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Abstract13

We use a prevailed technique to extract image features and classify 4 seasons of aurora14

all sky images, combine these with solar wind and interplanetary magnetic field (IMF)15

data and use this as a basis to forecast the onset of geomagnetic substorms local to the16

imager. To prove the viability of our model, we successfully reproduce the results of a17

previous study which used only solar wind and IMF data to forecast global substorm on-18

sets. Although this viability test proves successful and we independently confirm the pre-19

vious model, our expanded model fails to deliver the necessary performance required for20

it to be used for accurate localised substorm forecasting.21

Plain Language Summary22

The solar wind’s interaction with the Earth’s magnetic field can not only cause beau-23

tiful displays of nature, but also create harmful environments for modern infrastructure.24

Satellite navigation, flights, communication or electric infrastructure can be disrupted25

or even damaged during strong events. For damage mitigation and research, it is impor-26

tant to be able to forecast the time and location of such occurrences. Our model takes27

satellite data which has proven to be able to forecast the events globally and supplements28

these with local imager data to create a localised forecast.29

1 Introduction30

The solar wind and the interplanetary magnetic field (IMF) are the driving force31

of space weather around the Earth. Much like regular weather on the Earth, space weather32

can impact our life. Atmospheric heating and expansion will cause drag on satellites (Marcos33

et al., 2010), geomagnetically induced currents can disrupt or damage electrical or com-34

munication infrastructure (Pirjola, 2000) and ionospheric disturbances will affect the35

global navigation satellite system (Kintner et al., 2007). Although the effects of space36

weather storms can be mitigated, they can cause lasting damage. Being able to forecast37

when extreme space weather events will occur, will not only help with impact mitiga-38

tion but can also lead to new scientific discoveries, because observations of such events39

can be planned and targeted.40

The aurora is an immediately observable consequence of space weather. When charged41

particles precipitate onto the Earth, they excite particles in the atmosphere, which in42

turn release their energy in form of visible light. Different physical processes can cause43

different auroral morphology, which makes them interesting to study phenomena in the44

upper atmosphere (Knudsen et al., 2021). Early observations of aurora for study of sub-45

storms were performed by Akasofu (1964) and Akasofu et al. (1965) followed by satel-46

lite observations later (McPherron et al., 1973). These studies identified the solar wind47

as the main driving force of substorms (Caan et al., 1975) and developed a model iden-48

tifying the substorms ”growth”, ”expansion” and ”recovery” phases. In this cycle, en-49

ergy is first stored in the Earth’s magnetotail, then suddenly released in the expansion50

phase before the whole system returns to its resting state.51

The main driving force of the growth phase energy storage is to be believed the cou-52

pling of the IMF with the Earth’s magnetic field, although P. T. Newell and Gjerloev53

(2011a) and P. Newell et al. (2016) found a strong contribution of the solar wind veloc-54

ity. Some substorms are reported to have occurred under quiet conditions as well (Russell,55

2000b and Miyashita et al., 2011 and Lee et al., 2010). The driving factor for trigger-56

ing the expansion phase was first believed to be externally through the IMF Bz compo-57

nent (Russell, 2000a) however, recent studies dispute this and found the triggering mech-58

anism to be internally (Freeman & Morley, 2009 and P. T. Newell & Liou, 2011 and John-59

son & Wing, 2014).60

Visually, a substorms manifests in a specific sequence of morphology in the vis-61

ible aurora. The aurora progresses from a single east-west arc during quiet times to a62
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brightening and widening band that expands polewards with westward travelling folds63

before breaking up into smaller and more chaotic structures after which it returns to its64

quiet state (Akasofu, 1964). This yields an easy way to visually identify the occurrence65

of substorms as performed by Frey et al. (2004) and Liou (2010). This method can only66

identify substorms during which visual observations were done . The geomagnetic foot-67

print caused by the substorm allows for automated identification of substorms based on68

local measurements of the Earth’s magnetic field (Forsyth et al., 2015 and P. T. Newell69

& Gjerloev, 2011a and Ohtani & Gjerloev, 2020) which is a more comprehensive method.70

The whole field however lacks a single, unified definition and method of identification71

for substorms.72

Based on these methods, lists of substorms were compiled for use in scientific stud-73

ies. In turn , efforts to forecast substorms have been undertaken. Recently, Maimaiti et74

al. (2019) have developed a neural network for the binary classification task of whether75

a substorm will occur anywhere in the Northern Hemisphere’s nightside auroral oval within76

the next hour based on two hours of satellite observations measuring the interplanetary77

magnetic field and the solar wind. Similarly, Sado et al. (2023) predicted substorm on-78

sets based on images classified using a machine learning algorithm developed by Sado79

et al. (2022). This method however works locally, based around the location the images80

have been acquired.81

Both methods have their advantages and drawbacks. The first method offers global,82

almost uninterrupted coverage and offers high precision and recall for forecasting the83

onset of substorms. It can however not predict the location of occurring events. The sec-84

ond method is trained on images and offers localised forecasting, but is less precise than85

the global forecasting methold.86

A method merging the two approaches could inherit both of the advantages of the87

methods with none of the drawbacks. Being able to precisely forecast the time and lo-88

cation of a substorm would mean that they can be studied better in the future, for ex-89

ample by adjusting cameras, flight paths of satellites or even launch rockets at the cor-90

rect place and time.91

In this work we will attempt to merge these methods to achieve localised magnetic92

substorm forecasting (LOCATE). We will first build a new model that can be trained93

with data for global forecasting, which we have reproduced independently based on the94

method by Maimaiti et al. (2019). This data will be fused with local image data and95

the same training and testing operations will be performed. We then discuss both ad-96

vantages and limitation of such an approach.97

2 Data Sources and Preparation98

The data used in this manuscript is threefold. We use satellite data measuring the99

IMF and solar wind to get global coverage, all sky imager data taking pictures of the au-100

rora from the ground to get local coverage and the SuperMAG list of substorms for our101

labels.102

The IMF and solar wind data are gathered in the OMNI databse (Papitashvili et103

al., 2014 and Papitashvili & King, 2020). The data are time-shifted to the bowshocknose104

such that no further processing is necessary. It is provided at 1min resolution. To avoid105

small periods of time with missing data, gaps of up to 11min are filled by linear inter-106

polation. Time series with a length of 120min will be used later. Interpolating up to107

11min at a time makes up at less than 10% of our data. This way smaller gaps in the108

data are avoided without sacrificing the integrity of our data as a whole.109

All sky imager data are taken from the imager site in Gillam, Manitoba located110

at N 56◦ 20.24′, W94◦ 42.36′. During regular operations, one image is taken every 3 s.111

Some images may be missing due to data corruption or interrupted coverage. Because112

the solar wind and IMF data is only available at 1min resolution, when the image taken113

closest in time to the satellite data is used it may have been taken up to 30 s earlier or114

later. The images are preprocessed and their features extracted according to Sado et115
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Figure 1: Variance of image features after PCA has been applied. The first 10 features
represent 65% of the variance; the first 100 features 92% of the variance in the data.

al. (2022) who have shown that the features extracted by a pretrained neural network116

for image classification can contain information of physical value. Additionally, princi-117

pal component analysis (PCA) is employed to reduce the amount of extracted features118

from 1000 to 10 for the images. As shown in figure 1, this accounts for 65% of the vari-119

ance in the data. This way some information contained in the data is lost, but the prob-120

lem commonly referred to as the ”Curse of Dimensionality” (Hughes, 1968) is avoided.121

It means that in order to increase performance of an algorithm such as our classifier, more122

features can only be added up to a certain point. After this threshold is reached, more123

data are needed in order to be able to use this information, or degradation of performance124

is suffered otherwise.125

Lastly, we obtain the list of substorms prepared by P. T. Newell and Gjerloev (2011a)126

based on the SMU and SML indices. These indices are SuperMAG adaptions of the tra-127

ditionally used auroral electrojet indices. This list is a simple compilation of substorm128

occurrences including their time of occurrence and location of the magnetometer station129

where the substorm was identified. See P. T. Newell and Gjerloev (2011a, 2011b) for130

a detailed explanation of how the list was created. Because we are only interested in sub-131

storms in the vicinity of the imager, all substorms that are outside a 10◦ radius of the132

imager are discarded. This corresponds to the imager’s field of view at a projected al-133

titude of 110 km .134

When reproducing the method developed by Maimaiti et al. (2019) we use the same135

constraints as mentioned in their paper, namely restricting ourselves to substorms oc-136

curring in the Northern Hemisphere’s nightside auroral oval between 19:00 and 05:00 mag-137

netic local time and between 55◦ and 75◦ magnetic latitude. We do not remove outliers138

for strong SuperMAG electrojet index (SME), since they make up only about 1% of the139

total data.140

2.1 Data Flow and Partitioning141

How a piece of data used to train or test the model looks like is shown in figure 2.142

The upper two panels show IMF and solar wind data, the bottom panel shows the ten143

most prominent components extracted by PCA stacked on top of each other for easy vi-144

sualisation. The input matrix for the model consists of these values stacked into a 15x120145

matrix (15 variables, for 120 minutes).146
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Figure 2: Visualisation of how a sequence of data passed into the neural network looks
like. The top panel shows the IMF values, the second panel the solar wind pressure and
speed and the last panel the ten most prominent features extracted by PCA. For better il-
lustration they have been offset vertically by a constant value of 10 between each feature.
The vertical black line denotes a substorm occurrence. The blue shaded area is followed
by a substorm and will be labelled ”True”, the red shaded area is too far before the sub-
storm and will be labelled ”False”.

An input interval is labelled ”True” if the substorm’s occurrence is after the end147

of the interval and the time between the end of the interval and the occurrence of the148

substorm is less than or equal to 60min. An input interval, where the substorm occurs149

within the interval itself will hence be labelled ”false” unless there is another substorm150

occurring within 60min afterwards. A substorm occurs at 09:21. The 2 hour long se-151

quence with a blue shadow will be assigned a ”True” label because the next substorm152

occurrence is less than an hour from the end of the sequence, whereas the sequence with153

the red shadow will be assigned the label ”False” because it will not be followed by a sub-154

storm.155

In figure 3, the flow of data throughout the project is shown. We use the pretrained156

classifier developed by Sado et al. (2022) to classify the images into the six classes ”arc”,157

”diffuse”, ”discrete”, ”cloud”, ”moon” and ”clear”. Images that are classified to be cloudy158
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10 most prominent components using PCA for better handling and to reduce the dimen-
sionality of the data. IMF and solar wind data are added to 1min resolution image data.
120min of data are used to forecast whether a substorm onset will occur within 60min.
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or with the moon visible are removed from the dataset. The moon is too bright to take159

proper pictures and clouds obscure the aurora, these images therefore contain no infor-160

mation that are useful for forecasting substorms and could lead to unforeseen problems161

or biases. The numerical features that are extracted on a per-image basis in this pro-162

cess have been shown to be of physical value and can for example be used to model the163

magnetic footprint of aurora (Sado et al., 2022). We use PCA to reduce the dimension-164

ality of the data and fuse the images’ feature data with solar wind and IMF data to build165

the model’s input matrix. The model’s output labels are based on the SuperMAG list166

of substorms (P. T. Newell & Gjerloev, 2011a).167

Because so little data are available, we cannot retain a whole season for validation168

and testing each, instead the data is split into 10 sequential folds, each of which is split169

sequentially into 60% training and equal amounts of validation and test data. This way,170

we ensure that seasonality due to the Earth’s seasons, the solar cycle and the solar wind171

(see Lockwood, Mike et al. (2020) and Zhao and Zong (2012)) is equally represented in172

the training and testing datasets without splitting the data randomly and risk informa-173

tion bleeding from the training into the testing data. This is shown in figure 4. The fig-174

ure only shows a part of the available data.175

Because there is a strong imbalance between negatively labelled (”No Substorm”)176

and positively labelled (”Substorm”) of about 20:1 points in the training dataset, the177

model will tend to value negative results more than positive events. To overcome this178

problem, the negative cases are randomly undersampled in the training sets, but the val-179

idation and test sets are untouched, to properly represent the distribution of substorms180

as they occur under real-world conditions . The split of training data is used to train the181

model, validation data will be used for hyperparameter tuning and the test set to eval-182

uate the final model.183

3 Model Architecture184

There is a significant discrepancy between the amount of data available for the method185

developed by Maimaiti et al. (2019) for global substorm forecasting and the data avail-186

able for local substorm forecasting. Our model will have to be smaller to avoid over-187

fitting or bias, but complex enough for the overall task. To ensure that the model we choose188

for our new task is a generally good model for time series forecasting of substorms, we189

will first use it for the task of global forecasting.190

Deep Residual Networks (ResNet) (He et al., 2016) are a type of convolutional neu-191

ral network that were first developed to solve image recognition and classification tasks.192

Their strength lies in their ease of optimization even for deep networks and that they193

are easy to modify and expand without causing negative side effects. They learn to recog-194

nise large scale structures in the first layers and smaller structures in the later layers.195

The difference between images and time series data as input is not large. Images are of196

3 dimensions (width x height x channels), our data has two dimensions (time x features).197

For an image, different colours represent different features the same way different mea-198

surements represent different features in our data. The network’s task of classifying based199

on a time series as compared to an image is therefore relatable. Still, different tasks re-200

quire different parameters in the design of the network.201

ResNets consist of several units with several groups of convolutional layers in each202

unit. More units or more groups per unit increase the complexity of the network. In203

order to have a comparable baseline with the original method, we will also use a ResNet204

that consists of two units, but we decrease the groups per unit to two from three. In-205

stead of developing our own network architecture, we use an architecture developed by206

Hong et al. (2020) for time series prediction of medical data. Information about the207

architecture including code to replicate the exact network with trained weights can be208

found in the code and data we provide alongside the publication.209

–7–



manuscript submitted to JGR: Space Physics

0 100 200 300 400 500
epoch

0.0

0.2

0.4

0.6

0.8

1.0

ba
la

nc
ed

 a
cc

ur
ac

y

train BA
validation BA

(a)

0 100 200 300 400 500
epoch

100

9 × 10 1

1.1 × 100

1.2 × 100

1.3 × 100

1.4 × 100

1.5 × 100

lo
ss

train loss
validation loss

(b)

Figure 5: Balanced accuracy (a) and loss (b) during training for the replicated model.
Train and validation data are similar and there is no overfitting taking place. The model
finishes learning after approximately 300 epochs.

4 Results and Discussion210

4.1 Comparison of Models211

In table 1 we give an overview of the differences between the used models’ archi-212

tectures, data and results. Our model that reproduces the model developed by Maimaiti213

et al. (2019) has been kept as close as possible to their model in terms of data, size and214

capabilities while stile making it possible to integrate the image data into a model of the215

same architecture.216

Some values in the table were not reported in the original publications but could217

be inferred from the reported results. We will discuss these results in detail below.218

4.2 Reproduced Model219

Figure 5 shows how the balanced accuracy (5a) and loss (5b) develops during train-220

ing of the replicated model. The model takes about 300 epochs to settle into a steady221

state after which no more improvement is taking place. For both training and valida-222

tion data, the balanced accuracy has settled in at 74%. The balanced accuracy (BA) is223

calculated like accuracy but each class’s contribution is weighted based on the class’s oc-224

currence. In a very unbalanced dataset like ours if the model simply classified everything225

as ”False”, it would achieve 95% accuracy, but only 50% balanced accuracy. Precision226

and recall for the positive class are 41% and 63% respectively. Precision is calculated as227

the true positive cases over all positive predicted cases, i.e. how many of the predicted228

positive cases are correct, recall is the fraction of positive cases identified of all cases. F1-229

score is defined as two times the product of precision and recall divided by their sum.230

This is therefore another metric of accuracy of a model that is based on the two met-231

rics that themselves interest us the most and it is a good metric in general for imbal-232

anced datasets . Because the validation and test sets in Maimaiti et al. (2019) were strat-233

ified, we have to calculate balanced precision, recall and F1-score to obtain comparable234

results. Our model does not perform worse overall than the reproduced model and we235

therefore confirm the findings of this publication and the viability of the model. How-236

ever, accounting for real-world conditions by not balancing the test and validation sets,237
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Figure 6: Balanced accuracy (a) and loss (b) during training for the newly created
model. Validation data performs worse than the training data. It is difficult to find a con-
figuration where the model generalises and does not overfit. Best performance is achieved
at 23 epochs, afterwards it deteriorates and stalls at about 200 epochs.

the precision of the model is worse than previously reported because there are now more238

false positive cases but the amount of true positive cases stays the same.239

4.3 New Model240

Figure 6 shows the balanced accuracy (6a) and loss (6b) during training of the newly241

developed model. The model converges after about 200 epochs for which the balanced242

accuracy of the validation split achieves approximately 60%. The best result is achieved243

after 23 epochs with 68% balanced accuracy after which model performance degrades.244

Figure 7 shows the precision recall curves of the validation (7a) and test (7b) set for the245

23rd epoch. Because the dataset is so highly imbalanced, this is a better way to mea-246

sure the separation of the two classes than a typical ROC curve which plots the true pos-247

itive rate against the false positive rate. The black line in the figure denotes the rela-248

tive size of the positive and negative classes at approximately 0.038. If our model was249

purely guessing, the graph would be equal to this line. As we can see, the validation set250

exceeds it for higher recall values. This model is chosen as the final model and the test251

set is evaluated. The model performs barely better than random and only a few events252

for very low recall values are classified precisely. Comparing this to the results reported253

by Sado et al. (2023) we see that this model does not outperform a purely imager based254

forecasting model.255

To illustrate how the model underperforms, we have added two keograms with the256

model’s predictions in figure 8. The first (8a) shows an uneventful night on 2009-12-11257

where the model falsely predicts an upcoming substorm at approximately 09:00. There258

is no obvious indication in the data as to why this has happened.259

The second selected evening (8b) on 2010-12-31 shows where the model predicted260

an onset, but fails to precisely identifying the time of the onset. Additionally, this evening261

illustrates the problem with data procurement as well. Although we already allow for262

interruptions in the data by interpolating for up to 11min, there are still moments where263

data are missing. These small outages cause large gaps in the training and validation264

data. We performed the same experiment but allowed for more interpolation (up to 30min)265

and did not obtain better results.266
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Figure 7: Precision recall curve for validation data (a) and test data (b) for the 23rd
epoch of the newly created model. The horizontal black line denotes a model that would
be purely guessing. In that case the area under the curve would be 0.038.
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Figure 8: Two keograms with IMF Bz and solar wind vx plotted underneath. The third
panel shows the model’s forecasted probability for each time step, the black line denotes
the necessary threshold of 50% for the prediction. The bottom panel shows the true label
for each point in time. These times were selected for their continuous coverage.
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4.4 Failed Attempts267

Since we are presenting negative results here, which are still the best of many at-268

tempts, we feel obligated to give an overview into the many failed different methods we269

tried to use:270

Oversampling Simply oversampling the positive class does not yield an improvement.271

SMOTE Synthetic minority over-sampling technique (Chawla et al., 2002) can272

be used to oversample an underrepresented class in data. Contrary273

to oversampling, samples are not simply repeated but synthetically274

created to be similar to known samples but not identical. Both lead275

to increased overfitting and make it harder for the model to gener-276

alise277

Different Networks We create simpler convolutional networks that should be more ca-278

pable of solving time series forecasting but lack the ability to gen-279

eralise to other problems however none of them are able to perform280

to the standards of the model we finally present here. We also try281

different configurations for the residual units that make up this net-282

work.283

Class Weights Different weights for the classes only have the effect that the network284

is even more likely to classify everything as positive or negative.285

PCA Principal component analysis has a positive effect in that it reduces286

training time without having a negative impact on the outcome. We287

believe that when attempting this with more data in the future PCA288

on the feature space will be an important tool.289

IMF interpolation Increasing the allowed time for IMF interpolation to reduce the amount290

of outages in the training data increased the amount of available data291

but does not have a positive effect on the predictive capabilities of292

the network.293

Imager range Increasing the range of substorms around the imager from 10◦ to 20◦294

has no effect.295

Hyperparameters Learning rate and batch size were adjusted by trial and error over296

several training processes to find the best working combination that297

allows training without immediate overfitting but still allow the net-298

work to learn and generalise.299

Overall, we conclude that there needs to be a significant increase in training data300

for this approach to be feasible.301

4.5 Discussion302

Our reproduced model confirms the viability of the approach previously demon-303

strated by Maimaiti et al. (2019). Using deep neural networks is a viable method to fore-304

cast the onset of substorms on a global scale and could or should be used in a live en-305

vironment for space weather forecasts in the future. When reproducing their model, we306

found that when accounting for more realistic conditions in the validation data, the model’s307

precision is worse than previously reported. The previous model achieved recall rates of308

73% at 75% balanced precision, our model obtained 66% recall at 35% precision which309

increased to 78% when balancing the test dataset. F1-scores were 0.74 for the previous310

model and 0.46 for our model, increasing to 0.72 when balancing the test set. If a model311

like this is used in a live forecasting environment it is therefore imperative to remem-312

ber the limitation in precision of the model and that it will cause many false positive alerts.313

In terms of infrastructure, the previous model was written with tensorflow 1.12,314

ours in pytorch 1.12 and the model consists of about 30% less parameters. This should315

result in easier deployment and faster training and evaluation times .316

–12–



manuscript submitted to JGR: Space Physics

A combined approach of using space based solar wind and IMF data together with317

ground based imager data is not viable to forecast substorms yet. Our findings show that318

the accuracy of a forecasting model that performs well on just space based data does not319

translate well onto the combined approach, likely due to the lack of training data which320

cannot easily be remedied.321

To reach the same performance for our local forecasting as was achieved for the global322

forecasting more data is needed. Most of our data storage-wise comes from processing323

all sky images.324

So far we are using 4 seasons worth of images. Assuming roughly 4 months with325

10 h coverage a day out of which half of the images will have to be discarded because of326

weather, we are left with 4 season∗4months/season∗10 hour/day∗1/2 = 0.278 data-327

years of coverage. Around 72 times as much data, or 288 seasons of all sky imager cov-328

erage will be needed to obtain the 20 data-years that were used in satellite data. This329

would require the processing of roughly 288 season∗4months/season∗30 day/month∗330

10 hour/day ∗ 60 images/hour ≈ 21M images. Since Themis provides the images on-331

line only on a per-hour basis, this would amount to roughly 100TB of data after down-332

load, extraction and storage. Processing is therefore only feasible with direct access to333

all the data or a combined effort in the space physics community would be required to334

make the images across different sources available under the same standards. This could335

for example be realised through a collaborative website where images will be queried by336

time or predicted image classes. Agreeing on a common feature extractor for prediction337

would also enable the search for similar images by querying feature space directly. Shar-338

ing image features instead of raw image data also serves as a form of data-compression339

by a factor of ≈ 300.340

We still believe that such an approach could yield an improvement to the purely341

global approach and give a more precise result in terms of time and location for the sub-342

storm.343

5 Conclusion & Outlook344

We combined two methods for the forecasting of substorm onsets, one of which uses345

IMF and solar wind data to forecast substorms globally and one which uses image data346

to forecast substorms locally. To show the general capabilities of our combined model,347

we successfully reproduce the results of the study performing global forecasting and give348

a better estimate of the model’s performance under real-world conditions. Compared to349

the local forecasting our model performs better but overall it does not manage to reach350

the necessary performance for it to be deployed in a research environment in a useful man-351

ner.352

This failure is not with the here-employed method, but rather a lack of training353

data and the inherent complexity of the problem, which might not be suitable to be de-354

scribed with the used model at the moment. The amount of data would have to be in-355

creased about 72-fold and it is therefore not feasible to perform this in this study. Be-356

cause our model and data are freely and openly available, anyone with access to more357

or better training data might be able to use this in the future.358

Open Research359

The data and code for this project are provided on https://doi.org/10.11582/360

2023.00023 and http://tid.uio.no/plasma/LOCATE/ respectively. Both are available361

under open source licenses.362
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Figure 2.
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Figure 3.
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 8.
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