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Abstract

Most of the ocean’s kinetic energy is contained within the mesoscale eddy field. Models that do not resolve these eddies tend

to parameterize their impacts such that the parameterized transport of buoyancy and tracers reduces the large-scale available

potential energy and spreads tracers. However, the parameterizations used in the ocean components of current generation Earth

System Models (ESMs) rely on an assumption of a flat ocean floor even though observations and high-resolution modelling

show that eddy transport is sensitive to the potential vorticity gradients associated with a sloping seafloor. We show that

buoyancy transport coefficient diagnosed from idealized eddy-resolving simulations is indeed reduced over both prograde and

retrograde bottom slopes (topographic wave propagation along or against the mean flow, respectively) and that the reduction

can be skilfully captured by a mixing length parameterization by introducing the topographic Rhines scale as a length scale.

This modified ‘GM’ parameterization enhances the strength of thermal wind currents over the slopes in coarse-resolution,

non-eddying, simulations. We find that in realistic global coarse-resolution simulations the impact of topography is most

pronounced at high latitudes, enhancing the mean flow strength and reducing temperature and salinity biases. Reducing the

buoyancy transport coefficient further with a mean-flow dependent eddy efficiency factor, has notable effects also at lower

latitudes and leads to reduction of global mean biases.
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Key Points:8

• Eddy buoyancy diffusivity reduction over bottom slopes can be parameterized us-9

ing the Eady growth rate and topographic Rhines scale.10

• Realistic reduction in buoyancy diffusivity in a coarse-resolution model strength-11

ens baroclinic boundary currents.12

• A topographically-aware eddy efficiency factor improves the parameterization and13

further reduces biases in global simulations.14
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Abstract15

Most of the ocean’s kinetic energy is contained within the mesoscale eddy field. Mod-16

els that do not resolve these eddies tend to parameterize their impacts such that the pa-17

rameterized transport of buoyancy and tracers reduces the large-scale available poten-18

tial energy and spreads tracers. However, the parameterizations used in the ocean com-19

ponents of current generation Earth System Models (ESMs) rely on an assumption of20

a flat ocean floor even though observations and high-resolution modelling show that eddy21

transport is sensitive to the potential vorticity gradients associated with a sloping seafloor.22

We show that buoyancy transport coefficient diagnosed from idealized eddy-resolving sim-23

ulations is indeed reduced over both prograde and retrograde bottom slopes (topographic24

wave propagation along or against the mean flow, respectively) and that the reduction25

can be skilfully captured by a mixing length parameterization by introducing the topo-26

graphic Rhines scale as a length scale. This modified ‘GM’ parameterization enhances27

the strength of thermal wind currents over the slopes in coarse-resolution, non-eddying,28

simulations. We find that in realistic global coarse-resolution simulations the impact of29

topography is most pronounced at high latitudes, enhancing the mean flow strength and30

reducing temperature and salinity biases. Reducing the buoyancy transport coefficient31

further with a mean-flow dependent eddy efficiency factor, has notable effects also at lower32

latitudes and leads to reduction of global mean biases.33

Plain Language Summary34

Due to their high computational costs, global climate models are usually run at coarse35

spatial resolution, which does not allow them to resolve the ocean weather—mesoscale36

eddies—which are an important part of the ocean energy cycle and contribute to mix-37

ing of tracers such as heat and carbon. Eddies are instead parameterized in an idealized38

manner which relates the eddy-driven transport to the strength of the vertical and hor-39

izontal density gradients in the ocean. Such parameterizations do not take into account40

impacts of large-scale bottom bathymetry which have been shown to weaken the eddy41

driven transport. Here we use high-resolution eddy-resolving simulations to improve ex-42

isting parameterizations so that they become sensitive to the bottom slope. We show43

that such a parameterization qualitatively captures the transport reduction seen in ide-44

alized high-resolution simulations and can also reduce errors in realistic global simula-45

tions.46

1 Introduction47

At present, the ocean components of most global climate models are used at res-48

olutions that require parameterizing transport by the oceanic mesoscale (Fox-Kemper49

et al., 2019). Although coupled simulations with eddying ocean fields are slowly emerg-50

ing (Chang et al., 2020), mesoscale eddy parameterizations are still likely part of ocean51

models for another decade. The wave-turbulence duality of mesoscale eddy dynamics can52

cause very rich transport behavior, involving intermittency, non-local transport by co-53

herent vortices and even up-gradient fluxes that energize the mean flow (e.g. Chen et54

al., 2014; Yankovsky et al., 2022; Liu et al., 2023). Nonetheless, most present-day pa-55

rameterizations do not include such effects, but have their origins in the works of Gent56

and Mcwilliams (1990); Gent et al. (1995) and Redi (1982), tackling eddy-induced ad-57

vection and tracer mixing, respectively. The ‘GM’ advection is specified by an overturn-58

ing streamfunction which itself is cast in terms of a horizontally down-gradient and ver-59

tically up-gradient buoyancy transport—resulting in a reduction of available potential60

energy. ‘Redi’ diffusion, by contrast, mixes both active and passive tracers down-gradient61

along isopycnals (Gent, 2011).62

Much of the current research focuses on how to prescribe flow-dependent eddy trans-63

port coefficients, or eddy ‘diffusivities’, that set the strength of the GM advection and64
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Redi mixing. These are distinct processes, and the vertical structure of eddy buoyancy65

transport certainly appears to be different from that of isopycnal Redi diffusion, includ-66

ing the diffusion of potential vorticity (PV) (see e.g. K. S. Smith & Marshall, 2009; Aber-67

nathey et al., 2013; Bachman et al., 2020). Less is known about how GM and Redi dif-68

fusivities relate laterally, but since both are sensitive to e.g. eddy energy levels, we ex-69

pect them be spatially correlated. In practice, the diffusivities, whether applied to the70

GM or Redi scheme, are most often parameterized following mixing length theory. This71

means that they are constructed from the product of some eddy velocity scale and a mix-72

ing length scale. Some work has gone into estimating the eddy velocity scale by imple-73

menting a prognostic equation for eddy energy (Eden & Greatbatch, 2008; Marshall et74

al., 2012; Mak et al., 2018; Bachman, 2019; Jansen et al., 2019), but this is still very much75

an active and incomplete field of research. So, in the latest iteration of the Climate Model76

Inter Comparison Project (CMIP; https://explore.es-doc.org/cmip6/models/), the77

GFDL-CM4.0 model (Adcroft et al., 2019) was, to our knowledge, the only one that used78

a prognostic eddy energy approach to estimate the eddy velocity scale.79

The study by Visbeck et al. (1997) therefore continues to influence the practical80

use of the mixing length approach. Drawing on earlier works by Green (1970) and Stone81

(1972), they proposed that the velocity scale for the GM diffusivity be based on the prod-82

uct of the growth rate of baroclinic instability in the linearized Eady model (Eady, 1949)83

and some length scale. Assuming that the mixing length is also set by the same scale,84

the diffusivity will then scale as the Eady growth rate and the square of the length scale.85

Visbeck et al. (1997) associated the mixing length with the ‘width of the baroclinic zone’86

which they defined as “the width of the region where the local growth rate exceeds 10%87

of the maximum growth rate of the field”. The concept, however, is hard to define in any88

but the most idealized model geometries, and length scales therefore need to be formed89

from more rigorous dynamical arguments.90

As proposed by Stone (1972), one obvious candidate for length scale is the inter-91

nal deformation radius, the approximate scale of the fastest unstable growth in the Eady92

model. Solid observational evidence for the relevance of this length scale has been pre-93

sented by Stammer (1997) and Eden (2007). However, other relevant scales arise if dy-94

namics beyond the Eady framework are accounted for, most notably bottom friction and95

potential vorticity (PV) gradients. Jansen et al. (2015), for example, examined the role96

of bottom friction and the planetary vorticity gradient in a two-layer flat-bottom chan-97

nel model. They found that bottom friction primarily influences the vertical distribu-98

tion of eddy energy and that the mixing length in most of their simulations is set by the99

Rhines scale, i.e. the transition scale between nonlinear and linear PV dynamics on the100

flat-bottom planetary beta plane (Rhines, 1977). More generally, Jansen et al. (2015)101

found that in order to cover various dynamical regimes, the smaller of several candidate102

length scales should be chosen, and that inclusion of the Rhines scale amongst these scales103

is important. In fact, the observational studies of both Stammer (1997) and Eden (2007)104

specifically pointed to a minimum of the internal deformation radius and the Rhines scale105

as a best fit for eddy length scales over much of the world ocean.106

These principles remain the standard in state-of-the-art models, although devel-107

opment has occurred in later years. As mentioned above, there has been extensive fo-108

cus on developing prognostic equations for eddy energy. Considerable efforts have also109

gone into studying effects of horizontal eddy anisotropy (R. D. Smith & Gent, 2004) and110

the suppression of mixing across strong mean flows (Ferrari & Nikurashin, 2010; Klocker111

et al., 2012, and references therein). It’s worth noting, however, that most of the devel-112

opment up until recently has been guided by observed dynamics in low and mid latitudes.113

Current parameterizations thus lack any treatment of two aspects that are potentially114

of huge importance in high latitude oceans, namely the presence of sea ice and the po-115

tential vorticity gradients imposed by sloping bottom topography. A sea ice cover can116

effectively have the same influence as bottom friction on growth of baroclinic instabil-117
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ity as well as on dissipation of existing mesoscale and sub-mesoscale eddies (Meneghello118

et al., 2021). This topic, however, will be left out from the present study. We will instead119

focus on the dynamical impacts of bottom slopes, i.e. continental slopes and mid-ocean120

ridge systems, whose imprints can be easily seen in observations of both mean currents121

and mesoscale energy fields, especially at high northern latitudes (Nøst & Isachsen, 2003;122

Koszalka et al., 2011; Trodahl & Isachsen, 2018). Imprints of topographic PV gradients123

can also be seen at lower latitudes, e.g. in drifter and float paths (LaCasce, 2000; Fratan-124

toni, 2001).125

Sloping bottom topography can suppress growth rate and reduce length scales of126

baroclinic instability (e.g. Blumsack & Gierasch, 1972; Mechoso, 1980; Isachsen, 2011;127

Brink, 2012) as well as impact finite-amplitude eddy fields (e.g. Bretherton & Haidvo-128

gel, 1976; Vallis & Maltrud, 1993; Lacasce & Brink, 2000; K. Stewart et al., 2015; Wang129

& Stewart, 2018). To this end, new topography-aware parameterizations have started130

to emerge, both for eddy-induced advection and isopycnal mixing. In particular, Wang131

and Stewart (2020) and Wei et al. (2022) tested different scaling relations for the GM132

diffusivity in high-resolution model simulations of flows over idealized continental slopes133

in re-entrant channels. The two works examined eddy characteristics and fluxes across134

retrograde and prograde mean currents, respectively, meaning currents that are in the135

opposite and same direction as topographic waves. Both studies diagnosed the eddy en-136

ergy from the high-resolution fields and used this to examine traditional mixing length137

formulations, trying out various choices for mixing length. In addition, they tested the138

‘GEOMETRIC’ formulation of Marshall et al. (2012) in which diffusivities are instead139

constructed from eddy energy and an eddy decorrelation time scale which is set equal140

to the inverse of the Eady growth rate. In general, the two formulations performed sim-141

ilarly, suggesting that a good knowledge of the eddy energy field is key. However, im-142

portantly, both studies also found that empirical prefactors that depend on the topographic143

slope are needed to reproduce very weak eddy buoyancy fluxes across sloping bottom to-144

pography.145

Wei and Wang (2021) carried on from Wang and Stewart (2020), but focused on146

the along-isopycnal tracer (Redi) diffusivity in the same channel model—in retrograde147

flows only. The authors constructed a parameterized Redi diffusivity from (the square148

root of) the diagnosed eddy kinetic energy and the internal deformation radius, again149

finding that the actual diffusivity over the slope was suppressed below the original scale150

estimate. However, instead of testing a set of empirical slope-dependent prefactors, as151

done by Wang and Stewart (2020) and Wei et al. (2022), this study picked up from Ferrari152

and Nikurashin (2010) and demonstrated that mean-flow suppression could explain the153

observed reduction in cross-slope fluxes near the surface, whereas eddy velocity anisotropy154

contributed to the reduction close to the bottom.155

In other words, both sets of studies (see also Brink, 2012, 2016; Hetland, 2017) con-156

cluded that eddy diffusivities over sloping bottoms are poorly reproduced by traditional157

open-ocean scaling choices for eddy velocity and eddy length (or decorrelation time), and158

that additional dynamical impacts of the bottom topography must be brought in. Topographically-159

induced velocity anisotropy is one obvious factor which could impact both the effective160

eddy velocity (its orientation relative to the tracer gradient) and effective mixing length161

or time scale. In addition, mean-flow suppression, caused by eddies propagating relative162

to the mean flow, may also be reflected in a reduced effective mixing length, as suggested163

by Ferrari and Nikurashin (2010, their equation 13). But such interpretations have so164

far only been applied to Redi diffusion—now also over continental slopes (Wei & Wang,165

2021). Whether similar dynamics lie behind the various empirically-fitted suppression166

factors in the studies of buoyancy diffusion over continental slopes is yet an open ques-167

tion.168

The present study will primarily focus on eddy buoyancy transport and thus on169

GM diffusivities. It is inspired by and builds directly on the results obtained by Wang170
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and Stewart (2020) and Wei et al. (2022), and, as they did, we thus limit the scope to171

depth-averaged diffusivities. However, as noted, the above works examined prograde and172

retrograde flows separately and also constructed diffusivities from eddy energy levels di-173

agnosed from very idealized but high-resolution fields. So here we aim to i) study fluxes174

and diffusivities over both types of flow situations under one and the same framework,175

ii) examine how far one can get with parameterizations that do not rely on diagnosing176

the actual eddy energy field and, finally, iii) expand by assessing impacts both in an ide-177

alized setting and in a realistic global ocean simulation.178

In the process, we revisit the question of what is the relevant eddy mixing length179

over continental slopes. The starting point will be the internal deformation radius since180

this remains a relevant parameter in the Eady problem. In addition, we also consider181

the topographic Rhines scale, i.e. the scale that marks the transition between a linear182

topographic Rossby wave (rather than planetary Rossby wave) regime and turbulent PV183

dynamics. The above-mentioned idealized channel studies give conflicting evidence about184

the relevance of this scale. We are nevertheless inspired by the findings of Stammer (1997),185

Eden (2007) and Jansen et al. (2015) and bring up this approach here again. To home186

in on what actually goes on over the slopes, we will also diagnose the eddy velocity anisotropy187

and, in addition, the phase relationship between velocity and tracer perturbations. This188

second diagnostic gives additional information about dynamics not reflected in mere scale189

estimates, at least estimates of eddy velocity. Essentially, no matter how strong the Root190

Mean Square (RMS) eddy velocity is, if velocity perturbations are in quadrature with191

buoyancy perturbations a zero transport results. The analysis done here will indeed show192

that most of the topographic suppression is reflected in a degraded phase relationship193

and that velocity anisotropy takes on a secondary role.194

The paper is structured as follows: In section 2 we introduce the modelling tools195

and various diagnostics and parameterizations used. In section 3 we begin by diagnos-196

ing eddy fields from high-resolution channel simulations that contain both prograde and197

retrograde flows at the same time. We then see how far mixing-length and GEOMET-198

RIC parameterizations can take us in reproducing the diagnosed depth-averaged GM diffusivity—199

with and without accounting for effect of anisotropy and phase relations between eddy200

velocity and tracer perturbations. At the end of this section we examine the impact of201

a topographically-aware parameterization in a coarse-resolution version of the channel202

model. In section 4 we finally employ the new parameterization in realistic global ocean203

simulation. We then take a critical look into some of our parameterization choices and204

their interpretation in section 5 before summarizing our findings in section 6.205

2 Methods206

2.1 Model setup207

We use the Bergen Layered Ocean Model (BLOM), the ocean component of the208

Norwegian Earth System Model (NorESM; Seland et al., 2020), in an idealized channel209

configuration as well as in a realistic global setup (both configurations are published in210

Nummelin, 2023b). BLOM uses 51 isopycnal levels (potential density referenced to 2000 dbar)211

with a 2-level bulk mixed layer at the surface. In order to diagnose the various quanti-212

ties used in the study, we interpolate the outputs locally (in time and space) to height213

coordinates, except for quantities that are specifically calculated from isopycnal output214

(see below), in which case we interpolate the outputs to a new density grid so that the215

bulk mixed layer is properly accounted for.216

The channel setup is re-entrant in the zonal (x) direction. The domain is 416 km217

long (zonally) and 1024 km (ymax) wide (meridionally). At both sides of the channel there218

are continental slopes of given width (W ) centered at 150 km (YC) from the domain edges,219

stretching 2000 m (DS) in the vertical from the shelf break at 250 m depth (DB) to the220
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bottom of the slope at 2250 m depth. These parameters then define the bathymetry (H)221

across the channel (along the y-coordinate):222

H(y) =


DB + 0.5 ·DS

{
1 + tanh

[
π(y−YC)

W

]}
, y < (YC +W )

DB + 0.5 ·DS

{
1 + tanh

[
π(ymax−y−YC)

W

]}
, ymax − y < (YC +W )

DB +DS , otherwise i.e. in the central basin.

223

In addition, to trigger instabilities we add 2D random noise with standard deviation of224

10 m to the bottom topography.225

The model is initialized from rest with constant salinity and a horizontally homo-226

geneous temperature profile. The temperature, which here determines density alone, has227

a maximum at the surface and decays exponentially towards the bottom. We place the228

channel in the northern hemisphere, using a constant Coriolis parameter, and then force229

the flow with a constant westward wind stress. The surface mixed layer is kept shallow230

by parameterization of submesoscale mixed layer eddies (Fox-Kemper et al., 2008) that231

counter the vertical mixing induced by the constant wind forcing. See Table 1 for fur-232

ther parameter settings.233

We first run the channel model at 2 km horizontal resolution, which is eddy-resolving234

over the deep central basin and over the slopes (see Table 2 for deformation radius) but235

only eddy-permitting over the shallow shelves. To investigate the effects of the two bot-236

tom slopes on eddy transport and, specifically, on eddy diffusivity, we vary the initial strat-237

ification and the width of the continental slope, i.e the slope angle. The various exper-238

iments are laid out in Table 2. All simulations are spun-up for 10 years to a semi-equilibrium239

in which domain averaged eddy kinetic energy is close to constant, and the model fields240

are then diagnosed over an additional 5-year period (so between years 11–15). We then241

test and compare various forms of parameterized eddy buoyancy fluxes at non-eddying242

32 km resolution in the same idealized channel. These are also run for 15 years, with the243

last 5 years being diagnosed. With the focus on the 5-year means, we are assuming a slowly-244

varying eddy field and attempting to parameterize its time-mean impact. However, we245

note that geostrophic turbulence is known to be intermittent with implications for vari-246

ability in eddy transport and mixing (Busecke & Abernathey, 2019; Huneke et al., 2019;247

G. Zhang et al., 2023; Ong et al., 2023). Also our simulations suggest that over the north-248

ern prograde slope the jet there undergoes periods of alternating strong and weak eddy249

activity on a timescale of several months (not shown). How the time-mean view of the250

eddy transport presented here incorporates such variability is left for future studies.251

Finally, the impact of the most skillful parameterization is assessed in realistic global252

simulations. These are nominal 1◦ resolution global forced ocean-ice experiments which253

follow the Ocean Model Intercomparison Project, OMIP-II protocol (Tsujino et al., 2020).254

In these simulations, the mean grid size north of 62◦N and south of 64.5◦S is approx-255

imately 32 km, similar to the coarse resolution channel. We compare simulation with an256

existing eddy parameterization, which does not include any effects of bottom topogra-257

phy, to simulations with parameterizations that feel the bottom topography through the258

topographic beta parameter (Figure S1, panel a-c; see section 2.2 for further definitions).259

Each simulation is 110 year long (2 cycles of 55 long repeat cycle), and we diagnose the260

results using the last 30 years. At this point there is still a long-term drift in the model261

(as seen in all models following the OMIP-II protocol; Tsujino et al., 2020), but the gen-262

eral circulation has stabilized.263

2.2 Diagnostics and Paramaterizations264

The key parameter of interest is the buoyancy diffusivity, and in this study, we fo-265

cus exclusively on the depth-averaged diffusivity. We leave the development of depth-266

varying parameterizations for future studies. A fruitful way forward for this may be to267
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develop a flow-dependent structure function that distributes the depth-averaged diffu-268

sivity vertically (see e.g. Bachman et al., 2020; Wei & Wang, 2021).269

In the idealized zonal channel simulations, where buoyancy is given by tempera-270

ture, the cross-channel (i.e. meridional) buoyancy diffusivity is diagnosed from271

Kdiag = − 1

H

∫ 0

H

⟨v′T ′⟩
∂⟨T ⟩/∂y

dz, (1)272

where H is bottom depth, v is meridional velocity, and T is meridional temperature. An-273

gle brackets indicate a zonal (along-channel) mean and primes indicate deviations from274

such mean. So v′ and T ′ are the across-channel velocity and temperature perturbations275

from the zonal mean. In (1), the flux gradient relation is evaluated at each level, before276

depth averaging. For analysis of the channel simulations, we also average Kdiag over time.277

In what follows, we make frequent use of depth-averaged variables, which we note278

with (·). Thus, our eddy kinetic energy density is defined in terms of depth-averaged ve-279

locities as280

EKE =
⟨u′2⟩+ ⟨v′2⟩

2
, (2)281

and an velocity anisotropy factor is defined as282

A =
⟨v′2⟩

⟨u′2⟩+ ⟨v′2⟩
, (3)283

so that284

⟨v′2⟩ = 2A · EKE. (4)285

Parameterizing the diffusivity starts with a scale estimate. Two approaches are cur-286

rently in use, the traditional mixing length and the GEOMETRIC approach. In the first287

approach, we write288

KML ∝ V L, (5)289

where V is a representative eddy velocity scale and L is a representative mixing length.290

If complete information exists about the high-resolution eddy fields, it is natural to set291

V =
√
EKE or, more correctly for the cross-channel diffusion we study here, V =

√
⟨v′2⟩.292

The mixing length may intuitively be thought of as the size of eddies themselves. We293

examine this possibility below, estimating L from the shape of velocity spectra. Several294

possibilities exist for this (see e.g. Eden, 2007), but here we chose295

LS =

∫
|v̂(k)|2k−1dk∫
|v̂(k)|2dk

, (6)296

where v̂(k) is the Fourier component of the depth-averaged cross-channel velocity at wavenum-297

ber k. The expression can be thought of as a kinetic energy-weighted mean wavelength298

under the spectrum.299

In the second approach, the energy-based diffusivity estimate of the GEOMETRIC300

framework (Marshall et al., 2012; Mak et al., 2018) is constructed as301

KGEOM ∝ σ−1
E E, (7)302

where σE is the Eady growth rate and E is the total eddy energy. The Eady growth rate303

is304

σE = 0.3
f

Ri
1/2

(8)305

where f is the Coriolis parameter and Ri is the geostrophic Richardson number:306

Ri =
N2

|∂Ug/∂z|2
. (9)307

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Here308

N2 = − g

ρ0

∂ρ

∂z

= ∂b/∂z

(10)309

is the squared buoyancy frequency (g is gravitational acceleration, ρ is density while ρ0310

is a reference density, so that b = −gρ/ρ0 is buoyancy) and311

|∂Ug/∂z| = | g

ρ0f
∇ρ|

= |∇b/f |
(11)312

is the magnitude of the thermal wind shear. As said, E is the total eddy energy, i.e. the313

sum of the EKE and EPE (eddy potential energy). The former is diagnosed using (2)314

above and the latter from315

EPE =
1

H

∑
i

1

2

ρi+1 − ρi
ρ0

g⟨η′2i+1/2⟩, (12)316

where η′ is the height of an isopycnal surface above its mean level. The sum is taken over317

n density surfaces and, as in all of the above, the prime marks deviations from the zonal318

mean. Note, finally, that the mixing length diffusivity becomes identical to the GEO-319

METRIC diffusivity if the mixing length in the former is equal to the ‘Eady scale’, EKE1/2σ−1
E ,320

and if only EKE is used in the definition of the latter (Wei et al., 2022).321

Since the work on prognostic eddy energy budgets is still a topic of active research,322

we set out here to parameterize both the eddy velocity and eddy length scale from coarse-323

resolution variables. Thus, following Visbeck et al. (1997), we write324

Vpar ∝ σEL, (13)325

which, moving from proportionality to equality, gives326

Kpar = a1σEL
2, (14)327

where a1 is some proportionality constant. Two parameterizations for the eddy length328

scale are then assessed, namely the WKB-approximation to the internal Rossby defor-329

mation radius,330

LR =

∫
N dz

|f |
, (15)331

and the parameterized version of the topographic Rhines scale,332

LT =

(
Vpar

βT

)1/2

= aT
σE

βT
,

(16)333

where βT = (|f |/H)|∇H| is the topographic beta parameter. Here we have assumed334

Vpar = σELT (Eden & Greatbatch, 2008) and introduce a constant tuning factor aT335

which may, for example, reflect the resolution of the bathymetric data set used. Figure336

S2 in the supplementary material shows that in the high-resolution channel model the337

parameterized LT (using aT = 0.1) correspond reasonably well with LT estimate based338

on diagnosed EKE. Note that equation 16 and the resulting velocity (13) and diffusiv-339

ity (14) formulations are the same as suggested by Held and Larichev (1996) for poten-340

tial vorticity diffusivity in beta-plane turbulence, except for their beta being the plan-341

etary beta. Here parameterized velocity and length scales are always chosen consistently342

i.e. the parameterized diffusivities will depend on the Eady growth rate and the squared343

length scale of choice.344
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Finally, topographic impacts on velocity anisotropy and the phase relationship be-345

tween velocity and buoyancy perturbations are also diagnosed from the high-resolution346

channel simulation. Anisotropy is calculated from (3) while the phase relation is assessed347

from the cosine of the angle between the real and imaginary parts of the cross spectrum:348

cos(θ) =
Ĉo(v′, T

′
)[

Ĉo(v′, T
′
)2 + Q̂u(v′, T

′
)2
]1/2 (17)349

where Ĉo(v′, T
′
) and Q̂u(v′, T

′
) are the real and imaginary parts of the cross spectrum,350

respectively (the co-spectrum and quadrature spectrum). For analysis, we average θ across351

all wavenumbers (k) and over time before calculating the cosine.352

3 Eddy fluxes in a channel model353

3.1 Equilibrated flow field and eddy fluxes354

Our setup (see section 2.1) is very similar to the setup in the series of papers by355

Wang and Stewart (2018, 2020), Wei and Wang (2021), and Wei et al. (2022), except that356

we now have continental slopes on both sides of the channel. The forcing is also slightly357

different as we employ a westward wind stress which, unlike in the previous studies, is358

kept constant across the channel. The mean ocean state, however, is very similar. Since359

the channel is in the northern hemisphere, the westward wind stress sets up a northward360

surface Ekman transport. Thus, Ekman divergence in the south and convergence in the361

north results in a time-mean sea surface tilt which is in geostrophic balance with a west-362

ward mean flow, as shown in the two upper panels of Figure 1. The Ekman-driven over-363

turning circulation in the y-z plane lifts up isopycnals in the south so that they slope with364

the bathymetry there. Conversely, downwelling in the north sets up isopycnals that slope365

against the topography.366

Despite the simple wind forcing, the total baroclinic velocity field is rather com-367

plex (Fig. 1a, black dashed lines). In the north there is a strong westward jet over the368

slope. This jet has a significant thermal wind shear but nonetheless extends all the way369

to the bottom. Over the southern slope the westward flow is weaker and much more surface-370

trapped. Lower layers here are almost motionless, so the depth-averaged westward flow371

takes on a minimum over the slope (Fig. 1b). Instead there is a broad and nearly barotropic372

westward current which has its maximum strength immediately off the seaward side of373

the continental slope.374

The north-south asymmetry is clearly not only a result of the stratification being375

weaker in the south than in the north. Thus, net impacts of mesoscale eddy fluxes must376

be taken into account. At the most basic level, the tilted isopycnals in both regions are377

baroclinically unstable, creating an eddy field whose residual mass transport will tend378

to counter the Ekman-driven overturning circulation. However, because mesoscale ed-379

dies also transport momentum, the mean flow field reflects, in part, the integrated ef-380

fects of eddy momentum and buoyancy fluxes. Their combined effects can be studied in381

the Transformed Eulerian Mean (TEM) version of the zonally-averaged zonal momen-382

tum equation:383

∂⟨u⟩
∂t

− f⟨v∗⟩ = ∇yz · FEP +
∂⟨τx⟩
∂z

, (18)384

where τx is the zonal wind stress and385

FEP = −⟨v′u′⟩ĵ + f
⟨v′b′⟩
N2

k̂ (19)386

is the Eliasssen-Palm (E-P) flux. It consists of a meridional eddy flux of negative u-momentum387

and an eddy form stress (this term arises after thickness-weighting). In (18) we have ne-388

glected small terms describing the transport of zonal mean momentum by the meridional389
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mean flow as well as vertical flux of momentum (see Wang & Stewart, 2018). Note, how-390

ever, that the eddy form stress term, which is connected to lateral buoyancy transport391

under the small-slope approximation, may be thought of as a vertical momentum flux.392

Finally, the Coriolis term contains the residual meridional velocity v∗, i.e. the equiva-393

lent mass transport velocity which accounts for both the Eulerian-mean flow and the mass394

transport by eddy correlations.395

The E-P flux from the high resolution experiment 3 (Table 2) is shown as arrows396

in the top panel of Figure 1 and its horizontal component (i.e. −⟨v′u′⟩) is shown with397

background shading. So what we see is the direction at which the eddy field transports398

the westward momentum originally provided by the wind. In general, both in the south399

and in the north, the downward eddy momentum flux is suppressed over the slopes, in400

agreement with earlier studies which indicate that baroclinic instability of suppressed401

over continental slopes. Our estimate of the depth-averaged cross-channel buoyancy dif-402

fusivity reflects this signature by being reduced by about two orders of magnitude over403

the continental slopes (lower panel). What these simulations show, as also seen in the404

simulations of Wang and Stewart (2018) and Manucharyan and Isachsen (2019), is that405

eddy motions instead bring zonal momentum laterally across the slopes near the surface406

and dump it where the ocean bottom flattens off towards the deep basin. There, over407

the relatively flat bottom, baroclinic instability kicks in to bring the momentum down408

to the solid ground below.409

As lateral eddy momentum fluxes are also clearly important in this and previous410

simulations, optimal parameterizations will likely need to be build up around down-gradient411

PV fluxes (see e.g. Wang & Stewart, 2018). However, it is also reasonable to expect that412

any framework which is successful at reproducing the order-of-magnitude drop in buoy-413

ancy diffusivities seen in Figure 1 will also improve the ocean state in coarse-grained mod-414

els. So we keep this focus here. Hence, on our way towards a practical parameterization415

of a GM diffusivity over continental slopes, we begin by examining the length scales and416

velocity scales associated with the mesoscale eddy field. This approach is motivated by417

the mixing length argument (Prandtl, 1925), relating diffusivity to an eddy velocity scale418

and a length scale. However, we will also compare this approach with the energy-based419

GEOMETRIC framework (Marshall et al., 2012; Mak et al., 2018).420

3.2 Eddy length and velocity scales421

Estimates of eddy length and velocity scales are shown in Figure 2. The length scale422

is estimated from (6), i.e. by calculating a spectral-weighted mean wavelength associated423

with north-south velocity perturbations. When normalized by its mean value across the424

channel the length scale shows a near-universal shape across the various model runs (up-425

per left panel). There is a broad maximum over the mid-basin before length scales drop426

over the continental slopes on both sides. There is, however, a consistent local maximum427

over mid-slope on the northern (prograde) side, coinciding with the maximum in mean428

zonal velocity (Fig. 1). Scales then flatten out or even increase over the shelf regions. As429

with other diagnostics below, we will largely ignore shelf values from the discussion due430

to the model grid not fully resolving the deformation radius there and due to the prox-431

imity to model walls. For the eddy velocity scale we show the square root of depth-averaged432

EKE. When normalized with the across-channel average (upper right panel), the eddy433

velocity scale in all runs is reduced over the southern slope, save for a slight increase over434

the upper parts of the slope. In stark contrast, the northern slope is dominated by a large435

maximum, also that one centered over the upper parts of the slope. The eddy velocity436

then drops off and flattens out over both shelf regions.437

It would seem that forming a diffusivity from the product of these diagnosed length438

and velocity scales may reproduce the observed reduction over the southern retrograde439

slope (Fig. 1), at least qualitatively. But it should also be clear that this procedure would440
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produce a diffusivity maximum over the northern slope—for which there is absolutely441

no indication in the model fields. We will return to this issue below but first examine442

possible scaling approximations to the observed length and velocity scales.443

We start by comparing the diagnosed L and V with the classical Stone (1972) pre-444

diction. So the diagnosed length scale is normalized by the internal deformation radius445

LR (15) and the diagnosed velocity scale is normalized by the product of the Eady growth446

rate (8) and the deformation radius, so Vscaled = σELR. Leaving out any constant pref-447

actors here, we see that both length scales and velocity scales are well represented by448

Stone-type scaling in the mid-basin (middle panels). The normalized length scales then449

drop slightly over the lower parts of both slopes, indicating that the deformation radius450

overestimates scales there somewhat. Finally, there is a dramatic rise in normalized scales451

over the upper parts of both slopes as the deformation radius drops towards the shal-452

low shelves. As with length scales, the normalized velocities drop over the lower parts453

of the slopes before rising again over the upper parts. The normalization brings the EKE454

peak over the upper parts of the slope down to values similar to those seen over the mid-455

basin, as the EKE peak there coincides with the region of stronger thermal shear.456

Finally, following the suggestion by (Eden, 2007) and (Jansen et al., 2015), we nor-457

malize by selecting a smooth minimum of length scales:458

Lmin =
LRLT

LR + LT
, (20)459

where LT is the topographic Rhines scale (16). The results are similar over the central460

basin since the deformation radius is the smaller of the two scales there (the Rhines scale461

blows up). But now both normalized length and velocity scales peak over the slopes where462

the Rhines scale becomes the smaller of the two—and is quite clearly too small to ex-463

plain the observed fields. As such, consideration of the topographic Rhines scale does464

not seem to bring any improvement in skill in predicting eddy length scales and veloc-465

ity scales over the continental slopes.466

But before rejecting this scaling choice it is worth noting again that the construc-467

tion of a diffusivity from the original (non-normalized) length and velocity scale estimates468

would obviously result in a diffusivity maximum over the central northern slope. Such469

a maximum is in no way suggested from Figure 1. What may be missing from the story470

here is a consideration of how eddy velocity anisotropy and the velocity-temperature phase471

relationship may act to bring diffusivities down over the slopes. So we turn to this is-472

sue next.473

3.3 Anisotropy and phase relationship474

Figure 3 shows the eddy velocity anisotropy A (3) and the cosine of the phase an-475

gle between real and imaginary parts of the v′ and T
′
cross-spectra (17). As expected,476

the eddy velocity field is close to being isotropic in the middle of the basin (upper panel).477

Values there are around 0.6, implying that cross-channel velocity fluctuations v′ are in478

fact slightly larger than along-channel fluctuations u′. The eddy fluctuations then be-479

come much more anisotropic towards the continental slopes, with A values over the up-480

per parts of the slope close to 0.1 (0.2) in the north (south). This implies that v′ is about481

70% (50%) smaller than u′ in the north (south). A notable exception is a peak over the482

center of the northern slope where v′ is about 50% larger than u′. We have also tested483

other measures of anisotropy, such as the velocity based measure used by K. Stewart et484

al. (2015) that takes rotational aspects into account, and the results are similar to those485

shown here.486

The general behavior of increased anisotropy over the slopes, with |v′| < |u′|, will487

work to reduce the scale-based diffusivity there. But the variations in A from mid-basin488

values are not great and the mid-slope peak (where |v′| > |u′|) would actually increase489
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the estimates there. So we conclude from this that velocity anisotropy alone can not ex-490

plain the consistent drop in diffusivity by two orders of magnitude over the slopes seen491

in Figure 1. The phase relation, however, is able to explain the observed order-of-magnitude492

drop over the slopes, as the v′ and T
′
fields are close to 90◦ out of phase there (middle493

panel). Importantly, the low phase agreement over the northern slope largely cancels the494

local peak in anisotropy.495

The lower panel in Figure 3 shows the product of A and cos(θ) (blue lines), an in-496

dication of their combined effect. The total suppression is dominated by the informa-497

tion carried in the phase relationship, and velocity anisotropy primarily plays a role near498

the edges of the two slopes. The suppression over the slopes amounts to more than an499

order of magnitude, so it is an effect which clearly needs to be parameterized.500

The slope-dependent prefactors which previous studies have needed to invoke to501

explain buoyancy diffusion in similar channel simulations are, in effect, attempts at such502

parameterization (Brink, 2012, 2016; Hetland, 2017; Wang & Stewart, 2020; Wei et al.,503

2022). However, at this point we temporarily detour from those earlier studies and in-504

stead take as a starting point an expression which bears some resemblance to the final505

form of the mean-flow suppression factor proposed by Ferrari and Nikurashin (2010). Thus,506

we construct an ‘eddy efficiency’ factor as507

Eeff =
1

1 + a2 (U2
bc/V

2)
. (21)508

Here, Ubc is the large-scale baroclinic flow speed obtained after subtracting the depth-509

averaged velocity, V is the eddy velocity scale and a2 is an additional scaling factor which510

we here take to be constant. The expression does not have a rigorous basis but a sim-511

ple intuitive interpretation. Ubc is directly related to the thermal wind shear and, hence,512

to the underlying energy source of baroclinic instability (e.g. Sutyrin et al., 2021). Qual-513

itatively, if Ubc is large and the flow is baroclinically unstable, one would expect V to514

be relatively large, giving Eeff ∼ O(1) (unless a2 is very large). But if V remains small515

despite large Ubc, some dynamical constraints must be reducing the efficiency of baro-516

clinic energy conversion, implying Eeff ≪ 1. The above interpretation hinges on the517

parameterized V being an adequate approximation of the actual eddy velocity scale.518

We evaluate (21) at each depth but then take the mean over the water column. The519

large-scale baroclinic flow Ubc is extracted directly from the resolved (and zonally-averaged)520

velocity field, while the eddy velocity is parameterized from (13). The lower panel of Fig-521

ure 3 shows the resulting efficiency factor, using Lmin as length scale. The prefactor a2522

has been manually tuned to match the mid-basin values of A·cos(θ), but it is clear that523

using L = LT can produce a suppression over the continental slope which is in qual-524

itative agreement with A · cos(θ) over both slopes for a range of different simulations.525

Allowing for another prefactor in front of the whole expression (effectively our a1 param-526

eter) would enable a good quantitative match both over the mid-basin and the slope re-527

gions. In contrast, the comparison clearly shows that using LR as length scale does not528

reproduce the needed behavior over the slopes. We note that several tests with using the529

thermal wind instead of Ubc and with evaluating (21) with depth averaged-quantities (in-530

stead of taking the mean of a depth dependent expression) all produce similar results.531

Here we chose to use Ubc due to the ease of implementation at coarse resolution.532

3.4 Parameterized diffusivity533

Given the above results, we proceed to examine parameterizations of the diagnosed534

buoyancy diffusivity. The aim is to capture the order-of-magnitude reduction in diffu-535

sivities from the mid-basin to the slope regions. The results are shown in Figure 4 where536

we distinguish between partial parameterizations (panels a–c) and full parameterizations537

(panels d–f). The partial parameterizations include extensive information about the mesoscale538

field itself (such as EKE and LS) which would not be directly available in a coarse-resolution539
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model, whereas the full parameterizations only use information of the zonally and temporally-540

averaged background buoyancy field, Coriolis frequency, and topographic beta, and are541

therefore suitable for direct implementation in any existing coarse-resolution model. The542

one exception is an estimate (VII) which combines diagnosed EKE with a parameter-543

ized length scale. Panels a and d are from one single simulation, showing both the ac-544

tual depth-averaged diffusivity diagnosed (black line) and the various approximations545

(distinguished by Roman numerals and color). Panels b–c and e–f then show statistics546

over both slope regions collected over the whole range of simulations.547

A first thing to notice from the partial parameterizations is that the mixing length548

(I) and GEOMETRIC (II) approaches behave nearly identically. This suggests that i)549

EKE and EPE are proportional to each other, as found in the simulations of Wei et al.550

(2022), and ii) that our diagnosed eddy scale, LS , reflects the ‘Eady scale’ LE =
√
EKEσ−1

E551

(Larichev & Held, 1995; Jansen et al., 2015; Kong & Jansen, 2021). As also noted by Wang552

and Stewart (2020), both approaches thus give reduced diffusivities over the southern553

retrograde slope (squared Pearson correlation coefficient r2 is 0.49 and 0.66, for I and554

II, respectively; note that r = cov(x, y)/(σxσy)). But the reduction is still underesti-555

mated by up to one order of magnitude and reflected as a large relative error. More im-556

portantly, over the prograde slope in the north, both approaches result in a serious qual-557

itative mismatch, as the high EKE and EPE levels there (EKE seen in Fig. 2; EPE not558

shown) produce a non-existing diffusivity peak over mid-slope. Although σE also peaks559

over the northern slope (not shown), this is not enough to pull down KGEOM there. We560

note that the peak in KGEOM over the southern shelf might be spurious as the defor-561

mation radius is not well resolved there, which is why we have left the shelves out of this562

analysis.563

The observed discrepancies, particularly the qualitative mismatch over the north-564

ern slope, confirms that scaling arguments alone are unable to reproduce the diagnosed565

diffusivities—even with knowledge of eddy energy levels and eddy sizes. It is worth not-566

ing that this is in line with previous studies (e.g. Wang & Stewart, 2020; Wei et al., 2022)567

who found that such scaling estimates needed to be multiplied by slope-dependent pref-568

actors to align with diagnosed diffusivities. Here, we instead explicitly examine the role569

of velocity anisotropy and the velocity-temperature perturbation phase relationship. Ac-570

counting for the diagnosed velocity anisotropy, so that
√
EKE will be replaced with v′571

(III), improves the mixing length estimate slightly but not nearly enough. Multiplying572

the two estimates by A cos θ, however, largely removes the diffusivity peak in the north573

and even produces a clear suppression over the slope—for both the mixing length and574

GEOMETRIC estimate (IV and V). The values are still higher than the observed dif-575

fusivity (mean absolute relative error stays above 100%) but r2 increases to 0.71 and 0.77576

for (IV) and (V), respectively. Over the retrograde slope in the south the match is even577

closer, with r2 reaching 0.92 and 0.85 for (IV) and (V), respectively.578

Guided by the observed agreement between the mixing length and GEOMETRIC579

estimates above, we focus on the former approach when examining how well full param-580

eterizations can do. So we assume that a diffusivity can be written as the Eady growth581

rate times the square of a length scale. Including our efficiency factor, the effective dif-582

fusivity becomes583

K = a1
K0

1 + a2 (U2
bc/V

2)
, (22)584

where K0 = σEL
2 is the scaling estimate of diffusivity before considering the efficiency585

factor and where, as discussed above, we have a choice to make for the length scale. For586

the constant parameters, we chose a1 = 0.25 so that mid-basin values of VI closely match587

with the diagnosed diffusivities across all cases, and we use the same a1 for (VIII) and588

(IX), whereas for (VII) we use a1 = 0.66. Coefficients a2 and aT are then tuned man-589

ually such that the correlation between the diagnosed diffusivities and estimates (VIII)590

and (IX) over the slopes (Fig. 4f) is maximized across all cases.591
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We start by looking at K0 first. Using the traditional Stone (1972) expression where592

the length scale is taken to be the internal deformation radius everywhere, seriously over-593

estimates diffusivities over both slope regions (VI). The estimate, in fact, bears some re-594

semblance with both the mixing length and GEOMETRIC estimates based on diagnosed595

eddy quantities (I and II), but with even larger discrepancies over the slope regions.596

Switching temporarily to a hybrid estimate, with a diagnosed velocity scale but a597

mixing length set to be the smooth minimum of the deformation radius and the param-598

eterized topographic Rhines scale (VII; aT = 0.5), improves the skill considerably, giv-599

ing in suppressed diffusivities over both slopes. We note that over the slopes, where LT600

is selected, the diffusivity estimate is essentially a topographic version of the Rhines-based601

estimate tested by Jansen et al. (2015). They too found that this scaling (with plane-602

tary rather than topographic beta) reproduced diagnosed diffusivities well in an two-layer603

channel model. Interestingly, in our simulations the skill of this hybrid parameterization604

is better than both estimates using full eddy quantities (I and II). Our interpretation is605

that our parameterized LT is a better estimate of the eddy mixing length than the di-606

agnosed eddy size LS (which, from the close correspondence between I and II must re-607

flect the Eady scale LE).608

Finally, using the full parameterization with Eady growth rate and the minimum609

length scale squared (VIII) leads to further improvements over the slopes where the pa-610

rameterized diffusivities now drop by nearly two orders of magnitude, approaching the611

behavior of the diagnosed diffusivities. Multiplying this estimate with the parameter-612

ized efficiency factor (IX) improves the match somewhat over both slopes, especially in613

terms of the mean absolute relative error, which drops from 215% (70%) to 116% (53%)614

while r2 increases from 0.73 (0.62) to 0.79 (0.64) over the southern (northern) slope. We615

note that across all parameterizations the correlation is higher over the southern slope616

than the northern slope, whereas the relative error shows the opposite pattern. This in-617

dicates that if one would further tune a1, it would be possible to further reduce the rel-618

ative error metric, especially over the southern slope. However, here, for simplicity, we619

chose a1 such that the diagnosed and parameterized diffusivities match in the central basin.620

We also note (not shown) that scaling by Eeff improves the hybrid estimate (VI) such621

that its performance becomes similar to estimate (IX).622

A summary of these findings is in order. The parameterized eddy velocity scale and623

eddy mixing length, whether based on LR or LT , do not reproduce their diagnosed coun-624

terparts (
√
EKE and LS) over the continental slopes, as seen from Figure 2. But the625

failure of diagnosed eddy energy and LS in predicting a diffusivity over the slopes, par-626

ticularly over the prograde slope in the north, also indicates that these eddy quantities627

do not give the full story. In particular, the eddy scale—which also appears to be related628

to EKE via the Eady length scale LE = EKE1/2σ−1
E —is not a good predictor of the629

effective mixing length. Accounting for the phase relationship between eddy velocity and630

buoyancy perturbations and, to a lesser degree, the eddy anisotropy brings the estimates631

much closer to the actual diffusivity. Our attempts at full parameterizations then clearly632

shows that LT is a much better choice than LR over both continental slopes. And the633

comparison between estimates VII and VIII even suggests that Vpar,T ∝ σ2
E/βT is a634

slightly better predictor for the effective eddy mixing velocity over the slopes than the635

square root of eddy kinetic energy. Thus, a further consequence appears to be that the636

need for an explicit suppression factor (our Eeff ) for the fully parameterized diffusiv-637

ity becomes smaller. We leave further examination of this topic for later and instead carry638

on to see what effects the parameterized expression (IX) will have when used to actu-639

ally operate in coarse-grained, non-eddying, simulations.640
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3.5 Performance in a coarse-resolution channel simulation641

Before moving to realistic global simulations, we test the proposed parameteriza-642

tions in a coarse-resolution channel setup. This setup has the same geometry as the high-643

resolution channel setup, but differs in resolution (from 2 km to 32 km) and in that the644

the GM-Redi parameterization scheme is activated. The model is forced and run sim-645

ilarly to the high-resolution setup, but some parameter settings, such as timestep and646

viscosity, are necessarily modified. Acknowledging that the channel setup is quite spe-647

cific, and in anticipation of the global simulations to be studied next, we have kept tun-648

ing of the coarse-resolution channel setup to a minimum.649

Figure 5 shows parameterized buoyancy diffusivities and the time-mean density field650

in three of the equilibrated simulations that had wide continental slopes but differing ini-651

tial stratification. We chose to use the wide continental slope case because that is best652

resolved at 32 km resolution. We also show the corresponding diagnosed quantities from653

the corresponding high-resolution simulations for comparison (black lines). As in Fig-654

ure 4, we show the three versions of the parameterized diffusivity (and corresponding den-655

sity structure): one using the internal deformation scale (with a1 = 8), one using the656

minimum between internal deformation scale and topographic Rhines scale (with a1 =657

8 and aT = 0.1) and, finally, one using the minimum and also applying the parame-658

terized eddy efficiency factor (with a1 = 32, a2 = 1, and aT = 0.1). Choosing aT =659

0.1 is consistent with the high-resolution model diagnostics as it provides a reasonable660

fit in terms of the order of magnitude between the full and parameterized versions of the661

topographic Rhines scale (see Figure S2 in supplementary material). Together, constants662

a1 and aT scale the diffusivity estimate by 0.08 (without Eeff ) and 0.32 (with Eeff ) over663

the sloping regions. These appear similar to the scaling coefficients used in Figure 4 (∼0.25,664

see figure caption) as well as previously reported values with mixing length theory: 0.33665

by Wang and Stewart (2018) and 0.17 by Wei et al. (2022), both focusing on buoyancy666

diffusivity, as well as 0.2 by Wei and Wang (2021), although they focused on along isopy-667

cnal diffusivity.668

The tuning of a1 was done to approximately match the mid-basin parameterized669

diffusivity with the corresponding diagnosed diffusivity in the high-resolution simulations.670

And yet, Figure 5 shows that the parameterized diffusivities have a clear north-south gra-671

dient in the magnitude whereas their diagnosed counterpart does not (panels a-c). The672

discrepancy is caused by a stronger difference in stratification between north and south673

at coarse resolution (see Figure S3 in the supplementary material) which directly impacts674

the internal deformation radius used by the parameterization over the central flat region.675

Despite this, we push forward and review the performance of the different parameter-676

izations over the continental slopes. The deformation scale-based parameterization (Fig.677

5a-c, orange line) clearly does worst, producing local diffusivity maxima over both slopes,678

as also seen in Figure 4 (blue line). Thus, there are only very weak lateral density fronts,679

or thermal wind shears, over the continental slopes. Essentially, the high parameterized680

diffusivities effectively wash out any density front there (see Fig. 5d–f for density struc-681

ture and Fig. S3 for the density gradients). This, it should be remembered, is exactly682

the effect one wishes to reduce with a slope-sensitive parameterization.683

The run using a parameterization which selects the minimum of the two length scales684

does much better over both continental slopes where the topographic Rhines scale kicks685

in. With suppressed diffusivities, the density front which is set up by the topographic686

PV gradient is no longer washed out completely, especially in the north (see Fig. 5g–l687

for density structure and Fig. S3 for the density gradients). The result is an enhanced688

thermal wind shear over the northern slope, albeit with a lower absolute strength than689

in the high-resolution simulation (about a factor two lower). In the south, where the ver-690

tical stratification is much weaker, the parameterization is not able to set up a strong691

thermal wind shear, although the location and strength of the surface density front has692

improved. Further scaling by the eddy efficiency Eeff (Fig. 5, green) enhances the dif-693
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fusivity reduction slightly in the north, but not necessarily in the south. Therefore, the694

feedback to the resolved fields strengthens the baroclinic jet in the north further, but not695

in the south.696

Clearly, there remains significant discrepancies between the low-resolution and high-697

resolution fields. Some may be due to higher levels of implicit (numerical) diffusion in698

the coarse-resolution simulations, but others likely reflect limitations in the parameter-699

ization. More extensive tuning, e.g. based on matching the baroclinic transport over the700

slopes, would likely bring the coarse resolution simulations closer to the high-resolution701

fields. But the aim here has primarily been a qualitative examination, and even with a702

minimum of tuning the behavior over the slopes is robust, as the response to the differ-703

ent parameterizations is consistent across all cases. All in all, the above results are en-704

couraging in that the Rhines-based parameterization is able to reduce wash-out of the705

density fronts over the slopes—particularly over the prograde slope in the north. How-706

ever, although the channel setup is a reasonable test bed for development, it is extremely707

idealized and lacks multiple features from the real world (e.g. variable Coriolis param-708

eter, uneven topography and complex atmospheric forcing). Therefore, we also test the709

slope-aware parameterization in the realistic global domain next.710

4 Realistic global model simulations711

4.1 Eddy parameterization adjustments712

We carry out a control simulation and 5 different perturbation experiments. For713

simplicity, the focus will mostly be on a comparison between the control simulation and714

two of the perturbation experiments. All of these simulations operate with 2D diffusiv-715

ities based on the depth-averaged Eady growth rate and a square length scale, as in (14).716

The control run selects a length scale from the minimum of the internal deformation ra-717

dius and the planetary Rhines scale (not the topographic Rhines scale). Then, in two718

distinct ‘topo’ runs we i) introduce the topographic Rhines scale as an additional length719

scale and ii) also turn on the eddy efficiency factor Eeff . The OMIP ‘topo’ runs then720

differ slightly from the coarse-resolution channel setup in the choice of constant scaling721

factors. The constant factor a1 which scales the overall diffusivity magnitude is set to722

3 and factor a2 used in Eeff is set to 1. In addition, we adjust LT by trying aT = 1723

and aT = 0.5. We view these constants as tuning factors specific to one particular setup;724

for example, aT is impacted both by the quality of the parameterized Rhines scale (Fig.725

S2) as well as the bottom topography dataset. Here we calculated the topographic beta726

parameter based on the model’s bathymetry. An improved approach might be to take727

a high-resolution bathymetry product and low-pass filter it up to the mesoscale—e.g. to728

the deformation radius or slightly above—before calculating the slopes. Further anal-729

ysis is left for future studies, but in Figure S1 (supplementary material) we show that730

the model bathymetry-based βT is a reasonable fit to high resolution bathymetry-based731

βT (using 15 second resolution bathymetry by Sandwell et al., 2022) after filtering to the732

local deformation radius. Finally, in all runs the diffusivity magnitude is scaled down with733

a resolution function (Hallberg, 2013) when the deformation radius is resolved by the734

model grid.735

For simplicity, the along-isopycnal (Redi) tracer diffusivity is set to be the same736

as the GM diffusivity. We have assessed the impact of this choice in a set of additional737

experiment included in the supplementary material (Fig. S4) and summarized the find-738

ings in section 4.2.739

To put the OMIP experiments in some context, it should be mentioned that the740

model settings for the control run are similar to the NorESM model version used in the741

latest Climate Model Intercomparison Project (CMIP6) except for some aspects of the742

GM diffusivity formulation. The CMIP6 version of the model included a mixing length743
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formulation where the length scale was selected as the minimum of the internal defor-744

mation radius and the planetary Rhines scale—as in our control simulation. However,745

the local Eady growth rate was then evaluated at each model level, rendering a 3D pro-746

file for both eddy driven advection (GM) and for along isopycnal mixing (Redi). Finally,747

the scaling-based diffusivity was adjusted by a zonal velocity-dependent mean flow sup-748

pression following Ferrari and Nikurashin (2010), and as in the experiments here, a res-749

olution function (Hallberg, 2013) was also used.750

The lack of vertical structure of the 2D parameterization proposed here, turned out751

to be a clear deficiency in the global domain as our initial simulations showed an unre-752

alistically strong sensitivity to bottom slopes in the low and mid-latitude deep ocean.753

For example, large reductions in the parameterized diffusivity across mid-ocean ridges754

were not seen in eddy-permitting studies that diagnosed eddy diffusivity in the global755

domain (e.g., Bachman et al., 2020). Therefore, to reduce the topographic impact on eddy756

fluxes in strongly stratified low and mid-latitude regions, we added an ad hoc ‘limiter’757

of topographic effects—based on the assumption that if the resolved flow does not feel758

the bottom then it is unlikely that mesoscale eddies would do so either. Specifically, the759

topographic Rhines scale is scaled by cos(α)−10 which rapidly increases the topographic760

Rhines scale when the angle α between the resolved depth-averaged flow and the bot-761

tom slope tangent vector deviate by more than ∼30◦ i.e. when the resolved depth-averaged762

flow is not aligned with the bottom slope.763

4.2 Model response in the global domain764

As expected, introducing the topographic Rhines scale leads to locally reduced dif-765

fusivities over sloping topography, as shown in Figure 6 (top row). The effect is enhanced766

at high latitudes with a ∼50% reduction over Arctic and Antarctic continental slopes.767

Bringing in the eddy efficiency Eeff (see Figure S6 and text S6 in the supporting infor-768

mation for an estimate of the Eeff pattern) leads to additional and more severe diffu-769

sivity reduction globally, also away from topographic features (bottom row). This is also770

in agreement with recent studies (admittedly focusing on Redi mixing) that found that,771

at large scales, the scaling by mean-flow dependent suppression has the largest impact772

on diffusivity (Stanley et al., 2020; W. Zhang & Wolfe, 2022; Holmes et al., 2022). Note773

that in the tropics, the diffusivity is limited by the grid resolution function (Hallberg,774

2013), i.e. the diffusivity is reduced when the grid size is smaller than the local defor-775

mation radius. Therefore, the large relative reduction in tropical diffusivity is small in776

absolute terms and less important there as transport is dominated by the resolved flow.777

Finally, we note that a comparison between the top and the bottom rows in Figure 6 shows778

that in multiple continental slope regions, especially in the Arctic and around Antarc-779

tica, the eddy efficiency simply enhances the response seen with the topographic Rhine780

scale. Indeed, the diffusivity reduction due to introducing the topographic Rhines scale781

and due to eddy efficiency are close to linearly additive (not shown).782

As the impact of eddy efficiency on diffusivity is more broad, its impact on flow speed,783

temperature, and salinity is also more widespread than the impact of the topographic784

Rhines scale alone. Table 3 collects bias reductions (relative to the control case) across785

5 different experiments while Figures 7–9 show the spatial patterns for subsurface (100–786

200 m) current speed and temperature, as well as zonal-mean temperature and zonally-787

integrated overturning streamfunction anomalies for the two ‘topo’ experiments that are788

in focus here (the overturning volume streamfunction is diagnosed by dividing the online-789

calculated overturning mass streamfunction with a constant reference density, ρ0 = 1000790

kg m−3). We show results for the subsurface response since the surface response in these791

forced simulations is strongly forced by the non-responsive atmosphere. Both the topo-792

graphic Rhines scale alone and its combination with eddy efficiency increase the mean793

kinetic energy of the resolved flow globally (at 100–200 m depth, by 2.7% and 10.5%,794

respectively). This increase is especially noticeable over sloping bathymetry where the795
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two impacts contribute approximately equally to the overall increase (over slopes where796

βT > 5·10−10m−1s−1 kinetic energy at 100–200 m depth increases by 9.1% and 20.8%,797

respectively). The two modifications also warm the ocean below the global thermocline798

and cool the surface, reducing the overall temperature bias at depth. But they increase799

the temperature bias at the thermocline (Table 3; Fig. 9a,c).800

Overall, the mean overturning response in the ‘topo’ runs is characterized by a pos-801

itive (cyclonic) anomaly which implies that the Atlantic overturning cell and the Dea-802

con cell in the Southern Ocean strengthen, whereas the Antarctic Bottom Water cell and803

the shallow surface overturning cells within the subtropical and subpolar gyres weaken.804

These changes generally reduce biases. The simulated strength of the Atlantic overturn-805

ing at 26◦N is 15.5 Sv in the control simulation, 17 Sv when topographic Rhines scale806

is considered, and 18 Sv with the addition of eddy efficiency, whereas the observational807

estimate from the RAPID array (∼26◦N) is 17±3.3 Sv (Frajka-Williams et al., 2019).808

The Antarctic bottom water cell at 32◦S weakens from 26.0 Sv in the control simulation809

to 23.5 Sv with topographic Rhines scale and 20.3 Sv with addition of eddy efficiency,810

whereas inverse modelling suggest 20.9±6.7 Sv (Lumpkin & Speer, 2007). The Deacon811

cell strengthens from 13.2 Sv in the control simulations to 15.2 Sv with the topographic812

Rhines scale and 18.4 Sv when eddy efficiency is considered, whereas previous modelling813

estimates (Döös et al., 2008) and observational estimates (Speer et al., 2000) suggest a814

strength of 20 Sv and 20–25 Sv, respectively.815

Some more specific impacts of the topographic Rhines scale and eddy efficiency are816

a poleward shift and strengthening of the boundary and slope currents, with Eeff gen-817

erally speeding up the boundary currents at locations where observations show the core818

of the currents (Fig. 7, observed currents in black contours). Changes in the net volume819

transports in most key passages remain small (Table 4), but the results show a strength-820

ening of the ACC (Drake Passage transport; reduced bias), a general enhancement of wa-821

ter exchange between the Arctic and mid-latitudes (opposing influence on the bias in dif-822

ferent straits), and strengthening of the Gulf Stream (Florida–Bahamas strait transport,823

reduced bias). The spinup of the ACC is a direct consequence of reduced diffusivities,824

allowing for stronger thermal wind currents. In the northern North Atlantic, the cur-825

rent speed response is directly reflected in the temperature response as the Atlantic Wa-826

ter warms up along its path from the Nordic Seas to the Arctic (Fig. 8, reduced bias).827

Despite the speed-up of the Gulf Stream off the North American coast, its observed turn-828

ing around Grand Banks off Newfoundland is not reproduced. Due to this deficiency, the829

cold bias off Newfoundland strengthens (Fig. 8). This cold bias is a long standing issue830

in coarse resolution ocean models (Tsujino et al., 2020) and reducing the diffusivity along831

the current path or along the shelf break clearly does not mitigate the bias. We spec-832

ulate that, similar to the southern retrograde slope in the channel configuration and re-833

cent results on the Gulf Stream reported by Uchida et al. (2022), the eddy momentum834

flux convergence that is not included in the parameterization plays a crucial role in de-835

termining the current path.836

The overall overturning response leads to increasing heat transport towards the north-837

ern hemisphere (Fig. 10). The northern hemisphere subtropical peak in northward heat838

transport in the Atlantic basin (globally) is 0.83 PW (1.07 PW) in the control simula-839

tion, 0.91 PW (1.15 PW) when topographic Rhines scale is considered, and 1.00 PW (1.26840

PW) with the addition of eddy efficiency, whereas Trenberth et al. (2019) estimate ap-841

proximately 1.1 PW (1.6 PW). Breaking down the zonally-integrated impacts into re-842

solved and parameterized eddy components illustrates how the reduced eddy mass trans-843

port across the ACC (Fig. 10, panels a–b) also leads to less southward heat transport844

(Fig. 10, panels c–e) and therefore a cooling of the Southern Ocean surface, but also warm-845

ing over the continental slopes (Fig. 8). Both these effects reduce the bias in the model.846

Note that the heat transport response is dominated by eddy-driven advection with a smaller847

contribution due to the eddy diffusion (Fig. 10, panels d–e). In contrast to the South-848
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ern Ocean, in the northern mid-latitudes the overall northward mass and heat transport849

increase as the mean overturning spins up (Fig. 10 panels a and c; Fig. 9 right panels)850

and the eddy contributions actually weaken (Fig. 10, panels b, d–e).851

We note again that in these OMIP experiments we have taken the eddy driven ad-852

vection (‘GM’) and isopycnal mixing (‘Redi’) coefficients to be the same, making the ori-853

gin of the response ambiguous. However, with a set of additional experiments (supple-854

mentary material, Figure S4) we show that the circulation response is mostly due to GM855

and, to a large extent, can be constructed as a sum of experiments where GM and Redi856

are changed separately (i.e. the response is linearly additive). The detailed temperature857

response, especially the thermocline bias, is sensitive to the treatment of the along-isopycnal858

mixing, but here the combined response is not linearly additive. The non-linear temper-859

ature response suggest that when developing and tuning a model system the changes to860

GM and Redi parameterizations should be made simultaneously.861

5 Discussion862

Our study has focused on a relatively small range of parameterization choices, es-863

sentially i) re-examining the topographic Rhines scale as a relevant mixing length and864

ii) checking the importance of an additional suppression factor which we have called the865

eddy efficiency Eeff . The studies by Wang and Stewart (2020) and Wei et al. (2022) did866

a more comprehensive sweep over possible parameterization choices but did not anal-867

yse prograde and retrograde bottom slopes under one and the same framework, which868

has been the intention here. Also, to the best of our knowledge, the current OMIP sim-869

ulations constitute the first assessment of the impacts of a topographically-aware GM870

parameterization in realistic global ocean models. As such, this work should be taken871

as a pragmatic investigation into what can be achieved with simple parameterization ap-872

proaches applied to existing models that do not contain a prognostic eddy energy equa-873

tion (which in itself requires parameterization choices). As with all parameterizations,874

the options examined here are far from perfect, and below we discuss some shortcom-875

ings and unresolved questions.876

5.1 The relevance of the topographic Rhines scale877

Earlier idealized model studies have given conflicting evidence for the relevance of878

the topographic Rhines scale. Jansen et al. (2019) and Kong and Jansen (2021) reported879

that using a generalized Rhines scale which accounts for both planetary and topographic880

beta in their eddy parameterization of flows in an idealized ACC-like domain improved881

their model skill. More in line with our work here, the idealized channel studies of Wang882

and Stewart (2020) and Wei et al. (2022) found the topographic Rhines scale to be a use-883

ful choice over retrograde slopes—but not over prograde slopes. This conclusion was drawn,884

however, after an empirical slope-dependent prefactor was applied in the retrograde case885

but not in the prograde case. Both studies also constructed diffusivities from diagnosed886

depth-averaged EKE. In other words, they set the eddy velocity scale to be V =
√
EKE887

and then defined LT =
√
V/βT , i.e. using the actual definition of the topographic Rhines888

scale. However, here we find that over both prograde and retrograde slopes, a full pa-889

rameterization using (14) with LT = aTσE/βT , better reproduces diagnosed diffusiv-890

ities from our high-resolution simulations than partial a parameterization using (5) with891

LT =
√

V/βT (see Fig. 4). Although not analyzed in detail, our hypothesis is that the892

full parameterization produces better results because it leads to a β−2
T dependence for893

the overall diffusivity, instead of the β
−1/2
T dependence when using (5) and the actual894

definition of LT . The different power dependence is important because βT varies by sev-895

eral orders of magnitude across the slopes whereas EKE and σE vary by less than one896

order of magnitude (see e.g Fig. 2).897
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5.2 The interpretation of Eeff898

The above results also suggest that some of the discrepancy between the pure scaling-899

based diffusivity and the diagnosed diffusivity is contained in the suppression factor which900

ours and other studies have pointed to. Although we don’t try to identify the underly-901

ing dynamics here, the suppression is reflected in an imperfect phase relationship between902

eddy velocity and buoyancy perturbations, possibly causing larger suppression over pro-903

grade slopes.904

It is worth nothing that our Eeff may be related to the topographic Eady prob-905

lem of Blumsack and Gierasch (1972). This connection becomes apparent if we evalu-906

ate the 2D version of (21). We begin by setting Ubc = Utw, where Utw is the top-to-907

bottom thermal wind shear (a 2D quantity). Then we first consider the slope region where908

the topographic Rhines scale will be the relevant length scale. So, here, V = σ2
E/βT ,909

where σE is now the depth-averaged (2D) Eady growth rate. Noting that in the Eady910

model, where both N2 and ∂Ug/∂z are constant, σE = 0.3 · Utw/LR. This allows us911

to rewrite (21) as912

Eeff = a1
1

1 + a3 (βTL2
R/Utw)

2

= a1
1

1 + a3δ2
,

(23)913

where a3 is a modified tuning factor. Here δ = βTL
2
R/Utw is the slope parameter of Blumsack914

and Gierasch (1972) which measures the ratio between topographic and isopycnal slopes.915

Equation 23 is further supported by Figure S5 (in the supplementary material) show-916

ing reasonable correspondence (up to a constant) between U2
bc/V

2 and δ2.917

This expression is interesting not only because it brings in the controlling param-918

eter of the modified Eady problem but also for its similarity to the slope-dependent pref-919

actor used by Wang and Stewart (2020) over retrograde slopes in the parameter regime920

where the bottom slope is not much larger than the isopycnal slope. Their prefactor FMLT921

(from their table 3) has the topographic delta parameter to the power of one in the de-922

nominator, in contrast to our squared power. But we suggest that the impact of sam-923

pling errors in the empirical fitting be studied in future studies before the correspondence924

is rejected. We also note that the similar studies of prograde fronts by Brink (2016) and925

Wei et al. (2022) found best fits using similar expressions but using topographic Burger926

number Bu in place of the delta parameter, where the two are related via Bu = (σE/f) δ.927

The latter study concluded that scalings using δ instead of Bu where not successful over928

prograde slopes. But, again, a comparison with our results is not straightforward since929

their diffusivities were constructed using diagnosed EKE while ours are fully parame-930

terized. The relationship between δ-based and Bu-based formulations is also an obvi-931

ous topic for future work.932

Note, finally, that over the flat regions where the deformation radius will act as the933

relevant length scale, the 2D version of our efficiency factor becomes constant, in agree-934

ment with the behavior seen in Figure 3. In fact, the 2D version of Eeff was able to qual-935

itatively reproduce the observed eddy efficiency behaviour in the idealized channel sim-936

ulations, with some changes required for the tuning constants (not shown). We nonethe-937

less chose to use the 3D version in the realistic OMIP simulations in anticipation of a938

more complex hydrography and flow field where the various assumptions of the Eady model939

can be expected to hold to an even lesser degree than in the channel model. Interior thick-940

ness PV gradients, for example, are expected to be small in systems that are only forced941

by Ekman pumping, as our channel model is (see e.g. Meneghello et al., 2021; Manucharyan942

& Stewart, 2022). In a real ocean, where e.g. thermohaline forcing can produce interior943

PV gradients, the suppression of eddy efficiency will inevitably be governed by additional944

non-dimensional parameters beyond Blumsack and Gierasch (1972) δ (or, alternatively,945

the topographic Burger number). Such 3D effects, caused by thermohaline forcing in ad-946

–20–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

dition to wind stress, may also be the underlying reason for why Eeff had a much big-947

ger impact in the OMIP simulations than it did in the channel.948

6 Summary and conclusions949

Efforts to include topographic effects into mesoscale eddy parameterizations are950

warranted, especially at high latitudes where observations show that hydrographic fronts951

are typically locked to topography. The very existence of such fronts along continental952

slopes and submarine ridges imply not merely topographic steering of large-scale cur-953

rents but also suppression of lateral mixing across topography. Yet, despite all the ob-954

servational evidence, as well as solid theoretical arguments for e.g. reduced growth rates955

and length scales of baroclinic instability over sloping topography, most eddy parame-956

terizations still do not account for any bathymetric influence.957

Here we have re-examined the relevance of the topographic Rhines scale in the mix-958

ing length approach to parameterizing the Gent-McWilliams buoyancy diffusivity which959

is used for eddy advection. Constructing diffusivities using the Eady growth rate and960

a parameterized version of the topographic Rhines scale reproduces an observed order-961

of-magnitude reduction in diffusivity over continental slopes in idealized channel sim-962

ulations. The simulations and analysis cover both prograde and retrograde continental963

slopes, representing mean flows in the same and opposite direction to topographic waves,964

respectively. Although differing in detail, both the observed and parameterized mixing965

suppression are of similar order of magnitude on both sides. The skill of the parameter-966

ization is enhanced further, at least over the prograde slope, when the diffusivity is mul-967

tiplied by an eddy efficiency factor Eeff that is sensitive to the strength of the mean-968

flow vertical shear relative to the parameterized eddy velocity scale. Finally, we find that969

selecting a smooth minimum of the topographic Rhines scale and the internal deforma-970

tion radius for length scale gives good skill over the entire idealized channel domain.971

The parameterization is then tested in a realistic global ocean simulation. Com-972

parison with a simulation where topographic effects on diffusivities are not included sug-973

gests that the topography-aware parameterization enhances the sharpness of hydrographic974

fronts and, as such, strengthens the thermal wind shear in boundary currents. The im-975

provement is particularly noticeable at high latitudes, but we also observe large impacts976

throughout the world ocean. The globally-averaged temperature and salinity bias reduc-977

tions are in the range O(1%)–O(10%), with largest reductions seen in Southern Ocean978

temperatures and in Atlantic Water temperatures in the Arctic. However, existing low-979

latitude thermocline biases tend to increase.980

The complex pattern of bias changes seen is not uncommon in a realistic global model,981

as bias reduction is very much a tuning exercise involving a range of free parameters as-982

sociated with different parameterizations (e.g. eddy transport, vertical mixing and air-983

sea-ice fluxes). Our parameterization also has free parameters and, as is common, we found984

that the different model configurations, specifically different resolutions, might require985

different values for these. But we did not attempt a rigorous tuning, especially not for986

the dynamically complex OMIP simulations. Simply put, the focus at this stage has not987

been on a well-tuned realistic global simulation, but rather on illustrating possible im-988

pacts of a topography-aware eddy parameterization.989

The suggested parameterization is clearly incomplete. The relatively large differ-990

ence in importance of the efficiency factor Eeff between the coarse-resolution channel991

simulations and the realistic OMIP simulations is one indication of this. A second one992

is the fact that we had to use an ad hoc limiter when applying this in the OMIP sim-993

ulations. One key reason why a limiter had to be used is likely that we have been ignor-994

ing any vertical structure in eddy velocities and, ultimately, diffusivities. Fundamentally,995

the kinematic interaction with the bottom involves eddy bottom velocities, and a num-996
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ber of observations as well as theoretical arguments have indicated that these are often997

significantly smaller than surface or even depth-averaged eddy velocities (see e.g. Kill-998

worth, 1992; Wunsch, 1997; de La Lama et al., 2016; Lacasce, 2017). The topographic999

impact, under such considerations, would probably be smaller than if estimated with depth-1000

averaged quantities. Future work clearly needs to be put on such vertical structure, for1001

example by taking an equivalent barotropic structure as a starting point (Killworth, 1992).1002

We also observe that in our coarse-resolution channel simulations the flow remains too1003

baroclinic, similar to the results presented by by Kjellsson and Zanna (2017); Yankovsky1004

et al. (2022). Although addition of vertical structure to the buoyancy diffusivity might1005

mitigate the issue, feeding the mean flow with vertically-distributed eddy energy (e.g.1006

via a backscatter-type parameterizations) might be needed to resolve it (Yankovsky et1007

al., 2022).1008

Another key topic which we have entirely neglected in this study is the impact of1009

bottom roughness or corrugations on fluxes—and how such impact may be asymmet-1010

ric with respect to the flow direction. As demonstrated by Wang and Stewart (2020),1011

bottom roughness along a retrograde topographic slope can set up additional eddy buoy-1012

ancy transport and, thus, form stresses due to arrested topographic waves. The dynam-1013

ics governing such fluxes are likely distinct from those captured by our parameterizations1014

here for smooth topography. The relevant eddy length scale, for example, is probably1015

not the same as for transient eddies (Khani et al., 2019), and even coarse resolution mod-1016

els might be able to reproduce some of the largest standing meanders (Kong & Jansen,1017

2021). The application of standing Rossby wave theory (e.g. Abernathey & Cessi, 2014;1018

A. L. Stewart et al., 2023) appears to give promising results on the planetary beta plane1019

with a flat but rough bottom. A natural next step may therefore be to examine such ideas1020

to the ‘topographic beta’ problem, using e.g. the idealized two-slope model used here.1021

Yet another issue ignored here is the role of lateral eddy momentum fluxes over con-1022

tinental slopes. As shown in Figure 1 and also highlighted in earlier studies (e.g. Wang1023

& Stewart, 2018; Manucharyan & Isachsen, 2019), such fluxes bring wind momentum off1024

the slopes to relatively flat regions where baroclinic instability kicks in to transfer the1025

momentum to the ground below. The lateral momentum flux may be up-gradient in places1026

and form eddy-driven jets, as seen offshore of the retrograde slope in our idealized sim-1027

ulations (Fig. 1). As with eddy form stress, lateral momentum fluxes also appear to be1028

impacted by corrugated bottoms, being associated with the formation of prograde jets1029

near the bottom (Wang & Stewart, 2020). This last effect is again probably related to1030

the formation of arrested topographic waves, as discussed by e.g. Haidvogel and Brink1031

(1986), as well as being linked to down-gradient PV diffusion in the finite-amplitude limit1032

(Bretherton & Haidvogel, 1976; Vallis & Maltrud, 1993).1033

Finally, it’s worth remembering that eddy transport, even of buoyancy, may be anisotropic.1034

So what really needs to be parameterized is a diffusion tensor rather than a single scalar.1035

Bachman et al. (2020) discussed such anisotropy of the Redi diffusion tensor and showed1036

that at global scale the direction of the major axis of the tensor is well correlated with1037

the mean flow direction and the minor axis is well correlated with the gradient of Er-1038

tel PV. In addition, Nummelin et al. (2021, Appendix A) suggested that the Ferrari and1039

Nikurashin (2010) type of mean-flow suppression indeed suppresses the across-flow Redi1040

mixing, but that the inverse of the same factor enhances mixing in the along-flow direc-1041

tion. It remains unclear whether our eddy efficiency factor—here primarily applied to1042

buoyancy mixing—and the other empirical scaling factors (e.g. Wang & Stewart, 2020;1043

Wei et al., 2022) act similarly (i.e. relate to tensor anisotropy) or if they indeed suppress1044

the overall tensor magnitude. In other words, it remains a research question whether the1045

mean flow and topography merely direct the eddy transport or if they impact the over-1046

all magnitude of the eddy transport. Nevertheless, if the tensor major axis is correlated1047

with the mean flow (as suggested by Bachman et al., 2020)—and if that mean flow trans-1048

port dominates over eddy transport—then the focus on the minor axis is likely justified.1049
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Table 1. BLOM model constants for the channel simulations

Name Symbol Value

Wind stress τx 0.05 N m−2

Horiz. grid size ∆x, ∆y 2 km
Baroclinic timestep ∆t 120 s
Domain x-size Lx 416 km
Domain y-size Ly 1024 km
Gravitational acceleration g 9.806 m s−2

Coriolis parameter f0 1× 10−4 s−1

Slope mid-point distance from domain edge YS 150 km
Shelf depth HShelf 250 m
Slope height HSlope 2000 m

Table 2. Key parameters in the various high-resolution channel model experiments. LR is the

mean deformation radius in the central basin (where bottom depth is larger than 2250 m).

Name LR Slope Width

Exp 1 34.1 ±1.3 km 75 km
Exp 2 34.1 ±1.1 km 100 km
Exp 3 34.4 ±1.0 km 125 km
Exp 4 30.6 ±1.3 km 75 km
Exp 5 30.6 ±1.2 km 100 km
Exp 6 30.4 ±1.0 km 125 km
Exp 7 24.9 ±1.2 km 75 km
Exp 8 25.9 ±1.0 km 100 km
Exp 9 24.9 ±1.0 km 125 km

Even if important questions remain, and despite its many shortcomings, the rel-1050

atively simple parameterization investigated here at least reduces an excessive washing1051

out of hydrographic fronts over submarine ridges and continental slopes in ocean climate1052

models—a known problem with eddy parameterizations that are insensitive of bathymetry.1053

One of several important consequences of such adjustment is likely a more accurate rep-1054

resentation of oceanic heat transport across Antarctic and Greenland continental slopes1055

and onward to the great ice sheets whose melt rates depend intimately on such trans-1056

port. On the shallow continental shelves, tides and other ageostrophic processes which1057

we have neglected entirely here will also contribute. However, getting fluxes right across1058

the strong fronts along the continental slopes is no less important. For this and other1059

reasons, further scrutiny of all of the above unresolved issues related to mesoscale eddy1060

transport and their impacts in both regional and global realistic simulations are much1061

needed.1062

7 Open Research1063

The model configuration and namelists needed for reproducing the results are pub-1064

lished in Zenodo (Nummelin, 2023b) and available at https://doi.org/10.5281/zenodo1065

.8227381. The key model outputs (Nummelin, 2023a) needed for reproducing the anal-1066

ysis are published at the NIRD research data archive and available at https://archive1067

.sigma2.no/pages/public/datasetDetail.jsf?id=10.11582/2023.00129.1068
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Table 3. CORE-II hydrography bias (root mean square error) reduction compared to the bias

of the control case. The observational data sets are the WOA 2018 climatologies for temperature

(Locarnini et al., 2018) and salinity (Zweng et al., 2018). The experiment names correspond to

parameterizations in Figure 4 as follows: ‘LT ’ and ‘0.5 · LT ’ correspond to (VIII), with at = 1

and at = 0.5, respectively; ‘LT and Eeff ’ and ‘0.5 · LT and Eeff ’ correspond to (IX), with at = 1

and at = 0.5, respectively. Experiment Eeff does not have a counterpart in Figure 4, but uses

parameterization like (IX), with the exception that LT is not considered as a length scale.

Name zonal mean T zonal mean S T100−200m T200−500m T500−1000m

Control anom. 0.89◦C 0.06 g/kg 1.28◦C 1.11◦C 0.85◦C

LT 3.3% 2.9% -1.8% 1.5% 3.4%
0.5 · LT 7.1% 7.0% -3.8% 3.1% 7.3%
Eeff 16% 15% -11% 4.9% 15%
LT and Eeff 18% 16% -13% 5.9% 20%
0.5 · LT and Eeff 19% 18% -15% 5.8% 22%

Table 4. Observed and simulated current transport in selected straits. The various pertur-

bation experiments show percentage changes relative to the control case. The references for

the observational values are as follows: Arctic Ocean gateway transports come from de Boer et

al. (2018) with the original citations being Ingvaldsen et al. (2004) for Barents Sea Opening,

Beszczynska-Möller et al. (2015) for Fram Strait, Curry et al. (2014) for Davis Strait (CAA), and

Woodgate (2018); Woodgate et al. (2015) for Bering Strait; ACC transport come from Xu et al.

(2020), for pure observational estimates see Koenig et al. (2014) and Donohue et al. (2016); and

Florida–Bahamas Strait transport come from Larsen and Sanford (1985)

Name obs control LT 0.5 · LT Eeff LT and Eeff 0.5 · LT and Eeff

Barents Opening 2.1 Sv 2.4 Sv 0% 1% 4% 6% 7%
Bering Strait 1.0 Sv 0.7 Sv 2% 3% 5% 7% 8%
Canadian Arctic -1.7 Sv -1.6 Sv 4% 8% 14% 15% 16%
Fram Strait -2.2 Sv -1.3 Sv -3% -6% -9% -6% -6%
Drake Passage (ACC) 157.3 Sv 152 Sv 0% 1% 4% 5% 7%
Florida–Bahamas Strait 32 Sv 13.2 Sv 1% 3% 4% 5% 6%
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Figure 1. Cross section of zonally and temporally-averaged (a) mean zonal velocity (dashed

black contours), mean density (dotted gray contours), E-P flux (gray arrows) and its horizontal

component (meridional eddy flux of negative u-momentum; shading, note that the units have

been scaled by 103 and here the bar denotes time-mean), (b) vertically-averaged zonal velocity

and (c) vertically-averaged meridional buoyancy (temperature) diffusivity. In panels b and c the

blue lines show results from the various experiments listed in Table 2. The black line is exper-

iment 3 and corresponds to the case shown in panel a. Gray shading shows the location of the

slope regions in the different simulations (where 300m < H < 2250m). For some of the simula-

tions the diffusivity lines are broken because of negative diffusivities that are not shown on the

log scale.
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Figure 2. Diagnosed length scales (panels on the left) and velocity scales (panels on the right)

for all experiments. All measures are zonal and time averages that have been normalized. The

top row (panels a and b) are normalized by the basin-mean values (denoted by square brackets).

Length scales in panel c and panel e are normalized by the deformation radius (LR) and by the

mimimum of deformation radius and topographic Rhines scale (Lmin), respectively. In panels

d and f we normalize by the parameterized velocity scale, using length scales from c and e, re-

spectively. Colors and line styles as in Fig. 1. Gray shadings indicate the slope regions (similar

to Fig. 1) and vertical lines indicate the location of maxima in depth-averaged velocity in each

experiment.
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Figure 3. Measures of anisotropy and phase angle relationships: (a) eddy velocity anisotropy

(A), (b) cosine of the phase angle between T
′
and v′ and (c) the product of (a) and (b), as well

as the parameterized eddy efficiency factors Eeff (brown when using deformation radius, pink

when using the topographic Rhines scale). In panel c we use a2 = 10 for Eeff . To match the

mid-basin values of Eeff with A cos(θ), we scale ER
eff with 0.35 and ET

eff with 0.32. Colors and

line styles as in Fig. 1, and gray shadings indicate the slope regions.

–35–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 4. Partly-parameterized (a–c) and fully-parameterized (d–f) across-slope buoyancy dif-

fusivities. The left panels show across-basin profiles for experiment 3 (Table 2) whereas the right

panels summarize the statistical comparison between the diagnosed and parameterized diffusivi-

ties across all experiments (b–c, e–f; relative error is defined as |(Kpar−Kdiag)|/Kpar, where Kpar

is one of the parameterization (I)-(IX); r2 is based on linear regression using 200 points across all

cases that is repeated 5000 times). Boxes and whiskers come in pairs, with the one on the left

(right) corresponding to the southern (northern) slope. Linear regressions are done over the slope

regions only (gray shading; similar to Fig. 1). In panels a and d, the estimates I-IX are scaled by

constant a1 optimized to match the mid-basin diffusivity, and in addition we use aT = 0.5 (for

VII-IX), and a2 = 2 (for IX). The a1 values are 0.1, 1.17, 0.09, 0.31, 3.77, 0.25, 0.66, 0.25, and

0.25 for estimates I-IX, respectively. In panels b and e, the dashed gray lines correspond to 25%,

50%, 100% absolute relative error.
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Figure 5. Buoyancy diffusivity (top row) and potential density anomaly (referenced to 0

dbar) in the upper 1000 m of the coarse-resolution channel simulation compared to the high-

resolution simulation (black line; coarse-grained to the coarse resolution grid). The different

columns show experiments with different stratification such that the initial conditions are the

same as for Exp 3, 6 and 9 in the left, middle and right columns, respectively (the initial strat-

ification decreases to the right). For panels d-l, title indicates the parameterization. Bottom

topography is indicated with a gray line
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Figure 6. Anomalies from the control case in parameterized (depth-averaged) GM diffusivity

due to implementation of (top row) the topographic Rhines scale and (bottom row) eddy effi-

ciency in addition to the topograhic Rhines scale. Red contours show the 1000 m2 s−1 isoline

for diffusivity in the control case and light gray contours show areas in the tropics where the

grid size is smaller than the internal deformation radius and therefore the resolution function

(Hallberg, 2013) reducing the GM coefficient is in effect.
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Figure 7. Flow speed anomalies from the control case at 100–200 m depth due to implemen-

tation of: (top row) the topographic Rhines scale and (bottom row) eddy efficiency in addition to

the topograhic Rhines scale. Black contours show the 0.25 m s−1 isolines for observational esti-

mate of the quasi-geostrophic current speed (Buongiorno Nardelli, 2020) in the same 100–200 m

depth interval. Gray dots mark grid cells where 30 year mean is not significantly different from

the control case at 5% significance level (student’s t-test).

–39–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 8. Temperature anomalies from the control case between 100–200 m depth due to

implementation of: (top row) the topographic Rhines scale and (bottom row) eddy efficiency in

addition to the topograhic Rhines scale. Black contours show the ±1◦C (solid/dashed) isoline

for the control case bias relative to the WOA observations. Therefore, whenever solid (dashed)

contours surround blue (red) areas the bias is reduced. Gray dots mark grid cells where 30 year

mean is not significantly different from the control case at 5% significance level (student’s t-test).
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Figure 9. Zonal-mean temperature anomalies (left panels) and global meridional overturn-

ing stream function (MOC) anomalies (right panels), relative to the control simulation, due to

implementation of: (top row) the topographic Rhines scale and (bottom row) eddy efficiency in

addition to the topograhic Rhines scale. For temperature, black contours show the control case

bias relative to the WOA observations in 0.25◦C intervals (dashed for negative, solid for positive,

the thick solid curve shows the zero contour). Therefore, whenever solid (dashed) contours sur-

round blue (red) areas the bias to the observations is reduced. For the MOC, the contours show

the control case MOC at 5 Sv intervals with the thick solid curve indicating the 0 Sv contour.

Therefore solid (dashed) contours surrounding red (blue) indicates intensifying overturning. Sim-

ilar to Figs. 7-8, a student’s t-test is applied here, but gray dots are now shown as all values are

significant at 5% level.
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Figure 10. Resolved and eddy contributions to the global meridional overturning circulation

(MOC, panels a and b) and to the global northward ocean heat transport (OHT, panels c–e).

For the MOC we show the maximum (solid) and minimum (dashed) below 500 m to avoid the

shallow surface overturning cells. For the OHT we show both advective and diffusive eddy contri-

butions (panels d and e, respectively).
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