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Abstract

The dependence of seismic wavespeeds on propagation or polarization direction, called seismic anisotropy, is a relatively direct

indicator of mantle deformation and flow. Mantle seismic anisotropy is often inferred from measurements of shear-wave splitting.

A number of standard techniques to measure shear-wave splitting have been applied globally; for example, *KS splitting is often

used to measure upper mantle anisotropy. In order to obtain robust constraints on anisotropic geometry, it is necessary to sample

seismic anisotropy from different directions, ideally using different seismic phases with different incidence angles. However, many

standard analysis techniques can only be applied for certain epicentral distances and source-receiver ge-ometries. In this work,

we apply a “wavefield differencing” approach to (systematically) understand what parts of the seismic wavefield are most affected

by seismic anisotropy in the mantle. We systematically analyze differences between synthetic global wavefields calculated for

isotropic and anisotropic input models, incorporating seismic anisotropy at different depths. Our results confirm that the seismic

phases that are commonly used in splitting techniques are indeed strongly influenced by mantle anisotropy. However, we also

identify less commonly used phases whose waveforms reflect the effects of anisotropy. For example, PS is strongly affected by

upper mantle seismic anisotropy. We show that PS can be used to fill in gaps in global coverage in shear wave splitting datasets

(for example, beneath ocean basins). We find that PcS is also a promising phase, and present a proof-of-concept example of PcS

splitting analysis across the contiguous United States using an array processing approach. Because PcS is recorded at at much

shorter distances than *KS phases, PcS splitting can therefore fill in gaps in backazimuthal coverage. The insights provided by

a wavefield differencing approach provide promising new strategies for improving our ability to detect and characterize seismic

anisotropy in the mantle.
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by seismic anisotropy in the mantle. We systematically analyze differences

between synthetic global wavefields calculated for isotropic and anisotropic

input models, incorporating seismic anisotropy at different depths. Our re-

sults confirm that the seismic phases that are commonly used in splitting

techniques are indeed strongly influenced by mantle anisotropy. However, we

also identify less commonly used phases whose waveforms reflect the effects

of anisotropy. For example, PS is strongly affected by upper mantle seismic

anisotropy. We show that PS can be used to fill in gaps in global coverage in

shear wave splitting datasets (for example, beneath ocean basins). We find

that PcS is also a promising phase, and present a proof-of-concept example

of PcS splitting analysis across the contiguous United States using an array

processing approach. Because PcS is recorded at at much shorter distances

than *KS phases, PcS splitting can therefore fill in gaps in backazimuthal

coverage. The insights provided by a wavefield differencing approach provide

promising new strategies for improving our ability to detect and characterize

seismic anisotropy in the mantle.

Keywords: Numerical modelling, Seismic anisotropy, Planetary interiors,

Computational seismology, Wave propagation

1. Introduction

Mantle deformation induced by convective mantle flow manifests itself in

seismic anisotropy (e.g., Long and Becker, 2010). Seismic anisotropy denotes

the dependence of seismic wavespeeds on the propagation or polarization

direction of the wave. It has been demonstrated that seismic anisotropy is

particularly strong in the boundary layers of mantle convection, while it is
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almost absent in the bulk of the lower mantle (Panning and Romanowicz,

2006). In particular, seismic anisotropy has been detected in the upper man-

tle (e.g., Silver, 1996; Savage, 1999; Becker and Lebedev, 2021), the mantle

transition zone (e.g., Yuan and Beghein, 2014; Chang and Ferreira, 2019),

the uppermost lower mantle (e.g., Foley and Long, 2011; Lynner and Long,

2015; Mohiuddin et al., 2015; Chang and Ferreira, 2019; Ferreira et al., 2019),

and the lowermost mantle (e.g., Wookey et al., 2005; Nowacki et al., 2010;

Creasy et al., 2017; Wolf et al., 2019; Lutz et al., 2020; Wolf and Long, 2022).

In general, the deeper seismic anisotropy is located in the mantle, the more

difficult it is to resolve it with body wave approaches (Wolf et al., 2022a).

Despite the challenges, however, a thorough picture of mantle anisotropy

across all depths would be helpful to understand global patterns of mantle

deformation and flow (e.g., Becker and Lebedev, 2021).

Seismic anisotropy manifests itself in the seismic wavefield in a number

of ways, and there are several analytical techniques used to detect and char-

acterize it. Anisotropy in Earth’s crust and upper mantle can be measured

using receiver function analysis (e.g., Levin and Park, 1997; Schulte-Pelkum

et al., 2005; Nikulin et al., 2009; Wirth and Long, 2012) or surface wave

tomography (e.g., Panning and Nolet, 2008; Ferreira et al., 2010; Zhu et al.,

2020). Waveform inversion techniques have also been developed to charac-

terize radial anisotropy in the mantle (e.g., Kawai and Geller, 2010; Suzuki

et al., 2021). Probably the most commonly used method to study seismic

anisotropy in Earth’s mantle invokes measurements of so-called shear-wave

splitting (e.g., Long and Silver, 2009). The distribution of shear wave en-

ergy away from its initial polarization direction, splitting the wave into two
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quasi-shear waves, is indicative of seismic anisotropy (Silver and Chan, 1991).

Depending on which portion of the mantle is being studied, different shear

phases (or combinations of phases) are typically used. Figure 1a summarizes

most commonly used seismic phases for the analysis of mantle anisotropy

using shear wave splitting. To analyze seismic anisotropy in the upper man-

tle directly beneath the receiver, the most commonly used phase is SKS,

sometimes supplemented with SKKS and PKS (e.g., Silver and Chan, 1991;

Chevrot, 2000; Liu et al., 2014; Walpole et al., 2014; Graw and Hansen, 2017;

Lopes et al., 2020). For such an analysis of upper mantle anisotropy, it is of-

ten assumed that the influence of lowermost mantle anisotropy is negligible.

An alternative and commonly applied approach to studying upper mantle

anisotropy is to infer source-side anisotropy from splitting of teleseismic S

waves using explicit receiver-side anisotropy corrections (e.g., Russo and Sil-

ver, 1994; Lynner and Long, 2013; Walpole et al., 2017; Eakin et al., 2018).

Source-side direct S splitting can also be used to study transition zone and

uppermost lower mantle anisotropy in places where deep earthquakes occur

(e.g., Foley and Long, 2011; Mohiuddin et al., 2015). These observational

strategies are well-established and have been used to map upper mantle an-

isotropy across much of Earth’s landmasses. Beneath the oceans, however,

shear wave splitting constraints on upper mantle anisotropy are sparse (e.g.,

IRIS DMC, 2012), due to the paucity of seismic receivers.

Lowermost mantle anisotropy is generally more challenging to measure

than seismic anisotropy in the upper mantle. A major reason for this is that

all seismic waves that may sample seismic anisotropy in the lowermost man-

tle also travel through the upper mantle, potentially accumulating an upper
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mantle splitting signal before they reach the station (Figure 1a). Different

measurement strategies have been developed to distinguish between an upper

and lowermost mantle contribution. Such techniques include the analysis of

differential S-ScS splitting (e.g., Wookey et al., 2005; Nowacki et al., 2010;

Creasy et al., 2017; Wolf et al., 2019), and differential splitting of SKS and

SKKS (e.g., Niu and Perez, 2004; Deng et al., 2017; Grund and Ritter, 2018;

Reiss et al., 2019; Tesoniero et al., 2020; Asplet et al., 2020). An alterna-

tive technique makes use of the long raypath of Sdiff through the lowermost

mantle, inferring deep mantle anisotropy by measuring splitting of Sdiff (e.g.,

Vinnik et al., 1995; Cottaar and Romanowicz, 2013; Wolf and Long, 2022,

2023a; Wolf et al., 2023b), typically comparing with SKS splitting to account

for any upper mantle contributions.

While the commonly used shear wave splitting techniques continue to

yield valuable information on anisotropy at various depths in the mantle,

they all have limitations, including those imposed by the distribution of seis-

mic stations and earthquakes at the relevant distance ranges. Expanding

the repertoire of seismic body wave phases that can be used for shear wave

splitting analysis is desirable, as this would allow for splitting datasets with

better spatial and azimuthal coverage. In service of this goal, in this study

we carry out a systematic investigation of how seismic anisotropy located

at different depths in the Earth’s mantle expresses itself in the global seis-

mic wavefield. To do this, we implement a wavefield differencing approach

that compares synthetic wavefields calculated for isotropic and anisotropic

input models. We analyze a large number of body wave phases (Figure 1),

some of which are commonly used in shear wave splitting studies, but many
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of which are not. We explore models that include anisotropic layers over a

range of mantle depths (Figure 2), including the shallow upper mantle, the

deep upper mantle, the transition zone, the uppermost lower mantle, and

the D′′ layer, which denotes the lowermost 200− 300 km of the mantle. The

wavefield differencing approach allows us to systematically analyze the effects

of anisotropy on the entire seismic wavefield, to investigate which phases are

most sensitive to anisotropy in which portions of the mantle, and to iden-

tify non-standard phases that can potentially be incorporated in future shear

wave splitting studies. In particular, our results point towards potential new

(or rarely used) techniques to map upper mantle anisotropy, including those

that rely on PS and PcS phases. We provide proof of concept examples of

these strategies applied to real data and discuss how they might improve our

ability to image anisotropy, deformation, and flow in the Earth’s mantle.

2. Wavefield differencing: Methods and approach

2.1. Global wavefield simulations

We conduct global wavefield simulations using AxiSEM3D (Leng et al.,

2016; 2019), which is capable of handling any three-dimensional input model

and arbitrary seismic anisotropy (Tesoniero et al., 2020). In this work, we

focus on axisymmetric simulations, for which AxiSEM3D is as efficient as its

older relative AxiSEM (Nissen-Meyer et al., 2014). We compute global wave

propagation simulations down to ∼5 s period using AxiSEM3D, following the

methodology applied in previous work (e.g., Wolf et al., 2022b). We always

use a smoothed version of isotropic PREM (Dziewonski and Anderson, 1981;

see below) as our background model and always consider (PREM-) attenu-
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ation as well as Earth’s ellipticity. We intentionally keep our input models

simple to generally assess where in the seismic wavefield seismic anisotropy

manifests itself. Effects of laterally changing seismic anisotropy and three-

dimensional input models have been addressed in previous work (e.g., Wolf

et al., 2022b, 2023b).

The typical source-receiver configuration for our simulations is shown in

Figure 2a. We place our 100m deep seismic source at the North pole, simu-

lating either a normal or strike-slip fault earthquake (Figure 2a). The very

shallow focal depth helps to avoid surface reflections (depth phases) in our

seismograms. We select two different focal mechanisms (Figure 2a); their

details are only important inasmuch as they influence the initial polarization

of the seismic wave. The stations are spaced on a regular 2-degree latitude-

longitude grid, leading to a closer station spacing at the poles than at the

equator (Figure 2a). This configuration ensures that stations are regularly

spaced along the azimuthal direction. We implement seismic anisotropy in

our models by replacing the smoothed PREM velocity input model by seis-

mic anisotropy described by a horizontally transversely isotropic (HTI) elas-

tic tensor created using MSAT (Walker and Wookey, 2012). We consider five

different models, each with anisotropy in a different depth range. The depth

ranges of anisotropy that we investigate are 24-220 km (layer 1), 220-400 km

(layer 2), 400-670 km (layer 3), 670-800 km (layer 4) and 2641-2891 km (layer

5), as shown in Figure 2b. We ensure that the isotropic average of the aniso-

tropy used in each of these layers agrees with our smoothed isotropic PREM

model, for which velocities are constant within each layer. The anisotropic

strength within our lowermost mantle layer (layer 5) is 2.75%; we adjust
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the anisotropic strength in each of the other layers such that we would ob-

tain the same splitting delay time (∼1 s) for each of them for a vertically

incident wave. We implement two different elastic tensor arrangements (Fig-

ure 2c,d), representing crystallographic preferred orientation of olivine: in

one, the direction from which the elastic tensor is sampled changes with az-

imuth (arrangement 1; Figure 2c), while in the other it is always the same

(arrangement 2; Figure 2d). We implement these two different elastic ten-

sor arrangements to ensure that our results are not strongly affected by the

specific direction that the seismic anisotropy is sampled from. Whenever we

use the seismograms to calculate absAD and relAD (see below), we cannot

output seismograms for all stations from our source-station setup (Figure 2a)

at an appropriate sampling period (1 s) due to storage limitations. Instead,

we output seismograms every 15◦ azimuth and every 2◦ distance.

2.2. Data processing

In order to understand how seismic anisotropy expresses itself, we com-

pare the seismic wavefield computed for our isotropic input model with the

wavefields from each of our anisotropic simulations. Specifically, we compute

the displacement Ui or U, the gradient of displacement Dij or D, the curl

of displacement Ri or R, stress Sij or S, and strain Eij or E, where i,j =

1,2,3 correspond to the radial (1), transverse (2) and vertical (3) direction.

The difference between the isotropic and the anisotropic simulations will be

indicated with a δ-sign in the following, for example δU1 = U1,iso − U1,ani.

From this differential wavefield, we infer how much different seismic phases

are influenced by mantle anisotropy. We can express this either in terms

of a scalar quantity that explicitly considers the amplitude of the incom-
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ing wave, or as a scalar quantity that is normalized to the amplitude. To

do this, we derive the phase-specific absolute and relative normalized inte-

grated apparent difference (absAD and relAD) from the delta field. For U1

and the SS seismic phase absAD can be expressed as:

absADU1,SS =
180◦∑
a=0◦

d2≤180◦∑
d=d1>20◦

tSS+20∑
t=tSS

|δ
(
Ua,d,t
1

)
|/(d2− d1) , (1)

where a denotes the azimuth index, d1 is the shortest distance at which

the phase arrives (but always > 20◦), d2 is the largest distance at which

the phase arrives (but always ≤ 180◦), d is the distance index, tSS is the

phase arrival time for the SS phase, and t the time index. Therefore, absAD

quantifies how much a particular phase is influenced by mantle anisotropy by

analyzing the 20 s after the predicted arrival time, integrating over distance

and azimuth and normalizing the value by the distance range over which the

phase occurs. Similarly, it can be calculated how much a particular phase

is affected by mantle anisotropy relative to its isotropic amplitude. This

quantity is

relADU1,SS =
180◦∑
a=0◦

d2≤180◦∑
d=d1>20◦

(
max

(∣∣∣Ud,t=1,2,...,20
iso

∣∣∣))−1
tSS+20∑
t=tSS

|δ
(
Ud,t
1

)
|/(d2−d1) ,

(2)

where Uiso denotes the displacement amplitude in the isotropic seismo-

gram. absAD and relAD will also be calculated for Dij, Ri, Sij and Eij in

addition to displacement Uij.

For the interpretation of absAD and relAD, it is important to note that
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we do not explicitly consider phase interference in the calculations, but simply

use the 20 s after the phase arrivals whether or not another seismic phase

arrives in this time window. Moreover, the contribution to absAD is stronger

at shorter distances as |δUi| will be larger due to geometric spreading. This

is not the case for relAD. Therefore, phases for which absAD is large likely

have large amplitudes for at least a certain distance range and are, at the

same time, sensitive to seismic anisotropy. Phases for which relAD is large

do not necessarily have high amplitudes but are strongly indicative of seismic

anisotropy.

3. Wavefield differencing results

To visualize the difference in seismic wave propagation between isotropic

and anisotropic simulations, we create movies showing its time evolution.

Example snapshots from such movies are shown in Figure 3 for seismic an-

isotropy in the upper mantle (upper panel) and the lowermost mantle (lower

panel). We also provide Supplementary Movies S1-S5 that show the time

evolution of the differential wavefield for elastic tensor arrangement 1 and

seismic anisotropy at different depths (layers 1-5). The overall wavefield dif-

ference is substantially more affected by upper mantle anisotropy due to its

influence on surface waves. The influence of surface waves becomes less the

deeper in the mantle the seismic anisotropy is placed. In the difference snap-

shots for lowermost mantle anisotropy, different body wave phases that are

often used to characterize it can be very well distinguished (e.g., SKS, SKKS,

ScS, Sdiff). The patterns that are apparent for upper and lowermost mantle

anisotropy on a wavefront along a particular distance away from the source
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are a combination of the initial source polarization and the sampling of the

elastic tensor from an azimuth-dependent direction (arrangement 1).

While these wavefield difference movies are informative, they mainly vi-

sually emphasize the phase arrivals that are most affected by mantle seismic

anisotropy at each point in time. To also focus on less affected phases, we

investigate the differential wavefield at a particular azimuth, plotted on top

of a travel time curve (Figure 4 for upper mantle and transition zone; Fig-

ure 5 for the lower mantle). Figure 4 demonstrates that, as expected, the

deeper the anisotropy is placed in the upper mantle, transition zone, or up-

permost lower mantle (layers 1-4), the weaker its influence on near surface

reverberations and on surface waves. Phases that are strongly influenced by

seismic anisotropy in layers 1 to 4 include, for example, SS, SSS and SSSS;

in fact, these phases are affected so strongly that the difference plots show

their minor arc siblings as features with an opposite moveout (upper right

corner).

These results for layers 1-4 can be compared to those for layer 5 (low-

ermost mantle anisotropy; Figure 5). The magnitude of the wavefield dif-

ferences depends on azimuth, but the absolute sensitivity of each seismic

phase to lowermost mantle anisotropy is the same for all azimuths. Seismic

phases that are primarily influenced by lowermost mantle anisotropy include

the phases commonly used to infer its presence (e.g., ScS, Sdiff, SK(K)S),

but also ScSScS and ScSScSScS. Moreover, at certain distances (P)PS seems

to be influenced by lowermost mantle anisotropy, likely because it is sam-

pling the lowermost mantle at these distances and merging with (P)PScS

(analogous to S/ScS at ∼90− 100◦). The details of the differential wavefield
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(unsurprisingly) depend on the focal mechanism and the elastic tensor ar-

rangement (Supplementary Figures S1-S4). The overall patterns, however,

are the same for all of these scenarios.

Next, we calculate absAD (Equation (1)) for various seismic phases,

which shows us how strongly absolute phase amplitudes are affected by man-

tle anisotropy. These results are shown for δUi in Figure 6 and for Dij, Ri, Sij

and Eij in the Supplementary Figures S5-S13. As expected from the patterns

in Figures 4 and 5, similar phases are affected by seismic anisotropy in layers

1 to 4, whereas the phases mainly influenced by lowermost mantle anisotropy

(layer 5) are different. Figure 4 shows results for layers 1 to 4 for a given

backazimuth, while Figure 5 shows results for lowermost mantle anisotropy

and different backazimuths (0◦, 30◦, 60◦, 90◦), illustrating that while the de-

tails of the wavefield difference vary as a function of backazimuth, the seismic

phases that are mainly affected by seismic anisotropy stay the same. It is

unsurprising that S, SS, SSS and SSSS are strongly affected by upper mantle

anisotropy since they travel through the upper mantle two or more times.

We find that the transverse components (U2) of SK(K)S phases are particu-

larly affected by mantle anisotropy. This is expected since SK(K)S would be

SV-polarized in an isotropic Earth due to the P-SV conversion at the CMB.

Indeed, this insight underpins the popularity of SK(K)S splitting as a tool

for measuring anisotropy. The fact that PKIKS and PKS seem largely unaf-

fected by mantle anisotropy in this view has to do with the strike-slip focal

mechanism used for the simulation (compare to Supplementary Figure S6);

this is therefore a function of the radiation pattern, rather than an actual

lack of sensitivity to anisotropy.
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Our calculation of absAD for different phases can shed light on whether

there are body wave phases that are strongly affected by mantle anisotropy

that are not typically used in splitting studies. Such phases, which are

strongly affected by seismic anisotropy in layers 1-4 in all simulations (Fig-

ure 6a-d, Supplementary Figures S5-S13) include PS and PPS. This is espe-

cially noteworthy because their polarization is determined by the P-SV con-

version through of the surface underside reflection, which makes them much

easier to analyze than, for example, SS. We also find that PcS is strongly

influenced by upper mantle anisotropy in our simulations. This is partially

due to the interference with S at some of the distance range, but in general,

PcS splitting is analogous to *KS splitting, although PcS usually has smaller

amplitudes (e.g., Liu and Grand, 2018). For the lowermost mantle case, we

find that anisotropy mostly affects SKS, SKKS and ScS phases (Figure 6e)

and no unusual phases that are strongly affected by deep mantle anisotropy,

but rarely used to infer its presence, are immediately apparent.

So far, we have analyzed how much seismic phases are affected by mantle

anisotropy in terms of absolute amplitude. Results for relative amplitude or

relAD are shown in Figure 7 for δUi. Figure 7 shows that for each layer,

transverse components are particularly affected for phases that travel through

the outer core and convert from P to SV at the CMB. This is logical because

in the isotropic case transverse component energy is not present in the ab-

sence of phase interference. (Note that to avoid dividing by zero, we add

a water level divisor to our calculations). Seismic anisotropy in layers 1-4

tends to affect S, SS, SSS and SSSS increasingly strongly, since the higher

multiples sample seismic anisotropy more often. For the lowermost mantle,

13



prominent signals for PKS and ScSScS are visible for relAD which were less

apparent for absAD in Figure 5e.

4. Novel splitting strategies based on wavefield differencing results

4.1. Differential PS-SKS splitting: inferring upper mantle anisotropy close

to the PS reflection point

We demonstrated in Section 3 that PS waves are strongly affected by

seismic anisotropy in Earth’s upper layers. For the purpose of splitting mea-

surements, which are only sensitive to anisotropy structure along the path,

PS is initially SV-polarized due to the P-to-S conversion upon reflection at

the surface. It is worth pointing out that, because for the measurement of

shear wave splitting an S arrival at the receiver is needed, the order of S and

P is generally not reversible (e.g, we could not measure SP splitting). On the

S-leg of the raypath, PS samples seismic anisotropy in the upper mantle close

to the reflection point as well as beneath the seismic receiver, and at distances

between 90◦ and 115◦ any potential influence of lowermost mantle anisotropy

can be avoided. Beneath the station, SKS samples seismic anisotropy in a

very similar way as PS, such that differential PS-SKS splitting would point

towards upper mantle anisotropy close to the PS reflection point at the sur-

face (analogous to SKS-SKKS differential splitting for the lowermost mantle).

Su and Park (1994) invoked this argument and measured seismic anisotropy

in a location beneath the southwestern Pacific Ocean; however, this strat-

egy has apparently not been used since. One possible reason for this is that

there is no advantage to using the PS-SKS differential splitting technique

when the alternative is to infer upper mantle anisotropy close to the poten-
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tial reflection point by directly measuring SKS splitting at a seismic station

located there. However, seismic stations are not regularly distributed across

Earth’s surface. Differential PS-SKS splitting is therefore potentially helpful

to study anisotropy in regions that are sampled by PS bounce points but are

not themselves well instrumented.

Here we present a proof-of concept example of PS-SKS splitting using

real data. Before measuring PS and SKS splitting, we bandpass-filter our

data, retaining periods between 6 and 25 s. To analyze seismic anisotropy,

we use SplitRacer (Reiss and Rümpker, 2017), a MATLAB-based graphical

user interface. SplitRacer calculates the following shear wave splitting pa-

rameters: the fast polarization direction measured relative to north (ϕ), the

time delay between the fast and the slow quasi S wave (δt), and the split-

ting intensity (SI; Chevrot, 2000) of the split wave. To measure the first

two quantities, SplitRacer uses the transverse energy minimization technique

(Silver and Chan, 1991) along with a corrected error formulation by Walsh

et al. (2013). A strength of SplitRacer is that time windows are picked auto-

matically, thereby ensuring that measurements are independent of a specific

choice of time window.

We demonstrate a proof-of-concept example for PS-SKS splitting using

station INK (Walpole et al., 2014) located in northeastern Canada, which

exhibits null or nearly null SKS splitting over the entire backazimuthal range.

Since INK is a null station, any splitting contribution to PS waves must be

caused by seismic anisotropy on the raypath far away from the station, most

likely close to the PS reflection point at the surface. We analyze PS splitting

parameters for events that occurred in the southeastern Pacific subduction
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zones between 10/1995 and 01/2023 at distances between 90◦ and 115◦. Our

results are shown in Figure 8. We obtain ∼100 robust splitting intensity and

two robust (ϕ, δt) measurements. We identify a strongly anisotropic region

in the upper mantle to the north of Fiji, in which fast polarization directions

are oriented approximately south-north (Figure 8d). The PS waveforms and

splitting diagnostic plots of the event (2009-01-19 03:35:18) are shown in

Figure 8a-c; this event was used to infer the (ϕ, δt) values for this strongly

anisotropic region. Figure 8a shows a clearly split PS phase, while the SKS

phase for the same event is null. After correcting for the best-fitting PS

splitting parameters (Figure 8c), the corrected particle motion is linear (Fig-

ure 8b), as expected in case of splitting due to seismic anisotropy.

Upper mantle anisotropy has been densely mapped beneath continents;

however, for seismic anisotropy beneath ocean basins very little shear wave

splitting data are available (IRIS DMC, 2012). To the extent that previous

splitting measurements have been reported for the oceans, they were often

made at ocean island stations (e.g., Fontaine et al., 2007), which themselves

represent an anomalous tectonic setting, potentially influencing the upper

mantle anisotropy beneath. Moreover, sometimes splitting measurements

have been obtained through measurements of splitting from direct S waves

(Mohiuddin et al., 2015; Eakin et al., 2018). Alternatively, some splitting

measurements have been made using ocean bottom seismometers (e.g., Ziet-

low et al., 2014; Lynner, 2021), which are expensive to install and typically

yield relatively noisy data. We therefore recommend that the differential

PS-SKS splitting technique be used systematically to map upper mantle an-

isotropy beneath oceans. Motivated by the findings presented in this work,
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we have applied this technique to map seismic anisotropy beneath the Pacific

Ocean basin (Wolf and Long, 2023b).

4.2. PcS beam splitting: inferring upper mantle anisotropy near the receiver

Our results for relAD (Figure 5) suggest that PcS is significantly affected

by mantle seismic anisotropy. However, due to its usually low amplitudes,

PcS is not commonly used for the purpose of splitting measurements, with a

few exceptions (e.g., Murdie and Russo, 1999; He and Long, 2011). Here, we

apply a recently established beamforming technique to increase PcS signal-

to-noise ratios and to measure splitting from the resulting beams.

To beamform PcS phase arrivals, we follow the same methodology as

Frost et al. (2020) and Wolf et al. (2023a), using data from an event that

occurred on 08/24/2011 in the Peru-Brazil border region (Figure 9a). Wolf

et al. (2023a) demonstrated that shear-wave splitting measurements from

beamformed SK(K)S data reflect an average of the single-station splitting

from the seismograms used for the beam. Therefore, PcS beam splitting

is equivalent to a laterally averaged splitting contribution. Following Wolf

et al. (2023a), we construct subarrays of between 10 and 20 stations across

the contiguous United States, which have a size of approximately 3◦x3◦. For

each subarray, we estimate slowness and backazimuth of the incoming wave,

and use this information to calculate radial and transverse component beams

from velocity seismograms that were bandpass-filtered retaining periods be-

tween 4 and 50 s. As suitable given the size of our subarrays, we use a curved

wavefront approach instead of the typical plane-wave approximation (Rost

and Thomas, 2009). To enhance slowness-backazimuth estimates, we mea-

sure how similar individual records are to the calculated beam, a quantity
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known as the F-statistic (Selby, 2008; Frost et al., 2013). The maximum

amplitude of the F-trace is used to infer the best-fitting slowness and back-

azimuth values. To be able to fairly compare waveforms and amplitudes

between different components, we then calculate the linearly stacked beam

using these slowness and backazimuth values for the unfiltered data.

We measure PcS beam splitting using SplitRacer, analogously to how we

use it for PS and SKS splitting. We first apply a bandpass filter to our beam-

formed data, retaining periods between 4-25 s (Figure 9d). This approach

leads to robust splitting intensity measurements for most of the subarrays;

however, we cannot obtain any well-constrained (ϕ, δt) measurements be-

cause splitting is generally weak, below the detection level for the transverse

energy minimization method at these periods. However, the beamformed

waveforms show clear PcS signals and relatively low noise levels. We there-

fore next measure splitting at frequencies that are higher than usual for shear

wave splitting measurements, retaining periods between 1-10 s (Figure 9e).

While the splitting intensity results are very similar to those obtained with

the 4-25 s bandpass-filter, we successfully measure robust (ϕ, δt) splitting pa-

rameters for nine subarrays. The inclusion of higher frequency energy helps

to resolve (ϕ, δt) because the time delay is larger compared to the dominant

period of the signal. The measured (ϕ, δt) splitting parameters we obtain

with this approach are similar to previously published *KS splitting mea-

surements compiled in the IRIS shear wave splitting database IRIS DMC

(2012).

Given this successful example, we suggest that PcS beam splitting mea-

surements can be used in the future to fill in gaps in backazimuthal coverage
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that often exist for *KS measurements. PcS is useful because it is recorded at

shorter distances than *KS (up to ∼63◦) and therefore can largely increase

the number of usable seismic events. A region for which PcS beam split-

ting measurements might be particularly helpful to improve backazimuthal

coverage is Japan, which also has a densely spaced seismic stations suitable

for beamforming, and which suffers from poor backazimuthal coverage for

SK(K)S (Long and van der Hilst, 2005). Further, we suggest that splitting

measurements from beamformed data can generally be made at higher fre-

quencies, which can increase the number of robust (ϕ, δt) measurements in

cases of weak splitting, as shown in our example (Figure 9e). The use of

phases such as PcS that are recorded at a shorter distance than *KS also

potentially has the effect that less high frequency energy is lost through at-

tenuation along the raypath.

5. Challenges and future directions

In this work, we have analyzed differences in the seismic wavefield between

isotropic and anisotropic simulations of global seismic wave propagation. The

results we obtained point towards new splitting strategies, two of which we

demonstrated as proof-of-concept examples.

While additional new strategies can potentially be identified based on our

modeling results, as discussed below, we face the challenge that some phases

that may be strongly influenced by mantle anisotropy are complicated to

analyze. As demonstrated in Section 3, S can be strongly influenced by upper

mantle anisotropy. This is why S is often used to characterize anisotropy near

the earthquake source (e.g., Russo and Silver, 1994; Foley and Long, 2011;
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Walpole et al., 2017; Eakin et al., 2018). However, since there are limits to

how reliable explicit corrections for receiver side anisotropy are (Wolf et al.,

2022a), the technique should be applied with caution. S is relatively simple

because it samples the upper mantle only twice (once on the downgoing leg

near the source and once on the upgoing leg near the receiver). The phase SS,

on the other hand, potentially samples upper mantle anisotropy four times:

at the source side, twice close to the reflection point, and beneath the receiver.

This renders the phase practically unusable for inferring the precise geometry

of upper mantle anisotropy in any particular location, although this has been

tried (e.g., Wolfe and Silver, 1998). Theoretically, upper mantle anisotropy

should be known along three of the four legs of the raypath through the upper

mantle to infer seismic anisotropy for the unknown leg, which is unrealistic for

almost all possible source-receiver configurations. Alternatively, the sampled

reflection point anisotropy could be assumed to be the same along the up- and

downgoing leg for SS. Even if this assumption was justified, it would likely be

practically impossible to reliably infer the anisotropy, at least using explicit

ray-theory based corrections (Wolf et al., 2022a). This issue is applicable

to any seismic phase that may be strongly influenced by mantle anisotropy

and samples anisotropy in many separate locations. Therefore, while the

splitting of phases such as SS, SSS etc. may provide a general indication of

the presence of seismic anisotropy along the raypath, it is not well suited to

studying the geometry of anisotropy in any given region.

To infer lowermost mantle seismic anisotropy, we usually face a similar

challenge. All phases that potentially sample lowermost mantle anisotropy

also potentially sample seismic anisotropy in the upper mantle, which has to

20



somehow be accounted for in studies of deep mantle anisotropy. Many of the

phases that we have shown to be strongly influenced by lowermost mantle

anisotropy (Section 3), are already often used to diagnose it. For example,

SKS-SKKS differential splitting is common (e.g., Niu and Perez, 2004; Reiss

et al., 2019), S and ScS are often analyzed together to infer lowermost man-

tle anisotropy (Wookey et al., 2005; Nowacki et al., 2010; Wolf et al., 2019),

and Sdiff waves are also commonly used to infer lowermost mantle anisotropy

(e.g., Vinnik et al., 1989; Cottaar and Romanowicz, 2013; Wolf et al., 2023b).

Our results do not clearly point to unusual phases that can be used to infer

lowermost mantle anisotropy in future studies. While ScSScS unsurprisingly

is strongly influenced by deep mantle anisotropy, it suffers from the same

technical limitations as phases such as SS, SSS, etc., as discussed previously.

Figure 5 shows that beyond around 120◦, PS starts to be influenced by low-

ermost mantle anisotropy. However, it is unclear how this could be exploited

in practice. In theory, a PS-PScS differential splitting technique could be

applied in an analogous manner to S-ScS differential splitting. However, a

complication is that PS and PScS do not generally have the same reflection

point at the surface. Therefore, splitting close to the reflection point would

be hard to characterize for PScS, making it impossible to distinguish it from

a lowermost mantle contribution.

In order to accurately measure splitting due to mantle seismic anisotropy

in a particular region of the mantle, the wave should (ideally) not sample

seismic anisotropy in multiple different locations along the raypath. Ad-

ditionally, to enable splitting analysis the initial polarization of the wave

should be known. Both these conditions are satisfied for the two novel split-
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ting strategies we explore here: PS-SKS differential splitting and PcS beam

splitting. SKS, PS and PcS all involve initially SV-polarized S waves due

to the P-SV conversion either at the CMB or at the surface. PcS phases do

not usually have high amplitudes (Liu and Grand, 2018), which is why it is

helpful to use these waves in a beamforming framework. We suggest that it is

often more helpful to use seismic phases with lower amplitudes, for which it

is straightforward to understand where along the raypath mantle anisotropy

is sampled, than seismic phases that may be strongly influenced by mantle

anisotropy, but in a complicated manner (for example, SS). Such low am-

plitude seismic phases can be enhanced using array techniques, making use

of the fact that the splitting parameters measured from beams or stacks ap-

proximately agree with the average splitting parameters of the single-station

seismograms contributing to them (Wolf et al., 2023a). Such an approach

has been applied to S3KS previously (Wolf et al., 2023a) and to relatively

high-frequency PcS in this work. Based on these findings, we suggest to ap-

ply beamforming routinely in studies that measure shear-wave splitting. For

example, Figure 5 shows that there are minor arc seismic phases affected by

lowermost mantle anisotropy. Such phases, like minor arc SKKS or S3KS,

can be used for measurements of mantle anisotropy more commonly than

they currently are. Similarly, the measurement of differential PPS-SKS or

PPS-SKKS splitting is conceivable, by enhancing signals via beamforming

if necessary. Such new splitting strategies involving minor arc phases and

unusual source-receiver configurations will be helpful to infer upper mantle

anisotropy in locations that suffer from poor coverage, as well as to study low-

ermost mantle anisotropy, which is often only detectable for specific raypath
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configurations.

6. Conclusion

In this work, we have applied a wavefield differencing approach to ana-

lyze the differences between wavefield for isotropic and anisotropic models,

incorporating seismic anisotropy at different mantle depths. These wavefield

differencing results demonstrate which seismic phases are most strongly in-

fluenced by mantle anisotropy. We show that some seismic phases are more

suitable than others to infer splitting parameters even if they are influenced

by mantle anisotropy to a similar degree. In particular, we suggest that the

PS-SKS differential splitting technique can be commonly used to infer upper

mantle seismic anisotropy beneath ocean basins, based on a proof-of-concept

example using a station in Canada and earthquakes in the western Pacific.

Additionally, seismic phases that are not usually used for splitting measure-

ments because of their low amplitudes should be more routinely analyzed in

areas of dense seismic array deployments using a beamforming approach. As

a proof-of-concept example, we calculate high-frequency PcS beam splitting

for one seismic event for stations across the US. The wavefield differencing

results presented here may inform the design of future studies of mantle

anisotropy using body waves.

Data availability

The synthetic seismograms for this study were computed using AxiSEM3D,

which is publicly available at https://github.com/AxiSEMunity (Leng et al.,

2016; 2019).
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The stations across the US used for beamforming of PcS have the follow-

ing network codes: AR, AZ (UC San Diego, 1982), BK (Northern California

Earthquake Data Center, 2014), CC (Cascades Volcano Observatory/USGS,

2001), CI (California Institute of Technology and United States Geological

Survey Pasadena, 1926), CN (Natural Resources Canada (NRCAN Canada),

1975), CU (Albuquerque Seismological Laboratory (ASL)/USGS, 2006), EP,

GS (Albuquerque Seismological Laboratory (ASL)/USGS, 1980), HW, II

(Scripps Institution of Oceanography, 1986), IM, IU (Albuquerque Seis-

mological Laboratory/USGS, 2014), IW (Albuquerque Seismological Lab-

oratory (ASL)/USGS, 2003), LB, LD (Lamont Doherty Earth Observatory

(LDEO), Columbia University, 1970), NE (Albuquerque Seismological Lab-

oratory (ASL)/USGS, 1994), NM, PE (Penn State University, 2004), SC,

TA (IRIS Transportable Array, 2003), UO (University of Oregon, 1990), US

(Albuquerque Seismological Laboratory (ASL)/USGS, 1990), UW (Univer-

sity of Washington, 1963), XO (Gary Pavlis and Hersh Gilbert, 2011), Y5,

YX (Simon Klemperer and Kate Miller, 2010), Z9 (Fischer et al., 2010). The

station used for the PS splitting measurements is INK (Natural Resources

Canada (NRCAN Canada), 1975). All data are publicly available.
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Figure 1: Seismic phases used and this study and their travel times. (a) Raypath sketch
for seismic phases commonly used to infer upper (SKS, SKKS, PKS) and lowermost (SKS,
SKKS, S, ScS, Sdiff) mantle anisotropy. (b) Seismic phases that usually have high ampli-
tudes in seismograms investigated in this study. See legend for color key. (c) Travel time
curve for all seismic phases presented in panel (b), using the same colors. The travel time
curve was calculated for a 100m deep event, as used in the global wavefield simulations.
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Figure 2: Setup for global wavefield simulations. (a) Source (yellow star) – station (black
dots on map) configuration. Events either have a normal (left) or a strike-slip (right) ge-
ometry (top). (b) Depths at which we incorporate seismic anisotropy into our AxiSEM3D
input models. Layer 1: Upper mantle; layer 2: lower upper mantle; layer 3: transition
zone; layer 4: upper lower mantle; layer 5: lowermost mantle. (c) Elastic tensor arrange-
ment 1. The source is represented as a yellow star on the map, which uses a north pole
centered projection, and the horizontally transversely isotropic elastic tensors are shown as
stereoplots. For elastic tensor arrangement 1, the direction from which the elastic tensor
is sampled changes as a function of azimuth. (d) Elastic tensor arrangement 2, presented
using the same plotting conventions as in panel (c). For elastic tensor arrangement 2, the
direction from which the elastic tensor is sampled is the same for every azimuth.
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Figure 3: Time snapshots of the differential displacement wavefield (see color bar) for
vertical, radial and transverse components from 1000 s (left) to 2000 s (right) after event
origin time, for elastic tensor arrangement 1. The top panel shows δUi for seismic aniso-
tropy in the lower upper mantle and the bottom panel for the lowermost mantle. Different
seismic phases are marked on the snapshots.
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Figure 4: Differential displacement wavefield (color bar) as a function of distance for
an azimuth of 0◦, calculated using a strike-slip source and elastic tensor arrangement 1
(Figure 2c). (a) The differential wavefield for seismic anisotropy in layer 1 (upper mantle)
is plotted underneath the travel time curve shown in Figure 1c with the phase travel times
shown as black lines. The wavefield difference is presented for radial (left), transverse
(middle) and vertical (right) components. (b) Same as panel (a) for seismic anisotropy
in layer 2 (lower upper mantle). (c) Same as panel (a) for seismic anisotropy in layer
3 (transition zone). (d) Same as panel (a) for seismic anisotropy in layer 4 (upper lower
mantle). White vertical stripes are due to the plotting convention are not to be interpreted.
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Figure 5: Differential displacement wavefield (color bar) as a function of distance for
azimuths 0◦ (first row), 30◦ (second row), 60◦ (third row) and 90◦ (fourth row), calculated
using a strike-slip source and elastic tensor arrangement 1 (Figure 2c) for lowermost mantle
anisotropy. Plotting conventions are as in Figure 4.
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Figure 6: absADUi
(see text) for radial (U1, blue), transverse (U2, green) and vertical (U3,

red) components for most seismic phases shown in Figure 1b. (a) absADUi
, normalized

to the largest amplitude of either U1, U2 or U3, for seismic anisotropy in layer 1 (upper
mantle). b) Same as panel (a) for seismic anisotropy in layer 2 (lower upper mantle). (c)
Same as panel (a) for seismic anisotropy in layer 3 (transition zone). (d) Same as panel (a)
for seismic anisotropy in layer 4 (upper lower mantle). (e) Same as panel (a) for seismic
anisotropy in layer 5 (lowermost mantle).
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Figure 7: Same as Figure 6 for relADUi .
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Figure 8: Differential PS-SKS splitting results for null station INK (Walpole et al., 2014).
(a) PS (top) and SKS (bottom) radial and transverse component waveforms for an event
that occurred on 01/19/2009. The PREM-predicted phase arrival time is shown with a
green line and the start/end of the automatically selected measurement windows are shown
with red lines. SKS transverse energy is at the amplitude level of the noise; therefore, SKS
splitting is null. (b) PS particle motions before (left) and after (right) correcting for the
best fitting splitting parameters. (c) Best-fitting splitting parameters in the ϕ-δt plane.
The 95% confidence interval is shown in black, red crossing lines show the best fitting
combination of (ϕ, δt). (d) Map view of the source (orange stars) – receiver (red triangle)
configuration for the differential PS-SKS splitting analysis. Raypaths are shown as gray
lines and colored circles indicate absolute PS splitting intensities (see legend). Black lines
represent (ϕ, δt) splitting parameters. Bottom right: Zoom-in for the region of strong
upper mantle anisotropy.
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Figure 9: Summary of PcS beam splitting measurements. (a) The event used for the
beamforming, which occurred on 08/24/2011, is represented as a yellow star (moment
magnitude: 7.0; depth: 149 km). Subarray central stations across US are shown as black
circles. (b) Radial (R) and transverse (T) component PcS beam waveforms for an example
subarray with central station 537A. The PREM-predicted phase arrival time is shown by
a green line and the start/end of the automatically selected measurement windows is
presented by red lines. (c) Best fitting splitting parameters (ϕ′, δt) for the waveforms
shown in panel (b). ϕ′ denotes the fast polarization direction measured clockwise from the
backazimuthal direction. The 95% confidence interval is represented in black, with contour
lines showing different transverse energy component levels. (d) Splitting measurements
after applying a 4 to 25 s bandpass filter. Colors represent the splitting intensity (see
legend), and are plotted a the central station location of each subarray. (e) Similar to panel
(d) for a bandpass filter between 1 and 10 s. Nine well-constrained (ϕ, δt) measurements
(red sticks) are obtained.
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