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Abstract

Understanding how soil thickness and bedrock weathering vary across ridge and valley topography is needed to constrain the

flowpaths of water and sediment production within a landscape. Here, we investigate saprolite and weathered bedrock properties

across a ridge-valley system in the Northern California Coast Ranges, USA, where topography varies with slope aspect such

that north facing slopes have thicker soils and are more densely vegetated than south facing slopes. We use active source seismic

refraction surveys to extend observations made in boreholes to the hillslope scale. Seismic velocity models across several ridges

capture a high velocity gradient zone (from 1000 to 2500 m/s) located ˜4-13 m below ridgetops, that coincides with transitions

in material strength and chemical depletion observed in boreholes. Comparing this transition depth across multiple north and

south-facing slopes, we find that the thickness of saprolite does not vary with slope aspects. Additionally, seismic survey lines

perpendicular and parallel to bedding planes reveal weathering profiles that thicken upslope and taper downslope to channels.

Using a rock physics model incorporating seismic velocity, we estimate the total porosity of the saprolite and find that inherited

fractures contribute a substantial amount of pore space in the upper 6 m, and the lateral porosity structure varies strongly with

hillslope position. The aspect-independent weathering structure suggests the contemporary critical zone structure at Rancho

Venada is a legacy of past climate and vegetation conditions.
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Mapping variations in bedrock weathering with slope aspect under a 1 
sedimentary ridge-valley system using near-surface geophysics and drilling 2 

Berit M. Hudson Rasmussen1, Mong-Han Huang1, W. Jesse Hahm2, Daniella M. Rempe3, David 3 
Dralle4 and Mariel D. Nelson3 4 
1Department of Geology, University of Maryland, College Park, MD, USA,  5 
2Department of Geography, Simon Fraser University, Burnaby, BC, Canada, 6 
3Department of Geosciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA, 7 
4Pacific Southwest Research Station, United States Forest Service, Albany, CA, USA 8 

Abstract 9 
Understanding how soil thickness and bedrock weathering vary across ridge and valley 10 
topography is needed to constrain the flowpaths of water and sediment production within a 11 
landscape. Here, we investigate saprolite and weathered bedrock properties across a ridge-12 
valley system in the Northern California Coast Ranges, USA, where topography varies with 13 
slope aspect such that north facing slopes have thicker soils and are more densely vegetated 14 
than south facing slopes. We use active source seismic refraction surveys to extend 15 
observations made in boreholes to the hillslope scale. Seismic velocity models across several 16 
ridges capture a high velocity gradient zone (from 1000 to 2500 m/s) located ~4-13 m below 17 
ridgetops, that coincides with transitions in material strength and chemical depletion observed in 18 
boreholes. Comparing this transition depth across multiple north and south-facing slopes, we 19 
find that the thickness of saprolite does not vary with slope aspects. Additionally, seismic survey 20 
lines perpendicular and parallel to bedding planes reveal weathering profiles that thicken 21 
upslope and taper downslope to channels. Using a rock physics model incorporating seismic 22 
velocity, we estimate the total porosity of the saprolite and find that inherited fractures contribute 23 
a substantial amount of pore space in the upper 6 m, and the lateral porosity structure varies 24 
strongly with hillslope position. The aspect-independent weathering structure suggests the 25 
contemporary critical zone structure at Rancho Venada is a legacy of past climate and 26 
vegetation conditions.  27 
 28 
Plain Language Summary 29 
Below Earth’s ground surface, porous space within weathered bedrock can store a significant 30 
amount of water, which is essential for ecosystems, particularly during the growing seasons. 31 
Collecting hydrologic data and core samplings from boreholes provides direct measurements 32 
about how bedrock is weathered and broken down towards the earth surface. Our study site is 33 
located in a series of ridges and valleys in Northern California, USA, where the local 34 
Mediterranean climate has distinctive dry summers and wet winters. This site represents a 35 
common topography along the east side of the Coast Ranges. In addition to synthesizing 36 
borehole and hydrologic data, we conduct complementary seismic refraction surveys to image 37 
material strength in the subsurface in 2D. These images can better capture the lateral variation 38 
of weathering zone thickness from channels to ridgetops. Seismic velocity derived from seismic 39 
refraction data shows an increase of material strength at the transition zone between saprolite 40 
and bedrock that agrees with borehole observations. Although vegetation density is much 41 
higher in the north- than the south-facing hills, the depth to fresh bedrock is roughly the same. 42 



Our results also indicate that porous spaces in the weathered bedrock have the potential to 43 
store more water than annual precipitation. 44 

Key points 45 
1.     A combination of geophysics and borehole measurements allows us to characterize lateral 46 
critical zone structure in a ridge-channel system. 47 
2.     Despite a strong aspect dependent contrast in soil thickness, saprolite thickness does not 48 
vary with slope aspect. 49 
3.    Rock physics modeling using seismic velocity suggests inherited bedrock fractures 50 
substantially contribute to saprolite total porosity.  51 



1. INTRODUCTION 52 
The transformation of fresh bedrock into weathered bedrock and mobile soil in the 53 

subsurface critical zone is facilitated by changes in chemical composition, material strength, and 54 
porosity with depth. These processes dictate how landscapes store and release water to trees 55 
and streams (Brooks et al., 2015). Documenting the structure of the critical zone, including the 56 
thickness and subsurface topography of different materials, is therefore crucial to quantifying 57 
water storage (Rempe & Dietrich, 2014; Flinchum et al., 2018a; Callahan et al., 2020) and 58 
predicting ecosystem and landscape response to climate change (Godderis and Brantley, 2013; 59 
Callahan et al., 2022; Sullivan et al., 2022). Water storage dynamics are not homogenous at the 60 
hillslope scale, but are influenced by microtopography (Wang et al., 2021), elevation (Klos et al., 61 
2017; Nielsen et al., 2021), and slope aspect (Anderson et al., 2014). Critical zone structure can 62 
additionally be modulated by lithology (Hahm et al., 2014; Leone et al., 2020) and climate (Inbar 63 
et al., 2018; Anderson et al., 2019). Exploration of the spatially variable hydrologic dynamics of 64 
a landscape therefore requires characterization of subsurface structure over broad spatial 65 
scales, and in different geologic settings.  66 

Many studies have observed that with increased solar radiation on equator-facing 67 
hillslopes at mid-high latitudes, separate microclimates can be found on equator-facing (i.e., 68 
south-facing, in the northern hemisphere) versus pole-facing (i.e., north-facing) hillslopes 69 
(Pelletier et al., 2018). In presently precipitation-limited environments (as opposed to 70 
temperature-limited), north-facing slopes of the northern hemisphere tend to have more 71 
vegetation, and thicker, wetter soils, while south-facing slopes are drier and less vegetated, with 72 
thinner soils (Pelletier et al., 2018). While surface slope, tree density, and soil thickness have 73 
been well documented to vary based on aspect dependency (Bale et al., 1998; Inbar et al., 74 
2018), fewer studies address the influence of aspect dependency and climate on deeper 75 
weathering transitions. Those that do, focus primarily on snow-dominated systems or 76 
granite lithology (Anderson et al., 2013; Anderson et al., 2014; Leone et al., 2020; 77 
Nielsen et al., 2021). 78 

Seismic refraction can effectively capture the heterogeneity in the subsurface weathered 79 
bedrock structure, which can vary drastically from ridge to channel (Leone et al., 2020; Wang et 80 
al., 2021; Pasquet et al., 2022). By combining borehole and geophysical methods, recent 81 
studies have calibrated geophysical data to direct observations to infer weathering thickness 82 
across a landscape (Olona et al., 2010; Holbrook et al., 2014, 2019; Flinchum et al., 2018a; 83 
Hayes et al., 2019; Gu et al., 2020). This combined approach allows for better modeling of 84 
subsurface water flow dynamics (Gu et al., 2020), comparison of slope aspect microclimates 85 
(Leone et al., 2020), and rock physics modeling of porosity (Holbrook et al., 2014; Hayes et al., 86 
2019; Callahan et al., 2020; Gu et al., 2020; Grana et al., 2022). These studies are important 87 
advances and have helped to test and calibrate models of critical zone evolution, but they have 88 
documented only a fraction of the diverse combinations of topography, biota, lithology, and 89 
climate present across Earth’s terrestrial surface.  90 

In this study, we image critical zone structure through active-source seismic refraction 91 
surveys across a series of sedimentary ridges and valleys in the Mediterranean climate of the 92 
California Coast Ranges, USA. The site, Rancho Venada, is an ideal location to explore critical 93 
zone processes given its consistent bedding orientation, lack of complicating deformation 94 
features, and its striking contrast in vegetation density with slope aspect. Sedimentary 95 
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2. FIELD SITE 120 
2.1 Geologic setting 121 
The study site, Rancho Venada, is located 16 km west of Williams, California, USA, on the 122 
western border of the Sacramento Valley, and is lined with hills organized parallel to the strike of 123 
east-dipping turbidite beds (Figure 1). We focus on a ridge dissected by evenly spaced (~100-124 
150 m) channels. The specific hills included in this study—referred to as MH2R, MH3R, and 125 
MH7R—are underlain by late Cretaceous bedrock of the Great Valley Sequence, composed 126 
primarily of thinly interbedded mudstone and siltstone, and capped with sandstone (Figure 1; 127 
Rich, 1971; Pedrazas et al., 2021). These units are separated from the deformed metamorphic 128 
Franciscan Complex by the Stony Creek Fault Zone to the west (Rich, 1971). Originally uplifted 129 
and tilted due to the subduction of the Farallon Plate below the North American Plate, Rancho 130 
Venada has been experiencing general northwest-southeast compression for the past 3-5 Ma 131 
(Atwater and Stock, 1998). There are no major faults or folds within these ridges, with only cm-132 
to-meter-scale structures (monocline fold) observed (Harwood and Helley, 1987; Rich, 1971). 133 
The hills were formed at least ~1-2 Ma based on a channel incision rate of ~0.1 mm/yr 134 
(Pedrazas, et al., 2021). The regional climate is sub-humid with pronounced wet and dry 135 
seasons and a mean precipitation of 534 mm/yr (Hahm et al., 2022). Vegetation is primarily 136 
grassland and Blue oak-manzanita woodland, with a notable lack of trees on south-facing 137 
hillslopes and a higher vegetation density on the north-facing hillslopes (see Figure 1b,c). 138 
2.2 Previous studies 139 

Fourteen boreholes were drilled along three hills at Rancho Venada in November 2018 140 
(Pedrazas et al., 2021). Three deep boreholes were drilled to the total relief of the hills: 47, 20, 141 
and 20 m for MH7R, MH3R, and MH2R, respectively. In this study, MH7 refers to the 7th 142 
channel north of the Mountain House (MH), and R refers to the ridgetop north of the channel. 143 
The drilling process involved augering, coring, and standard penetration tests to obtain 144 
blowcount rate (Pedrazas et al., 2021; ASTM, 2022). Blowcount rate is the number of blows 145 
necessary to advance a hollow core tube 6 inches into the ground, providing a measure of 146 
material strength. Shallower boreholes were augered to 6-9 m depth or drilled with a Shaw drill 147 
to < 2 m in the channels. All boreholes were sampled for elemental composition, and images 148 
were produced using an optical borehole imager (OBI) for each of the three deep boreholes to 149 
capture fracture and bedding density and orientation as well as color. Yellowness hue was 150 
calculated from these images, as a proxy for chemical weathering (following Holbrook et al., 151 
2019).  Matrix porosity was calculated from auger chips and pieces of the core and using the 152 
Accupyc Gas Pycnometer and GeoPyc Envelope Density Analyzer. Neutron count 153 
measurements were taken every foot by lowering the probe down each borehole until it reached 154 
the water table. These measurements were repeated every month over the course of 2 years to 155 
measure the relative seasonal water storage with depth (Hahm et al., 2022; Figure 2c-f). 156 
Drilling logistics and borehole measurements are described in detail in Pedrazas et al. (2021).      157 

Borehole analysis highlighted three interfaces across the hillslopes: Interface 1 as the 158 
soil - pervasively fractured material transition (i.e. soil to saprolite), Interface 2 as the 159 
pervasively fractured - discretely fractured rock transition (i.e. saprolite to weathered bedrock), 160 
and Interface 3 as the discretely - rarely fractured rock transition (i.e. weathered to fractured 161 
bedrock). Chemical analysis of the cores included using the mass transfer coefficient (τ), to 162 
track elemental changes as the parent material is weathered. The pyrite oxidation front is also 163 
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depth, relative to the parent material, with zirconium as the immobile element. It indicates depletion of 196 
magnesium (Figure 2a), sodium, and potassium towards the surface. Here we chose τMg because 197 
it shows the most obvious depletion towards the surface. Other τ values are detailed in Pedrazas et al. 198 
(2021). The pyrite oxidation depth (from sulfur) shown as the red dashed line at 6.3 m. D and S represent 199 
deep and shallow boreholes, respectively. (b) Matrix porosity, (c) neutron count difference, highlighting 200 
where moisture storage in the borehole is variable, and (d) log blowcount rate on the upper x-axis. 201 
Yellowness hue (blue line) is shown on the lower x-axis. The yellow line represents the smoothed 202 
yellowness hue. 203 
 204 
3. METHODS 205 
3.1 Seismic refraction surveys and modeling 206 

We conducted 11 active-source seismic refraction surveys: three lines oriented parallel 207 
to bedding (including one previously published bedding-parallel line, Line 7; Huang et al., 2021), 208 
six perpendicular to bedding, and two along the steepest descent of the north and south-facing 209 
hillslopes (Figure 1). Parameters of the seismic surveys are shown in Table S1. We used 14-210 
Hz geophones and created sources at a 3-10 m shot interval using 5 to 7 kg sledgehammers on 211 
a metal plate, which were recorded using the Geometrics ES-3000 system and Geoid systems. 212 
For all lines except Line 9, the shot interval was one meter near borehole locations. We 213 
performed off-end shots 36-54 m away from the first geophone and after the last geophone for 214 
each survey. Locations along the seismic line were recorded with GPS to create an elevation 215 
profile of each seismic line using a digital elevation model (DEM) generated from an airborne 216 
lidar survey of Rancho Venada in 2017 (Dietrich, 2019). 217 

We used the Geometrics PickWin software package to pick p-wave arrival times and the 218 
THB rj-MCMC inversion scheme from Huang et al. (2021) to generate seismic velocity models. 219 
For traditional inversion methods, smoothing is commonly used to regularize the inversion in 220 
order to reduce roughness coming from measurement errors. However, the smoothing 221 
parameter is normally set arbitrarily because measurement error from p-wave picking is 222 
generally unknown. The THB rj-MCMC method uses a probabilistic model to estimate 223 
measurement uncertainty (called hyperparameter) and whether measurement uncertainty 224 
propagates with source-receiver distance. THB rj-MCMC produces a posterior distribution of an 225 
ensemble of velocity models that can fit the p-wave measurements equally well, therefore we 226 
capture both the range of plausible solutions and the uncertainty associated with the model 227 
(Burdick and Lekic, 2017). The standard deviation of ensemble velocity can be calculated from 228 
the accepted models to indicate areas where the velocity has greater uncertainty (Huang et al., 229 
2021). The THB method therefore allows for analysis of data uncertainty and explores model 230 
resolution along lateral distance and depth, which are important for assessing the reliability of 231 
seismic velocity images and interpretation of critical zone structure (Figure 3).  232 

3.2 Borehole comparison and hillslope analysis 233 
To compare borehole data to seismic velocity measurements, we created a vertical 234 

velocity profile for each borehole located within 10 m of a seismic survey. We examined the p-235 
wave velocity corresponding to the interface depth ranges from Table 1 of Pedrazas et al. 236 
(2021). Several boreholes were imaged by more than one seismic line and therefore have 237 
multiple recorded velocities. We averaged the velocity at each interface across all borehole-238 
velocity profiles of the same survey line orientation. Since the interfaces are not abrupt 239 



boundaries, but transitional zones, we calculated the average velocity of the Interface 2 240 
(saprolite to weathered bedrock transition) depth ± 1 standard deviation. Our result is a range of 241 
velocities over which we expect more rapid changes in material strength to occur. We then use 242 
this velocity zone to compare weathering structure across the three ridges. While borehole data 243 
is limited to one mid-slope location, we can calculate the depth to the bedding-parallel Interface 244 
2 velocity range across the entire hillslope. We then compare the depth of this velocity range 245 
between north and south-facing hillslopes to examine aspect differences in rock weathering. To 246 
account for different lengths of hillslopes, we divide horizontal distance and depth by the 247 
hillslope length to examine normalized profiles. We do the same process for Interface 3 248 
(weathered to fractured bedrock transition). 249 

3.3 Porosity modeling 250 
Matrix porosity (Φmatrix) was measured from pieces of the core and reflects intra-grain 251 

pore space, ranging from > 20% at the surface to < 10% at a 10 m depth below ridges 252 
(Pedrazas et al., 2021). These measurements do not capture the total porosity which includes 253 
pore space associated with fractures, from processes like gravity unloading and tectonic 254 
loading. On the other hand, seismic waves from near-surface active source seismic surveys are 255 
generally sensitive to length scale in 10s of meters (e.g. Flinchum et al., 2022). In order to 256 
estimate a total bulk porosity (Φtotal) that is reflective of fracture and matrix pore space, and to 257 
obtain porosity values on a broader spatial scale, we apply a rock physics model to our seismic 258 
refraction data (e.g. Hayes et al., 2019, Holbrook et al., 2014, and Gu et al., 2020). This model 259 
requires knowledge of the material mineralogy, relative saturation, and a set of empirical 260 
parameters related to grain size and other sediment properties. While we have elemental 261 
analysis of samples from the cores (Pedrazas et al., 2021), we do not know the exact mineral 262 
composition at Rancho Venada. We assumed three mineral components based on a geologic 263 
map of the region (Rich, 1971), and then varied the percentage of each, with quartz: 20-50%, 264 
feldspar: 20-30%, and chlorite: 20-60%. This produces a range of bulk and shear moduli for the 265 
protolith. We then used the Hertz-Mindlin contact theory to calculate the dry bulk and shear 266 
modulus of the saprolite with shale or sandstone protolith, assuming a critical porosity of 0.4, 267 
contact points as 5, and an empirical parameter (e) as 5 (after Gu et al., 2020). Since saturation 268 
also contributes to the bulk modulus and we do not know relative saturation with depth, we vary 269 
water saturation between 0-100% and use Gasman’s equation (Helgerud et al., 1999) to 270 
calculate the bulk and shear modulus of saprolite at different saturation states for each possible 271 
porosity value. With these bulk and shear moduli, we can then calculate seismic velocity using: 272 

𝑉𝑝 =  ඨ௄ೞೌ೟ା రయఓೞೌ೟ఘ್   ,      (1) 273 

where Vp, Ksat, μsat, and ρb are the seismic velocity, bulk modulus, shear modulus, and bulk 274 
density, respectively. We then compare Vp to the observed seismic velocity profile at each 275 
borehole. Since both bulk porosity and relative saturation are unknown, the best-fitting velocities 276 
present a tradeoff curve between porosity and saturation, where any point along the curve 277 
predicts the same Vp. By assuming 0% saturation, we can make a 1D profile of porosity with 278 
depth. 279 



While we do not have absolute measurements of relative water content with depth, we can 280 
estimate relative changes in volumetric water content with depth using repeat downhole neutron 281 
probe surveys previously conducted at Rancho Venada (Hahm et al., 2022). Repeated neutron 282 
probe surveys capture variations in moisture storage over time. By observing the change in 283 
water content (Δθ) over multiple years, we can infer a minimum estimate of storage, and thus 284 
porosity, that is available at each depth. Porosity must be at least as high as Δθ. For MH7R, we 285 
calculated Δθ from 02/12/2019 to 09/01/2021 using combined measurements from MH7-W2 286 
and MH7-W3. We binned the measurements to 1m depth intervals and calculated Δθ across the 287 
observation period after removing outliers. Wells MH3-W2, MH3-W3, and MH3-W4 were used 288 
for MH3R, and MH3-W6 and MH3-W7 were used for MH2R. The observation period for MH2R 289 
and MH3R was 11/15/2018 to 09/02/2021. Assuming that the matrix porosity is perennially 290 
saturated, then the seasonally dynamic rock moisture storage measured by the neutron probe 291 
represents additional porosity (e.g. from fractures), as opposed to porosity within the matrix 292 
(Φmatrix). We can therefore estimate a minimum dynamic porosity (Φdynamic) using, 293 𝜙ௗ௬௡௔௠௜௖ = ∆𝜃 +  𝜙௠௔௧௥௜௫,          (2) 294 

that can be compared with the meter-scale modeled Φtotal from seismic refraction. Φdynamic 295 
represents a lower bound on Φtotal. Both Δθ and Φmatrix were interpolated to 1m depth intervals 296 
so they could be added together.  297 

 298 

4. RESULTS 299 
4.1 Seismic velocity between ridges and channels  300 

2D seismic images reveal changes in p-wave velocity (Vp) across the landscape. For all 301 
surveys, we mask out velocity past the ends of each line where no geophones are present. We 302 
additionally mask out regions where normalized smoothed raypath density is below 0.1 rays per 303 
model grid (using median filter with 5-pixel radius) and where coefficient of variation (CoV; 304 
standard deviation divided by mean velocity) > 30%. Low-velocity material is defined as Vp < 305 
1000 m/s, mid-velocity as 1000 < Vp < 3000 m/s, and high-velocity as Vp > 3000 m/s. In this 306 
section, we report results of Lines 1, 6, 7, and 8. The results of Line 2-5 and Lines 9-11 can be 307 
found in the Supplementary Materials. THB rj-MCMC provides information about the overall 308 
performance of the inversion (Figure 3). This includes the root mean square (RMSE) misfit of 309 
the predicted p-wave arrival times of each Markov Chain in different iterations (Figure 3a), a 310 
noise hyperparameter that can objectively estimate data uncertainty (Figure 3b), a model misfit 311 
distribution of the mean velocity model with different source-receiver distance, the standard 312 
deviation of that distribution (Figure 3c-d), the p-wave arrival time model fitting to data of the 313 
mean velocity model (Figure 3e), and a normalized raypath density distribution of the mean 314 
velocity model (Figure 3f). For example, for MH7 the RMSE misfit starts to stabilize after 315 
~5x105 iterations for all of the markov chains, implying further iteration of model parameters do 316 
not further improve the fitting, but instead can explore parameter distributions that can fit the 317 
data equally well (Huang et al., 2021). We find that the mean misfit of data (1.23 ms) is similar 318 
to the hyperparameter noise (~1.5 ms), suggesting a good balance of model parameters that do 319 
not under- or over-fit the data (Figure 3b,c). 320 
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 427 
Figure 8. Seismic velocity at borehole interfaces 2 and 3 identified by Pedrazas et al. (2021) for (a) 428 
MH7R, (b) MH3R, and (c) MH2R. An upper and lower depth bound is plotted for Interface 2 based on the 429 
depth standard deviation from Pedrazas et al. (2021). Marker colors indicate the survey line orientation. 430 

 The maximum vertical velocity gradient captures the fastest increase of Vp with depth, 431 
which may be comparable to borehole interfaces. However, vertical velocity gradient does not 432 
exhibit a clear peak that can be easily traced across a hillslope. Rather, a zone of high gradient 433 
is observed in all profiles (Figures 4c, 5b, and 7b). At the MH7R ridgetop, we see a zone of 434 
high velocity gradient from around 3 m to 7–10 m depth (Figure 9b). At MH3R, this high 435 
gradient zone appears as 2 peaks centered at 3 m and 10 m. For MH2R, the high gradient zone 436 
is gradual without a clear peak, stretching from 2–12 m. There is not a clear relationship 437 
between velocity gradient and borehole property gradients (colored boxes in Figure 9b), but the 438 
most rapid changes in borehole properties do occur within the highest velocity gradient zone 439 
(~3–13 m) for each survey. Borehole transitions such as the increase in blowcount rate occur 440 
more gradually for MH2R (Pedrazas et al., 2021), consistent with its much lower velocity 441 
gradient.  442 

Orientation of the seismic lines also influences the gradient structure. Across all three 443 
ridges, bedding-parallel lines have more pronounced peak gradient features, and bedding-444 
perpendicular lines show a more consistent lower gradient, reflective of a more gradual increase 445 
in velocity (see Figures 4c and 6b vs. Figure 7b). It is difficult to distinguish Interfaces 2 and 3 446 
using the velocity gradient. Rather, a relatively high-gradient zone, across which borehole 447 
properties change most dramatically, spans both interfaces.  448 



 449 
Figure 9. Velocity (a) and velocity gradient (b) profiles for each borehole across the three ridges. 450 
Each 1D profile represents the velocity and velocity gradient at each borehole averaged across all 451 
seismic line orientations. Colored boxes represent depth ranges where the vertical gradient of each 452 
borehole property is highest. Interface 2 (I2) and Interface 3 (I3) depths are shown on the edge of each 453 
plot (from Pedrazas et al., 2021). Only the deep boreholes MH7-W1, MH3-W1, and MH2-W5 have 454 
observations of blowcount rate and yellowness hue. The absence of a data type for a given profile 455 
indicates there were no sharp changes in that property with depth. The x-axis is stretched to space out 456 
each borehole, and a scale bar is shown for velocity and velocity gradient. 457 

4.3 Hillslope analysis 458 
 To examine aspect-dependency in the subsurface, we compare the depth to the 459 
saprolite-weathered bedrock transition (Interface 2, 1284 ± 203 m/s) and weathered-fractured 460 
bedrock transition (Interface 3, 1973 ± 435 m/s) on sets of north-facing and south-facing 461 
hillslopes that share the same ridge or the same catchment. Figure 10 shows the depth to 462 
Interface 2 with distance from the ridge along a straight-line transect. For all hillslopes, the 463 
saprolite layer thickens towards the ridge, and the depth to the base of the saprolite appears 464 
nearly identical on north and south-facing slopes, though it is variable from channel to ridge 465 
(Figure 10a,c). 466 

Averaged depths to the 700 m/s, 1284 m/s (Interface 2 contour), 1973 m/s (Interface 3 467 
contour), 2500 m/s, and 3000 m/s velocity contours present an inconsistent relationship 468 
between aspect and velocity, with the average south-facing depth sometimes shallower and 469 
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curve represents a porosity/saturation value that predicts a nearly identical (< 1% difference) Vp at that 515 
depth. The width of the purple shaded area represents variation within the assumed mineral composition 516 
(i.e. 20% quartz, 30% feldspar, 50% chlorite, versus 30% quartz, 50% feldspar, 20% chlorite, etc.). (b) 517 
Porosity with depth from the rock physics model (Φtotal) based on the average velocity profile across all 518 
wells at MH7R. Measured matrix porosity (Φmatrix) from cores at MH7-W1, MH7-W2, and MH7-W3, 519 
interpolated to a 1m depth is shown in green. The dynamic porosity (Φdynamic) is based on neutron probe 520 
measurements at MH7-W2 and MH7-W3, with outliers removed and also interpolated to 1m depth. (c) 521 
Core photos along different depths that show change of fracture density from shallow to greater 522 
depth. Note samples shallower than 6 m depth are highly fractured and chemically weathered. 523 

Matrix porosity (Φmatrix in Figure 11b) measured from core samples is consistently < 15% 524 
for MH7. Matrix porosity does not account for fractures, which we know to be pervasive in the 525 
upper 6 m (Pedrazas et al., 2021). The dynamic porosity (Φdynamic in Figure 11b; see Equation 526 
2) ranges from > 25% at a 1m depth to ~17% at a 7 m depth. If we assume the matrix is 527 
perennially saturated, Φdynamic represents a lower bound for the total porosity. Finally, the 528 
modeled total porosity (Φtotal) ranges from 35% at a 1 m depth to 9% at a 8 m depth, assuming 529 
0% saturation (Figure 11b).  530 

Total porosity (Φtotal) rapidly decreases between 2-3m and 5-6m depth, and then 531 
stabilizes below 6m. At ~5-6m depth, the modeled Φtotal is less than Φdynamic. This depth 532 
corresponds with the Interface 2 (saprolite-weathered bedrock) boundary, where the core 533 
changes from pervasively to discreetly fractured (Figure 11c). Total porosity for MH3R and 534 
MH2R are shown in Figures S10 and S11, respectively, and similarly show Φtotal ranging from 535 
30-35% at the surface to 10% by 8 m depth. MH2R has higher Φtotal  in the upper 6m than 536 
MH3R, and a more gradual change in porosity with depth, consistent with the deeper low-537 
velocity material observed at MH2R in Figure 6. 538 

 539 

4.4.2 2D porosity at MH7 540 
The rock physics model can also be applied on a 2D scale to examine the landscape 541 

porosity distribution across the north and south facing hillslopes. 2D models show the most 542 
pronounced decrease in porosity occurs within the saprolite layer (< 6 m depth, Figure 12). 543 
Below this depth, porosity is low and only decreases gradually. The mean porosity models 544 
represent the average of porosity estimated using varied percentages of feldspar, quartz, and 545 
chlorite (see Section 3.3). To construct a 2D model of bulk porosity, we assumed saturation was 546 
0% (see Section 4.4.1). Assuming a different 2D saturation model would change the results of 547 
our model, particularly at shallow depths (Figure 11b). However, when saturation is low (< 40% 548 
and 50% at 1 m and 6 m depth, respectively), variation in the saturation model does not have a 549 
dramatic effect on modeled porosity (Figure 11a). The 2D model reveals there is heterogeneity 550 
in total porosity across each hillslope. 551 
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Below the saprolite layer, Vp increases from ~1200 to 2000 m/s generally in less than 10 582 
m. This Vp range is variably thick across the landscape and is inferred to be weathered bedrock 583 
based on the presence of open, oxidized fractures (Pedrazas et al., 2021). Below this, the core 584 
exhibits a sudden decrease in yellowness hue and decrease in fracture density from “discreetly” 585 
to “rarely” fractured (Figures 2 & 9; Pedrazas et al., 2021). The bottom of the weathered 586 
bedrock is also upslope-thickening (Figure S9). 587 

Velocity below the weathered bedrock increases gradually from 2000 to > 3000 m/s. The 588 
core in this depth range is rarely fractured, and fractures present are closed and unoxidized 589 
(Pedrazas et al., 2021). The gradual increase in Vp may be due to further reductions in fracture 590 
density with depth and an increase of overburden. When porosity is low, even a < 5 % decrease 591 
in crack volume can increase Vp by 1000 m/s in granites (Flinchum et al., 2022). Unweathered, 592 
unfractured bedrock is more likely to be reached at ~20 m depth where velocities reach 3000 593 
m/s and velocity gradient approaches zero. Several studies use 4000 m/s as the bedrock 594 
velocity contour (Befus et al., 2011; Holbrook et al., 2014; Gu et al., 2020), however 3000 m/s is 595 
still within the expected range for unweathered sedimentary bedrock with 10% porosity 596 
(Eberhart-Phillips et al., 1989; Mavko 2009; Dvorkin et al., 2021). A collection of Vp 597 
measurements from laboratory and field settings show that clay-rich rocks commonly have a 598 
fresh bedrock velocity between 2000 - 4000 m/s (Lee, 2018). Velocity from the channel surveys, 599 
which should be relatively fresh, are mostly < 4000 m/s (Figures 5 & S6). All of our surveys 600 
therefore reach unweathered, rarely fractured bedrock at or above the channel elevation, and 601 
we do not see topography of the weathering front that systematically mirrors surface topography 602 
as expected for a highly stressed tectonic environment (Moon et al., 2017). 603 

The transition from saprolite to weathered bedrock (Interface 2), from weathered to 604 
fractured bedrock (Interface 3), and from fractured to unfractured bedrock are difficult to 605 
distinguish as separate interfaces using velocity contours or the vertical velocity gradient. In 606 
particular, the seismic velocity at interface 3 ranged between 1600 m/s and 2700 m/s for MH7R, 607 
1900 m/s and 2300 m/s for MH3R, and 1400 m/s and 2000 m/s for MH2R, which are not 608 
consistent across different ridges (Figure 8). As a result, using absolute seismic velocity to 609 
identify interface 3 may not be reliable. While this may be due in part to variability in velocity 610 
structure between different survey line orientations, the lack of a clear distinction between 611 
interfaces is also visible in the borehole data. For example, the depth of dynamic rock moisture 612 
storage from neutron probe counts at 8-9 m below ridgetops generally exceeds the Interface 2 613 
depth (6 m) but not the Interface 3 depth (11-17 m). While we interpret a “layered” critical zone 614 
structure, our observations suggest a broad, gradual zone of physical and chemical weathering, 615 
starting a few meters below the surface, and extending to ~20 m below the ridgetops (Figure 616 
11). This gradual zone of increasing material strength is similar to critical zone models 617 
presented at Shale Hills (West et al., 2019) and Calhoun Observatory (Holbrook et al., 2019).  618 

From analysis of borehole data, seismic velocity, and vertical velocity gradient, we can 619 
characterize critical zone structure at Rancho Venada as including: (1) a thin (< 1 m) soil layer 620 
(Pedrazas et al., 2021), (2) a ~ 5m thick saprolite layer that thins abruptly at the channels, 621 
across which most chemical reactions occur and mechanical strength dramatically changes,  (3) 622 
a weathered bedrock layer of high velocity gradient in which the presence of open, oxidized 623 
fractures gradually decrease, and (4) a variably thick fractured bedrock layer with closed, 624 
unoxidized fractures.  625 



    626 
5.2 Characterizing weathering across hillslopes 627 

Our seismic refraction surveys capture changes in the material properties of the 628 
subsurface that align with borehole observations, allowing us to project Interfaces 2 and 3 629 
across the landscape. With these interfaces estimated at the landscape scale, we can explore 630 
how the weathering structure varies with respect to slope aspect and bedding orientation, and 631 
exploit relationships between P-wave velocity (Vp) and rock properties to model subsurface bulk 632 
porosity. 633 
5.2.1 North vs. south facing hillslopes 634 

Several seismic refraction studies have observed thicker saprolite and weathered rock 635 
on north-facing slopes and a thinner weathered layer on south-facing slopes (Befus et al., 2011; 636 
McGuire et al., 2014; Nielsen et al., 2021; Wang et al., 2021). However, most of these sites 637 
have a different lithology and climate regime than Rancho Venada, both of which are shown to 638 
affect the magnitude of weathering asymmetry with aspect (Inbar et al., 2018; Pelletier et al., 639 
2018) and the thickness of weathered material (Hahm et al., 2019b).  640 

The stark difference in vegetation (Figure 1) and the thicker soil profiles on north- versus 641 
south-facing hillslopes indicate that aspect-dependent solar radiation does play a role in surface 642 
landscape processes at Rancho Venada (Pedrazas et al., 2021). Tree roots here can extend 14 643 
m laterally and 6-8 m down into the weathered bedrock (Hahm et al., 2022), and therefore we 644 
may reasonably expect roots to contribute to bedrock weathering through biochemical or 645 
biomechanical processes (i.e. Pawlik et al., 2016). However, seismic refraction does not show a 646 
clearly thicker saprolite layer on north-facing slopes (Figure 10), consistent with borehole 647 
observations from Pedrazas et al. (2021). This result is contrary to what we might expect in a 648 
precipitation-limited environment (as in Pelletier et al., 2018), where increased soil moisture and 649 
root-rock interactions on north-facing slopes can exert a top-down influence on critical zone 650 
structure. 651 

 Other studies have also observed a lack of clear aspect-dependent saprolite thickness 652 
at sites with clear aspect-dependent vegetation density. For example, south-facing slopes of the 653 
Santa Catalina Mountains in Arizona have thicker saprolite, despite a lower tree density (Leone 654 
et al., 2020). This is attributed to the orientation of bedrock foliation planes, which dip into the 655 
surface topography at a high angle on the south-facing slope and are oriented parallel to the 656 
north-facing slope. The high angle intersection on the south-facing slope facilitates enhanced 657 
weathering along the weak foliation planes, creating thicker saprolite. At Rancho Venada, 658 
bedding and dominant fracture planes are oriented N10°W, therefore the apparent dip of the 659 
lithology and of the most abundant fracture set is nearly horizontal for the bedding-parallel 660 
seismic survey lines. There is no significant difference in the angle between bedding or fracture 661 
planes and the surface topography for north versus south-facing slopes. Therefore, increased 662 
hydraulic conductivity along planes of weakness (e.g. bedding planes) cannot explain the lack of 663 
north/south aspect-dependency below the soil layer at Rancho Venada.  664 

It is possible that the top-down influence of tree roots on the critical zone does not 665 
extend deep enough or is masked out by more dominant landscape processes that create 666 
symmetrical hillslopes. Regional tectonic stress, hydrologic properties of the bedrock, or the 667 
influence of bedding orientation on the landscape could contribute to saprolite thickness at 668 
Rancho Venada. In this case, top-down climate processes may be negligible below the soil 669 



layer. Still, given the stark contrast in vegetation density with aspect, the documented seasonal 670 
use of bedrock moisture by tree roots at depths > 5 m at this site (Hahm et al., 2022), and the 671 
potential for tree roots to expand fractures and promote chemical weathering within fractured 672 
rock (Hasenmueller et al., 2017), it is worth considering the role of climate and root distribution 673 
in influencing weathering depth. 674 

A plausible explanation for the similar weathering thickness on north and south-facing 675 
slopes is that weathering processes at RV have not always been precipitation-limited. Oxygen 676 
isotope analysis of sediment cores from Clear Lake (~20 km from Rancho Venada) reveal that 677 
from 13ka – 80ka the climate of the region was 8°C colder with ~1000 mm/yr more precipitation 678 
than its present condition (Adams and West, 1983). This cooler, wetter climate regime may 679 
have resulted in minimal differences in tree density with aspect, or a different tree species 680 
composition altogether (Cole, 1983; Adams and West, 1983). Assuming a steady-state 681 
landscape with a 0.1 mm/yr erosion rate (Pedrazas et al., 2021), a 6 m thick saprolite would 682 
have a residence time of 60 ky, and therefore most of the saprolite at Rancho Venada would 683 
have been influenced by a cooler climate regime in the past. A shift from cold-wet to warm-dry 684 
climate conditions in the last 13ka may therefore only impact the soil layer and the shallowest 685 
part of the saprolite. This may explain why the vegetation density and soil thickness are different 686 
between north- and south-facing slopes, while the saprolite thickness is roughly the same.  687 

The influence of past climate on slope aspect asymmetry has been documented across 688 
many regions. At Shale Hills in Pennsylvania, frost-cracking during the last glacial maximum 689 
interacted with microtopography to drive the hillslope asymmetry observed today, despite a lack 690 
of frost-cracking conditions in the present climate (West et al., 2019; Wang et al., 2021). 691 
Likewise, the strong slope asymmetry currently observed in the Redondo Mountains in New 692 
Mexico can be explained by vegetation regimes present in the cooler Pleistocene 693 
(Istanbulluoglu, 2008). Past climate can also play a significant role in aspect-dependent surface 694 
topographic gradients and drainage densities (McGuire et al., 2014). 695 

5.2.2 Porosity  696 
Characterizing water storage at the landscape scale is crucial in Mediterranean climate 697 

environments. Water stored below the soil during wet seasons can be accessed by vegetation 698 
during the growing season in dry summers, and help sustain them through drought (Hahm et al., 699 
2022).  Several recent studies have applied rock physics models to estimate total porosity from 700 
seismic refraction data (e.g. Holbrook et al., 2014; Pasquet et al., 2016; Flinchum et al., 701 
2018a,b; Hayes et al., 2019; Gu et al., 2020; Callahan et al., 2020). The parameters known to 702 
influence Vp include elastic moduli of the mineral composition, porosity, and saturation level. 703 
Saturation with depth can be measured from drying and weighing material (Holbrook et al., 704 
2014), Vp/Vs ratio from downhole geophysics such as from sonic velocity logs (Gu et al., 2020), 705 
or nuclear magnetic resonance surveys (Flinchum et al., 2018b; Holbrook et al., 2019). Without 706 
direct measurements of saturation, the rock physics model explores a nonlinear relationship 707 
between porosity and saturation (Figure 11a).  708 

Despite not having direct measurements of absolute saturation with depth, we are able 709 
to take advantage of multiple datasets to explore porosity at the landscape scale. The matrix 710 
porosity (Φmatrix), measured from chips of the core, is assumed to be perennially saturated 711 
porosity that changes little with depth at our study hills. Incorporating Δθ from neutron probe 712 



surveys suggests additional storage must be available to accommodate the observed 713 
seasonally dynamic water content. The dynamic porosity (Φdynamic) therefore represents a lower 714 
bound estimate of the total porosity. Modeling bulk porosity from seismic refraction allows us to 715 
estimate a total porosity that reflects the unsaturated, pervasively fractured nature of the core. 716 
Our total porosity distribution ranges from 35% at the surface to ~9% at a 8 m depth (Figure 717 
11b), implying a significant volume of fracture porosity.  718 

While there are significant sources of uncertainty (e.g. mineral composition, empirical 719 
parameters, saturation) in the rock physics model such that our estimates of bulk porosity are 720 
not exact, the relative decrease in bulk porosity across the saprolite-weathered bedrock 721 
boundary matches high fracture density in core photos (Figure 11c) and material strength from 722 
the core that is not represented by matrix porosity alone. Additionally, the extensive hydrologic 723 
datasets at this site provide a check on our rock physics model, as total porosity must be higher 724 
than the observed water storage (Hahm et a., 2022). The agreement between seismically-725 
determined porosity gradients and transitions in fracture density and moisture content from 726 
boreholes implies that our seismic surveys can be deployed at a larger scale to capture porosity 727 
transitions where boreholes are absent. A combination of other geophysical datasets such as 728 
incorporating electrical resistivity measurements could provide a better constraint on lateral 729 
distribution of saturation (e.g. Blazevic et al., 2020; Chen and Niu, 2022). 730 

5.3 Broader implications to Critical Zone models  731 
Weathering structure at Rancho Venada can inform mechanistic features of critical zone 732 

development in semi-arid landscapes. Upslope thickening topography of the weathered layers 733 
suggests that the hydraulic conductivity model proposed by Rempe and Dietrich (2014), in 734 
which drainage of chemically equilibrated groundwater controls the fresh bedrock boundary, 735 
could apply to this landscape. This model predicts a permanent water table limiting the extent of 736 
chemical weathering reactions, but we find no evidence of a permanent water table here within 737 
the depth range of the weathered zone (Hahm et al., 2022; Pedrazas et al., 2021). Water was 738 
observed in the boreholes 30 - 35 m below the surface for MH7R, and 15 - 21m below the 739 
surface for MH3R and MH2R (Hahm et al., 2022; Pedrazas et al., 2021). However, the present-740 
day water table may not align with the interface depths if the water table has dropped since the 741 
cooler and wetter climate of the Pleistocene. Alternatively, the nested reaction fronts proposed 742 
by Lebedeva and Brantley (2013) and Brantley et al. (2017) could describe Rancho Venada’s 743 
weathering structure. Lebedeva and Brantley (2020) show that in settings with low infiltration 744 
rate, reaction fronts can be located above the water table.  745 

Pedrazas et al. (2021) found a roughly linear scaling relationship between hillslope 746 
length and relief of interfaces 2 and 3. Both interfaces agree with the predicted elevation of fresh 747 
unweathered bedrock (Zb) defined by Rempe and Dietrich (2014). The elevation of the 748 
transition to unweathered bedrock (Interface 3) appears roughly linear from channel to ridge 749 
(Figure 13a). When normalized by the channel-ridgetop distance, the hillslope profiles sharing 750 
the larger ridgetop (MH8N and MH7S) have a steeper slope of interface 3 than profiles for the 751 
smaller ridges (MH6R, MH3R, MH2R), possibly indicating some variability in weathering 752 
processes between the lower vs. higher relief ridges (Figure 13b). Our seismic profiles do not 753 
allow us to draw a strong conclusion on the scaling relationship between hillslope length and 754 
relief, as proposed in Pedrazas et al. (2021). However, the agreement between seismic 755 



refraction and borehole data at this site means that additional seismic surveys spanning new 756 
ridges can be used to determine Zb depth even without boreholes present. 757 

The ratio of gravitational and horizontal tectonic stresses can also determine the 758 
potential of subsurface fracturing and create deep weathering extending below the elevation of 759 
the channel in high-compressional regimes (St. Clair et al., 2015; Moon et al., 2017). Pelletier 760 
(2017) further suggests that soil production is highly influenced by topographic steepness that 761 
can open preexisting bedrock fractures. We performed seismic surveys both parallel and 762 
perpendicular to the least compressive stress orientation and did not observe low velocities 763 
below the channel elevation in either case. The lack of surface-mirroring weathering could be 764 
qualitatively used to assume low compressive stress parallel to the bedding strike at Rancho 765 
Venada. However, this site is less than 30 km away from the Bartlett Springs Fault system, and 766 
the principal compressive stress has been oriented roughly N-S (roughly parallel to the bedding 767 
strike) for at least the past 5 Myr (Atwater and Stock, 1998). With a contemporary maximum 768 
shear strain rate of ~50 - 100 nano-strain/yr (Zeng et al., 2018; Xu et al., 2020), we consider 769 
Rancho Venada subject to a high contemporary tectonic stressing rate relative to most regions 770 
of the U.S. Even though the current tectonic stressing rate is high, high internal strain rate and 771 
regional earthquake cycles may decrease material strength at Rancho Venada. This adds 772 
additional complexity to estimating fracture distribution from a simple stress model.  773 

The sedimentary bedrock lithology has a distinct influence on the landscape at Rancho 774 
Venada, shaping the orientation and surface slope of the ridges and valleys (Rich et al., 1971; 775 
Pedrazas et al., 2021). The main study ridges are located within a turbidite sequence of 776 
interbedded mudstone and siltstone, with occasional meter-scale sandstone beds. The thicker 777 
weathered zone below MH2R is likely because MH2R intersects a larger proportion of fine-778 
grained material (Pedrazas et al., 2021; Figure 6). East of our boreholes, the main north-striking 779 
ridge is capped by a thick (> 5 m) sandstone bed. Line 8 features a high-velocity zone at 780 
shallow depth east of the ridgetop that matches the location of the MH3R sandstone cap 781 
(Figure 7), highlighting the role of sedimentary bedding in controlling weathering depth. The 782 
anti-dip hillslope just east of the ridge is dominated by mudstone (though the overall unit east of 783 
the main ridge has a higher sandstone component, as in Figure 1), and has much thicker low-784 
velocity material (Figure 7). The difference in fracture or joint density between different major 785 
rock types (sandstone vs mudstone) may influence the thickness of the critical zone here. 786 
Bedding orientation and changes in lithology may also help to explain why different orientations 787 
of seismic refraction survey lines result in different Vp values for the same location (Figure S3).  788 

However, we do not find lithology or bedding structure to be as strong a control on 789 
critical zone structure at Rancho Venada as at some metamorphic sites (i.e. Leone et al., 2020). 790 
While there is thicker weathered material on the east-facing slope of Line 8, we do not observe 791 
a similar pattern for Line 9, which also runs perpendicular to bedding across an east and west-792 
facing slope (Figure S5). We therefore do not see a consistent contrast between east and west-793 
facing slopes despite the vastly different intersection of bedding planes with surface topography 794 
(Figure 7). Future work to compare fracture orientation and surface slope with weathering 795 
depth, along with more detailed geologic mapping, may further flesh out the influence of the 796 
regional geology on the critical zone structure at this site. 797 
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Introduction
Text S1 describes seismic velocity results not shown in the main text.
Figure S1 shows seismic line 2 results parallel to the bedding.
Figure S2 shows seismic line 3 results perpendicular to the bedding.
Figure S3 compares velocity profile with seismic velocity surveyed parallel or

perpendicular to the bedding.
Figure S4 shows seismic lines 4 and 5 result along two maximum hillslope descend

profiles.
Figure S5 shows seismic line 9 results perpendicular the bedding and across the main

ridge.
Figure S6 shows seismic lines 10 and 11 results along the MH2 channel.
Figure S7 compares the critical zone structure for north- and south-facing hillslopes for

lines 4 and 5, respectively.
Figure S8 compares weathering thickness on north- and south-facing hillslopes for line 6.
Figure S9 compares weathering thickness between north- and south-facing hillslopes of

MH2, MH3, MH7, and MH8 based on interface 3 property.
Figure S10 shows a 1D porosity model for MH3R (Line 7).
Figure S11 shows a 1D porosity model for MH2R (Line 7).
Figure S12 compares 1D velocity profiles between mean west- and east-facing hillslopes

of lines 8 and 9.
Figure S13 shows an average porosity with depth for the MH7R ridgetop.
Figure S14 shows the topography of interface 3 along north or south facing hills.
Table S1 lists the model parameters used for the seismic inversion.
Table S2 lists the elastic moduli for minerals used in the rock physics model.
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Supplementary Text S1 – Summary of seismic velocity models (lines 3, 4, 5, 9)
S1.1 MH7R Bedding-Perpendicular (Line 3)
The low-velocity material of the bedding-perpendicular profile (Line 3; Figure S2) is generally
faster than material in the same depth range of the bedding-parallel profile (Figures 4, S1). CoV
is < 20% almost everywhere above the deepest raypath, indicating consistency of velocity
distribution between model ensembles (Figure S2b). The mean vertical gradient is lower than
that of the bedding-parallel survey line, indicating a more gradual increase in velocity with depth
(Figure S2c). The highest gradients (> 500 m/s/m) are located below the channel. 1D velocity at
the intersection point with bedding-parallel Line 1 indicates an overall similar profile, however
Line 3 is slightly faster above a 6m depth (Figure S3). Similar to Lines 1 and 2, we do not reach
high-velocity material below the MH7R ridgetop in this survey line.

S1.2 MH8 North-Facing Slope (Line 4) and MH7 South-Facing Slope (Line 5)
Lines 4 (north-facing) and 5 (south-facing) are traced roughly perpendicular to the topographic
contour lines to capture the steepest descent of the hillslope. Both survey lines show
upslope-thickening weathering with a 30 m-thick weathered zone at the ridgetop (Figure S4a,c).
The two slopes appear to have a similar thickness of low-velocity material, although the
south-facing slope has considerably thinner mid-velocity (1000-3000 m/s) material. Velocity
appears to increase more gradually below the north-facing slope and increases more rapidly on
the south-facing slope. There is Vp > 4000 m/s visible more than halfway up the south-facing
slope, faster than is resolved in Line 1. Line 5 also resolves deeper (~35 m) below the MH7R ridge
than Line 1 (only ~15 m), possibly due to a longer maximum source-receiver distance for Lines 4
and 5.

S1.3 MH2R Perpendicular (Line 9)
Three boreholes at MH2R are within 10 m of Line 9: MH3-W5, MH3-W7, and MH3-W8. CoV is
high (> 50%) below the ridgetop, but along the slopes, we can resolve up to 30-40 m depth.
Velocity gradient is once again highest at the channels and is generally < 200 m/s/m elsewhere
(Figure S5a). Similar to Line 8, velocity appears mostly sub-parallel to the topography (Figure 7).
The low-velocity layer is uniformly 6-8 m thick along the east-facing slope of the MH2R
perpendicular profile, with the exception of the eastern channel where it is < 3 m thick. The
middle-velocity layer is more variable, increasing to > 10 m thick where the slope angle is most
gradual, and thinning where the hillslope is steepest. The mid-velocity layer is nearly absent at
the eastern channel, but it is still several meters thick at the western channel.
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Figure S1. Results of Line 2 (a-c) inversion using THB rj-MCMC (Huang et al., 2021). (a) Mean
velocity model with contour lines at 1000, 2000, 3000, and 4000 m/s. The model is masked out
where no geophones are present (edges of survey), below the deepest raypath, and where
coefficient of variation (CoV; standard deviation/mean velocity x 100) > 30%. The vertical dashed
line highlights the locations of borehole MH7-W1. The same line also indicates the intersection
point of Line 2 with Line 1 (see Figure 1b). (b) Percent CoV with the deepest raypath as the white
dashed line. (c) Mean vertical velocity gradient (m/s/m).
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Figure S2. Results of Line 3 (a-c) inversion using THB rj-MCMC (Huang et al., 2021). (a) Mean
velocity model with contour lines at 1000, 2000, 3000, and 4000 m/s. The model is masked out
where no geophones are present (edges of survey), below the deepest raypath, and where
coefficient of variation CoV > 30%. Vertical dashed lines highlight the locations of boreholes
within 10 m of the survey line. From west to east, these include boreholes MH7-W2, MH7-W3,
and MH7-W1. The orange vertical line indicates the intersection point of Lines 1 and 3. (b)
Percent CoV with the deepest raypath as the white dashed line. (c) Mean vertical velocity
gradient (m/s/m).
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Figure S3. Velocity with depth at the intersection points of bedding-parallel and
bedding-perpendicular survey lines for MH7R. (a) Solid and dashed lines show the velocity for
bedding-parallel and bedding-perpendicular lines, respectively. (b) Bedding-perpendicular
velocity vs bedding-parallel velocity. Blue circles represent the velocities at the intersection of
Lines 1 and 3, and pink circles represent the velocities at the intersection of Lines 2 and 3.
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Figure S4. Results of Line 4 (a-b) and Line 5 (c-d) inversions. (a,c) Mean velocity model with
contour lines at 1000, 2000, 3000, and 4000 m/s. The model is masked out below the deepest
raypath and where CoV > 30%. Black dashed lines highlight the locations of boreholes within 10
m of the survey line (borehole MH7-W2 for Line 4; boreholes MH7-W2, MH7-W3, and MH7-W4
for Line 5). Lines 4 and 5 intersect at the MH7-W2 borehole (red dashed line). (b,d) Mean
vertical velocity gradient (m/s/m).
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Figure S5. Results of Line 9 inversion. (a) Mean velocity model with contour lines at 1000, 2000,
3000, and 4000 m/s. The model is masked out below the deepest raypath and where CoV > 40%.
Black dashed lines highlight the locations of boreholes within 10 m of the survey line. From west
to east, these include boreholes MH3-W8, MH3-W7, and MH3-W5. The orange vertical line
indicates the intersection point with Line 7. (b) Mean vertical gradient (m/s/m). Note the
gradient color scale ranges from -100 to 300 m/s/m.
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Figure S6. Results of Lines 10 and 11 (a-c) inversion using THB rj-MCMC (Huang et al., 2021). (a)
Mean velocity model with contour lines at 1000, 2000, 3000, and 4000 m/s. The model is
masked out where no geophones are present (edges of survey), below the deepest raypath, and
where CoV  > 30%. (b) Percent CoV with the deepest raypath as the white dashed line. (c) Mean
vertical velocity gradient (m/s/m). 
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Figure S7. Comparison of Interface 2 depth for north- and south-facing hillslopes of Lines 4 and 5
(steepest descent of the slope). Mean velocity profiles for Lines 4 and 5 are shown in (a) and (b),
respectively. Contour lines are at the approximate velocities of the Interface 2 (1284 m/s) and
Interface 3 (1972 m/s) transitions. Roman numerals indicate three sections of the hillslopes used
in (c). (c) shows 1D velocity profiles for three sections of the hillslope for north-facing (blue) and
south-facing (red) slopes. Dashed black lines indicate 1 standard deviation. (d) Normalized depth
to Interface 2 (1284 m/s contour) with normalized hillslope length. Zero is the channel and one is
the ridgetop position. Blue circles represent points where Line 1 intersects a steepest descent
transect, since we have no steepest descent survey line for MH7N. Yellow circles represent
normalized Interface 2 depth in boreholes MH7-W2, MH7-W3, and MH7-W4.
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Figure S8. Comparison of weathering thickness on north- versus south-facing hillslopes for Line 6
(ab), and Line 1 (cd). Depth to Interface 2 (I2; saprolite-weathered bedrock) with normalized
hillslope length (a,c) is shown based on the I2 velocity range (1284 ± 203 m/s velocity contours).
Average depths to various velocity contours are shown normalized to hillslope length in (b, d),
including the average Interface 2 velocity contour (1284 m/s) and average Interface 3 velocity
contour (1973 m/s).
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Figure S9. Comparison of weathering thickness on north- versus south-facing hillslopes for Line 6
(a-b), and Line 1 (c-d). Depth to Interface 3 (I3; weathered-unweathered bedrock transition) with
hillslope length is shown based on the 1972 m/s velocity contour. (b,d) represent the same as
(a,c), but hillslope length and depth to I3 are normalized by the hillslope length.
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Figure S10. 1D rock physics model at MH3R (Line 7). (a) Location of Line 7 (red line) and the
boreholes used to measure volumetric water content (black circles). (b) Porosity with depth from
the rock physics model (Φtotal) based on the average velocity profile across all wells at MH3R.
Measured matrix porosity (Φmatrix) from cores at MH3-W2, MH3-W4, and MH3-W4, interpolated to
a 1m depth is shown in green. The dynamic porosity (Φdynamic) is based on neutron probe
measurements at MH7-W2 and MH7-W3, with outliers removed and also interpolated to 1m
depth.
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Figure S11. 1D rock physics model at MH2R (Line 7). (a) Location of Line 7 (red line) and the
boreholes used to measure volumetric water content (black circles). (b) Porosity with depth from
the rock physics model (Φtotal) based on the average velocity profile across all wells at MH2R.
Measured matrix porosity (Φmatrix) from cores at MH7-W1, MH7-W2, and MH7-W3, interpolated to
a 1m depth is shown in green. The dynamic porosity (Φdynamic) is based on neutron probe
measurements at MH3-W6 and MH3-W7, with outliers removed and also interpolated to 1m
depth.
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Figure S12. Average 1D velocity profile across the entire west-facing (green) and east-facing
(pink) slopes for Lines 8 (a) and 9 (b). Dashed black lines represent 1 standard deviation.
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Figure S13. Average porosity with depth for the MH7R ridgetop (Line 1). Porosity values were
averaged across 180-200 m horizontal distance of the 2D model (Figure 12).
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Table S1. List of model parameters used in different seismic refraction survey lines.

Survey

Line

Date Geophon

e Number,

Spacing

(m)

Grid Size

(m)

Markov

Chains

Iterations Mean

misfit

(ms)

Std. Dev.

of Misfit

(ms)

Noise

Hyper-

paramete

r (ms)

Line 1 08/2019 24, 3 0.5 10 1.5 x 106 1.23 1.6 1.47

Line 2 08/2021 48, 3 0.25 100 1.2 x 106 0.84 1.09 1.09

Line 3 08/2019 24, 3 0.5 15 1.0 x 106 1.67 2.13 2.00

Line 4 08/2021 48, 3 0.25 100 1.5 x 106 1.30 1.70 1.23

Line 5 08/2021 48, 2.5 0.25 100 1.5 x 106 1.16 1.47 1.16

Line 6 08/2021 48, 2 0.25 18 1.3 x 106 0.89 1.17 1.05

Line 7 12/2019 24, 3 0.5 15 1.2 x 106 1.14 1.64 1.62

Line 8 08/2021 48, 5 1 10 0.7 x 106 1.75 2.25 2.23

Line 9 01/2018 72, 2 0.5 15 2.9 x 106 1.35 1.85 1.5-1.8

Line

10/11

12/2019 24, 3 0.5 10 0.8 x 106/

1.0 x 106

1.29/0.96 1.78/1.23 1.70/1.20
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Table S2. Elastic moduli for minerals used in rock physics models (Mavko et al., 2009; Gu et al.,
2020s).
Mineral Bulk Modulus (Pa) Shear Modulus (Pa)
Quartz 37 x 109 44 x 109

Feldspar 37.5 x 109 15 x 109

Illite 52.3 x 109 31.7 x 109
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