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Abstract

Mineral precipitation can form complex patterns under non-equilibrium conditions, in which two representative patterns are

rhythmic Liesegang stripes and fractal dendrites. Interestingly, both patterns occur in the same rock formations, including

various dendritic morphologies found in different rocks, such as limestone and sandstone. However, the underlying mechanism

for selecting the vastly different mineral precipitation patterns remains unclear. We use a phase-field model to reveal the

mechanisms driving pattern selection in mineral precipitation. Simulations allow us to explore the effects of diffusion parameters

on determining the dendritic morphologies. We also propose a general criterion to distinguish the resulting dendrites in

simulations and field observations based on a qualitative visual distinction into three categories and a quantitative fractal

dimension phase diagram. Using this model, we reproduce the classified dendrites in the field and invert for the key parameters

that reflect the intrinsic material properties and geological environments. This study provides a quantitative tool for identifying

the morphology selection mechanism with potential applications to geological field studies, exploration for resource evaluation,

and other potential industrial applications.
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Key Points:

• Introduction of a general classification criterion for dendritic morphologies;10

• Fractal dendritic morphology diagram reproduces natural dendrite patterns;
• Compared to Liesegang patterns, dendrites require higher fluid diffusivity and tend

to grow along interfaces;
• Inversion of phase-field diffusivity and self-diffusion coefficient of solute is possi-

ble from photographic images of dendritic patterns.15
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Abstract
Mineral precipitation can form complex patterns under non-equilibrium conditions, in
which two representative patterns are rhythmic Liesegang stripes and fractal dendrites.
Interestingly, both patterns occur in the same rock formations, including various den-
dritic morphologies found in different rocks, such as limestone and sandstone. However,20

the underlying mechanism for selecting the vastly different mineral precipitation patterns
remains unclear. We use a phase-field model to reveal the mechanisms driving pattern
selection in mineral precipitation. Simulations allow us to explore the effects of diffusion
parameters on determining the dendritic morphologies. We also propose a general cri-
terion to distinguish the resulting dendrites in simulations and field observations based25

on a qualitative visual distinction into three categories and a quantitative fractal dimen-
sion phase diagram. Using this model, we reproduce the classified dendrites in the field
and invert for the key parameters that reflect the intrinsic material properties and ge-
ological environments. This study provides a quantitative tool for identifying the mor-
phology selection mechanism with potential applications to geological field studies, ex-30

ploration for resource evaluation, and other potential industrial applications.

Plain Language Summary

Dendrites are branched, tree-like structures that are found in various natural and
biological systems. In the context of mineral precipitation or crystal growth, dendrites
refer to the branching patterns formed by the deposition of minerals or crystals in a non-35

equilibrium environment. Other patterns frequently found in these reactive systems are
concentric ring-like or striped patterns called Liesegang patterns. Although these pat-
terns occur in the same rock formations, the mechanism for selecting different mineral
precipitation patterns is not well understood. Here we use a phase-field model to explore
how different diffusion parameters affect the selection of dendritic morphologies. We pro-40

pose a criterion to distinguish different dendrites in simulations and field observations
based on a qualitative visual distinction (needle-like, tree-like and seaweed-like) and a
quantitative fractal dimension phase diagram. The model can be deployed to invert for
the intrinsic rock properties as well as the geological environments these dendrites grow
in. The numerical scheme is robust and efficient, allowing easy implementation of add-45

on features in the future for potential applications across scientific and engineering dis-
ciplines.

1 Introduction

A wide variety of patterns appear in nature. Their formation mechanism has been
a special focus of interest for the early philosophers, artists and the scientific commu-
nity. Examples are many and varied, ranging from spiral waves in the Belousov–Zhabotinsky55

redox reaction (Yamaguchi et al., 1991) to disordered-branching patterns in electrochem-
ical deposition systems (Arguello et al., 2022), from the formation of Liesegang stripes (Liesegang,
1906; Liu et al., 2023) to dendritic growth in reaction-diffusion systems (Chopard et al.,
1991; Z. Xu & Meakin, 2008), from oil recovery by fluid injection (Furui et al., 2022) to
mineral precipitation during geologic sequestration (T. Xu et al., 2003). Understanding60

the underlying physical mechanism of pattern-forming processes is of significant inter-
est in science and technology. In the present work, we focus on mineral precipitation ob-
served in many rock textures in geology by reaction-diffusion processes. Mineral precip-
itation reactions have been argued to form as a result of the following: (i) self-organized
processes involving coupled mass transport and precipitation, as in the case of Liesegang65

structures; (ii) intrinsic instabilities during the growth of the crystal, as in the case of
Mullins–Sekerka instability (Mullins & Sekerka, 1963) leading to dendritic patterns (García-
Ruiz & Otálora, 2015). Interestingly, both patterns are observed in the same rock, ei-
ther as a pervasive structure through the entire rock (Liesegang stripes) or on sedimen-
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tary surfaces (dendritic growth), as shown in Figure 1 collected from the Solnhofen lime-70

stone, Bavaria state of Germany. In Liesegang stripes, a moving reaction-diffusion front

Liesegang 
stripes

Dendritic 
growth

(a) Front side (b) Reverse side

Figure 1. Two distinct patterns in Solnhofen limestone: Liesegang stripes and dendritic
growth. (a) Front and (b) reverse sides illustrate that Liesegang rings penetrate through the sed-
imentary layers while dendrites nucleate along discontinuities in the sedimentary bedding layers,
such as cracks and joints and their growth is restricted to sedimentary layers.

50

propagates from the center to the far field forming rhythmic patterns. In contrast, den-
dritic growth emerges as a competition between the mineral concentration diffusion and
interfacial effects, such as anisotropy, surface tension and kinetics (Langer, 1989).

The dendritic structure and growth mechanism in Solnhofen limestone have been75

attributed to a reaction-diffusion mechanism (Chopard et al., 1991). The authors also
proposed that the approach could explain the formation of ’Liesegang bands’ in the same
rock. However, they note that some features of these bands are not captured by their
model; in particular, the temporal and length scales are inappropriate. Herein, we seek
to find the cause for the nucleation of precipitation patterns by vastly different time-scale80

of the multifaceted morphogenic processes.

The Liesegang phenomenon has gained much attention after being discovered at
the end of the nineteen century (Liesegang, 1906). Several celebrated theoretical mod-
els have sought to describe the mechanism underlying the Liesegang phenomenon, like
the supersaturation model (Ostwald, 1902), the sol-coagulation model (Büki et al., 1995),85

and phase separation theory (Antal et al., 1998; Thomas et al., 2013). Two main features
of the Liesegang patterns are studied in the literature. First, the profound characteris-
tic is the striking periodic stripes following simple empirical laws, particularly time, spac-
ing, width, and Matalon-Packter laws (Matalon & Packter, 1955; Chopard et al., 1994;
Antal et al., 1999). Second, the dynamic transition of rhythmic bands towards more com-90

plex and irregular exists, like spotted patterns or combined stripes and spots, such as
Mississippi Valley Type deposits (Wang et al., 2015). For more detailed information, see
our recent work that decoded important coefficients governing the time scales of the for-
mation of Liesegang patterns in rocks from a thermodynamic perspective (Liu et al., 2023).

On the other hand, dendritic growth exploits the presence of manganese and iron95

oxyhydroxide minerals common in many rock types such as quartz and limestone in Fig-
ure 1. Their formation is usually in quasi 2-D spaces, such as growth along geological
discontinuities, sedimentary laminations, or sometimes embedded in quartz crystals and
agates (Ng & Teh, 2009). Two main mechanisms have been developed to explain the growth
of mineral dendrites: the viscous fingering (VF) model (Måløy et al., 1985; García-Ruiz100

et al., 1994) and diffusion-limited aggregation (DLA) model (Witten & Sander, 1983; Chopard
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et al., 1991). VF and DLA models can characterize the dendritic growth since they give
a compatible fractal dimension to field observations. However, although the formation
mechanism of mineral dendrites is well developed, the pattern selection mechanism and
the control parameters governing diverse morphologies, are not yet understood. Ng and105

Teh (2009) conducted a morphological fractal and shape analysis to identify the vast den-
drites observed in the field without relating to the underlying physics. Similarly, Bayirli
et al. (2018) investigated the various morphological transitions by the radial particle dis-
tribution of the scaling natural manganese dendrites. García-Ruiz and Otálora (2015)
hypothesized supersaturation plays a crucial role in the growth morphology without giv-110

ing a detailed and quantitative investigation. Swartzlow (1934) introduced an evapora-
tion mechanism where dendrites are formed along joint planes by the suspended mate-
rial’s distribution due to the surface tension of evaporating water. García-Ruiz et al. (1994)
argued against this mechanism because it cannot explain the subhorizontal manganese
dendrites observed along the joint. They suggested a viscous fingering (VF) process where115

the dendritic formation is relevant to flow instabilities probably driven by a geological
pressure gradient, such as a hydrothermal field. Alternatively, a diffusion-limited aggre-
gation (DLA) model seeks to reveal and characterize the formation process of dendrites (Witten
& Sander, 1983; Chopard et al., 1991).

We propose to fill this research gap by posing the following three essential ques-120

tions to the pattern selection mechanism: (i) what causes the regime variation from Liesegang
stripes to dendritic growth; (ii) is it possible to establish a general criterion to distin-
guish dendrite emergence through the qualitative description and quantitative analysis;
(iii) how a computational model can reproduce the wide range of dendritic morpholo-
gies observed on rock surfaces. To unveil the mechanism behind the two distinct pat-125

terns and varying morphologies of dendrites, we rely here on a numerical model for con-
ducting a comprehensive investigation over the overall appearance of structures.

Current numerical descriptions of dendritic growth track the free boundary using
either sharp-interface approaches through a level-set method (Li et al., 2008) or diffuse-
interface models as the phase-field method (Karma & Rappel, 1998; Z. Xu & Meakin,130

2008; Arguello et al., 2022). The sharp-interface method tracks interfaces explicitly for
the associated boundary conditions. The diffuse-interface approximation avoids the track-
ing by implicitly resolving interfaces for specific boundary conditions through the solu-
tion scheme, making it a more efficient and versatile tool to study interface-related prob-
lems, such as phase separation, multiphase flows, fracture propagation, and microstruc-135

ture evolution (Langer, 1980; Gómez et al., 2008; DeWitt et al., 2020; Fei et al., 2022;
Behnoudfar et al., 2022; Espath, 2021; Espath & Calo, 2021). Thus, we choose the phase-
field method to simulate dendritic growth. Phase-field simulations use an order param-
eter to represent each phase in the system, such as the solid and liquid phases denoted
by the magnitude of the order parameter (e.g., 1 and -1, respectively), while the contin-140

uous variation from -1 to 1 represents the solid-liquid interface. Compared to the sharp-
interface approaches, the method requires sufficiently fine meshes across the interface to
capture its dynamic evolution ensuring numerical accuracy. Therefore, the phase-field
method is here employed to analyze the evolution of the dendrite growth versus the Liesegang
pattern formation. The simulation is accelerated using a locally adaptive mesh refine-145

ment method at the interface while retaining a coarse mesh in the rest of the domain (Rosam
et al., 2007; Hu et al., 2009; DeWitt et al., 2020; Giraldo & Calo, 2023; Cier et al., 2021).

The phase-field method was first attempted by Ivantsov (1947) to describe the growth
of the dendritic tip analytically and showed a rotational paraboloid, excluding the cap-
illary and kinetic effects. Simplified phase-field models were then adopted to describe150

the formation of dendritic morphologies in the pure-substance solidification of various
materials (Collins & Levine, 1985; Caginalp, 1986, 1989; Kobayashi, 1993). Among them, Brener
et al. (1996) proposed a morphological diagram to distinguish simulated dendritic pat-
terns in the supercooling and anisotropy space. The diagram separates them into four
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categories based on two qualitative identifiers: (i) seaweed as opposed to dendrites as155

the basic patterns and (ii) fractal contrary to compact patterns. Later, Karma and Rap-
pel (1998) took capillary and kinetic effects into account and found that a small pertur-
bation can trigger a dramatic change in morphologies of both 2-D and 3-D simulations.
Although most of the early studies focussed on thermally-induced dendritic solidifica-
tion from a supercooled liquid, the concentration-driven dendrites, in our case of min-160

eral precipitation patterns, share similar features as stated by Langer (1980); this sim-
ilarity enables us to use a generic deposition model to capture the solid-liquid interface
evolution due to mineral precipitation. During solidification, two common assumptions
exist for the concentration field across the solid-liquid interface. Z. Xu and Meakin (2008,
2011) assumed a discontinuous solute concentration field between the solid and liquid165

phases. They derived a governing formulation for dissolution-precipitation processes and
demonstrated that it reproduces fingering patterns and diffusion-limited precipitation
based on Kappa’s model (Karma & Rappel, 1998). The discontinuous model was advanced
to include advection effects for transitional flows when applied to pipe precipitation (Hawkins
et al., 2014) and the dissolution wormhole formation during oil and gas recovery (Furui170

et al., 2022). Although the updated model gives a good estimate of the fractal dimen-
sion observed in diffusion-limited aggregation or dissolution, the formed patterns differ
from a phenomenological viewpoint. In contrast, Karma and Rappel (1998) used a con-
tinuous variable through the interfaces, an assumption extensively adopted for alloy pre-
cipitation and electrochemical precipitation and generates a rich variety of dendrites (Brener175

et al., 1996; Vignal et al., 2017).

To address the earlier questions, here we utilize the model of (Karma & Rappel,
1998) to simulate the pattern formation of mineral precipitation. We first adopt an ef-
fective criterion to classify the observed dendrites qualitatively. We then perform 2-D
simulations to explore the influences of three control parameters on the dendritic mor-180

phology selection. Using this criterion, we establish a systematic morphological diagram
for those parameters and classify the resulting patterns using the phenomenological clas-
sification criterion. Finally, we propose a quantitative phase diagram to distinguish den-
dritic morphologies in each category by measuring their fractal dimensions.

The rest of this study is organized as follows. In Section 2, we present the phase-185

field method adopted for modelling mineral precipitation. The method of fractal dimen-
sion calculation and its implementation are described. In Section 3, we present a con-
vergence study and comprehensive investigation on the variety of dendritic growth. The
numerical simulation results are compared with the observations from natural samples
of dendritic patterns. Section 4 discusses the difference between Liesegang stripes and190

dendritic growth and proposes its implication for pattern selection mechanisms in indus-
trial applications, mainly in mineral and thermal energy storage fields. Finally, we con-
clude our study in Section 5.

2 Methodology

We study the evolution of the solid-liquid interface during solute precipitation pro-
cesses considering a 2-Dimensional domain, as illustrated in Figure 2. The growing solid-
liquid interface is denoted as ∂Ω separating the solid phase and the fluid phase, denoted
as Ωsolid and Ωliquid, respectively. We assume that the dendritic patterns observed on
rock surfaces in Figure 1 are formed by mineral precipitation due to chemical reactions200

enabled by mass flux driven by a concentration gradient. Advective flux is considered
negligible.

2.1 Mineral precipitation model

The solute precipitation mathematical model contains a liquid phase diffusion pro-
cess and a first-order reaction at the solid-liquid interface. Diffusive processes in the solid
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Figure 2. Sketch illustrating the solute precipitation195

phase are ignored. The solute diffusion in the liquid phase follows Fick’s law

∂C

∂t
= D∆C, in Ωliquid, (1)

where C is the solute concentration, which varies in space and time. D denotes the so-205

lute diffusivity coefficient.

𝐶𝑒𝑞 𝐶0 𝐶 ′
𝑒𝑞

0

𝑇0

𝑇𝑀

Solid Solid+Liquid Liquid

𝑋0

Concentration

Te
m

pa
ra

tu
re

Solidus line
Liquidus line

Figure 3. Portion of the phase diagram of a binary solution

At the solid-liquid interface, the mass balance prescribes the relationship between
the solute flux onto the solid phase and the reactive precipitation rate

D∇C · n = k(C − Ceq), on ∂Ω, (2)

where n is the unit normal vector of the solid-liquid interface pointing towards the liq-
uid phase Ωliquid as illustrated in Figure 2. Ceq is the equilibrium solute concentration
in the solid. The initial solute concentration C0 is assumed under the local temperature
T0, a constant in the whole domain. Considering isothermal precipitation, the solid-liquid
interface grows when the solute concentration in the liquid C ′

eq is greater than that in
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the solid Ceq in the two-phase equilibrium. The growth rate of the precipitate is propor-
tional to the reaction rate as

ρsvn = kck(C − Ceq), on ∂Ω, (3)

where ρs is the solid density, vn is the precipitation growth rate in the normal direction.
kc and k are the reaction rate and stoichiometric coefficients of order unity.

Equation (3) states a local mass conservation condition at the interface that prop-
agates because of solute precipitation. In addition, the curvature of the interface may
affect the equilibrium concentration through the surface tension effect (known as the Gibbs-
Thomson effect), thereby altering the normal growth velocity (Karma & Rappel, 1998).
By normalizing the solute concentration by the equilibrium concentration as

c =
C − Ceq

Ceq

we rewrite (1)-(3) as

∂c

∂t
= D∆c, in Ωliquid, (4)

vn = D∇c · n, on ∂Ω, (5)
c = βvn − d0(θ)κ, on ∂Ω, (6)

where d0(θ) and κ are the anisotropic capillary length and interface curvature, respec-
tively; β is the interface kinetic coefficient relevant to the reaction rate. Here, we define
the solute concentration c = −Ψ far from the solid-liquid interface, where

Ψ =
Ceq − C∞

Ceq
,

which denotes the dimensionless supersaturating and C∞ the initial solute concentra-
tion of the supersaturated liquid. The supersaturation value Ψ is usually normalized to210

a maximum value of 1 (Karma & Rappel, 1998; Singer et al., 2006; Gómez et al., 2008).

2.2 Phase-field model for mineral precipitation

The direct solution of the sharp-interface model (4)–(6) requires tracking the spatial-
temporal evolution of the free boundary. Alternatively, herein, we employ the phase-field
model proposed by Karma and Rappel (1998) to solve dendritic growth numerically due
to solute precipitation. The dissipation of the free energy derives from phase-field mod-
els. The free energy potential F for dendritic growth can be written as

F (ϕ,∇ϕ, c) =
∫
Ω

f(ϕ,∇ϕ, c)dVΩ (7)

where c is the solute concentration and ϕ represents the phase-field variable (i.e., the or-
der parameter). The order parameter ϕ takes values in the range of [−1, 1], where the
convention ϕ = −1 and ϕ = 1 indicate the solid and liquid phases, respectively, and
the diffusion interface is between (−1, 1). The phase-field variable is a non-conserved or-
der parameter tracking the progress of the precipitation process. f is the free energy den-
sity consisting of two contributions

f(ϕ,∇ϕ, c) = Iϕ +Bϕ (8)

where Iϕ is the contribution from the interface energy and Bϕ is the free energy of the
bulk. The interface energy localizes to the interface with a simple expression

Iϕ =
1

2
W (n)2|∇ϕ|2 (9)
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where W (n) is the gradient energy coefficient closely associated with the thickness of
the interface. In 2D, we express W (n) =W0a(n), a simple form including in-plane sym-
metry gives

a(n) = 1 + εm[m cos(θ − θ0)] (10)

where m is a non-negative integer reflecting the number of the main branches of one den-
drite, θ is the in-plane azimuthal angle denoted by tan(θ) = ny/nx, θ0 is the initial off-
set azimuthal angle, and εm denotes the strength of the anisotropy.215

The second right-hand-side term Bϕ in (8) models the bulk energy phase, a double-
well potential with two minima corresponding to the solid and liquid phases. The sim-
ple polynomial formulation couples the solute concentration c with the phase-field vari-
able ϕ to model the concentration’s effect on the bulk free energy density

Bϕ = −1

2
ϕ2 +

1

4
ϕ4 + λcϕ

[
1− 2

3
ϕ2 +

1

5
ϕ4

]
(11)

where λ is a dimensionless coupling parameter. We satisfy the solvability condition (Karma
& Rappel, 1998; Singer et al., 2006; Gómez et al., 2008) by making λ take the follow-
ing form

λ =
Dτ0

0.6267W 2
0

(12)

where τ0 is the relaxation time coefficient. This λ selection allows us to model the sharp
interface of dendritic growth as the "diffuse-interface" limit.

The evolution equations for the phase-field variable are given by either the Cahn-
Hilliard or the Allen-Cahn equation, depending on whether the field is conserved. The
phase-field variable, non-conserved quantity, evolves by the Allen-Cahn equation, which
indicates the variational derivative of the free energy potential with respect to the phase-
field variable ϕ gives the force promoting the temporal evolution of the field ϕ

τ(n)
∂ϕ

∂t
= −δF

δϕ
, (13)

where τ(n) is the kinetic coefficient taking a form τ(n) = τ0a(n). The detailed vari-
ational derivative in (13) in 2D is

τ(n)
∂ϕ

∂t
=[ϕ− λc(1− ϕ2)](1− ϕ2) +∇ ·

(
[W (n)]2∇ϕ]

)
+

∂

∂x

|∇ϕ|2W (n)
∂W (n)

∂
(

∂ϕ
∂x

)
+

∂

∂y

|∇ϕ|2W (n)
∂W (n)

∂
(

∂ϕ
∂y

)
 , (14)

The reaction-diffusion equation considering mineral precipitation or dissolution gov-
erns the temporal evolution of the solute concentration at the interface such that

∂c

∂t
= D∇2c+A

∂ϕ

∂t
. (15)

The last term in (15) is a solute source or sink, in analogy to the latent heat release of
the dendrite formation for solidification problems of melt. This term is localized near
the interface, while it is neglected outside of the diffusive interface region. As the phase220

field variable ϕ takes range in [-1,1], it follows that A = ρs/2Ceqkc = 1/2 in the sharp
interface limit (Z. Xu & Meakin, 2008).

We introduce an intermediate variable µ (a.k.a. chemical potential or driving force)

µ = [ϕ− λc(1− ϕ2)](1− ϕ2) +∇ ·
(
[W (n)]2∇ϕ]

)
+

∂

∂x

|∇ϕ|2W (n)
∂W (n)

∂
(

∂ϕ
∂x

)
+

∂

∂y

|∇ϕ|2W (n)
∂W (n)

∂
(

∂ϕ
∂y

)
 , (16)

–8–



manuscript submitted to JGR: Solid Earth

making the governing equations more compact. Thus, rearranging (14) and (15), we get

τ(n)
∂ϕ

∂t
= µ, (17)

∂c

∂t
= D∇2c+A

µ

τ(n)
, (18)

2.3 Definition of the numerical problem

No flux

c̄ = − Ψ

ϕ0 = − 1

Initial seed

Lx = 960

L y
=

96
0

N
o 

flu
x

y
x

N
o 

flu
x

R0 = 8 ϕ0 = 1

c0 = − Ψ

Figure 4. Sketch of initial & boundary conditions for dendritic growth

Considering an initial–boundary value problem in a square domain, as shown in
Figure 4, we denote the domain as Ω ∈ R2 and its external boundary as Γ which has
a unit outward normal vector n. We impose essential and natural boundary conditions
for the solute concentration c, the phase-field variable ϕ, and the driving force µ. Let
Γa, Γb and Γc denote the essential boundaries for the concentration and phase field, re-
spectively, and Γd, Γe and Γf are the natural boundaries. These boundaries satisfy

Γa ∩ Γd = Γb ∩ Γe = Γc ∩ Γf = ∅ (19)
Γa ∪ Γd = Γb ∪ Γe = Γc ∪ Γf = Γ (20)

The essential boundary conditions read

c = c̄ on Γa; ϕ = ϕ̄ on Γb; µ = µ̄ on Γc; (21)

and the natural boundary conditions are

∇c · n = jc on Γd; ∇ϕ · n = jϕ on Γe; ∇µ · n = jµ on Γf . (22)

The initial conditions are

c|t=0 = c0; ϕ|t=0 = ϕ0; µ|t=0 = µ0; in Ω . (23)

For dendritic growth simulation, we specify the domain size as 960 and the radius
of the initial seed as R0 = 8. The boundary conditions impose no flux at the bottom
and lateral boundaries and Dirichlet boundary condition c̄ = −Ψ at the top boundary
as a far-field concentration. We initialize the whole domain as the supersaturated liq-
uid phase with ϕ0 = −1 and c0 = −Ψ, except the half-circular seed as the solid phase
with ϕ0 = 1 and c0 = −Ψ. We impose a smooth transition from the solid to liquid
phases using the following half-circular seed.

ϕ(r) =

[
1− tanh

|r| −R0√
2

]
− 1 (24)

–9–
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Based on the governing equations (16)-(18) and corresponding boundary and ini-225

tial conditions (21)-(23), we derive weak formulations of dendritic growth in the Appendix 6,
where time marching is the forward Euler method and space discretization is the finite
element method. And then we implement these weak forms in an open-source high-performance
phase-field code, PRISMS-PF DeWitt et al. (2020), which allows us to use adaptive mesh
refinement and matrix-free technique to reduce computation cost.230

2.4 Fractal dimension as an internal-energy-evolution proxy

The box-counting method is here used to measure the fractal dimension (FD) of
the dendrites. FD is an intrinsic characteristic of fractals introduced by Mandelbrot (1982)
to characterize a structure with self-similarity at all scales. The growth of dendrites is
a remarkable fractal pattern in nature. Here, we use FD to quantitatively distinguish
dendrites that grow out from different environments. The box-counting method we have
implemented for measuring FD of dendrites expresses as follows (Vicsek, 1992):

FD = lim
r→0

logN(r)

− log r
(25)

where N(r) is the number of boxes that cover the structure and r is the box size.

We estimate FD by plotting logN(r) versus log r with the change of the box size
r. The curve is linear and the absolute value of its slope corresponds to the value of FD.
The box-counting algorithm of Moisy (2008) is implemented in Matlab, capable of cop-235

ing with both 2-D binary and RGB color images. The procedure to measure FD of the
dendrites from our simulation or the photograph has the following three steps:

(i) the code reads a binary image or processes a color image to grayscale C, where
the gray value of the dendrite is equal to 0 (white), while the gray value of the back-
ground is set to 1 (black);240

(ii) we select a region containing dendrites (gray value = 1);
(iii) the code recursively calculates N(r) (box number) by decreasing r (box size);
(iv) the code draws the curve of logN(r) versus log r and estimates the FD and its stan-

dard error.

In the third step (iii), we can select the upper and lower limits of the box size r in the245

following manner. The box sizes we use follow powers of 2, i.e., r = 1, 2, 4, . . . , 2p. The
lower limit is the binary size of 1 whereas the upper 2p is limited by the size of the gray
matrix C. The specific condition is p should be the smallest integer such that the big-
ger size of the matrix C in columns and rows satisfies C ≤ 2p. In the case of the sizes
of C smaller than 2p, the code ensures the matrix C to pad with 1 to approach size 2p250

(e.g., a 560-by-720 picture is padded to 1024-by-1024). This enables the process of ar-
bitrary sizes of images with little effort. Furthermore, for an RGB color image with a
matrix of m-by-n-by-3, the code first sums up the 3 RGB planes.

3 Results

We now study numerically the behavior of the phase-field model of Section 2. We255

implement the weak forms in PRISMS-PF, an open-source phase-field modeling frame-
work (DeWitt et al., 2020). First, we study the method’s convergence in space and time
in Section 3.1. Next, we characterize the observed and simulated dendrites by a general
criterion involving a visual and quantitative distinction in Section 3.2. Then, we perform
parameter studies on supersaturation and diffusion coefficients to explore different den-260

dritic patterns, including solute diffusion and phase-field (Allen-Cahn) diffusion coeffi-
cients in Section 3.3. Finally, we reproduce the classified dendrites observed on rock sur-
faces by comparing the morphology classification and measuring the fractal dimension
in Section 3.4.
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3.1 Model convergence study265

We demonstrate the reliability of PRISMS-PF for dendritic growth simulation by
conducting a convergence study regarding the mesh and time-step sizes. Figure 4 gives
geometry information and the detailed initial and boundary conditions. Table 1 lists the
model parameters for the numerical test. We use cubic finite elements to capture the highly270

nonlinear and time-dependent dendritic growth, which outperforms a finite difference method
with five points across the interface (DeWitt et al., 2020).

Table 1. Model parametrization for dendritic growth

Properties Values

Interfacial thickness W0 1.0
Diffusion coefficient D 100
Anisotropic symmetry order m 10
Anisotropy strength ϵm 0.05
Offset angle θ0 0
Relaxation time τ 1.0
Supersaturation Ψ 0.3

We investigate the effect of the ratio of the length scale represented by W0 with
the mesh size h to carry out a spatial convergence study. We fix the length scale W0 =
1.0 related to the interfacial thickness but progressively refine the mesh with different
refinement levels. We reduce the computational cost by adaptively refining the mesh ev-
ery five-hundred time steps from an initially uniform mesh (level=3) to the maximum280

refinement levels. We adopt a simple adaptive mesh refinement criterion, which refines
cells where the absolute magnitude of the phase-field variable is less than 0.99. Mean-
while, the refined cells are coarsened when the absolute magnitude ϕ is above 0.99. Here,
we set the maximum levels of refinement equal to 6, 7, 8, and 9, resulting in the ratio
W0/hmin ranging from 0.2 to 1.6. As we use the explicit time scheme, we select a small285

time increment ∆t = 5×10−5 to satisfy the Courant–Friedrichs–Lewy condition (CFL)
condition for all the mesh sizes. Both qualitative and quantitative analyses are conducted
to compare between different tests.

Figure 5 shows the dendritic patterns for different maximum levels of refinement
at the end of simulation t = 80; these results demonstrate the effect of the ratio W0/hmin

on the dendritic growing process. The simulated patterns converge towards a consistent
shape as the ratio W0/hmin increases; when the value W0/hmin ≥ 0.8 corresponds to
the maximum levels ≥ 8, we observe spatial convergence.295

Next, we quantitatively compare the temporal evolution of the free energy and solid
phase fraction (i.e., ratio of solid phase to the sum of the two phases): Ωsolid/Ω in the
domain. Figure 6 shows that the temporal evolution of the solid phase fraction and free
energy is off when W0/hmin < 0.4. Nevertheless, beyond this ratio (e.g., W0/hmin ≥300

0.8), the free energy and solid phase fraction curves are almost indistinguishable. In the
literature, a typical value W0/hmin ranging from 2 to 4 (Karma & Rappel, 1998; Z. Xu
& Meakin, 2011; Peco et al., 2019; Kundin & Steinbach, 2019; Ghanbari et al., 2020) is
recommended for phase-field modeling structure evolution. However, we find that a lower
level of refinement is sufficient to guarantee convergence in our simulations, which could305

be related to the high-order (cubic) elements we use, instead of linear elements in the
reference (DeWitt et al., 2020; Bhagat & Rudraraju, 2022). Thus, we use cubic elements
and select a ratio of the length scale to the minimum mesh size W0/hmin ranging from
0.8 to 1.6.
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a) Maximum refinement level = 6, W0 = 0.2hmin b) Maximum refinement level = 7, W0 = 0.4hmin

c) Maximum refinement level = 8, W0 = 0.8hmin d) Maximum refinement level = 9, W0 = 1.6hmin

Figure 5. Convergence of ϕ shape as mesh is refined for a) W0 = 0.2hmin, b) W0 = 0.4hmin, c)
W0 = 0.8hmin and d) W0 = 1.6hmin in the domain of x ∈ [320, 640] and y ∈ [0, 160].
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Figure 6. (a) Solid phase fraction & (b) free energy evolution for different ratios of W0/hmin275

Next, we study the temporal convergence of our discretization. We set the discretiza-310

tion ratio to W0/hmin = 1.6 with the time step ∆t = 5 × 10−5 as a reference. Then,
we reduce the time steps to ∆t = 2.5× 10−5 and 1× 10−5, respectively. We compare
the simulated dendritic pattern, the solid phase fraction, and the free energy with the
preferred results. Figure 7 depicts the convergence of results for time steps. The reduced
time steps are in excellent quantitative agreement with the reference case in terms of the315

solid phase fraction and free energy as Figure 8 illustrates. These results demonstrate
the time increment ∆t = 5 × 10−5 is sufficiently small to ensure convergent results.
Therefore, we select the time increment ∆t = 5× 10−5 for this study.

3.2 Dendritic morphology classification

First, we characterize how the observed patterns can be classified since the formed
pattern evolving from a small nucleus is diverse (Brener et al., 1996; Lin et al., 2022).
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(c) Δt = 1.0 × 10−5(b) Δt = 2.5 × 10−5(a) Δt = 5.0 × 10−5

Figure 7. Convergence of ϕ shape as the time increment takes values of (a) ∆t = 5.0 × 10−5,
(b) ∆t = 2.5× 10−5, and (c) ∆t = 1.0× 10−5 in the domain of x ∈ [320, 640] and y ∈ [0, 320].290
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Figure 8. (a) Solid phase fraction & (b) free energy evolution for different time step sizes

Based on the classifications available in literature we propose a qualitative morphology
diagram as illustrated in Figure 9 for the dendrite patterns produced by mineral precip-325

itation reactions. Figure 9 compares the three pattern categories, containing needle-, tree-
, and seaweed-like dendrites, to the corresponding numerical results with varying input
parameters. For a detailed description of parameters for the simulated patterns see Sec-
tion 3.3. We define the three types of dendritic patterns in the following way:

Needle-like dendrites: This dendritic morphology propagates in a preferred direc-330

tion, controlled by the anisotropy index m in Eq. (10). This pattern is dominated by pri-
mary (fin) branches without or with the under-developed secondary (or side) branches,
see Figure 9(a). The formed needle-like pattern is rather simple and the side branches
rarely emerge, thereby resulting in a relatively small fractal dimension.

Tree-like dendrites: This dendritic morphology develops symmetrically and grows335

with well-defined side branches, as Figure 9(b) shows. Two main characteristics describe
this pattern: (i) the side branches frequently appear on each primary fin and (ii) the thick-
ness of the side branches is comparable to that measured by primary branches. The formed
morphology has an intermediate fractal dimension compared to the others.

Seaweed-like dendrites: The seaweed morphology has a denser structure with a rel-340

atively large tip radius as Figure 9(c) shows. Also, the growth of primary branches may
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(c) Seaweed-like dendrites(b) Tree-like dendrites(a) Needle-like dendrites

Figure 9. Comparison of the classical morphologies sketches and simulated patterns: (a)
needle-like dendrites, (b) tree-like dendrites, and (c) seaweed-like dendrites.320

impede each other, causing a lack of symmetry in the shape. A prominent feature of this
pattern is that its primary arms are thicker than its side branches. The dense primary
branches reduce the branch spacing and, therefore, result in a larger seaweed fractal di-
mension.345

This simple dendritic morphology classification enables us to visually distinguish
the patterns observed in the field, for example as described for the manganese dendrites
in (Ng & Teh, 2009).

3.3 Parameter space analysis and morphologies

In Section 3.2, we define three particular types of dendritic morphologies, namely
needle-, tree-, and seaweed-like dendrites. Now we conduct a comprehensive parameter
study to identify the main parameters that control the selection of patterns. We eval-
uate the associated parameter ranges in which a specific morphology emerges. Our nu-
merical results suggest that the morphology selection of dendritic growth depends on three
parameters. The first number is the supersaturation level Ψ and the two others are the
diffusion coefficients in Eq. (14) (i.e., W 2

0 /τ0) and Eq. (15) (i.e., D). We define

G =W 2
0 /τ0

as the phase-field diffusion coefficient. Following (Karma & Rappel, 1998), we assume350

the kinetic coefficient τ0 has the value of 1. Thus, the phase-field diffusion coefficient G
is solely controlled by the interfacial thickness coefficient, as W 2

0 .

We explore the parameter spaces in detail to better understand the effect of these
parameters on the pattern formation of dendrites. By fixing one control parameter and
varying the other two parameters, we obtain a phase morphology diagram of the den-355

dritic patterns. We thereby first qualitatively classify them into the three dendritic mor-
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phologies from our simulation results. Then, we quantitatively evaluate the patterns by
their fractal dimensions using the box-counting method (see Section 2.4). The simula-
tion results presented here are based on the model convergence study detailed in Sec-
tion 3.1.360
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Figure 10. Morphology evolution in the supersaturation and diffusion phase diagram

3.3.1 Influence of supersaturation and solute diffusion coefficient

We assess numerically the influence of the supersaturation Ψ and solute diffusion
coefficient D on the evolution of the dendritic patterns by sampling a range of values for
Ψ and D. For this parameter sweep, we keep the phase-field diffusion coefficient G =
1.0 corresponding to the interfacial thickness W0 = 1 fixed so that morphology selec-
tion is solely driven by variations in Ψ and D. We select the supersaturation as 0.2 and370

0.3 to 0.9 with 0.2 increments, which satisfy the limit of Ψ ≤ 1. Also, we set the so-
lute diffusion coefficient to 10, 50, 100, and 200. Therefore, we obtain the dendritic mor-
phology evolution with varying Ψ and D using 20 simulations, as presented in Figure 10.

In all the presented simulation results hereafter, we select each overall simulation375

time based on achieving roughly the same pattern size. In this phase morphology dia-
gram, the three dendritic growth types (see Section 3.2) for different Ψ-D combinations
are identified. The generated patterns are classified (based on the earlier described den-
dritic morphology classification criterion) into seaweed-like dendrites, tree-like dendrites,
needle-like dendrites and no dendrites (circular) as shown in Figure 11(a). Based on the380

pattern selection in the horizontal axis, we find a sufficiently large Ψ is able to change
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(a) Dendrites classification
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Figure 11. Dendritic-morphology phase diagram: supersaturation & solute diffusion. (a) den-
drites classification according to Section 3.2 criterion and (b) fractal dimension heatmap. Gray
dashed lines separate circular, needle-, tree-, and seaweed-like patterns.365

the generated structure shape from any type to seaweed-like dendrites, independent of
the value of D.

The solute diffusion coefficient D also plays a significant role in determining the
dendritic growth type, and the pattern selection is relevant to the supersaturation level,385

as shown in Figure 11(a). When the supersaturation level is low, with an increasing so-
lute diffusivity, the transition from needle-like to tree-like dendrites occurs. Under a su-
persaturation of 0.5, a full-spectrum transition from needle-like to tree-like to seaweed-
like dendritic growth takes place. With a supersaturation level, the growth patterns re-
duce to tree-like and seaweed-like dendritic morphologies.390

Although the dendritic classification shown in Figure 11(a) is direct and intuitive,
a quantitative description is desired for the generated dendritic morphology. FD by box
counting is hence employed to refine the dendritic morphology characterization, as shown
in Figure 11(b). A general trend observed from Figure 11(b) is that the fractal dimen-395

sion of the generated dendritic patterns increases as Ψ and D grow. Since a combina-
tion of larger Ψ and D produces more arms (i.e., side branches) and thicker primary branches,
the morphology appears to be more complicated. Within one category of the dendritic
type, the fractal classification allows us to have a refined view of the morphological char-
acteristics. For example, for the cases of D = 100 with Ψ =0.3 and 0.5, both fall into400

the tree-like classification, while the value of FD, 1.68 and 1.74, respectively, provides
a quantitative description of the primary precipitated structure versus the secondary pre-
cipitated structure.

3.3.2 Influence of phase-field and solute diffusion coefficients

In this section, we study the effect of the phase-field describing the interface and
the solute diffusivity on dendritic pattern formation. Similarly as in Section 3.3.1, with
a fixed value of supersaturation at 1.0 we set the solute diffusion coefficient D consis-410

tent with Figure 10 while varying the phase-field diffusion coefficient G by altering the
interfacial thickness coefficient W0. We set W0 to 0.5 to 1.0 with a 0.1 increment, such
that our simulations satisfy the convergence condition W0/hmin ≥ 0.8. The simulation
results suggest that a smaller value of W0 slows down the transition between different
types of pattern formation. Lower W0 values are not explored here as the three repre-415

sentative dendritic morphologies can already be captured with the selected range of pa-
rameters.
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Figure 12. Morphology evolution in the interfacial thickness & diffusion phase diagram
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Figure 13. Dendritic-morphology phase diagram: interfacial thickness & solute diffusion.
(a) dendrites classification according to Section 3.2 criterion and (b) fractal dimension heatmap.
Gray dashed lines separate circular, needle-, tree-, and seaweed-like patterns.

405

Figure 12 presents the dendritic morphology evolution in the interfacial phase-field
and solute diffusivity space demonstrating two dominant effects. First, the simulated pat-
terns from right to left show that G controls the number of side branches, i.e., as G drops,420

the branching increases reducing the interval between the side branches. With the in-
crease of the number of the side branches (secondary precipitated structure) on a pri-
mary branch, the dendritic morphology transitions from simple patterns to more com-
plex ones, with pattern classification presented in Figure 13(a). For example, a needle-
like dendrite changes to a tree-like pattern when the phase-field diffusion coefficient de-425

creases from 0.81 to 0.64 for solute diffusivity D = 50. Additionally, as the branching
increases the secondary precipitated structure becomes denser without noticeable short-
ening, thus causing an increase in the fractal dimension of the growth pattern. This ten-
dency is quantitatively depicted in Figure 13(b) for different solute diffusion coefficients.
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Second, how fast the solute diffuses influences the dendritic morphology, i.e., the den-430

drites become more complex as the solute diffusion coefficient D increases. A low value
of D = 10 promotes the formation of needle-like structures, while a high diffusivity D =
200 leads to seaweed-like dendrites regardless of the phase-field coefficient. Intermedi-
ate range of the solute diffusivity tends to pick up on the tree-like dendritic morphol-
ogy, as shown in Figure 12. The effect of solute diffusivity on the pattern selection of den-435

dritic growth is quantitatively described by the fractal dimension in Figure 13(b).

needle-like tree-like seaweed-like
1.5

1.6

1.7

1.8

1.9

𝐹𝐷 < 1.71

1.71 ≤ 𝐹𝐷 ≤ 1.85

𝐹𝐷 < 1.85

Dendrities

Fr
ac

ta
ld

im
en

sio
n,

𝐹
𝐷

Figure 14. Manganese dendrite classification & fractal dimension calculation. The colored
image is from Solnhofen limestone, while others are from (Ng & Teh, 2009). Vertical solid lines
indicate the crossover between needle-, tree-, and seaweed-like dendrites.

3.4 Dendritic morphology in rocks440

In this section, we employ our model to capture dendrites that are precipitate by
reaction-diffusion processes in minerals, in particular manganese dendrites. We use the
results of the previous section to invert the corresponding parameters, especially solute
diffusion coefficient D, for specific dendritic patterns. We combine a qualitative and quan-
titative method and separate the whole procedure into three steps. First, we classify the445

real-world (field) dendrites reported in the literature into three categories based on the
criterion in Section 3.2. Second, we qualitatively compare each field dendrite with our
simulation results and find resembling dendritic morphology. Finally, we measure the frac-
tal dimension FD of these dendrites to find a comparable FD to the field dendrite.

3.4.1 Field dendritic morphologies: classification & fractal dimension450

Before comparing simulation and field dendrites, we categorize the dendrites emerg-
ing on rock interfaces. In the present work, we consider manganese dendrites as an ap-
propriate candidate for two reasons. First, they commonly grow along geological discon-
tinuities, like joints, cracks, and fractures, and appear on surfaces of different rocks, such
as limestone (Chopard et al., 1991), quartz (Ng & Teh, 2009) and magnesite ore (Merdan455

& Bayirli, 2005). In addition, the individual manganese dendrites show various morpholo-
gies that range from simple shapes with few branches (none in some cases) to complex
intricately branched patterns. Herein, we analyze two series of mineral dendrites. The
first one shows six distinct patterns obtained from vein quartz in Northern Kuala Lumpur (Ng
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& Teh, 2009). The second one uses our field photographs of well-documented manganese460

dendrites in Solnhofen limestone (Chopard et al., 1991).

Figure 14 shows from left to right two series of manganese dendrites and groups
them into three different categories. The manganese dendrites on vein quartz have vi-
sually distinct patterns with two samples in each class, while one commonly observed
in limestone shows a tree-like shape. We further differentiate them by plotting the frac-465

tal dimension FD reported by Ng and Teh (2009), see Figure 14 from bottom to top. We
also measure our Solnhofen limestone sample using the box-counting method as FD=1.72,
which is comparable to that estimated by (Chopard et al., 1991) FD≈ 1.75 in the same
region. The seaweed-like dendrites with broad and short branches, in general, have larger
FD, compared to needle-like ones with long and thin branches; while the FD number of470

tree-like dendrites is intermediate. We explicitly divide the dendritic morphologies into
three types based on our findings; we assume the needle-like dendrite has an FD below
1.71, while the FD of the seaweed-like dendrite is above 1.85, the seaweed-like dendrite’s
FD ranges from 1.71 to 1.85.

FD = 1.57 ± 0.05

FD = 1.60

FD = 1.71 ± 0.04

FD = 1.71

Figure 15. Comparison of needle-like dendritic morphologies and simulated patterns475

3.4.2 Dendritic morphology comparison

Seeking to decipher which parameter controls the field dendritic morphologies, we
compare studies for each type of dendrite classification in this section.

Needle-like dendrites: We begin with the simplest dendritic pattern with fewer side
branches in the needle-like category. Figure 15 shows two dendrites with different frac-480

tal dimensions. Although the side branches of both dendrites are underdeveloped, the
one with smoother primary branches has a smaller FD=1.57. First, we explore two mor-
phology diagrams from Sections 3.3.1 and 3.3.2 and search for similar dendritic shapes.
In Figure 12, we find two resembling dendritic morphologies. In these simulations, the
solute diffusion coefficient is D = 50, while the phase-field diffusion coefficients are G =485

0.81 and 1.0, respectively. Figure 15 illustrates the similarities between the simulated
and field dendrites. Overall, the simulated dendritic growth resembles field observations
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except for the irregular growth directions in the real-world dendrites (see also the tree-
and seaweed-like dendrites). The irregular change in the growth direction in the field may
be caused by material heterogeneities and the complex hydrogeological environments where490

these dendrites evolve; nevertheless, introducing a noise term to our computational model (Karma
& Rappel, 1999) to approximate these effects is beyond the scope of our study. Further-
more, we quantitatively compare the fractal dimension between the real dendrites from
the field (Ng & Teh, 2009) and our simulations in Figure 13(b). Our simulation results
are in good agreement with the field observation. For example, smoother dendrites re-495

sult in FD=1.60 compared to 1.57±0.05 in the field; similarly, the relatively rough den-
drites have FD=1.71 in the range of 1.71± 0.04.

FD = 1.76 ± 0.04 FD = 1.83 ± 0.02

FD = 1.82

FD = 1.72 ± 0.02

FD = 1.71 FD = 1.78

Figure 16. Comparison of the tree-like dendritic morphologies and simulated patterns

Tree-like dendrites: The tree-like dendritic growth is a commonly observed den-
drite in different disciplines. Following the procedure of the above comparison, we iden-500

tify the corresponding dendritic shapes similar to the field tree-like dendrites in Figure 16.
The manganese dendrites from Solnhofen limestone have a smaller FD=1.72 compared
to that observed on vein quartz FD=1.76 and 1.83. As for the dendrites in Solnhofen
limestone, parameters G = 1 and D = 100 give a similar pattern and a similar FD
number in Figure 13(b). With the phase-field diffusion coefficient decreasing to G = 0.49505

with fixed D = 100, our simulation results in a dendritic pattern observed in quartz.
For this simulation, several side branches tend to experience a coarsening process and
generate thick side arms, causing more regions to be filled with the manganese mineral
as Figure 16 illustrates. The filling ratio increment of the minerals ensures an increase
in fractal dimension. Regarding the higher FD=1.83 case, the dendrites show a relatively510

broad structure and its side branches are comparable to the main branches. We obtain
this kind of dendritic morphology by increasing the saturation level to Ψ = 0.7 and drop-
ping the solute diffusion coefficient to D = 10 as Figure 10 shows. The estimated FD=1.82
matches well the quantity 1.83± 0.02 reported by Ng and Teh (2009).

Seaweed-like dendrites: Next, we analyze the most complex structures: seaweed-
like dendrites. Compared to the thick arms in the tree-like dendrites related to the coars-
ening processing in Figure 16, the complex dendrites in Figure 17 are likely associated
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FD = 1.85 ± 0.01

FD = 1.84

FD = 1.88 ± 0.02

FD = 1.88

Figure 17. Comparison of the seaweed-like dendritic morphologies and simulated patterns515

with a higher manganese concentration environment. We verify this hypothesis by in-
creasing the initial supersaturation level in our simulations. Interestingly, as the super-520

saturation level Ψ grows, the dendritic morphologies become denser and fuller structures.
With the solute diffusion coefficient D = 100, the supersaturation level of Ψ = 0.7 and
0.9 generates two dendritic morphologies comparable to the field observations, see Fig-
ure 17. Our simulations have good agreement in FD numbers; they are FD=1.84 and
1.88 compared to the field observations in the range of 1.85±0.01 and 1.88±0.02, re-525

spectively.

4 Discussion

The selection and formation of two distinct precipitation patterns (i.e., Liesegang
rings versus dendritic growth) in the same rock formation (Solnhofen limestone) has been
suggested to be caused by a common reaction-diffusion process (Chopard et al., 1991).535

However, the original proposition was found to be not appropriate as it does not repro-
duce time- and length scales of Liesegang rings. Here, we find that the difference between
the two processes is the fundamental mode of mass transfer of the reactant (conserved
versus non-conserved) suggesting that the underlying mechanisms are stemming from
different driving forces for the supersaturated fluid mass movement in the reaction-diffusion540

processes. Accordingly, a slow process would allow the replenishment of the dissolved
reactant while a fast flow would result in a depletion of the reactant in the solvent.

A recent inversion scheme for the Liesegang phenomenon based on field photos (Liu
et al., 2022) uses the Cahn-Hilliard equation where the phase-field variable is a conserved
quantity. The inversion of the diffusion coefficient from field photographs was performed545

on an archetype banded rock formation, the Zebra rock formation of Western Australia.
The simulations showed that a low solute diffusion coefficient in fluid flow is capable of
forming Liesegang structures (Liu et al., 2022). The models suggest that a slow viscous
material flow through a tight formation, presumably supported by mechanical-hydrological-

–21–



manuscript submitted to JGR: Solid Earth

(a) Liesegang patterns

Local bands A Local bands B

(c) Local bands B comparison  

(b) Local bands A comparison  

Dfluid /Dsolid = 3

Dfluid /Dsolid = 2

Figure 18. (a) Two local Liesegang patterns in Solnhofen limestone and local Liesegang bands
comparison: (b) local bands A and (c) local bands B with their numerical results. Scaled param-
eters for both simulations are ā = 100, a0 = 0, m0 = −1.5, Db = 1.0, κ = 1.0, ε = 1.0, γ = 0.15,
σ = 0.2, and ηc = 0, except b0 = 1.0 and Da = 2 for the local bands A while b0 = 0.75 and
Da = 3 for the local bands B. For parameter definitions refer to (Liu et al., 2023).

530

chemical forces, is causing growth of the Liesegang pattern which form as a pervasive550

pattern through the sedimentary layering.

For verifying the hypothesis that follows from the observation that dendritic growth
is associated with the subsurface fluid flow along the geological discontinuities and sed-
imentary laminations, we compare the resulting diffusivities from the dendrites versus
a fit to the observed Liesegang rings in Solnhofen limestone shown in Figures 1 and 18.555

The inversion of the ratio of solid over fluid diffusivity follows from a conversion
of the approach in our earlier work (Liu et al., 2023) from a Cartesian- to a Cylindri-
cal coordinate system. The observed rings in Figure 1 are irregular suggesting hetero-
geneities that affected their growth. We select two areas that have minimal material per-
turbations for the fitting diffusion coefficients. Our analysis confirms the findings for the560

Cartesian Liesegang patterns in Zebra rock. The Liesgang phenomenon in Solnhofen lime-
stone is also triggered by a fluid diffusion coefficient that is on the same order of mag-
nitude (i.e., 2 to 3 times faster than the solid diffusivity defined by the viscous deforma-
tion of the matrix), see Figure 18.

This finding supports that a common formation mechanism for Liesegang rings is565

stemming from a driving force for the solute transport (like Mn- or Fe-bearing acidic fluid)
which is either an extremely slow flux induced by an (electro-)chemical potential differ-
ence or a slow mechanically forced fluid flow caused by a stress gradient, e.g. compaction
from overburden stress or tectonic forces (Liu et al., 2023), or a combination thereof. Liesegang
rings consequently can form independent of the primary high permeability interbed lay-570

ers or secondary crack interfaces that control dendrites. Due to mass conservation they
must form in a direction perpendicular to the primary thermodynamic force which in
the mechanical case is the direction of compaction of the sedimentary layer triggering
the formation of Liesegang rings.
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For a sedimentary compaction environment, Liesegang rings are expected to form575

as a pervasive structure through the sedimentary layering. This is confirmed by the iden-
tical pattern observed on the front and reverse sides in Figure 1. The sample incorpo-
rates multiple sedimentary layers of the fine-grained mud-and silt limestone Solnhofen
limestone which sedimented and compacted in an oxygen poor environment. During sub-
sidence the layers were compressed and conserved multiple macrofossils, such as the com-580

plete skeleton, including the feathers of the primeval bird (Archaeopteryx), flattened in
its bedding planes. The fine grain size and the high mud- and silt content suggest low
primary permeability across the sedimentary layers during the compaction process which
is consistent with our finding of low solute transfer.

In contrast, the formation of dendrites show, on average, relatively large solute dif-585

fusion coefficients, see Section 3.4.2. The high diffusion coefficient seems associated with
the subsurface fluid flow driven by a fluid pressure gradient driven by hydraulic forcing.
The pressure difference is able to push the Mn- and Fe-bearing fluids to invade sedimen-
tary discontinuities with a rather high diffusivity and consequently leads to the miner-
alization of dendritic-shaped structures. Qualitative analyses also result in similar con-590

sequences for the mineral dendrite-forming process by observing the images from exper-
iments or fields (Ng & Teh, 2009; García-Ruiz & Otálora, 2015). Our numerical simu-
lations confirm this hypothesis quantitatively and provide an inversion tool for the dy-
namic coefficients from static snapshots of the rock patterns.

Parameter studies are required to model the wide variety of dendritic morpholo-595

gies observed on rock surfaces. The key parameters controlling the transition between
different types of dendritic patterns are of particular interest to the community. We find
that three control parameters play an essential role in determining the dendritic growth
morphology: supersaturation, solute diffusion, and phase-field diffusion coefficient. Specif-
ically, the supersaturation and solute diffusion coefficient have similar effects. As the su-600

persaturation or solute diffusion coefficient grows the resulting dendritic branches are
denser and broader. The Mullins-Sekerwa instability (Mullins & Sekerka, 1963) justifies
this observation. An initially small perturbation (bump) can grow faster in an environ-
ment with higher supersaturation or diffusivity, which results in a larger mass flux from
the surrounding medium. More flux leads to faster growth that in turn leads to a sharper605

bump which collects more flux (Karma & Rappel, 1998; Langer, 1980). Additionally, the
sharper interfaces result in larger fractality and complex structures. However, seaweed-
like dendrites require a high supersaturation level to have fuller and denser structures.
This is because the high supersaturation makes continuous growth dominate the whole
process and makes the surface become rounded, thereby causing a dense and full struc-610

ture (García-Ruiz & Otálora, 2015).

Alternatively, the high Allen-Cahn phase-field diffusion coefficient reduces the pat-
tern complexity by decreasing the side branches’ growth. The reason is that the value
is associated with the solid-liquid interface effects, such as anisotropy, surface tension,
and surface kinetics tension, which usually stabilize the dendritic growth process and form615

a less fractal morphology (Karma & Rappel, 1998). Therefore, as the phase-field diffu-
sion coefficient drops, the level of branching increases, giving rise to a decrease in the dis-
tance between the side branches. The closer side branches can cause a transition from
simple pattern morphologies to complex ones, such as needle-like to tree-like dendrites.

Our simulations suggest that tree-like dendrites have a fractal dimension between620

1.71 and 1.85, the needle-like pattern is below 1.7, and the seaweed-like one is over 1.85.
We will be able to reproduce the dendrites observed in the field by inverting the intrin-
sic material parameters controlling the pattern-forming process, such as the solute dif-
fusion coefficient. These insights will allow us to decipher the geological environments,
such as the supersaturation level. The dendritic pattern may act as a "bar code" equiv-625

alent to their internal reaction-diffusion coefficients and the hydrogeological environment
that generated these structures. We sought to establish a general criterion for differen-
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tiation of the observed field dendrite patterns; thus, we considered the overall qualita-
tive description of the field dendrites and proposed a quantitative measurement of their
fractal dimension. In earlier studies, the classification of dendritic growth concentrated630

on either a qualitative comparison or a fractal dimension calculation. Brener et al. (1996)
attempted to divide dendritic morphologies into four groups from shape concerns but
their model only considered the effect of supersaturation and anisotropy; as a consequence,
only a few observed morphologies in mineral precipitation were generated. Ng and Teh
(2009) quantitatively distinguished different manganese dendrites according to different635

fractal measurements. Nevertheless, their framework yielded similar fractal dimension
values for dendrites with noticeably different appearances. Thus, we advance the den-
drite pattern characterization by providing a systematic and general criterion that com-
bines both qualitative and quantitative comparisons. Based on numerical and field ob-
servations, we have first visually divided mineral dendrites into three categories, namely640

needle-, tree-, and seaweed-like structures. For dendrites in each category, we then quan-
titatively distinguish them by measuring their fractal dimension. Our approach ensures
that we effectively identify the wide variety of dendrites observed in the field in Section 3.4.1.
Although our criterion aims at differentiating mineral dendrites, it extends to a broader
set of applications in both living and non-living systems.645

We believe that our criterion will assist in the development of computer-aided-vision
analysis tools to interpret dendritic patterns from field photographs. Here we have in-
troduced a qualitative classification criterion and provided two morphological diagrams
with corresponding quantitative fractal dimensions. We have also tested the possible ap-
plication to the inversion of the diffusion coefficients and supersaturation level from den-650

dritic morphologies observed on rock surfaces.

Likewise, both Liesegang stripes and dendritic patterns also co-exist in other dis-
ciplines, in both living systems, like fungal organisms (Ghanbari et al., 2020), and non-
living systems, such as in Li-ion batteries where their growth could spell the end of bat-
tery life. Our approach hence provides a generic modelling framework that may also be655

useful outside the geoscience application and shed light on relevant processes.

5 Conclusion

In this study, we use a phase-field model to systematically investigate the mineral
precipitation phenomena, mainly concentrating on dendritic growth. Our simulation re-
sults suggest that the transition to Dendritic growth (from Liesegang patterns) is con-660

trolled by the magnitude of the diffusion coefficient. Liesegang patterns have a low dif-
fusion coefficient possibly driven by the electrochemical or slow viscous material flow through
an intact formation, whereas the dendritic growth shows a high value associated with
the subsurface fluid flow along prominent geological discontinuities. We reproduce den-
drites observed in the field by first introducing a general criterion to qualitatively and665

quantitatively classify three dendrite types, namely needle-, tree-, and seaweed-like struc-
tures. Our empirical classification scheme, based on visual inspection, was refined by a
box-counting method quantifying the fractal geometry. These classification schemes have
allowed the construction of phase diagrams for the inversion of key parameters control-
ling dendritic morphologies. With the inversion of parameters, our simulated patterns670

match well with the observations in terms of the overall appearance and the fractal di-
mension. Therefore, the presented numerical approach provides a computer-aided-inversion
tool capable of analyzing a given pattern or structure from field photographs, which in
principle is useful to geological field exploration for resolving the critical reaction-diffusion
parameters underpinning formation mechanism of patterns in nature with potential ap-675

plication to industrial processing.
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6 Appendix

Weak form of Phase-field model for mineral precipitation

We solve the coupled nonlinear partial differential equations (16)-(18) using an open-
source high-performance phase-field code, PRISMS-PF (DeWitt et al., 2020) based on
the finite element library of deal.II (Arndt et al., 2020). The library supports adap-
tive mesh refinement, massively parallel, and matrix-free finite element simulation. We
derive the weak formulation to the coupled equations (17) and (18) with the boundary
and initial conditions (21)-(23) using the following trial functions

Si := {i : Ω → R | i ∈ H1, i = ī on Γi}, i ∈ {c, ϕ, µ} (26)

and test functions as

Vi := {j : Ω → R | j ∈ H1, j = 0 on Γi}, j ∈ {ψ, η, ω} (27)

and integration by parts. We use the forward Euler method for time marching; thus, the
corresponding weak forms become∫

Ω

ηϕn+1 dV =

∫
Ω

η

(
ϕn +

∆tµn

τ(n)

)
︸ ︷︷ ︸

rϕ

dV (28)

∫
Ω

ωµn+1 dV =

∫
Ω

ω
[
ϕn − λu

(
1− (ϕn)2

)] (
1− (ϕn)2

)︸ ︷︷ ︸
rµ

+∇ω ·
[
−
(
W 2 ∂ϕ

n

∂x
+W0ϵmmW (θn) sin [m (θn − θ0)]

∂ϕn

∂y

)
x̂︸ ︷︷ ︸

rϕx

−
(
W 2 ∂ϕ

n

∂y
−W0ϵmmW (θn) sin [m (θn − θ0)]

∂ϕn

∂x

)
ŷ

]
︸ ︷︷ ︸

rϕx

dV (29)

∫
Ω

ψcn+1 dV =

∫
Ω

ψ

(
cn +

Aµn∆t

τ(n)

)
︸ ︷︷ ︸

rc

+∇ψ · (−D∆t∇cn)︸ ︷︷ ︸
rcx

dV +

∫
Γ

ψ(∆tD)jnϕ dS (30)

The numerical results solve (28)-(30) using PRISMS-PF, which allows for future
extension of this study to a 3D scenario with its adaptive mesh refinement feature.
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