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Abstract

Most of the ocean’s kinetic energy is contained within the mesoscale eddy field. Models that do not resolve these eddies tend to

parameterize their impacts through down-gradient transport of buoyancy and tracers, aiming to reduce the large-scale available

potential energy and spread tracers. However, the parameterizations used in the ocean components of current generation Earth

System Models (ESMs) rely on an assumption of a flat ocean floor even though observations and high-resolution modelling show

that eddy transport is sensitive to the potential vorticity gradients associated with a sloping sea floor. We show that buoyancy

diffusivity diagnosed from idealized eddy-resolving simulations is indeed reduced over both prograde and retrograde bottom

slopes (topographic wave propagation along or against the mean flow, respectively) and that the reduction can be skilfully

captured by mixing length parameterization by introducing the topographic Rhines scale as a length scale. This modified ‘GM’

parameterization enhances the strength of thermal wind currents over the slopes in coarse-resolution, non-eddying, simulations.

We find that in realistic global coarse-resolution simulations the impact of topography is most pronounced at high latitudes,

enhancing the mean flow strength and reducing temperature and salinity biases. Reducing buoyancy diffusivities further with

a mean-flow dependent eddy efficiency factor has notable effects also at lower latitudes and leads to reduction of global mean

biases.
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Key Points:8

• Eddy buoyancy diffusivity reduction over bottom slopes can be parameterized us-9

ing the Eady growth rate and topographic Rhines scale.10

• Realistic reduction in buoyancy diffusivity in a coarse resolution model enhances11

baroclinic boundary currents.12

• A topographically-aware eddy efficiency factor improves the parameterization and13

further reduces biases in global simulations.14
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Abstract15

Most of the ocean’s kinetic energy is contained within the mesoscale eddy field. Mod-16

els that do not resolve these eddies tend to parameterize their impacts through down-17

gradient transport of buoyancy and tracers, aiming to reduce the large-scale available18

potential energy and spread tracers. However, the parameterizations used in the ocean19

components of current generation Earth System Models (ESMs) rely on an assumption20

of a flat ocean floor even though observations and high-resolution modelling show that21

eddy transport is sensitive to the potential vorticity gradients associated with a sloping22

sea floor. We show that buoyancy diffusivity diagnosed from idealized eddy-resolving sim-23

ulations is indeed reduced over both prograde and retrograde bottom slopes (topographic24

wave propagation along or against the mean flow, respectively) and that the reduction25

can be skilfully captured by mixing length parameterization by introducing the topo-26

graphic Rhines scale as a length scale. This modified ’GM’ parameterization enhances27

the strength of thermal wind currents over the slopes in coarse-resolution, non-eddying,28

simulations. We find that in realistic global coarse-resolution simulations the impact of29

topography is most pronounced at high latitudes, enhancing the mean flow strength and30

reducing temperature and salinity biases. Reducing buoyancy diffusivities further with31

a mean-flow dependent eddy efficiency factor has notable effects also at lower latitudes32

and leads to reduction of global mean biases.33

Plain Language Summary34

Due to their high computational costs, global climate models are usually run at coarse35

spatial resolution, which does not allow them to resolve the ocean weather—mesoscale36

eddies—which are an important part of the ocean energy cycle and contribute to mix-37

ing of tracers such as heat and carbon. Eddies are instead parameterized in an idealized38

manner which relates the eddy-driven transport to the strength of the vertical and hor-39

izontal density gradients in the ocean. Such parameterization do not take into account40

impacts of large-scale bottom bathymetry which have been shown to weaken the eddy41

driven transport. Here we use high-resolution eddy-resolving simulations to improve ex-42

isting parameterizations so that they become sensitive to the bottom slope. We show43

that such a parameterization qualitatively captures the transport reduction seen in ide-44

alized high-resolution simulations and can also reduce errors in realistic global simula-45

tions.46

1 Introduction47

At present, the ocean components of most global climate models are used at res-48

olutions that require parameterizing the oceanic mesoscale (Fox-Kemper et al., 2019).49

And although coupled simulations with eddying ocean fields are slowly emerging (Chang50

et al., 2020), mesoscale eddy parameterizations are still likely part of ocean models for51

another decade. Most present-day parameterizations have their origins in the works of52

Gent and Mcwilliams (1990); Gent et al. (1995) and Redi (1982), tackling eddy-induced53

advection and tracer mixing, respectively. The ’GM’ advection is cast in terms of a hor-54

izontally down-gradient and vertically up-gradient buoyancy diffusion which acts to re-55

duce available potential energy. And ’Redi’ diffusion mixes tracers down-gradient along56

isopycnals (Gent, 2011). In practice, most model implementations focus on estimating57

an eddy diffusion coefficient, or eddy diffusivity, which is then used to drive both eddy58

induced advection and mixing. It is generally understood that these are separate pro-59

cesses. However, previous studies have suggested that GM and Redi coefficients differ60

only in their vertical structure (K. S. Smith & Marshall, 2009; Abernathey et al., 2013;61

Bachman et al., 2020) and, therefore, that their depth-averaged values should be sim-62

ilar up to a constant factor.63
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Depth-averaged eddy diffusion coefficients in coarse-resolution climate models are64

often parameterized following mixing length theory, set proportional to the product of65

some eddy velocity scale and a mixing length scale. Some work has gone into estimat-66

ing the eddy velocity scale by implementing a prognostic equation for eddy energy (Eden67

& Greatbatch, 2008; Marshall et al., 2012; Mak et al., 2018; Bachman, 2019; Jansen et68

al., 2019), but this is still very much an active field of research. The study by Visbeck69

et al. (1997) therefore continues to influence the practical use of the mixing length ap-70

proach. Drawing on earlier works by Green (1970) and Stone (1972), the authors pro-71

posed that the velocity scale be based on the product of the growth rate of baroclinic72

instability in the linearized Eady model (Eady, 1949) and some length scale. Assuming73

that the mixing length is also set by the same scale, the diffusivity will then scale as the74

Eady growth rate and the square of the length scale. Visbeck et al. (1997) associated75

the mixing length with the ’width of the baroclinic zone’ which they defined as ”the width76

of the region where the local growth rate exceeds 10% of the maximum growth rate of77

the field”. The concept, however, is hard to define in any but the the most idealized model78

geometries, and length scales therefore need to be formed from theoretical dynamical ar-79

guments.80

As proposed by Stone (1972), one obvious candidate for length scale is the inter-81

nal deformation radius, the approximate scale of fastest unstable growth in the Eady model.82

Solid observational evidence for the relevance of this length scale has been presented by83

Stammer (1997) and Eden (2007). However, other relevant scales arise if dynamics be-84

yond the Eady framework is accounted for, most notably bottom friction and internal85

potential vorticity (PV) gradients. Jansen et al. (2015), for example, examined the role86

of bottom friction and the planetary vorticity gradient in a two-layer flat-bottom chan-87

nel model. They found that bottom friction primarily influences the vertical distribu-88

tion of eddy energy and that the mixing length in most of their simulations is set by the89

Rhines scale, i.e. the transition scale between nonlinear and linear PV dynamics on the90

flat-bottom planetary beta plane (Rhines, 1977). More generally, Jansen et al. (2015)91

found that in order to cover various dynamical regimes, the smaller of several candidate92

length scales should be chosen. And, in fact, the observational studies of both Stammer93

(1997) and Eden (2007) specifically pointed to a minimum of the internal deformation94

radius and the Rhines scale as a best fit for eddy length scales over much of the world95

oceans.96

These principles remain the standard in state-of-the-art models, although devel-97

opment has occurred in later years. As mentioned above, there has been extensive fo-98

cus on developing prognostic equations for eddy energy. And a considerable effort has99

gone into studying effects of horizontal eddy anisotropy (R. D. Smith & Gent, 2004) and100

the suppression of mixing across strong mean flows (Ferrari & Nikurashin, 2010; Klocker101

et al., 2012, and references therein). It’s worth noting, however, that most of the devel-102

opment up until recently has been guided by observed dynamics in low- and mid-latitudes.103

Current parameterizations thus lack any treatment of two aspects that are potentially104

of huge importance in high latitude oceans, namely the presence of sea ice and the po-105

tential vorticity gradients imposed by sloping bottom topography. A sea ice cover can106

effectively have the same influence as bottom friction on both growth of baroclinic in-107

stability as well as dissipation of existing mesoscale and sub-mesoscale eddies (Meneghello108

et al., 2021). But this topic will be left out from the present study. We will instead fo-109

cus on the dynamical impacts of bottom slopes, i.e. continental slopes and mid-ocean110

ridge systems, whose imprints can be easily seen in observations of both mean currents111

and mesoscale energy fields, especially at high northern latitudes (Nøst & Isachsen, 2003;112

Koszalka et al., 2011; Trodahl & Isachsen, 2018). Such imprints of topographic PV gra-113

dients can also be seen at lower latitudes, e.g. in drifter and float paths (LaCasce, 2000;114

Fratantoni, 2001).115
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Sloping bottom topography can suppress growth rate and reduce length scales of116

baroclinic instability (e.g. Blumsack & Gierasch, 1972; Mechoso, 1980; Isachsen, 2011;117

Brink, 2012) as well as impact finite-amplitude eddy fields (e.g. Bretherton & Haidvo-118

gel, 1976; Vallis & Maltrud, 1993; Lacasce & Brink, 2000; K. Stewart et al., 2015; Wang119

& Stewart, 2018). To this end, new topography-aware parameterizations have started120

to emerge, both for eddy-induced advection and isopycnal mixing. In particular, Wang121

and Stewart (2020) and Wei et al. (2022) used high-resolution model simulations of flows122

over idealized continental slopes in a re-entrant channel to test different scaling relations123

for the GM diffusivity. The two works examined eddy characteristics and fluxes across124

retrograde and prograde mean currents, respectively, meaning currents that are in the125

opposite and same direction as topographic waves. Both studies diagnosed the eddy en-126

ergy from the high-resolution fields and used this to examine traditional mixing length127

formulations in addition to the ’GEOMETRIC’ formulation of Marshall et al. (2012) which128

is based on eddy energy and the inverse of the Eady growth rate. In general, the two for-129

mulations performed similarly, suggesting that a good knowledge of the eddy energy field130

is key. But, importantly, both studies also found that empirical prefactors that depend131

on the topographic slope are needed to reproduce the very weak eddy buoyancy fluxes132

across sloping bottom topography.133

Wei and Wang (2021) carried on from Wang and Stewart (2020), but focused on134

the along-isopycnal tracer (Redi) diffusivity—in retrograde flows only. The authors scaled135

the Redi diffusivity from (the square root of) the diagnosed eddy kinetic energy and the136

internal deformation radius. But here too it was found that the effective diffusivity over137

the slope was suppressed below the original scale estimate. However, instead of testing138

a set of empirical slope-dependent prefactors, as done by Wang and Stewart (2020) and139

Wei et al. (2022), this study picked up from Ferrari and Nikurashin (2010) and argued140

that mean flow suppression could explain the observed reduction in cross-slope fluxes near141

the surface, whereas eddy velocity anisotropy contributed to the reduction close to the142

bottom.143

In other words, both sets of studies (see also Brink, 2012, 2016; Hetland, 2017) con-144

cluded that the strength of eddy fluxes over sloping bottoms is not only given by eddy145

energy and length (or time) scales but also by additional dynamical impacts of the bot-146

tom topography. Essentially, perfect knowledge of the eddy energy and either length scales147

or time scales will only produce an upper bound on eddy diffusivity. Eddy velocity anisotropy148

is one obvious factor which may then bring the diffusivity down from this upper bound.149

The other and perhaps more important factor is the possibility that velocity and tracer150

perturbations are not very well in phase (the two being in quadrature would give zero151

transport). Most likely, the topography-dependent prefactors of the above-mentioned stud-152

ies primarily address such imperfect phase relationships.153

The present study will focus on eddy buoyancy transport and thus on GM diffu-154

sivities. It is inspired by and builds directly on the results obtained by Wang and Stew-155

art (2020) and Wei et al. (2022). However, as noted, the above works examined prograde156

and retrograde flows separately and also constructed diffusivities from eddy energy lev-157

els diagnosed from very idealized but high-resolution fields. So here we aim to i) study158

fluxes and diffusivities over both types of flow situations under one and the same frame-159

work, ii) examine how far one can get without diagnosing the actual eddy energy field160

and, finally, iii) assess the impacts both in an idealized setting and in a realistic global161

ocean simulation.162

In the process, we also revisit the question of what is the relevant eddy length scale163

over continental slopes. The starting point will be the internal deformation radius since164

this remains a relevant parameter in the Eady problem, even when this includes a bot-165

tom slope (Blumsack & Gierasch, 1972). But we also consider the topographic Rhines166

scale, i.e. the scale where topographic Rossby waves (rather than planetary Rossby waves)167

mark the transition between linear and non-linear PV dynamics. The above-mentioned168
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idealized channel studies give conflicting evidence about the relevance of this scale. We169

are nevertheless inspired by the findings of Stammer (1997), Eden (2007) and Jansen et170

al. (2015) and therefore bring up this approach here again. Finally, we also examine and171

attempt to parameterize the role of eddy velocity anisotropy and the phase relationship172

between flow and buoyancy perturbations.173

The paper is structured as follows: In section 2 we introduce the modelling tools174

and various diagnostics and parameterizations used. In section 3 we begin by diagnos-175

ing eddy fields from a high-resolution channel simulations that contain both prograde176

and a retrograde flows at the same time. We then see how far mixing-length and GE-177

OMETRIC parameterizations can take us in reproducing the diagnosed depth-averaged178

GM diffusivity—with and without accounting for effect of anisotropy and phase relations179

between eddy velocity and tracer perturbations. At the end of this section we examine180

the impact of a topographically-aware parameterization in a coarse-resolution version181

of the channel model. In section 4 we finally employ the new parameterization in real-182

istic global ocean simulation. We then take a critical look into some of our parameter-183

ization choices and their interpretation in section 5 before summarizing our findings in184

section 6.185

2 Methods186

2.1 Model setup187

We use the Bergen Layered Ocean Model (BLOM), the ocean component of the188

Norwegian Earth System Model (NorESM; Seland et al., 2020), in an idealized channel189

configuration as well as in a realistic global setup. BLOM uses 51 isopycnal levels (po-190

tential density referenced to 2000 dbar) with a 2-level bulk mixed layer at the surface.191

The channel setup is re-entrant in the zonal (x) direction. The domain is 416 km192

long (zonally) and 1024 km wide (meridionally). At both sides of the channel there are193

continental slopes centered at 150 km from the domain edge, stretching 2000 m in ver-194

tical from the shelf break at 250 m depth to the bottom of the slope at 2250 m depth.195

In addition, to trigger instabilities we add random noise with standard deviation of 10 m196

to the bottom topography. The model is initialized from rest with constant salinity and197

a horizontally homogeneous temperature profile. The temperature, which here determines198

density alone, has a maximum at the surface and decays exponentially towards the bot-199

tom. We place the channel in the northern hemisphere, using a constant Coriolis param-200

eter, and then force the flow with a constant westward wind stress. The surface mixed201

layer is kept shallow by parameterization of submesoscale mixed layer eddies (Fox-Kemper202

et al., 2008) that counter the vertical mixing induced by the constant wind forcing. See203

Table 1 for further parameter settings.204

We first run the channel model at eddy-resolving 2 km horizontal resolution. To205

investigate the effects of the two bottom slopes on eddy transport and, specifically, on206

eddy diffusivity, we vary the initial stratification and the width of the continental slope,207

i.e the slope angle. The various experiments are laid out in Table 2. All simulations are208

spun-up to a semi-equilibrium for 10 years, and the model fields are then diagnosed over209

an additional 5-year period (so between years 10–15). We then test and compare var-210

ious forms of parameterized eddy buoyancy fluxes at coarse resolution at 32 km resolu-211

tion in the same idealized channel. These are also run for 15 years, with the last 5 years212

being diagnosed.213

Finally, the impact of the most skillful parameterization is assessed in realistic global214

simulations. These are nominal 1◦ resolution global forced ocean-ice experiments which215

follow the Ocean Model Intercomparison Project, OMIP-II protocol (Tsujino et al., 2020).216

In these simulations, the mean grid size north of 62◦N and south of 64.5◦S is approx-217

imately 32 km, similar to the coarse resolution channel. Two simulations are conducted,218
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one with the new parameterization and another with an existing eddy parameterization219

which does not include any effects of bottom topography. Each simulation is 110 year220

long (2 cycles of 55 long repeat cycle), and we diagnose the results using the last 30 years.221

At this point there is still a long term drift in the model (as seen in all models follow-222

ing the OMIP-II protocol; Tsujino et al., 2020), but the general circulation has stabi-223

lized.224

2.2 Diagnostics and Paramaterizations225

The key parameter of interest is the buoyancy diffusivity, as we have assumed that
lateral eddy buoyancy transport can be expressed as down-gradient diffusion. In the ide-
alized zonal channel simulations, where buoyancy is given by temperature, the cross-channel
(i.e. meridional) buoyancy diffusivity can be diagnosed from

Kdiag = − ⟨v′T ′⟩
∂⟨T ⟩/∂y

, (1)

where v and T are meridional velocity and temperature, respectively. Angle brackets in-226

dicate a zonal (along-channel) mean and primes indicate deviations from such mean. So227

v′ and T ′ are the across-channel velocity and temperature perturbations from the zonal228

mean.229

Note that the cross-channel perturbation velocity is related to the eddy kinetic en-
ergy density

EKE =
⟨u′2⟩+ ⟨v′2⟩

2
(2)

via the velocity anisotropy factor

A =
⟨v′2⟩

⟨u′2⟩+ ⟨v′2⟩
, (3)

so that
v′ = (2A · EKE)1/2. (4)

In practice, we use Parseval’s theorem to diagnose the buoyancy flux from the cross
spectrum of cross-channel velocity and temperature:

Kdiag =

∫
Ĉo(v′, T ′) dk

∂⟨T ⟩/∂y
, (5)

where Ĉo(v′, T ′) is the real part of the cross spectrum which we integrate over all zonal230

wavenumbers k.231

In this study we focus exclusively on the depth-averaged diffusivity, and if not stated232

otherwise all variables are depth-averaged quantities. We leave the development of depth-233

varying parameterizations for future studies. A fruitful way forward for this may be to234

develop a flow-dependent structure function that distributes the depth-averaged diffu-235

sivity vertically (see e.g. Bachman et al., 2020; Wei & Wang, 2021). Finally, for anal-236

ysis of the channel simulations, we also average Kdiag over time.237

Parameterizing the diffusivity starts with a scale estimate. Two approaches are cur-
rently in use, the traditional mixing length and the GEOMETRIC approach. In the for-
mer, we write

KML ∝ V L, (6)

where V is a representative eddy velocity and L is a lateral mixing scale. Typically, this
is often taken to be related to the size of eddies themselves. If complete information ex-
ists about the high-resolution eddy fields, it is natural to set V =

√
EKE or, more cor-

rectly for the cross-channel diffusion we study here, V = ⟨v′⟩. The eddy length scale

–6–
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L may also be diagnosed from the shape of velocity spectra. Several possibilities exist
(see e.g. Eden, 2007), but here we chose

LS =

∫
|v̂(k)|2k−1dk∫
|v̂(k)|2dk

(7)

which can be thought of as a kinetic energy-weighted mean wavelength under the spec-238

trum.239

Alternatively, the energy-based diffusivity estimate of the GEOMETRIC frame-
work (Marshall et al., 2012; Mak et al., 2018) is constructed as

KGEOM ∝ σ−1
E E, (8)

where σE is the Eady growth rate and E is the total eddy energy. The Eady growth rate
is

σE = 0.3
f

Ri1/2
(9)

where f is the Coriolis parameter and Ri is the geostrophic Richardson number:

Ri =
N2

|∂Ug/∂z|2
. (10)

Here

N2 = − g

ρ0

∂ρ

∂z

= ∂b/∂z

(11)

is the squared buoyancy frequency (g is gravitational acceleration, ρ is density and b buoy-
ancy, while ρ0 is a reference density) and

|∂Ug/∂z| = | g

ρ0f
∇ρ|

= |∇b/f |
(12)

is the magnitude of the thermal wind shear. As said, E is the total eddy energy, i.e. the
sum of the EKE and EPE (eddy potential energy). The latter is diagnosed from

EPE =
1

H

∑
i=1,n

1

2

ρi+1 − ρi
ρ0

g⟨η′2i+1/2⟩, (13)

where η is the height of an isopycnal surface (trivially diagnosed from the layered BLOM240

model). The sum is taken over n density surfaces and, as in all of the above, the prime241

marks deviations from the zonal mean.242

Since the work on prognostic eddy energy budgets is still a topic of active research,
we set out here to parameterize both the eddy velocity and eddy length scale from coarse-
resolution variables. Thus, following Visbeck et al. (1997), we write

Vpar = σEL, (14)

which gives

Kpar ∝ σEL
2. (15)

Two parameterizations for the eddy length scale are then assessed, namely the WKB-
approximation to the internal Rossby deformation radius

LR =

∫
N dz

|f |
, (16)
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and the parameterized version of the topographic Rhines scale

LT =

(
Vpar

βT

)1/2

=
σE

βT
,

(17)

where βT = (|f |/H)|∇H| and we have assumed Vpar = σELT (Eden & Greatbatch,243

2008). Parameterized velocity and length scales are always chosen consistently i.e. the244

parameterized diffusivities will depend on the Eady growth rate and the squared length245

scale of choice.246

Finally, as outlined in the introductory section, it is important to remember that
the above parameterizations most likely give upper bounds on diffusivities, correspond-
ing to situations where there is perfect correlation between the eddy velocity and tem-
perature perturbations, i.e. where the two quantities are either in perfect phase or anti-
phase. To investigate if and how topographic slopes impact such phase relationship, we
also utilize the high-resolution fields from the channel simulation to map out the cosine
of the phase angle between the real and imaginary parts of the cross spectrum between
v′ and T ′:

cos(θ) =
Ĉo(v, T )[

Ĉo(v, T )2 + Q̂u(v, T )2
]1/2 (18)

where Q̂u(v, T ) is the the imaginary part of the cross spectrum (the quadrature spec-247

trum). For analysis, we average θ across all wavenumbers (k) and over time before cal-248

culating the cosine. An attempt to parameterize the observed phase relationship is also249

presented in what follows.250

3 Eddy fluxes in a channel model251

3.1 Equillibrated flow field and eddy fluxes252

Our setup (see section 2.1) is very similar to the setup in the series of papers by253

Wang and Stewart (2018, 2020), Wei and Wang (2021) and Wei et al. (2022), except that254

we now have continental slopes on both sides of the channel. The forcing is also slightly255

different as we employ a westward wind stress which, unlike in the previous studies, is256

kept constant across the channel. The mean ocean state, however, is very similar. Since257

the channel is in the northern hemisphere, the westeard wind stress sets up a northward258

surface Ekman transport. Thus, Ekman divergence in the south and convergence in the259

north results in a time-mean sea surface tilt which is in geostrophic balance with a west-260

ward mean flow, as shown in the two upper panels of Figure 1. The Ekman-driven over-261

turning circulation in the y-z plane lifts up isopycnals in the south so that they slope with262

the bathymetry there. Conversely, downwelling in the north sets up isopycnals that slope263

against the topography.264

Despite the simple wind forcing, the total baroclinic velocity field is rather com-265

plex. In the north there is a strong westward jet over the slope. This jet has a signifi-266

cant thermal wind shear but nonetheless extends all the way to the bottom. Over the267

southern slope the westward flow is weaker and much more surface-trapped. Lower lay-268

ers here are almost motionless, so the depth-averaged westward flow takes on a minimum269

over the slope. Instead there is a broad and nearly barotropic westward current which270

has its maximum strength immediately off the seaward side of the continental slope.271

The north-south asymmetry is clearly not only a result of the stratification being
weaker in the south than in the north. Thus, net impacts of mesoscale eddy fluxes must
likely be taken into account. At the most basic level, the tilted isopycnals in both regions
are baroclinically unstable, creating an eddy field whose residual mass transport will tend
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to counter the Ekman-driven oveturning circulation. However, because mesoscale eddies
also transport momentum, the mean flow field reflects, in part, the integrated effects of
eddy momentum and buoyancy fluxes. Their combined effects can be studied in the Trans-
formed Eulerian Mean (TEM) version of the zonally-averaged zonal momentum equa-
tion:

∂⟨u⟩
∂t

− f⟨v∗⟩ = −∇yz · FEP +
∂⟨τx⟩
∂z

, (19)

where

FEP = −⟨v′u′⟩ĵ + f
⟨v′b′⟩
N2

k̂ (20)

is the Eliasssen-Palm flux. It consists of a lateral eddy momentum flux and an eddy form272

stress (this term arises after thickness-weighting). In (19) we have neglected small terms273

describing the transport of zonal mean momentum by the meridional mean flow as well274

as vertical flux of momentum (see Wang & Stewart, 2018). Note, however, that the eddy275

form stress term, which is connected to lateral buoyancy transport under the small-slope276

approximation, may be thought of as a vertical momentum flux. Finally, the Coriolis term277

contains the residual meridional velocity, i.e. the equivalent mass transport velocity which278

accounts for both the Eulerian-mean flow and the mass transport by eddy correlations.279

The E-P flux is shown as arrows in the top panel of Figure 1. In general, both in280

the south and in the north, the downward eddy momentum flux is suppressed over the281

slopes, in agreement with earlier studies which indicate that baroclinic instability of sup-282

pressed over continental slopes. Our estimate of the depth-averaged cross-channel buoy-283

ancy diffusivity reflects this signature by being reduced by about two orders of magni-284

tude over the continental slopes (lower panel). What these simulations show, as also seen285

in the simulations of Wang and Stewart (2018) and Manucharyan and Isachsen (2019),286

is that eddy motions instead bring zonal momentum laterally across the slopes near the287

surface and dump it where the ocean bottom flattens off towards the deep basin (this288

lateral component < v′u′ > is highlighted with color in the plot). And there, over the289

relatively flat bottom, baroclinic instability kicks in to bring the momentum down to the290

solid ground below.291

As lateral eddy momentum fluxes are also clearly important in this and previous292

simulations, optimal parameterizations will likely need to be build up around down-gradient293

PV fluxes (see e.g. Wang & Stewart, 2018). However, it is also reasonable to expect that294

any framework which is successful at reproducing the order-of-magnitude drop in buoy-295

ancy diffusivities seen in Figure 1 will also improve the ocean state in coarse-grained mod-296

els. So we keep this focus here. Hence, on our way towards a practical parameterization297

of a GM diffusivity over continental slopes, we begin by examining the length scales and298

velocity scales associated with the mesoscale eddy field. This approach is motivated by299

the mixing length argument (Prandtl, 1925), relating diffusivity to an eddy velocity scale300

and a length scale. However, we will also compare this approach with the energy-based301

GEOMETRIC framework (Marshall et al., 2012; Mak et al., 2018).302

3.2 Eddy length and velocity scales303

Estimates of eddy length and velocity scales are shown in Figure 2. The length scale304

is estimated from (7), i.e. by calculating a spectral-weighted mean wavelength associated305

with north-south velocity perturbations. When normalized by its mean value across the306

channel the length scale shows a near-universal shape across the various model runs (up-307

per left panel). There is a broad maximum over the mid-basin before length scales drop308

over the continental slopes on both sides. There is, however, a consistent local maximum309

over mid-slope on the northern (prograde) side, coinciding with the maximum in mean310

zonal velocity. Scales then flatten out or even increase over the shelf regions. But, as with311

other diagnostics below, but we will largely ignore shelf values in the discussion below312

due to the proximity to the model walls. For the eddy velocity scale we show the square313

root of EKE. When normalized with the across-channel average (upper right panel), the314
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eddy velocity scale in all runs is reduced over the southern slope, save for a slight increase315

over the upper parts of the slope. In stark constrast, the northern slope is dominated316

by a large maximum, also that one centered over the upper parts of the slope. The eddy317

velocity then drops off and flattens out over both shelf regions.318

It would seem that forming a diffusivity from the product of these diagnosed length319

and velocity scales may reproduce the observed reduction over the southern retrograde320

slope (Fig. 1), at least qualitatively. But it should also be clear that the same procedure321

would produce a diffusivity maximum over the northern slope—for which there is ab-322

solutely no indication in the model fields. We will return to this issue below but first ex-323

amine possible scaling approximations to the observed length and velocity scales.324

We start by normalizing by the classical Stone (1972) prediction. So the length scale325

is normalized by the internal deformation radius LR (16) and the velocity scale by the326

product of the Eady growth rate (9) and the deformation radius, so V = σELR. With327

such normalization both the length scales and velocity scales collapse really well in the328

mid-basin (middle panels). The normalized length scales then drop slightly over the lower329

parts of both slopes, indicating that the deformation radius overestimates scales there330

somewhat. Finally, there is a dramatic rise in normalized scales over the upper parts of331

both slopes as the deformation radius drops towards the shallow shelves. As with length332

scales, the normalized velocities drop over the lower parts of the slopes before rising again333

over the upper parts. The normalization brings the EKE peak over the upper parts of334

the slope down to values similar to those seen over the mid-basin, suggesting that the335

EKE peak there coincides with the region of active baroclinic instability.336

Finally, we normalize by selecting a smooth minimum of length scales:

Lmin =
LRLT

LR + LT
, (21)

where LT is the topographic Rhines scale (17). The results are similar over the central337

basin since the deformation radius is the smaller of the two scales there (the Rhines scale338

blows up). But now both normalized length and velocity scales peak over the slopes where339

the Rhines scale becomes the smaller of the two—and is quite clearly too small to ex-340

plain the observed fields. As such, consideration of the topographic Rhines scale does341

not seem to bring any improvement in skill over the continental slopes.342

But before rejecting this scaling choice it is worth noting again that the construc-343

tion of a diffusivity from the original (non-normalized) length and velocity scale estimates344

(i.e. from the curves shown in the top row) would obviously result in a diffusivity max-345

imum over the central northern slope. Such a maximum is in no way suggested from Fig-346

ure 1. What is missing from the story here is a consideration of how eddy velocity anisotropy347

and the velocity-temperature phase relationship may act to bring diffusivities down over348

the slopes. So we turn to this issue next.349

3.3 Anisotropy and phase relationship350

Figure 3 shows the eddy velocity anisotropy A (3) and the cosine of the phase an-351

gle between real and imaginary parts of the v′ and T ′ cross-spectra (18). As expected,352

the eddy velocity field is close to being isotropic in the middle of the basin (upper panel).353

Values there are around 0.6, implying that cross-channel velocity fluctuations v′ are in354

fact slightly larger than along-channel fluctuations u′. The eddy fluctuations then be-355

come much more anisotropic towards the continental slopes, with A values over the up-356

per parts of the slope close to 0.1 (0.2) in the north (south). This implies that v′ is about357

70% (50%) smaller than u′ in the north (south). A notable exception is a peak over the358

center of the northern slope where v′ is about 50% larger than u′. We have also tested359

other measures of anisotropy, such as the velocity based measure used by K. Stewart et360
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al. (2015) that takes rotational aspects into account, and the results are similar to those361

shown here.362

The general behavior of increased anisotropy over the slopes, with |v′| < |u′|, will363

work to reduce the scale-based diffusivity there. But the variations in A from mid-basin364

values are not great and the mid-slope peak (where |v′| > |u′|) would actually increase365

the estimates there. So we conclude from this that velocity anisotropy alone can not ex-366

plain the consistent drop in diffusivity by two orders of magnitude over the slopes seen367

in Figure 1. The phase relation, however, is able to explain the observed order-of-magnitude368

drop over the slopes, as the v′ and T ′ fields are close to 90◦ out of phase there (middle369

panel). Importantly, the low phase agreement over the northern slope largely cancels the370

local peak in anisotropy.371

The lower panel in Figure 3 shows the product of A and cos(θ), an indication of372

the total suppression of diffusivities over the scale-based upper bound. The total sup-373

pression is dominated by the information carried in the phase relationship, and veloc-374

ity anisotropy primarily plays a role near the edges of the two slopes. The suppression375

over the slopes amounts to more than an order of magnitude, so it is an effect which clearly376

needs to be parameterized.377

Essentially, the slope-dependent prefactors which previous studies have needed to
invoke to explain buoyancy diffusion in similar channel simulations are attempts at such
parameterization (Brink, 2012, 2016; Hetland, 2017; Wang & Stewart, 2020; Wei et al.,
2022). However, at this point we temporarily detour from those earlier studies and in-
stead take as a starting point an expression which bears some resemblance to the final
form of the mean flow suppression expression proposed by Ferrari and Nikurashin (2010).
Thus, we construct an eddy efficiency factor as

Eeff = a1
1

1 + a2 (U2
bc/V

2)
. (22)

Here, Ubc is the large-scale baroclinic flow speed obtained after subtracting the depth-378

averaged velocity, V is the eddy velocity scale and a1 and a2 are scaling factors which379

we here take to be constant. The expression does not have a rigorous basis but a sim-380

ple intuitive interpretation. Ubc is directly related to the thermal wind shear and, hence,381

to the underlying energy source of baroclinic instability (e.g. Sutyrin et al., 2021). Qual-382

itatively, if Ubc is large and the flow is baroclinically unstable, one would expect V to383

be relatively large, giving Eeff ∼ 1. But if V remains small despite large Ubc, some dy-384

namical constraints (e.g. a sloping bottom) must be reducing the efficiency of baroclinic385

energy conversion, implying Eeff ≪ 1.386

We evaluate (22) at each depth but then take the mean over the water column. The387

large scale baroclinic flow Ubc is extracted directly from the resolved (and zonally-averaged)388

velocity field, while the eddy velocity is parameterized from (14). The lower panel of Fig-389

ure 3 shows the resulting efficiency factor, using either LR or LT as length scale. The390

tuning constants a1 and a2 have been chosen manually but it is clear that using L =391

LT can produce a suppression over the continental slope which is in fairly good agree-392

ment with A·cos(θ) over both slopes for a range of different simulations. We note that393

several tests with using the thermal wind instead of Ubc and with evaluating (22) with394

depth averaged-quantities (instead of taking the mean of a depth dependent expression)395

all produce similar results. Here we chose to use Ubc due the ease of implementation at396

coarse resolution.397

3.4 Parameterized diffusivity398

Given the above results, we then proceed with parameterizing the diagnosed buoy-399

ancy diffusivity. The aim is to capture the order-of-magnitude reduction in diffusivities400

from the mid-basin to the slope regions. The results are shown in Figure 6 where we dis-401
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tinguish between diagnostic (panels a–c) and full parameterizations (panels d–e). The402

diagnostic parameterizations include information about the mesoscale field itself which403

would not be directly available in a coarse resolution model (but could be parameter-404

ized in higher-order schemes), whereas the full parameterizations use large-scale metrics405

only and are therefore suitable for direct implementation in any existing coarse-resolution406

model. Panels a and c are from one single simulation, showing both the actual depth-407

averaged diffusivity diagnosed (black line) and the various approximations (distinguished408

by Roman numerals and color). Panels b–c and e–f then show statistics over both slope409

regions collected over the whole range of simulations.410

A first thing to notice from the diagnostic parameterizations (panels a–c) is that411

the mixing length (I) and GEOMETRIC (II) approaches behave very similarly. As also412

noted by Wang and Stewart (2020), both give reduced diffusivities over the southern ret-413

rograde slope and produce a reasonable fit there (r2 > 0.6). But the reduction is still414

underestimated by up to one order of magnitude. In the north, over the prograde slope,415

both approaches result in a serious qualitative mismatch as the high EKE levels there416

(seen in Fig. 2) produce a non-existing diffusivity peak over mid-slope.417

The observed discrepancies, particularly the qualitative mismatch over the north-418

ern slope, confirms that scaling arguments alone are unable to create diffusivities that419

reproduce the observed buoyancy transport across the slope regions. Accounting for the420

diagnosed eddy velocity anisotropy, so that
√
EKE will be replaced with v′ (III) improves421

the mixing length estimate slightly but not nearly enough. Multiplying the two estimates422

by A cos θ, however, largely removes the diffusivity peak in the north and even produces423

a clear suppression over the slope (IV and V). The values are still higher than the ob-424

served diffusivity, but the regression slope is close to one and the correlation r2 values425

above 0.8. Over the retrograde slope in the south the match is even higher.426

Guided by the observed agreement between the mixing length and GEOMETRIC
estimates above, we focus on the former approach when examining how well full para-
materizations can do. So we assume that a diffusivity can be written as the Eady growth
rate times the square of a length scale. Including our efficiency factor, the effective dif-
fusivity becomes

K = a1
K0

1 + a2 (U2
bc/V

2)
, (23)

where K0 = σEL
2 is the scaling estimate of diffusivity before considering the efficiency427

factor and where, as discussed above, we have a choice to make for the length scale. We428

start by looking at K0 first. Using the traditional Stone (1972) expression where the length429

scale is taken to be the internal deformation radius everywhere, seriously overestimates430

diffusivities over both slope regions (VI). The estimate, in fact, bears some resemblance431

with both the mixing length and GEOMETRIC estimates based on diagnosed eddy quan-432

tities (I and II), but with even larger discrepancies over the slope regions.433

Selecting as length scale the smooth minimum of the deformation radius and the434

parameterized topographic Rhines scale (VII) improves the estimate dramatically. The435

results are unchanged over the flat regions, as the deformation radius is selected there.436

But over the slopes where the Rhines scale is selected, the parameterized diffusivities drop437

by up to two orders of magnitude and start to match the observations quite well (with438

r2 > 0.8 over both slopes). Multiplying this estimate with the parameterized efficiency439

factor (VIII) improves the match somewhat over the prograde slope in the north but not,440

as it turns out, over the retrograde southern slope.441

Both Figures 3 and 6 indicate that Stone scaling, i.e. using the deformation radius442

as length scale, produces better estimates of observed eddy characteristics than does the443

topographic Rhines scale. And yet, these simulations suggest that applying the Rhines444

scale is absolutely crucial in reproducing the observed diffusivity reduction over topo-445

graphic slopes. This apparent contradiction may suggest that our parameterized topo-446

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

graphic Rhines scale does not reflect the physical size of equilibrated eddies but rather447

a reduction in the effective mixing length. In other words, the mixing length is not triv-448

ially related to the eddy size. Given our parameterization, the effect will impact the scal-449

ing estimate significantly so that the need for an explicit suppression factor (our Eeff )450

becomes smaller. But we leave further speculation on this topic to the discussion sec-451

tion and here carry on to see what effects the parameterized expression (VIII) will have452

in actual coarse-grained simulations.453

3.5 Performance in a coarse-resolution channel simulation454

The coarse-resolution channel setup is similar to the high-resolution channel setup,455

except for resolution (from 2 km to 32 km) and the activation of the GM-Redi param-456

eterization scheme. The model is forced and run similarly to the high-resolution setup.457

Figure 5 shows parameterized buoyancy diffusivities and the top-to-bottom thermal wind458

shear from three of the equillibrated simulations that had wide continental slopes but459

differing initial stratification. We also show the corresponding diagnosed quantities from460

the corresponding high-resolution simulations for comparison (thick black lines), but it461

should be remembered that that one is a distinct simulation. As in Figure 6, we show462

the three versions of the parameterized diffusivity (and corresponding thermal wind shears):463

one using the internal deformation scale (with a1 = 8), one using the smooth minimum464

between internal deformation scale and topographic Rhines scale (with a1 = 8) and,465

finally, one using the smooth minimum and also applying the parameterized eddy effi-466

ciency factor (with a1 = 32 and a2 = 1). In the last case a1 is tuned so that the pa-467

rameterized buoyancy diffusivity matches the two former cases in the mid-basin.468

The results show that over the mid-basin, where the internal Rossby radius will al-469

ways be selected as length scale, the parameterized diffusivity magnitude corresponds470

fairly well to the diagnosed diffusivity in the mid-basin. However, the parameterized dif-471

fusivity shows a clear north-south gradient in the magnitude, an effect caused by a stronger472

difference in stratification between north and south at coarse resolution which directly473

impacts the internal deformation radius. The deformation scale-based parameterization474

(orange line) then suggests local diffusivity maxima over both slopes, as also seen in Fig-475

ure 6. This run has a thermal wind shear which is not at all enhanced over the conti-476

nental slopes. Essentially, the high eddy buoyancy transport over the slope regions ef-477

fectively washes out any density front there. This, it should be remembered, is exactly478

the effect one wishes to reduce with a slope-sensitive parameterization.479

The run using a parameterization which selects the minimum of the two length scales480

does much better over both continental slopes where the topographic Rhines scale kicks481

in. With suppressed diffusivities, the density front which is set up by the topographic482

PV gradient is no longer washed out completely. The result is an enhanced thermal wind483

shear over the northern slope, albeit with a lower absolute strength than in the high-resolution484

simulation. In the south, where the stratification is much weaker, the parameterization485

is not able to set up a thermal wind shear.486

Further scaling by the eddy efficiency Eeff (Fig. 5, green) enhances the diffusiv-487

ity reduction in the north, but not necessarily in the south, as also observed for the high-488

diagnostics simulations. Therefore, the feedback to the resolved fields strengthens the489

baroclinic jet in the north further, but not in the south.490

The above results are encouraging. However, although the channel setup is a rea-491

sonable test bed for development, it is extremely idealized and lacks multiple features492

from the real world (e.g. variable Coriolis parameter, uneven topography and complex493

atmospheric forcing). Therefore, we also test the slope-aware parameterization in the re-494

alistic global domain next.495
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4 Realistic global model simulations496

4.1 Eddy parameterization adjustments497

We carry out a ’control’ simulation and 5 different perturbation experiments, but498

for simplicity, we focus on a comparison between the ’control’ simulation and two of the499

perturbation experiments. All of these simulations operate with 2D diffusivities based500

on the depth-averaged Eady growth rate and a square length scale, as in (15). The con-501

trol run selects a length scale from the minimum of the internal deformation radius and502

the planetary Rhines scale. Then, in two distinct ’topo’ runs we i) introduce the topo-503

graphic Rhines scale in the minimum function and ii) also turn on the eddy efficiency504

factor Eeff . The OMIP ’topo’ runs then differ slightly from the coarse-resolution chan-505

nel setup in the choice of constant scaling factors. The constant factor a1 which scales506

the overall diffusivity magnitude is set to 3 and factor a2 used in Eeff is set to 1. In ad-507

dition, we scale the topographic Rhines scale further down with a constant factor 0.5 (stronger508

sensitivity to slopes). We view these constants as tuning factors specific to one partic-509

ular setup; for example, the resolution of the bottom topography dataset influences the510

strength of the topographic beta and thereby tuning the topographic Rhines scale might511

be needed. Finally, in all runs the diffusivity magnitude is scaled down with a resolu-512

tion function (Hallberg, 2013) when the deformation radius is resolved by the model grid.513

And, for simplicity, the along-isopycnal (Redi) tracer diffusivity is set to be the same as514

the GM diffusivity.515

To put these experiments in some context, it should be mentioned that the model516

settings for the control run are similar to the NorESM model version used in the latest517

Climate Model Intercomparison Project (CMIP6) except for the GM diffusivity formu-518

lation. The CMIP6 version of the model included a mixing length formulation where the519

length scale was selected as the minimum of the internal deformation radius and the plan-520

etary Rhines scale—as in our control simulation. However, the local Eady growth rate521

was then evaluated at each model level, rendering a 3D profile for both eddy driven ad-522

vection (GM) and for along isopycnal mixing (Redi). Finally, the scaling-based diffusiv-523

ity was adjusted by a zonal velocity-dependent mean flow suppression following Ferrari524

and Nikurashin (2010), and as in the experiments here, a resolution function (Hallberg,525

2013) was also used.526

The lack of vertical structure of the 2D parameterization proposed here, turned out527

to be a clear deficiency in the global domain as our initial simulations showed an unre-528

alistically strong sensitivity to bottom slopes in the low and mid-latitude deep ocean.529

For example, large reductions in the parameterized diffusivity across mid-ocean ridges530

were not seen in eddy-permitting studies that diagnosed eddy diffusivity in the global531

domain (e.g., Bachman et al., 2020). Therefore, to reduce the topographic impact on eddy532

fluxes in strongly stratified low and mid-latitude regions, we added an ad hoc ’limiter’533

of topographic effects—based on the assumption that if the resolved flow does not feel534

the bottom then it is unlikely that mesoscale eddies would do so either. Specifically, the535

topographic Rhines scale is scaled by cos(α)−10 which rapidly increases the topographic536

Rhines scale when the angle α between the resolved flow and the bottom slope tangent537

vector deviate by more than ∼30◦ i.e. when the resolved flow is not aligned with the bot-538

tom slope.539

4.2 Model response in the global domain540

As expected, introducing the topographic Rhines scale leads to locally reduced dif-541

fusivities over sloping topography, as shown in Figure 6 (top row). The effect is enhanced542

at high latitudes with a ∼50% reduction over Arctic and Antarctic continental slopes.543

Bringing in the eddy efficiency Eeff leads to additional and more severe diffusivity re-544

duction globally, also away from topographic features (bottom row). This is in agree-545

ment with other recent studies that found the scaling by mean-flow dependent suppres-546
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sion to have the largest impact on diffusivity at global scale (Stanley et al., 2020; Zhang547

& Wolfe, 2022; Holmes et al., 2022). Note that in the tropics, the diffusivity is limited548

by the grid resolution function (Hallberg, 2013), i.e. the diffusivity is reduced when the549

grid size is smaller than the local deformation radius. Therefore, the large relative re-550

duction in tropical diffusivity is small in absolute terms and less important there as trans-551

port is dominated by the resolved flow. Finally, we note that a comparison between the552

top and the bottom rows in Figure 6 shows that in multiple continental slope regions,553

especially in the Arctic and around Antarctica, the eddy efficiency simply enhances the554

response seen with the topographic Rhine scale but the pattern stays the same. Indeed,555

the diffusivity reduction due to introducing the topographic Rhines scale and due to eddy556

efficiency are close to linearly additive (not shown).557

As the impact of eddy efficiency on diffusivity is more broad, its impact on flow speed,558

temperature, and salinity is also more widespread than the impact of the topographic559

Rhines scale alone. Table 3 collects bias reductions (relative to the control case) across560

5 different experiments while Figures 7–9 show the spatial patterns for subsurface (100–561

200 m) current speed and temperature, as well as zonal-mean temperature and overturn-562

ing anomalies for the two ’topo’ experiments that are in focus here. We show results for563

the subsurface response since the surface response in these forced simulations is strongly564

forced by the non-responsive atmosphere. Both the topographic Rhines scale alone and565

its combination with eddy efficiency increase the mean kinetic energy of the resolved flow566

globally (at 100–200 m depth, by 2.7% and 10.5%, respectively). This increase is espe-567

cially noticable over sloping bathymetry where the two impacts contribute approximately568

equally to the overall increase (100–200 m depth where βt > 5E−10 m−1s−1, by 9.1%569

and 20.8%, respectively). The two modifications also warm the ocean below the global570

thermocline and cool the surface, reducing the overall temperature bias at depth. But571

they increase the temperature bias at the thermocline (Table 3; Fig. 9a,c). Overall, the572

mean overturning response in the ’topo’ runs is characterized by a positive (cyclonic) anomaly573

which implies that the Atlantic overturning cell and the Deacon cell in the Southern Ocean574

strengthen, whereas the Antarctic Bottom Water cell and the shallow surface overturn-575

ing cells within the subtropical and subpolar gyres weaken. These changes generally re-576

duce biases. The simulated strength of the Atlantic overturning at 26◦N is 15.5 Sv in577

the the control simulation, 17 Sv when topographic Rhines scale is considered, and 18578

Sv with the addition of eddy efficiency, whereas the observational estimate from the RAPID579

array (∼26◦N) is 17±3.3 Sv (Frajka-Williams et al., 2019). The Antarctic bottom wa-580

ter cell at 32◦S weakens from 26.0 Sv in the control simulation to 23.5 Sv with topographic581

Rhines scale and 20.3 Sv with addition of eddy efficiency, whereas inverse modelling sug-582

gest 20.9±6.7 Sv (Lumpkin & Speer, 2007). The Deacon cell strengthens from 13.2 Sv583

in the control simulations to 15.2 Sv with the topographic Rhines scale and 18.4 Sv when584

eddy efficiency is considered, whereas previous modelling estimates (Döös et al., 2008)585

and observational estimates (Speer et al., 2000) suggest a strength of 20 Sv and 20-25586

Sv, respectively. The vertically-integrated mass and heat transports, plotted in Figure587

10, show that overall the overturning response leads to increasing heat transport towards588

the northern hemisphere. The northern hemisphere subtropical peak in northward heat589

transport in the Atlantic basin (globally) is 0.83 PW (1.07 PW) in the control simula-590

tion, 0.91 PW (1.15 PW) when topographic Rhines scale is considered, and 1.00 PW (1.26591

PW) with the addition of eddy efficiency, whereas Trenberth et al. (2019) estimate ap-592

proximately 1.1 PW (1.6 PW).593

Some more specific impacts of the topographic Rhines scale and eddy efficiency are594

a poleward shift and strengthening of the boundary and slope currents, with Eeff gen-595

erally speeding up the boundary currents at locations where observations show the core596

of the currents (Fig. 7, observed currents in black). Changes in the net volume trans-597

ports in most key passages remain small (Table 4), but the results show a strengthen-598

ing of the ACC (Drake Passage transport; increased bias), a general enhancement of wa-599

ter exchange between the Arctic and mid-latitudes (opposing influence on the bias in dif-600
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ferent straits), and strengthening of the Gulf Stream (Florida–Bahamas strait transport,601

reduced bias). The spinup of the ACC is a direct consequence of reduced diffusivities,602

allowing for stronger thermal wind currents. In the northern North Atlantic, the cur-603

rent speed response is directly reflected in the temperature response as the Atlantic Wa-604

ter warms up along its path from the Nordic Seas to the Arctic (Fig. 8, reduced bias).605

Despite the speed-up of the Gulf Stream off the North American coast, its observed turn-606

ing around Grand Banks off Newfoundland is not reproduced. Due to this deficiency, the607

cold bias off Newfoundland strengthens (Fig. 8). This cold bias is a long standing issue608

in coarse resolution ocean models (Tsujino et al., 2020) and reducing the diffusivity along609

the current path or along the shelf break clearly does not mitigate the bias. We spec-610

ulate that, similar to the southern retrograde slope in the channel configuration and re-611

cent results on the Gulf Stream reported by Uchida et al. (2022), the eddy momentum612

flux convergence that is not included in the parameterization plays a crucial role in de-613

termining the current path.614

Figure 10 summarizes the zonally-integrated impacts, breaking both volume and615

heat transport into resolved and parameterized eddy components. It illustrates how the616

reduced eddy mass transport across the ACC (panels a–b) also leads to less poleward617

heat transport (panels c–e) and therefore a cooling of the Southern Ocean surface, but618

also warming over the continental slopes (Fig. 8). Both these effects reduce the bias in619

the model. Note that the heat transport response is dominated by eddy-driven advec-620

tion with a smaller contribution due to the eddy diffusion (panels d–e). In contrast to621

the Southern Ocean, in the northern mid-latitudes the overall northward mass and heat622

transport increase as the mean overturning spins up (Fig. 10 panels a and c; Fig. 9 right623

panels) and the eddy contributions actually weaken (Fig. 10, panels b, d–e).624

We note that since both the eddy efficiency and the topographic Rhines scale act625

to reduce the diffusivity, there is a limit to the effectiveness of these parameterizations626

because other processes and, specifically, the resolved flow start to dominate the model627

solution as the diffusivity weakens. For example, the reduction of globally integrated tem-628

perature and salinity biases seem to saturate as the topographic Rhines scale is tuned629

down and the eddy efficiency scaling is included (Table 3). This highlights the need to630

test parameterizations in realistic global settings and cautions against drawing conclu-631

sions of the effectiveness and utility of a parameterization based on assessing the diffu-632

sivity magnitude alone.633

5 Discussion634

Our study has focused on a relatively small range of parameterization choices, es-635

sentially i) re-examining the topographic Rhines scale as a relevant mixing length and636

ii) checking the importance of an additional suppression factor which we have called the637

eddy efficiency Eeff . The quite similar idealized studies by Wang and Stewart (2020)638

and Wei et al. (2022) did a more comprehensive sweep over possible parameterization639

choices but did not analyse prograde and retrograde bottom slopes under one and the640

same framework, which has been the intention here. Also, to the best of our knowledge,641

the current OMIP simulations constitute the first assessment of the impacts of a topographically-642

aware GM parameterization in realistic global ocean models. As such, this work should643

be taken as a pragmatic investigation into what can be achieved with simple parame-644

terization approaches applied to existing models that do not contain a prognostic eddy645

energy equation (which in itself requires parameterization choices). As with all param-646

eterizations, the options examined here are far from perfect, and below we discuss some647

shortcomings and unresolved questions.648
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5.1 The relevance of the topographic Rhines scale649

Earlier idealized model studies have given conflicting evidence for the relevance of650

the topographic Rhines scale. Jansen et al. (2019) reported that a using a generalized651

Rhines scale which accounts for both planetary and topographic beta in their eddy pa-652

rameterization of flows in an idealized ACC-like domain improved their model skill. But653

the study, whose primary focus was on parameterizing an eddy energy budget, did not654

examine the length scale issue at any depth. More in line with our work here, the ide-655

alized channel studies of Wang and Stewart (2020) and Wei et al. (2022) found the to-656

pographic Rhines scale to be a useful choice over retrograde slopes—but not over pro-657

grade slopes. This conclusion was drawn, however, after an empirical slope-dependent658

prefactor was applied in the retrograde case but not in the prograde case. Both stud-659

ies also constructed diffusivities from diagnosed depth-averaged EKE. In other words,660

they set the eddy velocity scale to be V =
√
EKE and then defined LRh =

√
V/βt,661

i.e. using the actual definition of the topographic Rhines scale. Our Figure 2, however,662

shows an EKE peak over the prograde slope which, if using their definition would clearly663

overestimate diffusivities over this slope. Here we find, somewhat surprisingly, that a full664

parameterization, using the Eady growth rate and the topographic beta parameter, pro-665

duces a suppression over both prograde and retrograde slopes which nearly matches the666

’observations’ diagnosed from our high-resolution channel model.667

We do not have a good understanding of this apparent paradox. But one possible668

problem with constructing a topographic Rhines scale from depth-averaged EKE is the669

fact that in a baroclinic system it is the bottom eddy velocity, rather than the depth-670

average, which should enter into the formulation. No considerations of the vertical struc-671

ture of the eddy velocity was made here, but we suggest that future work on the topic672

investigates the skill in an equivalent barotropic formulation of the eddy velocity.673

Moreover, the results shown in Figure 6 suggest that much of the discrepancy be-674

tween the pure scaling-based diffusivity and the actual diffusivity is contained in the sup-675

pression factor which ours and other studies have pointed to. Essentially, the imperfect676

phase relationship between eddy velocity and buoyancy perturbations reduces the effi-677

ciency of eddy transfer by up to two orders of magnitude over continental slopes, pos-678

sibly with larger suppression over prograde conditions. Any skilfull parameterization clearly679

needs to try to account for this effect.680

5.2 The interpretation of Eeff681

Our parameterized expression (22), which is able to qualitatively reproduce such682

suppression, looks superficially similar to the final form of the mean-flow suppression ex-683

pression of Ferrari and Nikurashin (2010, their equation 17). This first seems odd, given684

that their findings have traditionally been applied to tracer (Redi) diffusion and, as men-685

tioned in the introduction, appears to quite successfully explain a reduction in passive686

tracer diffusion over a retrograde continental slope in the idealized simulations of Wei687

and Wang (2021). But eddy buoyancy transport at any one depth in the ocean is ad-688

vective rather than diffusive, so it’s not at all obvious that the kinematic arguments of689

Ferrari and Nikurashin (2010) should apply to buoyancy diffusivities.690

Indeed, Abernathey et al. (2013) use high-resolution model simulations to show that691

the vertical structure of buoyancy diffusivities differs from that other tracer diffusivities692

(including PV diffusivities). And yet, as their equation 24 suggests, the depth-averaged693

value of the buoyancy diffusivity should be similar to that of PV and passive tracer dif-694

fusivities, at least in the case where the planetary vorticity gradient can be neglected.695

This makes some intuitive sense since one end result of a depth-integral of an eddy-induced696

overturning circulation, driven by baroclinic instability and with zero top-to-bottom vol-697

ume transport, is a ’diffusive’ buoyancy transport down the lateral buoyancy gradient698

(the other end result is an up-gradient vertical buoyancy transport).699
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But there are still difficulties with equating our Eeff with the mean-flow suppres-700

sion formulation of Ferrari and Nikurashin (2010). Their suppression effect builds fun-701

damentally on the propagation speed of eddies relative to that of the mean flow. It is702

based on a set of key key assumptions, including the dominance of one wavenumber and703

a relationship between eddy decorrelation timescale, wavenumber and EKE. And in reach-704

ing their final equation 17, which takes on a form similar to our (23), they make the fur-705

ther assumption that the eddy speed is proportional to the mean flow speed. Since Ferrari706

and Nikurashin (2010) originally studied suppression at the sea surface, using satellite707

altimeter observations to pin down both mean and eddy velocity scales, this amounted708

to having to tune one proportionality constant. How their final expression 17 can be ap-709

plied through out the entire water column, as we’re aiming for here, is less obvious. So710

we leave a further investigation into this particular relationship for future work.711

It should also be mentioned that our Eeff can be related to the slope-dependent
prefactors of some of the earlier channel studies as well as to a controlling parameter in
the topographic Eady problem of Blumsack and Gierasch (1972). This connection be-
comes apparent if we evaluate the 2D version of (22). We begin by setting Ubc = Utw,
where Utw is the top-to-bottom thermal wind shear (a 2D quantity). Then we first con-
sider the slope region where the topographic Rhines scale will be the relevant length scale.
So, here, V = σ2

E/βT , where σE is now the depth-averaged (2D) Eady growth rate. Not-
ing that in the Eady model, where both N2 and ∂Ug/∂z are constant, σE = 0.3·Utw/LR.
This allows us to rewrite (22) as

Eeff = a1
1

1 + a3 (βTL2
R/Utw)

2

= a1
1

1 + a3δ2
,

(24)

where a3 is a modified tuning factor. Here δ = βTL
2
R/Utw is the slope parameter of Blumsack712

and Gierasch (1972) which measures the ratio between topographic and isopycnal slopes.713

This expression is interesting not only because it brings in the controlling param-714

eter of the modified Eady problem but also for its similarity to the slope-dependent pref-715

actor used by Wang and Stewart (2020) over retrograde slopes in the parameter regime716

where the bottom slope is not much larger than the isopycnal slope. Their prefactor FMLT717

(from their table 3) has the topographic delta parameter to the power of one in the de-718

nominator, in contrast to our squared power. But we suggest that the impact of sam-719

pling errors in the empirical fitting be studied in future studies before the correspondence720

is rejected. We also note that the similar studies of prograde fronts by Brink (2016) and721

Wei et al. (2022) found best fits using similar expressions but using topographic Burger722

number Bu in place of the delta parameter, where the two are related via Bu = (σE/f) δ.723

The latter study concluded that scalings using δ instead of Bu where not successful over724

prograde slopes. But, again, a comparison with our results are not straightforward since725

their diffusivities were constructed using diagnosed EKE while ours were fully param-726

eterized. The relationship between δ-based and Bu-based formulations is an obvious topic727

for future work.728

Note, finally, that over the flat regions where the deformation radius will act as the729

relevant length scale, the 2D version of our efficiency factor becomes constant, in agree-730

ment with the behavior seen in Figure 3. In fact, the 2D version of Eeff was able to qual-731

itatively reproduce the observed eddy efficiency behaviour in the idealized channel sim-732

ulations, with some changes required for the tuning constants (not shown). We nonethe-733

less chose to use the 3D version in the realistic OMIP simulations in anticipation of a734

more complex hydrography and flow field where the various assumptions of the Eady model735

can be expected to hold to an even lesser degree than in the channel model. Interior thick-736

ness PV gradients, for example, are expected to be small in systems that are only forced737

by Ekman pumping, as our channel model is (see e.g. Meneghello et al., 2021; Manucharyan738
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& Stewart, 2022). In a real ocean, where e.g. thermohaline forcing can produce interior739

PV gradients, the suppression of eddy efficiency will inevitably be governed by additional740

non-dimennsional parameters beyond Blumsack and Gierasch (1972) δ (or, alternatively,741

the topographic Burger number). Such 3D effects, caused by thermohaline forcing in ad-742

dition to wind stress, may also be the underlying reason for why Eeff had a much big-743

ger impact in the OMIP simulations than it did in the channel.744

6 Summary and conclusions745

Efforts to include topographic effects into mesoscale eddy parameterizations are746

warranted, especially at high latitudes where observations show that hydrographic fronts747

are typically locked to topography. The very existence of such fronts along continental748

slopes and submarine ridges imply not merely topographic steering of large-scale cur-749

rents but also suppression of mesoscale stirring across topography. Yet, despite all the750

observational evidence, as well as solid theoretical arguments for e.g. reduced growth rates751

and length scales of baroclinic instability over sloping topography, most eddy parame-752

terizations still fail to account for any bathymetric influence.753

Here we have re-examined the relevance of the topographic Rhines scale in the mix-754

ing length approach to parameterizing the Gent-McWilliams diffusivity which is used for755

eddy advection. Constructing diffusivities using the Eady growth rate and a parameter-756

ized version of the topographic Rhines scale reproduces an observed order-of-magnitude757

reduction in diffusivity over continental slopes in idealized channel simulations. The sim-758

ulations and analysis cover both prograde and retrograde continental slopes, represent-759

ing mean flows in the same and opposite direction to topographic waves, respectively.760

Although differing in detail, both the observed and parameterized stirring suppression761

are of similar order of magnitude on both sides. The skill of the parameterization is en-762

hanced further, at least over the prograde slope, when the diffusivity is multiplied by an763

eddy efficiency factor Eeff that is sensitive to the strength of the mean flow vertical shear764

relative to the parameterized eddy velocity scale. Finally, we find that selecting a smooth765

minimum of the topographic Rhines scale and the internal deformation radius for length766

scale gives good skill over the entire idealized channel domain.767

The parameterization is then tested in a realistic global ocean simulation. Com-768

parison with a simulation where topographic effects on the GM diffusivity are not in-769

cluded suggests that the parameterized topographic stirring suppression enhances the770

sharpness of hydrographic fronts and, as such, strengthens the thermal wind shear in bound-771

ary currents. The improvement is particularly noticeable at high latitudes, but we also772

observe large impacts throughout the world oceans. The globally-integrated tempera-773

ture and salinity bias reductions range from O(1%)-O(10%), with largest reductions seen774

in Southern Ocean temperatures and in Atlantic Water temperatures in the Arctic. How-775

ever, existing low-latitude thermocline biases tend to increase. This is not uncommon776

in a complex model as global bias reduction is very much a tuning exercise involving a777

range of free parameters associated with different parameterizations (e.g. eddy transport,778

vertical mixing and air-sea-ice fluxes). Our parameterization also has free parameters779

and, as is common, we found that the different model configurations might need differ-780

ent values for these. But we did not attempt a rigorous tuning, especially not for the dy-781

namically complex OMIP simulations. Our focus at this stage has not been on a well-782

tuned realistic global simulation, but rather on illustrating possible impacts of a topography-783

aware eddy parameterization.784

The suggested parameterization is clearly incomplete. The large difference in im-785

portance of the efficiency factor Eeff between the channel simulations and the realis-786

tic OMIP simulations is one indication of this. A second one is the fact that we had to787

use an ad hoc limiter when applying this in the OMIP simulations. One key problem is788

likely that we have been ignoring any vertical structure in eddy velocities and, ultimately,789
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diffusivities. Fundamentally, the kinematic interaction with the bottom involves eddy790

bottom velocities, and a number of observations as well as theoretical arguments have791

indicated that these are often significantly smaller than surface or even depth-averaged792

eddy velocities (see e.g. Killworth, 1992; Wunsch, 1997; de La Lama et al., 2016; Lacasce,793

2017). The topographic impact, under such considerations, would probably be smaller794

than if estimated with depth-averaged quantities. Future work clearly needs to be put795

on such vertical structure, for example by taking an equivalent barotropic structure as796

a starting point (Killworth, 1992). We also observe that in our coarse-resolution chan-797

nel simulations the flow remains too baroclinic, similar to the results by Kjellsson and798

Zanna (2017); Yankovsky et al. (2022). Although addition of vertical structure to the799

buoyancy diffusivity might mitigate the issue, feeding the mean flow with vertically dis-800

tributed eddy energy might be needed to resolve it (Yankovsky et al., 2022).801

A related issue which we have entirely neglected in this study is the impact of bot-802

tom roughness or corrugations on fluxes—and how such impact may be asymmetric with803

respect to the flow direction. As demonstrated by Wang and Stewart (2020), bottom rough-804

ness along a retrograde topographic slope can set up additional eddy buoyancy trans-805

port and, thus, form stresses due to arrested topographic waves. The dynamics govern-806

ing such fluxes are likely distinct from those captured by our parameterizations here for807

smooth topography. The relevant eddy length scale, for example, is probably not the the808

same as for transient eddies, as indicated in the study by Khani et al. (2019) of transient809

vs. standing contributions to eddy form stress in an idealized Southern Ocean domain.810

The application of standing Rossby wave theory (e.g. Abernathey & Cessi, 2014; A. L. Stew-811

art et al., 2023) appears to give promising results on the planetary beta plane with a flat812

but rough bottom. A natural next step may therefore be to examine such ideas to the813

’topographic beta’ problem, using e.g. the idealized two-slope model used here.814

Yet another issue ignored here is the role of lateral eddy momentum fluxes over con-815

tinental slopes. As shown in Figure 1 and also highlighted in earlier studies (e.g. Wang816

& Stewart, 2018; Manucharyan & Isachsen, 2019), such fluxes bring wind momentum off817

the slopes to relatively flat regions where baroclinic instability kicks in to transfer the818

momentum to the ground below. The lateral momentum flux may be up-gradient in places819

and form eddy-driven jets, as seen offshore of the retrograde slope in our idealized sim-820

ulations (Fig. 1). And, as for eddy form stress, lateral momentum fluxes also appear to821

be impacted by corrugated bottoms, being associated with the formation of prograde jets822

near the bottom (Wang & Stewart, 2020). This last effect is again probably related to823

the formation of arrested topographic waves, as discussed by (e.g. Haidvogel & Brink,824

1986), as well as being linked to down-gradient PV diffusion in the finite-amplitude limit825

Bretherton and Haidvogel (1976); Vallis and Maltrud (1993).826

Finally, it’s worth remembering that eddy diffusion, even of buoyancy, may be anisotropic.827

So what really needs to be parameterized is a diffusion tensor rather than a single scalar.828

Bachman et al. (2020) discussed such anisotropy of the diffusion tensor and showed that829

at global scale the direction of the major axis of the tensor is well correlated with the830

mean flow direction and the minor axis is well correlated with the gradient of Ertel PV.831

In addition, Nummelin et al. (2021, Appendix A) suggested that in terms of Redi mix-832

ing, the Ferrari and Nikurashin (2010) type of mean flow suppression indeed suppresses833

the across-flow mixing, but that the inverse of the same factor enhances mixing in the834

along-flow direction. It remains unclear whether our eddy efficiency factor and the other835

empirical scaling factors (e.g. Wang & Stewart, 2020; Wei et al., 2022) act similarly (i.e.836

relate to tensor anisotropy) or if they indeed suppress the overall tensor magnitude. In837

other words, it remains a research question whether the mean flow and topography merely838

direct the eddy transport or if they impact the overall magnitude of the eddy transport.839

Nevertheless, if the tensor major axis is correlated with the mean flow (as suggested by840

Bachman et al., 2020) —and if that mean flow transport dominates over eddy transport—841

then the focus on the minor axis is likely justified.842
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Table 1. BLOM model constants for the channel simulations

Name Symbol Value

Wind stress τx 0.05 N m−2

Horiz. grid size ∆x, ∆y 2 km
Baroclinic timestep ∆t 120 s
Domain x-size Lx 416 km
Domain y-size Ly 1024 km
Gravitational acceleration g 9.806 m s−2

Coriolis parameter f0 1× 10−4 s−1

Slope mid-point distance from domain edge YS 150 km
Shelf depth HShelf 250 m
Slope height HSlope 2000 m

Table 2. Channel model experiments. LRossby is the mean deformation radius in the central

basin (where bottom depth is larger than 2250 m).

Name LRossby Slope Width

Exp 1 34.1 ±1.3 km 75 km
Exp 2 34.1 ±1.1 km 100 km
Exp 3 34.4 ±1.0 km 125 km
Exp 4 30.6 ±1.3 km 75 km
Exp 5 30.6 ±1.2 km 100 km
Exp 6 30.4 ±1.0 km 125 km
Exp 8 24.9 ±1.2 km 75 km
Exp 9 25.9 ±1.0 km 100 km
Exp 10 24.9 ±1.0 km 125 km

So important questions remain. But despite its many shortcomings, the relatively843

simple parameterization investigated here at least reduces an excessive washing out of844

hydrographic fronts over submarine ridges and continental slopes in ocean climate models—845

a known problem with eddy parameterizations that are insensitive of bathymetry. One846

of several important consequences of such adjustment is likely a more accurate repre-847

sentation of oceanic heat transport across Antarctic and Greenland continental slopes848

and onward to the great ice sheets whose melt rates depend intimately on such trans-849

port. For this and other reasons, further scrutiny of all of the above unresolved issues850

and their impacts in both regional and global realistic simulations are much needed.851

7 Open Research852

The model configuration is available at https://github.com/NorESMhub/BLOM853

and the specific namelist for running the experiments used in this study can be obtained854

from the first author. The key model output and scripts to reproduce the data are made855

available through https://archive.norstore.no/ and will be made available through https://github.com/AleksiNummelin856

upon publication.857
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Table 3. CORE-II hydrography bias (root mean square error) reduction compared to the bias

of the control case. The observational data sets are the WOA 2018 climatologies for temperature

(Locarnini et al., 2018) and salinity (Zweng et al., 2018).

Name zonal mean T zonal mean S T100−200m T200−500m T500−1000m

LT 6% 4% -2% 1% 3%
0.5 · LT 12% 9% -4% 3% 7%
Eeff 25% 21% -11% 2% 12%
LT and Eeff 28% 24% -13% 2% 16%
0.5 · LT and Eeff 28% 26% -16% 2% 18%

Table 4. Observed and simulated current transport in selected straits. The various pertur-

bation experiments show percentage changes relative to the control case. The references for

the observational values are as follows: Arctic Ocean gateway transports come from de Boer et

al. (2018) with the original citations being Ingvaldsen et al. (2004) for Barents Sea Opening,

Beszczynska-Möller et al. (2015) for Fram Strait, Curry et al. (2014) for Davis Strait (CAA), and

Woodgate (2018); Woodgate et al. (2015) for Bering Strait; ACC transport come from Xu et al.

(2020), for pure observational estimates see Koenig et al. (2014) and Donohue et al. (2016); and

Florida–Bahamas Strait transport come from Larsen and Sanford (1985)

Name obs control LT 0.5 · LT Eeff LT and Eeff 0.5 · LT and Eeff

Barents Opening 2.1 Sv 2.4 Sv 0% 1% 4% 6% 7%
Bering Strait 1.0 Sv 0.7 Sv 2% 3% 5% 7% 8%
Canadian Arctic -1.7 Sv -1.6 Sv 4% 8% 14% 15% 16%
Fram Strait -2.2 Sv -1.3 Sv -3% -6% -9% -6% -6%
Drake Passage (ACC) 157.3 Sv 152 Sv 0% 1% 4% 5% 7%
Florida–Bahamas Strait 32 Sv 13.2 Sv 1% 3% 4% 5% 6%
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Figure 1. Cross section of zonally and temporally-averaged (a) horizontal eddy momentum

flux (shading), E-P flux (gray arrows), mean velocity (dashed black contours), and mean density

(dotted gray contours), (b) vertically-averaged along-channel velocity and (c) vertically-averaged

meridional buoyancy (temperature) diffusivity. In panels b and c we indicate stratification by

color (in descending order: blue, orange, green) and slope width (steepness) by line-style (in

descending order: dashed-dotted, dashed, solid). The black line is experiment 3 (Table 2) and

corresponds to the case shown in panel a. Gray shading shows the location of the slope regions in

the different simulations (where 300m < H < 2250m). For some of the simulations the diffusivity

lines are broken because of negative diffusivities that are not shown on the log scale.
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Figure 2. Diagnosed length scales (panels on the left) and velocity scales (panels on the right)

for all experiments. All measures have been normalized. The top row (panels a and b) are nor-

malized by the basin mean values. Length scales in panel c and panel e are normalized by the

deformation radius and by the mimimum of the deformation radius and topographic Rhines scale,

respectively. In panels d and f we normalize by the parameterized velocity scale, using length

scales from c and e, respectively. Colors and line styles as in Fig. 1. Gray shadings indicate the

slope regions (similar to Fig. 1) and vertical lines indicate the location of maxima in depth-

averaged velocity in each experiment.
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Figure 3. Measures of anisotropy and phase angle relationships: (a) eddy velocity anisotropy

(A), (b) cosine of the phase angle between T ′ and v′ and (c) the product of (a) and (b), as

well as the parameterized eddy efficiency factors Eeff (brown when using deformation radius,

pink when using the topographic Rhines scale). For the two Eeff estimates we use a2 = 10

anda1 = 0.35 and a1 = 0.32, respectively, to match the mid-basin values of A cos(θ). Colors

and line styles for the diagnosed cases as in Fig. 1, and gray shadings indicate the slope regions

(similar to Fig. 1)
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Figure 4. Partly-parameterized (a–c) and fully-parameterized (d–e) across-slope buoyancy

diffusivities. The left panels show across-basin profiles for experiment 3 (Table 2) whereas the

right panels summarize the statistics of linear fits between the diagnosed and parameterized dif-

fusivities across all experiments (b–c, e–f; statistics are from a linear regression using 200 points

across all cases that is repeated 5000 times). Boxes and whiskers come in pairs, with the left and

right ones corresponding to the southern and northern slope, respectively. Linear regressions are

done over the slope regions only (gray shading; similar to Fig. 1). Panel a shows diffusivities nor-

malized by their basin mean value, whereas panel d shows absolute values. In panel d, a1 = 0.25

for estimate VI, for VII–VIII a1 = 0.02, and in VIII a2 = 10.
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Figure 5. Buoyancy diffusivity (top panels) and top-to-bottom thermal wind shear (lower

panels) in the coarse-resolution channel simulation compared to the high-resolution simulation

(thick black line). The different columns are separated by stratification such that the initial con-

ditions are the same as for Exp 3, 6 and 9 in the left, middle and right columns, respectively.

Figure 6. Anomalies from the control case in parameterized (depth-averaged) GM diffusivity

due to implementation of (top row) the topographic Rhines scale and (bottom row) eddy effi-

ciency in addition to the topograhic Rhines scale. Red contours show the 1000 m2 s−1 isoline

for diffusivity in the control case and light gray contours show areas in the tropics where the

grid size is smaller than the internal deformation radius and therefore the resolution function

(Hallberg, 2013) reducing the GM coefficient is in effect.
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Figure 7. Flow speed anomalies from the control case at 100–200 m depth due to implemen-

tation of: (top row) the topographic Rhines scale and (bottom row) eddy efficiency in addition to

the topograhic Rhines scale. Black contours show the 0.25 m s−1 isolines for observational esti-

mate of the quasi-geostrophic current speed (Buongiorno Nardelli, 2020) in the same 100–200 m

depth interval. Gray dots mark grid cells where the mean difference from the control case is not

significant at the 5% level (student’s t-test).
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Figure 8. Temperature anomalies from the control case in resolved temperature field between

100–200 m depth due to implementation of: (top row) the topographic Rhines scale and (bottom

row) eddy efficiency in addition to the topograhic Rhines scale. Black contours show the ±1◦C

(solid/dashed) isoline for the control case bias relative to the WOA observations. Therefore,

whenever solid (dashed) contours surrounds blue (red) areas the bias is reduced. Gray dots mark

grid cells where the mean difference from the control case is not significant at the 5% level (stu-

dent’s t-test).
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Figure 9. Zonal-mean temperature anomalies (left panels) and global meridional overturning

stream function anomalies (right panels), relative to the control simulation, due to implementa-

tion of: (top row) the topographic Rhines scale and (bottom row) eddy efficiency in addition to

the topograhic Rhines scale. For temperature, black contours show the control case bias relative

to the WOA observations in 0.25◦C intervals (dashed for negative, solid for positive, the thick

solid curve shows the zero contour). Therefore, whenever solid (dashed) contours surround blue

(red) areas the bias to the observations is reduced. For MOC the contours show the control case

MOC at 5 Sv intervals with the thick solid curve indicating the 0 Sv contour. Therefore solid

(dashed) contours surrounding red (blue) indicates intensifying overturning.
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Figure 10. Resolved and eddy contributions to the global meridional overturning circulation

(MOC, panels a and b) and to the global northward ocean heat transport (OHT, panels c–e).

For the MOC we show the maximum (solid) and minimum (dashed) below 500 m to avoid the

shallow surface overturning cells. For the OHT we show both advective and diffusive eddy contri-

butions (panels d and e, respectively).
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