. (2021). Physics-Guided 778 

Recurrent Graph Model for Predicting Flow and Temperature in River Networks. In 779 

Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 780 

612–620). Society for Industrial and Applied Mathematics. 781 

https://doi.org/10.1137/1.9781611976700.69 782 

Johnson, J. M., Munasinghe, D., Eyelade, D., & Cohen, S. (2019). An integrated evaluation of 783 

the National Water Model (NWM)–Height Above Nearest Drainage (HAND) flood 784 

mapping methodology. Natural Hazards and Earth System Sciences, 19(11), 2405–785 

2420. https://doi.org/10.5194/nhess-19-2405-2019 786 

Kalyanapu, A. J., Burian, S. J., & McPherson, T. N. (2009). Effect of land use-based surface 787 

roughness on hydrologic model output. Journal of Spatial Hydrology, 9(2), 51–71. 788 

Retrieved from https://scholarsarchive.byu.edu/josh/vol9/iss2/2 789 

Khorashadi Zadeh, F., Nossent, J., Sarrazin, F., Pianosi, F., van Griensven, A., Wagener, T., & 790 

Bauwens, W. (2017). Comparison of variance-based and moment-independent global 791 

sensitivity analysis approaches by application to the SWAT model. Environmental 792 

Modelling & Software, 91, 210–222. https://doi.org/10.1016/j.envsoft.2017.02.001 793 

Kingma, D. P., & Ba, J. (2017, January 29). Adam: A method for stochastic optimization. arXiv. 794 

https://doi.org/10.48550/arXiv.1412.6980 795 



34 
 

Koks, E. E., & Thissen, M. (2016). A multiregional impact assessment model for disaster 796 

analysis. Economic Systems Research, 28(4), 429–449. 797 

https://doi.org/10.1080/09535314.2016.1232701 798 

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., & Nearing, G. (2019). Towards 799 

learning universal, regional, and local hydrological behaviors via machine learning 800 

applied to large-sample datasets. Hydrology and Earth System Sciences, 23(12), 5089–801 

5110. https://doi.org/10.5194/hess-23-5089-2019 802 

Leopold, L. B., & Maddock, T. Jr. (1953). The hydraulic geometry of stream channels and some 803 

physiographic implications. USGS Professional Paper, 252. https://doi.org/10/ggj7hw 804 

Leshno, M., Lin, V. Ya., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward networks with 805 

a nonpolynomial activation function can approximate any function. Neural Networks, 806 

6(6), 861–867. https://doi.org/10/bjjdg2 807 

Li, H., Wigmosta, M. S., Wu, H., Huang, M., Ke, Y., Coleman, A. M., & Leung, L. R. (2013). A 808 

physically based runoff routing model for land surface and earth system models. Journal 809 

of Hydrometeorology, 14(3), 808–828. https://doi.org/10/ggj7ph 810 

Li, H.-Y., Tan, Z., Ma, H., Zhu, Z., Abeshu, G. W., Zhu, S., et al. (2022). A new large-scale 811 

suspended sediment model and its application over the United States. Hydrology and 812 

Earth System Sciences, 26(3), 665–688. https://doi.org/10.5194/hess-26-665-2022 813 

Lin, G.-Y., Chen, H.-W., Chen, B.-J., & Yang, Y.-C. (2022). Characterization of temporal PM2.5, 814 

nitrate, and sulfate using deep learning techniques. Atmospheric Pollution Research, 815 

13(1), 101260. https://doi.org/10.1016/j.apr.2021.101260 816 

Liu, J., Rahmani, F., Lawson, K., & Shen, C. (2022). A multiscale deep learning model for soil 817 

moisture integrating satellite and in situ data. Geophysical Research Letters, 49(7), 818 

e2021GL096847. https://doi.org/10.1029/2021GL096847 819 

Liu, L., Ao, T., Zhou, L., Takeuchi, K., Gusyev, M., Zhang, X., et al. (2022). Comprehensive 820 

evaluation of parameter importance and optimization based on the integrated sensitivity 821 



35 
 

analysis system: A case study of the BTOP model in the upper Min River Basin, China. 822 

Journal of Hydrology, 610, 127819. https://doi.org/10.1016/j.jhydrol.2022.127819 823 

Martinez, G. F., & Gupta, H. V. (2010). Toward improved identification of hydrological models: A 824 

diagnostic evaluation of the “abcd” monthly water balance model for the conterminous 825 

United States. Water Resources Research, 46(8). 826 

https://doi.org/10.1029/2009WR008294 827 

Mays, L. W. (2010). Water Resources Engineering (2nd edition). Tempe, AZ: Wiley. 828 

Mays, L. W. (2019). Water Resources Engineering (3rd edition). Tempe, AZ: Wiley. Retrieved 829 

from https://www.wiley.com/en-us/Water+Resources+Engineering%2C+3rd+Edition-p-830 

9781119493167 831 

Meyal, A. Y., Versteeg, R., Alper, E., Johnson, D., Rodzianko, A., Franklin, M., & Wainwright, H. 832 

(2020). Automated cloud based long short-term memory neural network based SWE 833 

prediction. Frontiers in Water, 2. https://doi.org/10.3389/frwa.2020.574917 834 

Mizukami, N., Clark, M. P., Sampson, K., Nijssen, B., Mao, Y., McMillan, H., et al. (2016). 835 

mizuRoute version 1: A river network routing tool for a continental domain water 836 

resources applications. Geoscientific Model Development, 9(6), 2223–2238. 837 

https://doi.org/10.5194/gmd-9-2223-2016 838 

Moore, R. B., & Dewald, T. G. (2016). The road to NHDPlus — Advancements in digital stream 839 

networks and associated catchments. JAWRA Journal of the American Water 840 

Resources Association, 52(4), 890–900. https://doi.org/10.1111/1752-1688.12389 841 

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — 842 

A discussion of principles. Journal of Hydrology, 10(3), 282–290. 843 

https://doi.org/10/fbg9tm 844 

O, S., & Orth, R. (2021). Global soil moisture data derived through machine learning trained with 845 

in-situ measurements. Scientific Data, 8(1), 170. https://doi.org/10.1038/s41597-021-846 

00964-1 847 



36 
 

Ouyang, W., Lawson, K., Feng, D., Ye, L., Zhang, C., & Shen, C. (2021). Continental-scale 848 

streamflow modeling of basins with reservoirs: Towards a coherent deep-learning-based 849 

strategy. Journal of Hydrology, 599, 126455. 850 

https://doi.org/10.1016/j.jhydrol.2021.126455 851 

Pan, M., & Wood, E. F. (2013). Inverse streamflow routing. Hydrology and Earth System 852 

Sciences, 17(11), 4577–4588. https://doi.org/10/f5k6nq 853 

Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P., & Holland, G. J. (2017). The 854 

future intensification of hourly precipitation extremes. Nature Climate Change, 7(1), 48–855 

52. https://doi.org/10.1038/nclimate3168 856 

Rahmani, F., Shen, C., Oliver, S., Lawson, K., & Appling, A. (2021). Deep learning approaches 857 

for improving prediction of daily stream temperature in data-scarce, unmonitored, and 858 

dammed basins. Hydrological Processes, 35(11), e14400. 859 

https://doi.org/10.1002/hyp.14400 860 

Rahmani, F., Lawson, K., Ouyang, W., Appling, A., Oliver, S., & Shen, C. (2021). Exploring the 861 

exceptional performance of a deep learning stream temperature model and the value of 862 

streamflow data. Environmental Research Letters. https://doi.org/10.1088/1748-863 

9326/abd501 864 

Regan, R. S., Markstrom, S. L., Hay, L. E., Viger, R. J., Norton, P. A., Driscoll, J. M., & 865 

LaFontaine, J. H. (2018). Description of the National Hydrologic Model for use with the 866 

Precipitation-Runoff Modeling System (PRMS) (No. 6-B9). Techniques and Methods. 867 

U.S. Geological Survey. https://doi.org/10.3133/tm6B9 868 

Rice, D. (2019, May 28). Mississippi River flood is longest-lasting in over 90 years, since “Great 869 

Flood” of 1927. USA Today. Retrieved from 870 

https://www.usatoday.com/story/news/nation/2019/05/28/mississippi-river-flooding-871 

longest-lasting-since-great-flood-1927/1261049001/ 872 



37 
 

Saha, G. K., Rahmani, F., Shen, C., Li, L., & Cibin, R. (2023). A deep learning-based novel 873 

approach to generate continuous daily stream nitrate concentration for nitrate data-874 

sparse watersheds. Science of The Total Environment, 878, 162930. 875 

https://doi.org/10.1016/j.scitotenv.2023.162930 876 

Shen, C., & Lawson, K. (2021). Applications of Deep Learning in Hydrology. In Deep Learning 877 

for the Earth Sciences (pp. 283–297). John Wiley & Sons, Ltd. 878 

https://doi.org/10.1002/9781119646181.ch19 879 

Shen, C., & Phanikumar, M. S. (2010). A process-based, distributed hydrologic model based on 880 

a large-scale method for surface–subsurface coupling. Advances in Water Resources, 881 

33(12), 1524–1541. https://doi.org/10/c4r8k5 882 

Shen, C., Niu, J., & Phanikumar, M. S. (2013). Evaluating controls on coupled hydrologic and 883 

vegetation dynamics in a humid continental climate watershed using a subsurface - land 884 

surface processes model. Water Resources Research, 49(5), 2552–2572. 885 

https://doi.org/10/f5gcrx 886 

Shen, C., Niu, J., & Fang, K. (2014). Quantifying the effects of data integration algorithms on the 887 

outcomes of a subsurface–land surface processes model. Environmental Modelling & 888 

Software, 59, 146–161. https://doi.org/10/ggj7mp 889 

Shen, C., Riley, W. J., Smithgall, K. M., Melack, J. M., & Fang, K. (2016). The fan of influence of 890 

streams and channel feedbacks to simulated land surface water and carbon dynamics. 891 

Water Resources Research, 52(2), 880–902. https://doi.org/10/f8gppj 892 

Shen, C., Chen, X., & Laloy, E. (2021). Editorial: Broadening the use of machine learning in 893 

hydrology. Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.681023 894 

Shen, C., Fang, K., Feng, D., & Bindas, T. (2021). mhpi/hydroDL: MHPI-hydroDL [Data set]. 895 

Zenodo. https://doi.org/10.5281/zenodo.5015120 896 



38 
 

Sun, A. Y., Jiang, P., Mudunuru, M. K., & Chen, X. (2021). Explore spatio-temporal learning of 897 

large sample hydrology using graph neural networks. Water Resources Research, 898 

57(12), e2021WR030394. https://doi.org/10.1029/2021WR030394 899 

Sun, A. Y., Jiang, P., Yang, Z.-L., Xie, Y., & Chen, X. (2022). A graph neural network approach 900 

to basin-scale river network learning: The role of physics-based connectivity and data 901 

fusion. Hydrology and Earth System Sciences Discussions. https://doi.org/10.5194/hess-902 

2022-111 903 

Tsai, W.-P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., et al. (2021). From calibration to 904 

parameter learning: Harnessing the scaling effects of big data in geoscientific modeling. 905 

Nature Communications, 12(1), 5988. https://doi.org/10.1038/s41467-021-26107-z 906 

US Army Corps of Engineers. (2018). National Inventory of Dams (NID) [Data set]. Retrieved 907 

from https://nid.sec.usace.army.mil/ 908 

USGS ScienceBase-Catalog. (2022). National Elevation Dataset (NED). Retrieved September 909 

13, 2022, from https://www.sciencebase.gov/catalog/item/4fcf8fd4e4b0c7fe80e81504 910 

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al. 911 

(2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature 912 

Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2 913 

Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens, M. F. P., Bouwman, A., 914 

Jongman, B., et al. (2016). Global drivers of future river flood risk. Nature Climate 915 

Change, 6(4), 381–385. https://doi.org/10.1038/nclimate2893 916 

Wunsch, A., Liesch, T., & Broda, S. (2022). Deep learning shows declining groundwater levels 917 

in Germany until 2100 due to climate change. Nature Communications, 13(1), 1221. 918 

https://doi.org/10.1038/s41467-022-28770-2 919 

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., et al. (2009). NLDAS Primary 920 

Forcing Data L4 Hourly 0.125 x 0.125 degree V002 (NLDAS_FORA0125_H) [Data set]. 921 



39 
 

Goddard Earth Sciences Data and Information Services Center (GES DISC). 922 

https://doi.org/10.5067/6J5LHHOHZHN4 923 

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., et al. (2012). Continental-924 

scale water and energy flux analysis and validation for the North American Land Data 925 

Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of 926 

model products. Journal of Geophysical Research: Atmospheres, 117(D3). 927 

https://doi.org/10.1029/2011JD016048 928 

Xiang, Z., Yan, J., & Demir, I. (2020). A rainfall-runoff model with LSTM-based sequence-to-929 

sequence learning. Water Resources Research, 56(1), e2019WR025326. 930 

https://doi.org/10.1029/2019WR025326 931 

Ye, A., Zhou, Z., You, J., Ma, F., & Duan, Q. (2018). Dynamic Manning’s roughness coefficients 932 

for hydrological modelling in basins. Hydrology Research, 49(5), 1379–1395. 933 

https://doi.org/10.2166/nh.2018.175 934 

Zhi, W., Feng, D., Tsai, W.-P., Sterle, G., Harpold, A., Shen, C., & Li, L. (2021). From 935 

hydrometeorology to river water quality: Can a deep learning model predict dissolved 936 

oxygen at the continental scale? Environmental Science & Technology, 55(4), 2357–937 

2368. https://doi.org/10.1021/acs.est.0c06783 938 

Zhu, F., Li, X., Qin, J., Yang, K., Cuo, L., Tang, W., & Shen, C. (2021). Integration of 939 

multisource data to estimate downward longwave radiation based on deep neural 940 

networks. IEEE Transactions on Geoscience and Remote Sensing, 1–15. 941 

https://doi.org/10.1109/TGRS.2021.3094321 942 

  943 



40 
 

Appendix 944 

 945 
 946 

Figure A1: The synthetic parameter recovery of Manning’s n after each epoch run, with each colored line 947 

representing a different recovered value. (a) The initial value of n is set to 0.068 (b) the initial value of n 948 

is set to 0.271 949 

 950 

 951 
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Figure A2: Histograms visualizing the frequency, and variability, of Manning’s n values for all river 952 

reaches (582 total) for all eight GNN models. The lower bound is 0.01, while the upper bound contains 953 

all Manning’s n values >0.14. 954 

 955 

 956 

Figure A3: Results from q parameter recovery experiments. We tried to recover both constant and 957 

distributed parameters, but were unable to ever recover the synthetic truth.  958 

 959 

Table A1: The attributes and forcings used by the pre-trained LSTM to predict streamflow. Links to the 960 

data can be found below the table  961 

Attribute/Meteorological Forcing Unit Dataset Citation 

Mean Elevation m SRTMGL1 (Carabajal & 
Harding, 2006) 

Mean Slope unitless SRTMGL1 (Carabajal & 
Harding, 2006) 
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Basin Area km2 SRTMGL1 (Carabajal & 
Harding, 2006) 

Dominant Land Cover Class MODIS (Friedl & Sulla-

Menashe, 

2019) 

Dominant Land Cover Fraction Percent MODIS (Friedl & Sulla-

Menashe, 

2019) 

Forest Fraction Percent MODIS (Friedl & Sulla-

Menashe, 

2019) 

Root Depth (50) m MODIS (Friedl & Sulla-

Menashe, 

2019) 

Soil Depth m MODIS (Friedl & Sulla-

Menashe, 

2019) 

Ksat (0-5) log10(cm/
hr) 

POLARIS (Chaney et al., 

2019) 

Ksat (5-15) log10(cm/
hr) 

POLARIS (Chaney et al., 

2019) 

Theta s (0-5) m3/m3 POLARIS (Chaney et al., 

2019) 

Theta s (5-15) m3/m3 POLARIS (Chaney et al., 

2019) 

Theta r (5-15) m3/m3 POLARIS (Chaney et al., 

2019) 

Ksat average (0-15)  log10(cm/
hr) 

POLARIS (Chaney et al., 

2019) 

Ksat e (0-5) cm/hr POLARIS (Chaney et al., 

2019) 



43 
 

Ksat e (5-15) cm/hr POLARIS (Chaney et al., 

2019) 

Ksat average e (0-15)  cm/hr POLARIS (Chaney et al., 

2019) 

Theta average s (0-15) em3/m3 POLARIS (Chaney et al., 

2019) 

Theta average r (0-15) em3/m3 POLARIS (Chaney et al., 

2019) 

Porosity Percent GLHYMPS (Huscroft et al., 

2018) 

Permeability Permafrost m2 GLHYMPS (Huscroft et al., 

2018) 

Permeability Permafrost (Raw) m2 GLHYMPS (Huscroft et al., 

2018) 

Major Number of Dams Unitless GAGES-II (Falcone, 2011) 

General Purpose of Dam Unitless National 
Inventory of 
Dams (NID) 

(US Army Corps 
of Engineers, 
2018) 

Max of Normal Storage Acre-ft National 
Inventory of 
Dams (NID) 

(US Army Corps 
of Engineers, 
2018) 

Standard Deviation of Normal Storage Unitless National 
Inventory of 
Dams (NID) 

(US Army Corps 
of Engineers, 
2018) 

Number of dams within river (2009) Unitless  GAGES-II (Falcone, 2011) 

Normal Storage (2009) Acre-ft National 
Inventory of 
Dams (NID) 

(US Army Corps 
of Engineers, 
2018) 

Precipitation hourly total kg/m2 NLDAS2 (Xia et al., 
2012) 

Surface downward longwave radiation W/m2 NLDAS2 (Xia et al., 
2012) 
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Surface downward shortwave radiation W/m2 NLDAS2 (Xia et al., 
2012) 

Pressure Pa NLDAS2 (Xia et al., 
2012) 

Air Temperature K NLDAS2 (Xia et al., 
2012) 

 962 

SRTMGL1:  https://doi.org/10.14358/PERS.72.3.287 963 

MODIS: https://modis.gsfc.nasa.gov/data/dataprod/mod12.php 964 

POLARIS: https://doi.org/10.1029/2018WR022797  965 

GLHYMPS: https://doi.org/10.5683/SP2/DLGXYO 966 

NID: https://nid.usace.army.mil/ 967 

NLDAS2: https://ldas.gsfc.nasa.gov/nldas/v2/forcing 968 

 969 

Table A2: The constant attributes (c) used by the MLP to predict n and q: n,q = NN(c). 970 

Attribute Unit 

Reach Width m 

Average-Reach Elevation m  

Slope m/m  

Reach Area km2 

Total Drainage Area km2 

Reach Length m 

Sinuosity m/m 

Bank Elevation m 

 971 

Table A3: The Σ Q` (𝜏 = 9) NSE scores for all eight training time periods for the most downstream gage. 972 

Since Q` routing is a pure forward simulation using the trained LSTM, we report the NSE values for each 973 

period.  974 

 975 

 
 
 
 

Periods 

2001a 
 
 

2001b 
 
 

2005a 
 
 

2005b 
 

2007a 
 
 

2007b 
 

2008a 
 
 

2008b 
 
 

NSE 0.5958 0.3534 -0.7868 -0.1687 0.6830 0.0558 -0.4297 0.3792 

https://modis.gsfc.nasa.gov/data/dataprod/mod12.php
https://doi.org/10.1029/2018WR022797
https://doi.org/10.5683/SP2/DLGXYO
https://nid.usace.army.mil/
https://ldas.gsfc.nasa.gov/nldas/v2/forcing
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