
P
os
te
d
on

13
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
68
39
47
38
.8
01
08
42
9/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

UNDERSTANDING THE ERRORS IN CHAMP

ACCELEROMETER-DERIVED NEUTRAL MASS DENSITY

DATA

Timothy Kodikara1, Isabel Fernandez-Gomez1, Ehsan Forootan2, W Kent Tobiska3, and
Claudia Borries1

1German Aerospace Center
2Department of Planning, Geodesy and Earth Observation Group, Aalborg University
3Space Environment Technologies

May 13, 2023

Abstract

Accelerometer-derived neutral mass density (NMD) is an important quantity describing the variability of the upper atmosphere.

NMD is widely used to calibrate and validate some models used for satellite orbit determination and prediction. Quantifying

the true NMD is nearly impossible due to, among others, the lack of simultaneous in-situ measurements for cross-validation and

the incomplete characterization of the uncertainties of these NMD products. This study investigates the error distribution of

three different accelerometer-derived NMD products from the CHAMP satellite mission during time periods of both high and

low solar activity. Using a multimodel ensemble comprised of both physical and empirical models, the study characterizes the

error variance of the NMD. The strategies employed here may be useful and applicable to other space missions spanning over

longer time periods. The results show considerable differences among the three CHAMP data sets and also reveal a pronounced

latitude dependence in their error distributions. The median error standard deviation of CHAMP NMD is smaller during time

periods of high solar activity (11.0%) than during periods of low solar activity (13.1%). The results indicate that the method of

processing the accelerometer data has a significant impact on the uncertainty estimates of the different CHAMP NMD products.
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Key Points
• Examines errors in CHAMP accelerometer-derived neutral mass density products
• Strong latitude dependence in estimated errors for both data and models
• Assumptions in neutral mass density derivation strongly influence error estimates

ABSTRACT

Accelerometer-derived neutral mass density (NMD) is an important quantity describing the variability
of the upper atmosphere. NMD is widely used to calibrate and validate some models used for
satellite orbit determination and prediction. Quantifying the true NMD is nearly impossible due to,
among others, the lack of simultaneous in-situ measurements for cross-validation and the incomplete
characterization of the uncertainties of these NMD products. This study investigates the error
distribution of three different accelerometer-derived NMD products from the CHAMP satellite
mission during time periods of both high and low solar activity. Using a multimodel ensemble
comprised of both physical and empirical models, the study characterizes the error variance of the
NMD. The strategies employed here may be useful and applicable to other space missions spanning
over longer time periods. The results show considerable differences among the three CHAMP data
sets and also reveal a pronounced latitude dependence in their error distributions. The median error
standard deviation of CHAMP NMD is smaller during time periods of high solar activity (11.0%)
than during periods of low solar activity (13.1%). The results indicate that the method of processing
the accelerometer data has a significant impact on the uncertainty estimates of the different CHAMP
NMD products.

Plain Language Summary
The accelerometer on board the CHAMP satellite measured the nongravitational acceleration. Using these measurements,
several CHAMP in-situ neutral mass density (NMD) products have been published. Such NMD products are useful
for furthering our understanding of thermospheric dynamics. NMD is one of the major sources of uncertainty in the
tracking and prediction of low-Earth orbit satellites—an essential undertaking in the management and sustainment of
space assets. Researchers and satellite operators rely on NMD observations to calibrate and validate the models they
use to estimate and forecast NMD. Therefore, incorporating the uncertainties of NMD data during model development
and calibration is critical to improve the reliability of forecasts and to accurately assess the risk of satellite collisions. In
this study, we use several statistical techniques and models to gain new insights into the CHAMP NMD data. Using
a multimodel ensemble, we characterize the error variance of the NMD. Our results show a pronounced latitude
dependence for the estimated errors. The results suggest that the method of processing the accelerometer data has a
significant impact on the uncertainty estimates of different NMD products. We also show that these estimated errors are
generally small during periods of high solar activity.



1 Introduction
Near-Earth space is home to many satellites that are crit-
ical to sustaining our modern lifestyles and economies—
relying on space-based technologies for services such as
communications, navigation, agriculture, security, banking,
and healthcare. More than half of these operational satel-
lites are in low Earth orbit region (LEO; 160–2000 km),
which is also the region most populated with space debris
(European Space Agency, 2021, and references therein).
And so the risk of satellite collisions is higher in LEO. Stud-
ies (e.g., Emmert et al., 2017; Hejduk and Snow, 2018;
Vallado and Finkleman, 2014) show that neutral mass den-
sity is one of the most significant sources of uncertainty
in LEO orbit tracking and prediction—an essential enter-
prise in managing and sustaining space assets. Researchers
and satellite operators rely on neutral mass density obser-
vations to validate the models they use to estimate and
forecast neutral mass density.

Accelerometer-derived neutral mass density from some
LEO satellites, among others, is one of the most widely
used sources to calibrate and validate upper atmosphere
models (e.g., Kodikara et al., 2018; Mehta et al., 2017; Mo-
rozov et al., 2013; Shim et al., 2012; Sutton, 2018). Thus,
incorporating the uncertainties associated with the data
during model development and calibration is critical to
improve the reliability of the forecasts and to accurately as-
sess the risk of collision with operational satellites. Bussy-
Virat et al. (2018) and Hejduk and Snow (2018) point out
that most of the upper atmosphere models do not have
the capability to provide the uncertainty of the estimated
neutral mass density to the user. This is partly due to an
incomplete understanding of the uncertainties associated
with the input data. For example, Bowman et al. (2008)
and Weimer et al. (2016) describe the use of scale factors
to correct for modeling errors caused by observations used
to calibrate the model. Some recent (e.g., March et al.,
2019; Mehta et al., 2017; Tobiska et al., 2021) and ongoing
Jackson et al. (2020) work focuses on the accuracy and
consistency of thermospheric neutral mass density data
sets.

The accelerometer-derived neutral mass density from the
CHAMP (CHAllenging Minisatellite Payload) mission,
which contributed to significantly advance our understand-
ing of the upper atmosphere through its simultaneous ob-
servations of plasma, neutrals, and the magnetic field Stolle
and Liu (2014), is the focus of this study. The accelerom-
eters measure the nongravitational acceleration on-board,
which provides a direct means of calculating the atmo-
spheric drag acting on a spacecraft under certain assump-
tions Emmert (2015). King-Hele and Scott (1970) describe
that neutral mass density can be derived from orbital decay
information as a function of mean angular motion, alti-
tude change, drag acceleration, and several other known
parameters and estimates specific to the spacecraft. The
expression for the neutral mass density (ρ) imparted atmo-
spheric drag acceleration adrag is as follows:

adrag = −
(CdSarea

Smass

)1
2
ρV2

rel, (1)

where Cd is the atmospheric drag coefficient, Vrel is the
velocity of the satellite relative to the atmosphere, Sarea
is the cross-sectional area of the satellite normal to Vrel,
and Smass is the mass of the satellite. The atmospheric
drag causes the satellite to slow down, as indicated by
the negative sign, and to lose altitude. While the term
CdSarea/Smass, which is also known as the ballistic coeffi-
cient, does not vary much over the lifetime of the satellite,
the dynamic pressure on the satellite ρV2

rel/2 decreases
rapidly with increasing altitude. Although CHAMP’s
STAR (spatial triaxial accelerometer for research) ac-
celerometer has a relatively high resolution (Bruinsma
et al. (2004)), it is difficult to obtain absolute nongravi-
tational acceleration as close as possible. This is due to
the difficulty of replicating the operational environment in
space to calibrate the accelerometer in a laboratory prior
to launch. Bruinsma et al. (2004) summarize the iterative
procedure used to calibrate the CHAMP accelerometer
from measurements taken in orbit.

The uncertainties in accelerometer-derived CHAMP neu-
tral mass densities originate from many sources, such as
the errors in the nongravitational model and the calibration
of the accelerometer (e.g., Bruinsma et al., 2004; Doorn-
bos, 2012; Sutton et al., 2007). Accelerometer calibration
methods, scaling factors, background models, and assump-
tions about the exact source of acceleration and neutral
wind speed contribute to these uncertainties. Quantify-
ing the true neutral mass density of these historical data
sets is nearly impossible due to, among others, the lack
of simultaneous in-situ measurements to cross-validate,
and the incomplete characterization of these uncertainties
that propagate into the derived neutral mass density prod-
uct. The different methods of extracting neutral mass
density from accelerometer measurements cause the dif-
ferences between the data sets (e.g., Mehta et al., 2017;
March et al., 2019), and their uncertainties are not fully
understood.

In this study, we examine three different accelerometer-
derived neutral mass density products from CHAMP:
Mehta et al. (2017) (PM), Sutton (2011) (ES), and Doorn-
bos (2012) (TU). We use several different statistical tech-
niques, physical and empirical models, and the newly re-
leased Tobiska et al. (2021) HASDM (high accuracy satel-
lite drag model) data set to gain new insights into these
CHAMP data products. We present the error estimates of
the neutral mass density products by applying the Grubbs
(1948)’ method to a multimodel ensemble consisting of
both physical and empirical models of the upper atmo-
sphere. Section 2 describes the models used in this study.
Section 3 reviews the above-mentioned strategies in detail.
Section 4 describes the main results of the work. Sec-
tion 5 discusses the results and limitations of the work, and
section 6 summarizes the conclusions of the study.

2 Models
2.1 TIE-GCM

TIE-GCM (thermosphere-ionosphere-electrodynamics
general circulation model) is a three-dimensional, time-
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dependent, physics-based model of the thermosphere
and ionosphere Richmond et al. (1992). The website
<www.hao.ucar.edu/modeling/tgcm> hosts the open-
source TIE-GCM code. See Kodikara (2019) and Qian
et al. (2014) for summaries of recent developments in
the model. In this study, we use TIE-GCM version 2.0
(released on 21 March 2016) with a horizontal resolution
of 2.5°×2.5° in geographic latitude and longitude, and
a vertical resolution of 0.25 scale-height. We specify
the solar irradiance input to the model via an empirical
solar proxy model—the extreme ultraviolet flux model for
aeronomic calculations (EUVAC; Richards et al. (1994);
Solomon and Qian (2005)). This empirical formulation
uses the average of the daily solar flux F10.7 and its
81-day centered mean F 10.7. Here, we use the value
observed by the ground-based solar radio telescope, as
it is more suitable for upper-atmospheric applications
than the F10.7 adjusted for Earth-Sun distance Tapping
(2013). We use the Kp index-based Heelis et al. (1982)
ion convection model, and the Roble and Ridley (1987)
auroral particle precipitation scheme (with modifications
from Emery et al. (2012)) to specify the magnetospheric
forcing that describes the high-latitude mean energy,
energy flux, and electric potential. To account for the
tidal forcing from the lower atmosphere, we use the
Hagan et al. (2001) global scale wave model (GSWM)
to perturb the lower boundary of TIE-GCM. Here, the
GSWM specifies the migrating-diurnal and -semidiurnal
tides, which add perturbations to the zonal mean neutral
temperature and horizontal winds, among others. We also
add perturbations to the advective and diffusive transport
via the eddy-diffusion-coefficient described in Qian et al.
(2009). Herein, a model run configured in this way
refers to a standalone or geophysical indices (GPI)-driven
TIE-GCM.

2.2 Mass Spectrometer Incoherent Scatter Radar
Model: NRLMSIS 2.0

This study uses the publicly available mass spectrometer
incoherent scatter radar model (NRLMSIS 2.0; Emmert
et al., 2021) developed at the United States Naval Research
Laboratory. The model uses an extensive database of obser-
vations from satellites, rockets, and radars since 1961. The
model estimates atmospheric neutral temperature, compo-
sition, and neutral mass density from the ground to the
exosphere. In this study, we use F10.7 on the previous day
and the 81-day centered mean F 10.7, and daily Ap to spec-
ify the model inputs for solar and geomagnetic activity,
respectively.

2.3 HASDM

The HASDM neutral mass density database is available for
scientific use Tobiska et al. (2021). The HASDM neutral
mass density is a correction to the JB2008 model Bowman
et al. (2008) obtained by assimilating data from over 70 cal-
ibration satellites orbiting in the 190–900 km altitude range
Tobiska et al. (2021). The tracking data for the calibration
satellites are not publicly available. Of particular relevance
to this study, CHAMP accelerometer-derived neutral mass

density data from 2001 to 2005 is one of the data sources
used to develop JB2008. JB2008 uses four different solar
indices to represent the solar UV radiation absorbed in
the thermosphere. These include the proxy index F10.7,
and indices based on measurements of 26–34 nm solar
extreme ultraviolet emissions, magnesium-two h and k res-
onance lines, and 0.1–0.8 nm solar x-ray and Lyman-α
emissions (see descriptions of F10, S10, M10, and Y10 in
Bowman et al. (2008)). The model uses the 3-hr ap and
Dst (disturbance storm time) indices to parameterize the
energy deposited in the thermosphere due to geomagnetic
activity. Tobiska et al. (2021) report that the uncertainty
of HASDM is generally less than 5% compared to the
neutral mass densities determined for the calibration satel-
lites. The HASDM data set has a time resolution of 180
minutes, a horizontal resolution of 10°×15° in latitude and
longitude, and a vertical resolution of 25 km.

3 Method
3.1 Estimating the Error Variance of Data

This work applies Grubbs (1948)’ method of using four
measurements of the same physical quantity to estimate
the error variance of the measurement. This section briefly
summarizes the method and its assumptions.

A measurement of a physical quantity consists of its true
value T and the error of the measurement E. Consider four
different instruments A, B, C, and D making the same
measurement, whose recorded values consist of the truth T
and some error E (e.g., A = T + EA; B = T + EB, and
so forth). It follows from Grubbs (1948) that the error vari-
ance of, for example, EA can be estimated independently
of the true value T by working with the variance of the
differences between pairs of instruments. For example, the
variance of the difference between A and B is,

Var(A− B) =
1

n

n∑
i=1

(Ai −Bi)
2 −

〈
A−B

〉2
, (2)

where the first (second) term on the right-hand side is
the mean-square difference (mean bias) between the A
and B measurements, and n is the sample size. And
Var(A− B) ≡ Var(B−A). Equation 22 in Grubbs
(1948) describes this error variance relationship, simplified
as follows:

σ(EA) =
√

Var(EA)

=

{
1

3

(
Var(A− B) + Var(A− C) + Var(A−D)

)

−1

6

(
Var(B− C) + Var(B−D) + Var(C−D)

)} 1
2

. (3)

σ(EA) is the error standard deviation of EA. The variance
terms Var(·) on the right-hand side refers to the sample
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variance (e.g., Var(A− B) is the variance of the difference
between A and B measurements).

The Grubbs (1948)’ method assumes that the true value T
of the physical quantity is statistically independent of the
error E of its measurement. The method also assumes that
E from different instruments are also statistically indepen-
dent of each other—zero error-covariance. In addition to
these assumptions, sample size, significant outliers, and
significant differences between the errors of different in-
struments may limit the accuracy of the method. Sjoberg
et al. (2021) provide a discussion of these limitations and
show results from an application of a variant of this method
(using two and three data sets instead of four) to geophysi-
cal data.

3.2 Evaluation Metrics

We use the mean deviation ∆ρ to summarize the overall
model performance. Here, ∆ρ is expressed as a percentage
of the data-model difference relative to the observed value
as follows:

∆ρ =
1

n

n∑
i=1

(
|Obsi −Modi

Obsi
| · 100

)
, (4)

where n is the sample size, and Obs and Mod are the obser-
vation and model estimates, respectively. In a multimodel
comparison, the model with the lowest ∆ρ has the best
average agreement with the observations. The root-mean-
square error (RMSE) is used to show how well the model
captures the range of neutral mass density values in the

data. The RMSE is

√
1
n

∑n
i=1

(
Obsi −Modi

)2
.

In addition, we report the statistics of the mean ratio be-
tween the data sets d1 and d2 µ(d1/d2), and the standard
deviation of the ratio σ(d1/d2) defined as follows:

µ(d1/d2) = exp

(
1

n

n∑
i=1

ln
d1i
d2i

)
, (5)

σ(d1/d2) =

√√√√1

n

n∑
i=1

(
ln
d1i
d2i

− lnµ(d1/d2)

)2

. (6)

4 Results
4.1 CHAMP Accelerometer-Derived Neutral Mass

Density

4.1.1 Differences in Neutral Mass Density Estimates
Along CHAMP

In this section, we focus on the following accelerometer-
derived neutral mass density products from CHAMP:
Mehta et al. (2017) (PM), Sutton (2011) (ES), and Doorn-
bos (2012) (TU). The differences between CHAMP-PM

and -TU are due to the differences in accelerometer cali-
bration parameters, aerodynamic modeling, and assump-
tions about neutral winds March et al. (2019); Mehta et al.
(2017). While CHAMP-TU accounts for the contribution
of winds to atmospheric drag, both CHAMP-PM and -ES
neglect this contribution altogether. Mehta et al. (2017)
attribute the bias between CHAMP-PM and -ES mainly to
the use of a more correct model of the satellite geometry
(exterior shape) in CHAMP-PM as well as the use of a
fixed energy-accommodation-coefficient αE in CHAMP-
ES. Said differently, CHAMP-PM is a scaled version of
CHAMP-ES. The αE defines the energy loss due to the
energy and momentum exchange between the satellite ex-
terior and the surrounding air. Thus, αE is a quantity that
varies with, for example, solar activity, orbital altitude,
and satellite surface material (March et al., 2019, and refer-
ences therein). The αE may significantly affect the drag co-
efficient Cd, which is needed to calculate the atmospheric
drag via Equation 1 Mehta et al. (2017). Table 1 in Mehta
et al. (2017) indicates that the difference between CHAMP-
PM and -ES due to solar activity is approximately 3%—for
example, 15% in 2002 (solar maximum) and 18% in 2008
(solar minimum). The individual contributions from αE

and errors in the satellite geometry to this difference be-
tween CHAMP-PM and -ES neutral mass densities is not
clear.

In CHAMP-PM, Mehta et al. (2017) apply a Cd that is
about 10–12% smaller than the Cd in CHAMP-ES. Since
neutral mass density is inversely proportional to Cd (see
Equation 1), Mehta et al. (2017) attribute the primary rea-
son for larger neutral mass densities in CHAMP-ES than
CHAMP-PM to the increase in effective cross-sectional
area. March et al. (2019) provide a detailed comparison
of six different CHAMP geometry models and demon-
strate that the along-track area projection of CHAMP is
approximately 40% smaller in the geometry model used
in CHAMP-ES than their high-fidelity geometry model.
Liu et al. (2005) pointed out this problem of not accurately
accounting for cross-sectional area several years before
the release of the CHAMP-ES data, and revealed that us-
ing a simple panel geometry can produce neutral mass
densities 30% larger than a more realistic shape.

Figures 1a and 2a show the accelerometer-derived neutral
mass densities from CHAMP as estimated by Doornbos
(2012) (TU; black), Mehta et al. (2017) (PM; gold), and
Sutton (2011) (ES; orange) for the time periods 1 June–31
July 2003 and 2007, respectively. These arbitrary two-
month periods provide a reasonably large sample for the
ensuing statistical analysis in section 4.2. These data sets,
limited as such, but with no significant data gaps, also
help to avoid a skewed distribution (e.g., mixing of dif-
ferent seasonal and annual effects) that might affect the
statistics. The two figures also show the neutral mass
density estimates from TIE-GCM (gray), HASDM (blue),
and NRLMSIS 2.0 (indigo) along the orbit corresponding
to CHAMP-TU (section 4.1.2 describes some differences
in the satellite location between the different CHAMP
data products). Figures 1 and 2 also show the geophysi-
cal indices F10.7, Dst, ap, and Kp to illustrate the space
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weather conditions during the respective time periods (sec-
tion 2 describes the use of these indices in the models).

Figures 1 and 2 indicate a persistent offset between
CHAMP-ES and CHAMP-TU/PM in the orbit-averaged
neutral mass densities during both high and low solar ac-
tivity time periods. As summarized in Table 1, the mean
ratio (Equation 5) between CHAMP-TU and -PM is 1.00
and 1.03 for 2003 and 2007, respectively. The mean ra-
tio between CHAMP-TU and -ES is 0.84 (0.85) for 2003
(2007). The standard deviation of the ratio (Equation 6)
between CHAMP-TU and -PM is 0.041 and 0.094 for 2003
and 2007, respectively. The standard deviation of the ratio
between CHAMP-TU and -ES is 0.047 (0.093) for 2003
(2007). Thus, the systematic bias between CHAMP-ES
and CHAMP-TU/PM show no significant dependence on
solar activity. But their variance is higher during the so-
lar minimum period of 2007 compared to 2003. In both
figures, CHAMP-TU mostly overlaps with CHAMP-PM,
except for some minor differences.

Figure 1 shows a few instances of neutral mass density en-
hancements in the CHAMP data, for example, 2, 10, and 18
June, and 12, 17, and 27 July 2003. Figure 1 displays that
these six events correspond to the increased geomagnetic
activity indicated by the Dst index in panel 1c. Figure 1
illustrates the nonlinear relationship between geomagnetic
activity indices and orbit-averaged CHAMP data. For ex-
ample, the nonproportionality of the amplitude differences
of the peaks in the CHAMP data corresponding to the Dst
index on 27 and 30 July 2003. The Kp (ap) index cor-
responding to these six events is above 5 (50 nT). Kp in
panel 1f is above 5 at other times in addition to these six
events. However, the proportional enhancement in neutral
mass density for these other times is not as pronounced
in the orbit-averaged CHAMP data (e.g., 29 and 31 July
2003). The comparison of F10.7 and Dst on 10 and 18
June 2003 provides a good example of the significant neu-
tral mass density enhancements caused by large energy
deposition in a short period of time due to enhanced geo-
magnetic activity—the F10.7 is above 180 sfu around 10
June 2003 and drops to approximately 120 sfu on 18 June
2003, while the change in Dst is about 3 times between
the two days. Figure 2 also highlights the correspondence
between the geomagnetic activity indices and neutral mass
density peaks in the CHAMP data. The comparison also
shows the influence of solar radiation—the general decreas-
ing trend in neutral mass density from 10 to 21 June 2007
corresponds to the decrease in F10.7.

Moreover, Figure 1 shows the potential impact of these
indices on model estimates. For example, HASDM, which
uses both ap and Dst indices captures the trend in neu-
tral mass density enhancement on 2 June 2003 better than
both NRLMSIS 2.0 and TIE-GCM, which use ap and Kp,
respectively. As another example, HASDM reproduces
the multiple peaks seen in the CHAMP data during 28–29
June 2003, while TIE-GCM shows only a single peak and
NRLMSIS 2.0 shows none. Similar trend differences be-
tween model estimates are seen during 25–27 July 2003.
The sudden drop in neutral mass density on 23 June 2003
visible in the CHAMP data as well as in all model es-

timates, is due to averaging over a brief time period of
missing data. As with Figure 1, Figure 2 demonstrates
some important trend differences among the model esti-
mates. These trend differences highlight the challenges of
modeling neutral mass density dynamics.

Figure 3 summarizes the performance of the three models
used in this study relative to the CHAMP data. Figures 3a
and 3b quantify this performance as the mean percentage-
deviation ∆ρ considering both CHAMP-TU (dotted-bar)
and -ES (plain bar) separately as Obs in Equation 4. The
∆ρ statistics for CHAMP-PM (not shown) are similar to
those for CHAMP-TU. In addition, Figures 3c and 3d
provide the RMSE results of the models.

Figures 3a and 3b show that the mean percentage-deviation
of TIE-GCM does not vary much between CHAMP-
TU and -ES. Both NRLMSIS 2.0 and HASDM have a
markedly larger ∆ρ with CHAMP-TU than with CHAMP-
ES. All models have a better average agreement with
CHAMP data during the high solar activity period in 2003
than during the low solar activity period in 2007. Rel-
ative to CHAMP-TU, TIE-GCM has the lowest RMSE
during both time periods (Figures 3c and 3d). HASDM,
on the other hand, has the best RMSE statistics relative
to CHAMP-ES. In general, the RMSE value is smaller
in 2007 compared to 2003 for all the models except for
NRLMSIS 2.0 relative to CHAMP-TU.

The data-model comparison in Figures 1–3 shows that
the models capture the variability seen in the data quite
well. The ratio statistics in Table 1 show that, on average,
all three models tend to overestimate (µ < 1) in both
2003 and 2007. This overestimation is slightly higher in
2007 and more pronounced in HASDM and NRLMSIS
2.0 than in TIE-GCM. The σ values of the three models
in Table 1 do not change much between 2003 and 2007—
indicating that the data-model variance is persistent and
less dependent on solar activity. Thus, given the differences
between CHAMP-TU and -ES, it is reasonable to use these
model estimates to calculate the error standard deviation
as described in section 3.1.

4.1.2 Differences in Orbital Heights Estimated for
CHAMP

In this section, we point out that in addition to the differ-
ences in neutral mass density between the three CHAMP
data sets, there are also some discrepancies in the satellite
heights in the published data. We demonstrate this in Fig-
ures 4 and 5 by comparing the standard deviation of the
orbital heights reported in four different CHAMP products:
Rother and Michaelis, 2019 (GFZ), Doornbos, 2012 (TU),
Mehta et al., 2017 (PM), and Sutton, 2011 (ES) for the
time period 1 June–31 July 2003. The two figures show
the standard deviation as a function of 3° in geographic
latitude and 1 hour in local time.

The notable feature in Figures 4 and 5 is the dissimilar-
ity of CHAMP-ES compared to the other three CHAMP
products. The differences in CHAMP-ES may be a result
of the latitude binning used in the processing of the data
by Sutton (2011). The data release-note for CHAMP-ES
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Figure 1: (a–b) Orbit-averaged accelerometer-derived neutral mass densities from the CHAllenging Minisatellite
Payload (CHAMP) mission as estimated by Doornbos (2012) (TU), Mehta et al. (2017) (PM), and Sutton (2011)
(ES) during 1 June–31 July 2003. Estimates from the HASDM Tobiska et al. (2021), NRLMSIS 2.0 Emmert et al.
(2021), and physics-based TIE-GCM are along the orbit corresponding to CHAMP-TU. (c-f) Space weather conditions
demonstrated via Dst, F10.7, 3-hour ap and Kp. 1 sfu = 10−22 ·W ·m−2 ·Hz−1.

Table 1: The ratio statistics of the data sets with CHAMP-TU as d1 in Equations 5 and 6. The sample sizes correspond
to the respective distributions in Figures 1 and 2.

2003 2007

d2 µ(d1/d2) σ(d1/d2) µ(d1/d2) σ(d1/d2)
CHAMP-PM 1.00 0.041 1.03 0.094
CHAMP-ES 0.84 0.047 0.85 0.093
TIE-GCM 0.96 0.223 0.90 0.237
HASDM 0.83 0.215 0.77 0.241
NRLMSIS 2.0 0.91 0.222 0.76 0.259
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Figure 2: (a–f) Same as Figure 1 except for 2007.
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Figure 3: (a, b) The mean percentage-deviation (∆ρ) of
neutral mass density relative to Doornbos (2012) CHAMP-
TU (dotted-bar) and Sutton (2011) CHAMP-ES (plain bar)
calculated as per Equation 4. The values printed on each
bar indicate the exact ∆ρ. (c, d) The root-mean-square
error (RMSE) of the models. The results correspond to the
time periods 1 June–31 July 2003 (a and c), and 2007 (b
and d).

version 2.3 states that this bin width is 3° in latitude and
that they discard the bins with no data. The standard devia-
tions for CHAMP-TU, -PM, and -GFZ in the two figures
are strikingly similar except for some minor differences.

4.2 Estimating the Error in CHAMP Neutral Mass
Density

Figure 6 presents the latitudinal variation of the estimated
error standard deviation σ(EA) (see section 3.1) of the
CHAMP data sets and models. Figure 6a (b) concerns
the time period in Figure 1 (2). The sample size of each
data set in both time periods is approximately 176000
epochs. For reference, Figure 6 also shows the errors
estimated by Sutton (2011) for the CHAMP-ES data set
(orange-dotted line shown as Sutton 2011; see section 3
in Sutton et al. (2007) for details). Table 2 describes the
data set combinations used with a given data set as A in
Equation 3. Table 3 summarizes these estimated error
standard deviations.

First we focus on the estimated error standard deviations
of CHAMP-TU, -PM, and -ES. Figure 6a shows that the
difference between σ(EA) for CHAMP-TU and -ES in-
creases up to about 4% in the low-middle latitudes. In the
high latitudes above 60° N/S, their error percentages are
relatively higher but similar to each other. In contrast to
2003, Figure 6b shows a considerable offset between the
error distributions of CHAMP-TU and -PM in 2007. While
σ(EA) for CHAMP-PM closely follows CHAMP-TU in
2003, the errors of CHAMP-PM are relatively larger in
2007 and closer to those of CHAMP-ES, especially in the
Southern Hemisphere. The median error in 2003 is 2.1, 5,

Figure 4: The standard deviation of the height of the CHAl-
lenging Minisatellite Payload (CHAMP) satellite as a func-
tion of geographic latitude and local time. The data corre-
spond to the time period 1 June–31 July 2003 as reported
in (a) Rother and Michaelis, 2019 (GFZ), (b) Doornbos,
2012 (TU), (c) Mehta et al., 2017 (PM), and (d) Sutton,
2011 (ES). The bin size is 3° in geographic latitude and
1-hr in local time.

Figure 5: Same as Figure 4 except for 2007.
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Table 2: The data sets used in place of A, B, C, and D in Equation 3 for the σ(EA) values present in Figure 6.
A B C D

CHAMP-TU TIE-GCM HASDM NRLMSIS 2.0
CHAMP-PM TIE-GCM HASDM NRLMSIS 2.0
CHAMP-ES TIE-GCM HASDM NRLMSIS 2.0
HASDM CHAMP-TU(-ES) TIE-GCM NRLMSIS 2.0
NRLMSIS 2.0 CHAMP-TU(-ES) HASDM TIE-GCM
TIE-GCM CHAMP-TU(-ES) HASDM NRLMSIS 2.0

Note: Figure 6 shows σ(EA) results for the three models with B replaced by CHAMP-TU and -ES separately.

Figure 6: Estimated error standard deviation σ(EA) [%] as a function of geographic latitude (positive Northern
Hemisphere) for the neutral mass density data sets considered in this study during (a, c) 2003 and (b, d) 2007. Here, we
treat each specified data set separately as A in Equation 3. In panels (c) and (d), each model name followed by TU (ES)
indicates that the B data set used in Equation 3 is CHAMP-TU (-ES) (see Table 2). In panels (a) and (b), Sutton 2011
(orange-dotted) refers to the errors estimated by Sutton (2011) for the CHAMP-ES data set.
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Table 3: Summary statistics for the estimated error standard deviation σ(EA) in Figure 6. All σ(EA) values are in
units of 10−13kg/m

3. The values in bold give σ(EA) as a percentage.
σ(EA) minimum (%) maximum (%) median (%)

2003
CHAMP-TU 1.46 (8.4) 4.36 (18.6) 2.07 (11.0)
CHAMP-PM 1.50 (8.9) 4.22 (19.1) 2.13 (11.2)
CHAMP-ES 2.13 (12.7) 5.13 (19.2) 3.56 (14.3)

HASDM-TU 1.53 (11.4) 5.94 (22.2) 3.83 (16.9)
HASDM-ES 1.38 (11.3) 5.76 (21.3) 3.83 (16.5)
NRLMSIS 2.0-TU 2.05 (10.2) 4.45 (18.5) 3.22 (16.9)
NRLMSIS 2.0-ES 2.12 (10.3) 4.41 (19.5) 3.17 (17.0)
TIE-GCM-TU 1.77 (9.6) 3.90 (18.4) 2.45 (13.6)
TIE-GCM-ES 1.76 (8.8) 4.29 (18.7) 2.57 (14.7)

Sutton 2011∗ 1.29 (6.4) 1.84 (11.0) 1.77 (6.8)

2007
CHAMP-TU 0.77 (8.9) 3.29 (19.7) 1.63 (13.1)
CHAMP-PM 0.90 (10.8) 3.86 (21.9) 1.90 (16.2)
CHAMP-ES 1.11 (14.0) 4.64 (21.7) 2.82 (18.0)

HASDM-TU 1.30 (13.2) 5.30 (26.5) 3.52 (21.3)
HASDM-ES 1.23 (10.9) 4.99 (25.1) 3.27 (20.4)
NRLMSIS 2.0-TU 2.02 (13.4) 3.58 (29.1) 2.67 (15.5)
NRLMSIS 2.0-ES 2.11 (14.2) 3.54 (29.6) 2.81 (15.4)
TIE-GCM-TU 1.19 (12.4) 3.67 (20.8) 2.17 (16.0)
TIE-GCM-ES 1.18 (14.4) 4.14 (23.4) 2.52 (16.9)

Sutton 2011∗ 1.29 (7.7) 1.77 (21.0) 1.56 (8.4)
Note: Sutton 2011 refers to the errors estimated by Sutton (2011) for the CHAMP-ES data set. Each model name followed by TU or
ES indicate the B data set used in Equation 3 (see Table 2).
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and 3.7% smaller for CHAMP-TU, -PM, and -ES, respec-
tively, compared to 2007. The higher signal-to-noise ratio
of accelerometer measurements in LEO during periods of
high solar activity may contribute to the low errors found
here. This demonstrates that the rescaling approach used
in CHAMP-PM by Mehta et al. (2017) is more effective
in reducing the uncertainty during the high solar activity
period of 2003 than in 2007.

Figure 6 shows that among the data sets used in this study
(Table 2), CHAMP-TU has the lowest median error during
the two time periods. Table 3 indicates that the minimum-
maximum error range for each CHAMP data set does not
vary much between the two time periods in 2003 and 2007
(approximately 0.6–1.2%). The latitudinal trends between
the three CHAMP data sets are mostly similar in each time
period. In general, the error estimates for the CHAMP
data are smaller at low latitudes compared to high latitudes.
In the southern latitudes, the σ(EA) values for the three
CHAMP data sets peak around 60-70° S (40° S) in 2003
(2007).

The Sutton 2011 errors estimated by Sutton (2011) for
the CHAMP-ES data set do not show much difference
in the trends between the two time periods in Figure 6—
low errors in northern latitudes and errors that gradually
increase toward southern high latitudes. The latitudinal
trend in Sutton 2011 errors is markedly different from that
of σ(EA) for CHAMP-ES. Except in the southern high
latitudes in 2007, the magnitude of Sutton 2011 errors is
significantly smaller than that of σ(EA) for CHAMP-ES.
The Sutton 2011 errors indicate that the uncertainty in the
northern polar latitudes is as small as in the northern low
and middle latitudes.

Figures 6c and 6d focus on the estimated error standard
deviations of the three models. Here, we present the σ(EA)
results of the models in two configurations: with CHAMP-
TU and -ES separately as the B data set in Equation 3. This
provides a test of the reliability of the error estimates and
shows the effect of using different combinations of data
sets on σ(EA). It is evident from Figures 6c and 6d that the
effect of using CHAMP-TU or -ES on the latitudinal trends
of the model errors is negligible. The two figures highlight
that it does, however, affect the magnitude of the estimated
errors of the TIE-GCM at low latitudes more than those of
other models. Table 3 shows that in 2003 (2007) the change
in the minimum-maximum error range between the TU-ES
configurations for TIE-GCM, NRLMSIS 2.0, and HASDM
is 1.1, 0.9, and 0.8% (0.6, 0.3, 0.9%), respectively. In 2003
(2007), the change in median error between the TU-ES
configurations for TIE-GCM, NRLMSIS 2.0, and HASDM
is 1.1, 0.1, and 0.4% (0.9, 0.1, 0.9%), respectively.

In Table 3, among the models used in this study, TIE-GCM
(NRLMSIS 2.0) has the lowest median σ(EA) for 2003
(2007). And Figure 6c shows that all three models have
similar error distributions in both trend and magnitude in
the Northern Hemisphere above 20° N. In Figures 6a and
6c, while the error estimates for the models are lower than
those from the CHAMP data in the northern high latitudes
above 60° N, they are mostly similar in the southern high
latitudes above 60° S.

The results indicate that HASDM has a larger error spread
(minimum-maximum range above 10%) than other models
in both time periods. Figure 6 shows that the latitudinal
trends in σ(EA) for HASDM are similar in 2003 and 2007,
and their magnitude increases almost linearly from the
poles to the equator. The large errors in HASDM may be
due to the processing of the HASDM data, which have
considerably large spatial and temporal resolutions (see
section 2.3). In 2007, in the latitude range approximately
between 60° S and 60° N, σ(EA) for NRLMSIS 2.0 is close
to the error estimates for CHAMP data—and mostly less
than σ(EA) for CHAMP-ES. Interestingly, the NRLMSIS
2.0 error has a high gradient south of 20° S (Figure 6d).

5 Discussion

We begin with a detailed look at three of the widely used
CHAMP accelerometer-derived neutral mass density prod-
ucts: Sutton (2011), Doornbos (2012), and Mehta et al.
(2017), during a two-month period of high (2003) and low
(2007) solar activity. In Figures 1 and 2, we highlight
the differences between these CHAMP neutral mass den-
sity products derived from the same STAR accelerometer
measurements using different methods. Mehta et al. (2017)
show that CHAMP-PM is on average about 18% (5%)
smaller (larger) than CHAMP-ES (-TU) in 2007. And in
2003, CHAMP-PM is about 16% (6%) smaller (larger)
than CHAMP-ES (-TU). March et al. (2019) compare a
few hours of these three neutral mass density products
at different solar activity levels and report that CHAMP-
ES generally has larger neutral mass densities compared
to both CHAMP-TU and -PM. The comparisons in Fig-
ures 1 and 2 and Table 1 confirm that this offset between
CHAMP-ES and CHAMP-TU/PM is persists during both
high and low solar activity time periods.

The time series of CHAMP-PM in Figures 1 and 2 is mostly
similar in trend and magnitude to that of CHAMP-TU. Fig-
ure 6 shows that σ(EA) for CHAMP-PM is also more
similar to CHAMP-TU in 2003 and has some considerable
differences in 2007. These differences between CHAMP-
PM and -TU in 2007 may be due to certain assumptions in
the data processing, such as the neglect of neutral winds
in CHAMP-PM, which manifest more strongly in the data
quality during periods of low solar activity when the signal-
to-noise ratio in the accelerometer measurements is low
March et al. (2019); Mehta et al. (2017). Although Doorn-
bos (2012) uses neutral winds from Drob et al. (2008)
horizontal wind model (HWM07) to derive CHAMP-TU,
they also use accelerometer-derived neutral winds where
possible March et al. (2019). The fraction of CHAMP-TU
data derived with or without HWM07 is unclear. Some data
assimilation experiments with, for example, HWM07 and
Förster and Doornbos (2019) CHAMP cross-track winds
may be useful to investigate the impact of these neutral
winds on the quality of the neutral mass density estimates.

We use Equation 3 to compute the estimated error standard
deviation σ(EA) of the CHAMP data according to the data
set combination in Table 2. As shown in Equation 3, no
instrument is specifically weighted and the order of the
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B, C, and D instruments is irrelevant to the final result.
As such, Equation 3 treats both data and model estimates
equally, assuming that they represent the true neutral mass
density with some unknown error. The latitudinal trends
between the three CHAMP data sets in Figure 6 show that
the error estimates are generally smaller at low latitudes
compared to other regions. The percentage of error spread
for the CHAMP data (minimum-maximum difference) is
slightly larger during the low solar activity period in 2007
compared to 2003. This difference in error spread between
2003 and 2007 is twice as large for CHAMP-ES compared
to CHAMP-TU (1.2 vs. 0.6%). The minimum-maximum
error range estimated by Sutton (2011) for CHAMP-ES is
4.6% (13.3%) for 2003 (2007). An exact reason for this
large difference in the minimum-maximum error range
(8.7%), especially in the southern middle-high latitudes
(Figure 6b), is difficult to identify.

Using early accelerometer measurements under quiet ge-
omagnetic conditions (ap less than 15), Bruinsma et al.
(2004) estimate an error of about 10–15% for CHAMP
neutral mass density. Sutton et al. (2007), using data for
one orbit, demonstrate that systematic errors are the largest
contributor to the total error in CHAMP neutral mass den-
sity and estimate an error in the range of 6–15.6%. In
Figure 6, we show that the errors estimated by Sutton
(2011) for CHAMP-ES are somewhat smaller than our
σ(EA) estimates. For example, as summarized in Table 3,
our σ(EA) estimates for CHAMP-ES are in the range of
12.7–19.2% and Sutton 2011 errors for the same period
are in the range of 6.4–11.0%. Stolle and Liu (2014) de-
scribe that the estimated precision of CHAMP neutral mass
density is approximately 1 · 10−14kg/cm

3. In Table 3,
only CHAMP-TU and -PM have a minimum σ(EA) below
1 · 10−13kg/cm

3. While Sutton et al. (2007) provide a
detailed error analysis, Bruinsma et al. (2004) and Stolle
and Liu (2014) do not reveal the exact method used to
compute these error estimates. In general, the error stan-
dard deviations for the CHAMP data sets estimated in this
study are close to the uncertainties reported in Bruinsma
et al. (2004) and Sutton et al. (2007). Consequently, our
results demonstrate that the Grubbs (1948)’ method (see
section 3.1) provides realistic estimates of the uncertainty
of CHAMP neutral mass density.

The assumptions about error correlations are important for
the Grubbs (1948)’ method. The variance of a quantity can
be greater than or equal to zero but never negative. The
Equation 3 makes it possible to have negative estimates
for the error variance because it ignores the unknown er-
ror correlations between the different data sets. Thus, a
negative error variance is possible if the sum of these error-
covariance terms (e.g., Cov(EA,EB), Cov(EA,EC), etc.) is
greater than the error variance itself Sjoberg et al. (2021).
In reality, error correlations may exist between these dif-
ferent data sets—especially the three CHAMP data sets,
which share the same raw accelerometer measurements.
To minimize the effect of error correlations, we avoid us-
ing the three CHAMP data sets together in Equation 3.
The HASDM is based on the JB2008 model, which was
developed using CHAMP data, among others. Thus, the

HASDM is a potential source of error correlations that
could affect the accuracy of the error estimates presented
here.

Since both the physics-based and the empirical models
rely on similar driver parameters, such as F10.7, Kp, and
ap, it remains to be determined the possible error corre-
lations between the models. Furthermore, spurious error
correlations may occur, for example, when the sample
size is small. While Sjoberg et al. (2021) recommend a
sample size of 5000 (in a study using synthetic terrestrial
weather data), further experimentation will be necessary
to determine the critical sample size that yields meaning-
ful estimates of error variance for accelerometer-derived
neutral mass density data sets. It may be useful to explore
methods to mitigate the impact of these error correlations
on the estimated uncertainty, such as the statistical mini-
mization techniques proposed by, for example, Tavella and
Premoli (1994) and Galindo et al. (2001).

Figure 6 also presents an application of the Grubbs (1948)’
method to estimate the error standard deviation of the
models. The error estimates using both CHAMP-TU and
-ES demonstrate the reliability of the method. The results
show that the magnitude of σ(EA) does indeed change
slightly (0.1–1.1%) when CHAMP-TU is replaced with
CHAMP-ES. This exercise demonstrates that the effect
of using CHAMP-TU or -ES on the latitudinal trends of
the model errors is negligible. A notable feature in Fig-
ure 6d is the sharp increase in NRLMSIS 2.0 errors in the
Southern Hemisphere. It remains to investigate the quality
of the database used in NRLMSIS 2.0 to represent this
southern latitude region in 2007. Emmert et al. (2021) de-
scribe the years 2005–2009 as anomalous solar minimum
years and have removed these years from their compar-
isons with accelerometer-derived neutral mass densities.
Figure 6 shows that the latitudinal trends in σ(EA) for
HASDM are significantly different from those of the other
two models. Although HASDM performs well against
CHAMP-TU and -ES in Figure 3, it has a consistently
large σ(EA) in the low-middle latitudes in Figure 6. We
attribute this anomaly to data processing (see section 2.3).
The relatively large temporal and spatial resolutions of the
HASDM database may have contributed to its error char-
acteristics in Figure 6. Lechtenberg et al. (2013), using
CHAMP data among others, concluded that the resolution
of HASDM is inadequate to sufficiently characterize short-
term density perturbations, such as traveling atmospheric
disturbances, geomagnetic cusp phenomena, and midnight
density maxima.

6 Summary and Conclusions

This work examined three publicly available CHAMP
accelerometer-derived neutral mass density products—
Mehta et al. (2017) (PM), Sutton (2011) (ES), and Doorn-
bos (2012) (TU), with the goal of describing their dif-
ferences and identifying systematic errors. The work
compared the CHAMP neutral mass density data sets
with some common physical (TIE-GCM) and empirical
(HASDM and NRLMSIS 2.0) models. And the compar-
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isons covered the months of June and July in 2003 and
2007, corresponding to high and low solar activity time
periods, respectively.

This paper is the first to apply the Grubbs (1948)’ method
to the error characterization of thermosphere data sets. The
main results of this work concerning the error characteris-
tics of neutral mass density are as follows:

1. The Grubbs (1948)’ method provides reliable es-
timates of the uncertainty of the CHAMP neutral
mass density;

2. The median error standard deviation σ(EA) for
CHAMP-TU, -PM, and -ES vary approximately
in the range 11.0–13.1, 11.2–16.2, and 14.3–
18.0%, respectively;

3. CHAMP-TU has the lowest σ(EA) in the two
study periods in 2003 and 2007;

4. The σ(EA) of the three models are generally
larger than that of CHAMP-TU;

5. Among the models, TIE-GCM (NRLMSIS 2.0)
has the lowest median σ(EA) for 2003 (2007);

6. A latitude dependence of σ(EA) is evident for
both CHAMP data and models;

7. The σ(EA) for the CHAMP data are generally
small at low-middle latitudes compared to high
latitudes;

8. The σ(EA) for HASDM is considerably larger
than TIE-GCM or NRLMSIS 2.0 at low-middle
latitudes.

This work used several statistics to quantity the model
performance. The data-to-model ratio indicated that on
average, all three models tend to overestimate relative to
CHAMP-TU—the overestimation is slightly higher during
the low solar activity period in 2007 than in 2003. The
findings showed that the variance of the data-model ratio
was persistent and less sensitive to solar activity. In general,
the models capture the variability seen in the data quite
well. The mean percentage-deviation ∆ρ of the models
is larger in 2007 than in 2003. In other words, the data-
model agreement is better in 2003 than in 2007. The
∆ρ with CHAMP-TU is markedly larger than that with
CHAMP-ES for both NRLMSIS 2.0 and HASDM. TIE-
GCM (HASDM) has the best RMSE statistics compared
to CHAMP-TU (-ES).

The differences between the three CHAMP data sets are
systematic and persistent over the two time periods of this
study. These differences are mainly due to the assumptions
made in the different derivation methods. Thus, it is obvi-
ous that these assumptions have a significant impact on the
error estimates. Among these publicly available CHAMP
data sets, only CHAMP-ES provides error estimates. The
σ(EA) is a useful quantity for understanding of the error
distribution in the data. While CHAMP-TU has the lowest
σ(EA) in our results, the user can experiment with other
models and data sets to compute σ(EA) to gain a further
understanding of the task specific errors. Ongoing recal-
ibration efforts, such as, ESA’s TOLEOS (thermosphere

observations from low-Earth orbiting satellites) project,
may consider incorporating error estimates for the various
neutral mass density products, including CHAMP. This
will be invaluable for the thermosphere model develop-
ment and calibration work, as well as for data assimilation
studies.

The promising results of this preliminary application of the
Grubbs (1948)’ method invite further work to investigate
the applicability of the method to other data sets in the
space weather and aeronomy community. For example,
large data sets spanning over multiple years could be used
to study the characteristics of error correlations between
different measurements and under different geophysical
conditions. The CHAMP, GRACE (gravity recovery and
climate experiment; 2 satellites), GRACE-Follow-On (2
satellites), and Swarm (3 satellites) missions provide in-
dependent accelerometer-derived neutral mass densities.
Thus, in the possible absence of error correlations between
instruments, the Grubbs (1948)’ method could be used to
compare the error estimates in neutral mass density prod-
ucts from these satellites.

Open Research
All data and models used in this work are in the pub-
lic domain, and can be reproduced as exactly as de-
scribed in the paper. The Delft University of Technology
(<ftp://thermosphere.tudelft.nl>) provided the CHAMP-
TU data (version v01). Mehta et al. (2017) provided
the CHAMP-PM and -ES data via <http://tinyurl.com/
densitysets>. The UCAR/HAO (<www.hao.ucar.edu/
modeling/tgcm>) provided the TIE-GCM code. Space
Environment Technologies (<spacewx.com/hasdm>) pro-
vided the HASDM neutral mass density data. The United
States Naval Research Laboratory (<map.nrl.navy.mil/
map/pub/nrl/NRLMSIS>) provided the NRLMSIS 2.0.
The NASA/OMNI database (<omniweb.gsfc.nasa.gov>)
provided the Kp, ap, Dst, and F10.7 measurements.
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