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Abstract

This study applied representation learning algorithms to satellite images and evaluated the learned latent spaces with clas-
sifications of various weather events. The algorithms investigated include the classical linear transformation, i.e., principal
component analysis (PCA), state-of-the-art deep learning method, i.e., convolutional autoencoder (CAE), and a residual net-
work pre-trained with large image datasets (PT). The experiment results indicated that the latent space learned by CAE
consistently showed higher threat scores for all classification tasks. The classifications with PCA yielded high hit rates but also
high false-alarm rates. In addition, the PT performed exceptionally well at recognizing tropical cyclones but was inferior in
other tasks.

Further experiments suggested that representations learned from higher-resolution datasets are superior in all classification
tasks for deep-learning algorithms, i.e., CAE and PT. We also found that smaller latent space sizes had little impact on the
classification task’s hit rate. Still, a latent space dimension smaller than 128 caused a significantly higher false-alarm rate.

Though the CAE can learn latent spaces effectively and efficiently, the interpretation of the learned representation lacks direct

connections to physical attributions. Therefore, developing a physics-informed version of CAE can be a promising outlook for

the current work.
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Key Points: 13 

• The features of satellite images learned by the convolutional autoencoder performed the 14 
best in multiple weather classification tasks. 15 

• The PCA is a powerful feature learner for high hit rates, but it came with higher false 16 
alarms and didn't benefit from high-resolution data. 17 

• The proposed framework combined representation learning algorithms with explainable 18 
classification methods and can be applied to more complicated problems. 19 

 20 
  21 
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Abstract 22 

This study applied representation learning algorithms to satellite images and evaluated the 23 
learned latent spaces with classifications of various weather events. The algorithms investigated 24 
include the classical linear transformation, i.e., principal component analysis (PCA), state-of-the-25 
art deep learning method, i.e., convolutional autoencoder (CAE), and a residual network pre-26 
trained with large image datasets (PT). The experiment results indicated that the latent space 27 
learned by CAE consistently showed higher threat scores for all classification tasks. The 28 
classifications with PCA yielded high hit rates but also high false-alarm rates. In addition, the PT 29 
performed exceptionally well at recognizing tropical cyclones but was inferior in other tasks. 30 

Further experiments suggested that representations learned from higher-resolution datasets are 31 
superior in all classification tasks for deep-learning algorithms, i.e., CAE and PT. We also found 32 
that smaller latent space sizes had little impact on the classification task's hit rate. Still, a latent 33 
space dimension smaller than 128 caused a significantly higher false-alarm rate.  34 

Though the CAE can learn latent spaces effectively and efficiently, the interpretation of the 35 
learned representation lacks direct connections to physical attributions. Therefore, developing a 36 
physics-informed version of CAE can be a promising outlook for the current work. 37 

 38 

Plain Language Summary 39 

Our work compared classical and AI-based methods of deriving features from satellite images. 40 
We used the learned features to identify a few weather events that are defined in very different 41 
ways. The results showed that the AI-based methods, especially CAE, performed the best among 42 
most tasks and can be improved using higher-resolution images. The classical method, PCA, had 43 
a similar performance in "identifying an event when it actually happened" but suffered from 44 
more false alarms. Finally, we outlook to improving the CAE with better interpretability in terms 45 
of physics in the future. 46 

 47 

1 Introduction 48 

Satellite imagery is an essential tool for weather diagnosis and forecasting. It enables 49 
meteorologists to overview the large and synoptic scale weather systems and their movement. In 50 
addition, the imagery allows the monitoring and detection of smaller-scale phenomena such as 51 
convective cells, thunderstorms, and fog. As the resolution and coverage of satellite imagery 52 
increased over time, the data amount also grew significantly. Besides allocating more 53 
computational resources for processing satellite data, we can also leverage algorithms to derive 54 
features from a large amount of data.  55 

Representation learning is a machine learning subfield focusing on "learning 56 
representations of data that make it easier to extract useful information when building classifiers 57 
or other predictors" (Bengio, 2013). The early purpose of representation learning, or feature 58 
extraction, was to reduce the data dimension to a manageable size. After decades of 59 
development, the focus of representation learning has shifted in a few aspects. First, the interest 60 
in the related techniques changed from dimension reduction to finding the internal manifolds of 61 
the data. Second, the derivation of features moved from depending on domain knowledge to 62 
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automatic discovery methods. Finally, the results of learning algorithms shifted from task-63 
specific features to abstract, task-invariant representations. 64 

From linear transformation like principal component analysis (PCA) to manually 65 
designed heuristics, early feature extraction techniques were developed for specific tasks and 66 
relied on experts' domain knowledge. This feature-engineering step takes advantage of human 67 
expertise and prior knowledge to aid the fact that most machine-learning algorithms cannot 68 
extract and organize discriminative information from the data. While the study of Artificial 69 
Intelligence (AI) aims to develop systems that understand the world around us, algorithms that 70 
can automatically explore the internal structures of data came into the focus of machine learning 71 
research. Under this context, the features derived from data were interpreted as vectors in the 72 
latent spaces or manifolds. While deep neural networks came into the spotlight, representation 73 
learning was considered can not only extract features from data but also form abstract 74 
characteristics through stacking more layers of neural networks (Bengio, 2009). 75 

Bengio and colleagues reviewed the recent development of representation learning 76 
(Bengio et al., 2013). They discussed the criteria for evaluating learned representations and 77 
pointed out that deep learning approaches have succeeded in multi-task learning and domain 78 
adaptation (Krizhevsky et al., 2012; Collobert et al., 2011). This concept inspired us to apply 79 
representations learning algorithms to satellite observations and to evaluate the learned features 80 
against various atmospheric phenomena. 81 

The rapid development of remote sensing technology has increased the availability of 82 
large-scale satellite datasets. With machine learning gaining more and more attention in 83 
scientific research, several attempts have been made to apply deep-learning to satellite data. For 84 
example, object recognition in satellite images is essential for geographical information retrieval 85 
and leads to land management and ecology applications (Lu et al., 2017; Jean et al., 2019; Proll, 86 
2019; Alshahrani et al., 2021; Valero et al., 2021). Researchers also applied deep learning 87 
algorithms to satellite images to detect tropical cyclones (Pradhan et al., 2017; Chen et al., 2019; 88 
Zheng et al., 2019), atmospheric rivers (Chapman et al., 2019), horizontal visibility (Amiri and 89 
Soleimani, 2022), and air quality (Sorek-Hame et al., 2022). Despite these efforts, few attempts 90 
have been made to explore the representations learned with deep neural networks. In this study, 91 
we apply representation learning algorithms to satellite images and evaluate the learned features 92 
by classifying multiple atmospheric phenomena. In the designed experiments, we investigated 93 
the Convolutional Autoencoder (CAE) and pre-trained Residual Networks (ResNet) and 94 
compared the results to the classical PCA. 95 

The representation learning methods, the datasets, and the experimental design are 96 
described in the following section. The evaluations of the classification of multiple weather 97 
events are summarized in the Results section, followed by discussions and concluding remarks. 98 

2 Methods 99 

In this study, we investigated three practices of representation learning, namely Principal 100 
Component Analysis (PCA), Auto-Encoder with convolutional kernels (AE), and pre-trained 101 
Residual Network (PT). The following subsections introduce each approach and why we choose 102 
it for our task. 103 
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2.1 Principal Component Analysis 104 

Since its first introduction by Karl Pearson in 1901, Principal Component Analysis 105 
(PCA) has been widely used as a pattern discovery tool in various scientific fields. Theoretically, 106 
PCA can be thought of as fitting a p-dimensional ellipsoid to the data, where each ellipsoid axis 107 
represents a principal component. The fitting process can be mathematically achieved by 108 
performing eigendecomposition on the covariance matrix. 109 

Though Pearson's work was the first documented, scientists in the early 20th century 110 
came up with similar ideas with different names. For example, researchers use the term empirical 111 
orthogonal function (EOF) for the same method in meteorology and geophysics. This approach 112 
was widely applied to climate research and resulted in significant findings such as ENSO 113 
(Trenberth, 1997). 114 

There have been several improvements in PCA in the past 100 years, and we want to 115 
address a few milestones that led to the PCA implementation used in our work. The first 116 
improvement for numerical PCA is using the singular value decomposition (SVD) to replace the 117 
eigendecomposition. The SVD is a factorization method that generalizes from a square-normal 118 
matrix to any n x m matrix. The SVD provides a stable numerical solver for matrix factorization, 119 
but the computational cost is still considerable when the data dimension is high. For example, the 120 
data size can be too large to be stored locally and computed simultaneously. Ross and colleagues 121 
introduced an incremental learning approach that enables us to apply PCA to such datasets (Ross 122 
et al., 2008). In other cases where the data dimension is too high to be factorized efficiently, the 123 
Randomized SVD, a low-rank matrix approximation algorithm introduced by Halko and 124 
colleagues, vastly increases the computational efficiency (Halko et al., 2011). 125 

This study used incremental PCA with a randomized SVD solver implemented in the 126 
scikit-learn package (Pedregosa et al., 2011). Thus, we managed to project the 30 years of 127 
satellite images (256 x 256 pixels) into vectors with the desired length. 128 

2.2 Autoencoder 129 

The autoencoder (AE) is an artificial neural network (ANN) used to find a latent space 130 
that can represent the data efficiently. An autoencoder consists of two parts: an encoder that 131 
projects the original data into the latent space and a decoder that projects vectors from the latent 132 
space into the original dimension. The two sub-networks are then trained together with 133 
adequately designed objective functions to preserve specific properties in the latent space. For 134 
example, such an autoencoder can serve as an efficient compression model for similar data by 135 
minimizing the root-mean-squared error (RMSE) between the original data and the model 136 
output. The vectors in the latent space can be seen as abstract representations of the original data. 137 
The flexibility of ANNs allows users to learn a latent space with desired properties by choosing 138 
the corresponding loss function and ANN architecture. 139 

Integrating the convolutional kernels in ANN is one of the breakthroughs in image 140 
recognition (LeCun et al., 1989). In image processing, the kernel, also known as the convolution 141 
filter, is a small matrix that operates on original image elements and creates a new image. Such a 142 
process is a form of mathematical convolution referred to as image convolution.  143 

This study used the convolutional autoencoder (CAE) with the objective function of 144 
minimizing RMSE to encode the satellite images into a latent space. The algorithm design and 145 
sample code can be found in our FAIR Data Compliance (Yo, 2023). 146 
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2.3 Pre-trained model 147 

Pre-training neural network models with large datasets is a critical technique in 148 
convolutional neural network research (Krizhevsky et al., 2012). This approach arose from the 149 
discovery that the learned features on one computer vision task can be transferred to another and 150 
led to the studies of general visual representation learning (Kolesnikov et al., 2020). Though He 151 
et al. (2018) demonstrated that pre-trained models did not perform better than those trained from 152 
scratch, Hendrycks et al. (2019) have shown that pre-training can improve model robustness and 153 
uncertainty. Despite the debates,  fine-tuning models pre-trained with large datasets is common 154 
in computer vision and natural language processing (Han et al., 2021). 155 

In this study, we used a 50-layered residual network (ResNet50) pre-trained with 156 
ImageNet (He et al., 2016) and BigEarthNet (Neumann et al., 2019; Sumbul et al., 2019), which 157 
can take images of any size and map them into feature vectors in the length of 2,048. 158 

3 Data and Experiment Design 159 

This study used the Gridded Satellite dataset (GridSat-B1, Knapp et al., 2011) for 160 
representation learning. And since we used the synoptic weather events to evaluate the 161 
effectiveness of the learned representations, an open data set of atmospheric events near Taiwan 162 
(TAD, Su et al., 2022) was used as the source of information. A brief introduction of the data and 163 
preprocessing procedures is discussed in the following sections. 164 

3.1 GridSat-B1 CDR 165 

Gridded Satellite data used in our study are gridded International Satellite Cloud 166 
Climatology Project (ISCCP) B1 data on a 0.07-degree latitude equal-angle grid. Satellites are 167 
merged by selecting the nadir-most observations for each grid point. The Geostationary IR 168 
Channel Brightness Temperature (BT)- GridSat-B1 Climate Data Record (CDR) provides global 169 
BT data from geostationary Infrared (IR) satellites. 170 

3.2 Weather Events 171 

The Taiwan Atmospheric Event Database (TAD, Su et al., 2022) contains everyday 172 
synoptic weather events over the Taiwan area from 1980 to 2020. We selected four types of 173 
events in TAD, i.e., front, tropical cyclones, north-easterlies, and south-westerlies. A brief 174 
introduction of these events and their definitions in TAD is described as follows. 175 

3.2.1 Front (FT) 176 

Weather fronts represent the transition zone between two air masses. Across a front, there 177 
can be significant variations in temperature and wind direction. Although the fronts were heavily 178 
studied and a few methods existed to define the front objectively, they may not be suitable for 179 
the subtropical fronts in Taiwan due to the differences in the thermodynamic properties (Chang 180 
et al., 2019). Therefore, Su and colleagues defined a rectangle covering the Taiwan and nearby 181 
areas (21° to 26°N, 119° to 123° E). Based on the daily surface map issued by the Central 182 
Weather Bureau (CWB) at 00Z (8:00 LTC), the front event is defined whenever the labeled front 183 
system on the surface map passes through this rectangle. 184 
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 185 

3.2.2 North-easterlies (NE) 186 

The north-easterlies in the Taiwan area are part of the winter monsoon in East Asia and 187 
influence the precipitation in Taiwan's northern part during winter. In TAD, Su et al. used the 188 
daily average wind of the Pengjiayu weather station as the indicator of the north-easterlies. The 189 
day is labeled an NE event if the average wind direction is between 15 to 75 degrees and the 190 
wind speed is above 4m/s. 191 

3.2.3 South-westerlies (SWF) 192 

Like the north-easterlies, the south-westerlies in Taiwan represent the large-scale 193 
circulation pattern in summer. The TAD used the reanalysis wind field at 850hPa provided by 194 
the Nation Centers for Environmental Prediction (NCEP) as a reference due to the lack of 195 
weather stations in the upstream region. Su et al. derived the averaged wind properties in a 196 
rectangular area between 16° to 22.5° N and 110° to 120°E and labeled an averaged north-197 
eastward wind with wind speed greater than 3m/s as an SWF event. 198 

3.2.4 Heavy Rainfall (HR) 199 

The heavy rainfall events are defined by precipitation records of the CWB weather 200 
stations. We labeled an HR event while any weather station recorded more than 10mm/hr 201 
precipitation within a day. This definition differs from CWB's official operation. Specifically, we 202 
lowered the threshold from 99% percentile rank to 90% to create a balanced event record. 203 

3.2.5 Tropical Cyclones in the Northwestern Pacific Ocean (NWPTC) 204 

The International Best Track Archive defines the typhoon events in TAD for Climate 205 
Stewardship (IBTrACS, Knapp, et al., 2010) from the World Data Center for Meteorology 206 
(WDC). Su et al. categorized the typhoon events as within 100km, 200km, 300km, 500km, and 207 
1000km of Taiwan's coastline. The TAD also defined an event that there existed tropical 208 
cyclones over the Northwestern Pacific Ocean, NWPTC, as the IBTrACS records being within 209 
the range of 0° to 60°N, 100° to 160° E. We choose the NWPTC as one classification task for 210 
learned representations. 211 

 212 

As explained above, the five chosen weather events are defined in various ways. For 213 
example, though FT and NWPTC are specified manually by human experts, the IBTrACS used 214 
for NWPTC is a visible point, while the weather front is an imaginary line. Moreover, NE and 215 
SWF are wind-field-based events, but they are defined by one weather station and a large region. 216 
Finally, the heavy-rainfall events are depicted with multiple weather stations. These five events 217 
are selected to represent the common weather types in the Taiwan area and different ways of 218 
definitions. 219 

We selected GridSat-B1 data and the weather events during 2013 ~ 2016 for further 220 
analysis, and Table 1 summarizes the counts and frequency of the five events. 221 
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Table 1. The counts and frequency of the selected events during 2013~2016. 222 

 223 

 224 

 225 

 226 

3.3 Experiment Design 227 

The complete experiment design of this study is shown in Figure 1. In the preprocessing 228 
step, the original GridSat-B1 dataset was cropped to 0 - 60 N and 100 - 160 E and then rescaled 229 
to float numbers between 0 and 1 (divided by 255). Afterward, we used the bilinear interpolation 230 
algorithm to interpolate the original resolution from 864x864 to 256x256 and 512x512. 231 

In the representation learning step, we applied PCA, CAE, and the pre-trained RestNet50 232 
to the preprocessed data. Each method resulted in a set of feature vectors of length 2048. Finally, 233 
we use the feature vectors as the independent variables and a simple linear classifier, the logistic 234 
regression, to identify the five weather events described above. 235 

The logistic regression is a statistical model that models the probability of an event. Like 236 
linear regression, logistic regression formulates the linear combination of independent variables 237 
and outputs a prediction. Unlike linear regression, the logistic regression model uses the linear 238 
formulation's logit function to model the dependent variable's log odds. Hence, the logistic 239 
regression prediction indicates the probability of the dependent variable and can be used to 240 
perform binary classification (Hastie et al., 2009). 241 

The classification process was evaluated with the 10-fold cross-validation scheme (Hastie 242 
et al., 2009). Furthermore, we focused on three metrics commonly used in forecasting, i.e., the 243 
hit rate, false-alarm rate, and the threat score (Jolliffe and David, 2011). The workflow of the 244 
experiment is illustrated in Figure 1. 245 

We designed a series of experiments with the same workflow. Experiment 1 is based on 246 
preprocessed GridSat-B1 dataset with a resolution of 256x256 and serves as the baseline. 247 
Experiment 2 is similar to experiment 1 but with a data resolution of 512x512 to examine the 248 
performance of algorithms under better data resolution. In experiment 3, we conducted the same 249 

Event Counts Frequency 

FT 244 0.17 

NE 471 0.32 

SWF 406 0.28 

HR 520 0.36 

NWPTC 702 0.48 
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dashed lines. The weather events are shown as different symbols, while algorithms are shown in 290 
different colors. 291 

 292 

4.2 Experiment 2: the resolution of the satellite images 293 

Main experiment 1 is conducted on the dataset of 256x256 resolution. While there will be 294 
more and more high-resolution satellite images available as time goes by, we wanted to check 295 
whether the learning algorithms can perform better using high-resolution data. Thus, we 296 
conducted the same set of tests on the dataset of 512x512 resolution.  297 

The Roebber plot of experiment 2 is shown in figure 3. The relative performance for the 298 
high-resolution experiment is similar to experiment 1, where CAE also gave the highest threat 299 
scores except for the NWPTC events. Figure 4 shows the evaluation metrics of the classification 300 
with the high-resolution data subtracted by the corresponding values of the low-resolution 301 
configuration. As indicated in Figure 4, the dataset with a higher resolution overall has a better 302 
performance than experiment 1 for CAE and PT. However, PCA didn't seem to benefit from the 303 
higher-resolution dataset, while It is commonly believed that higher-resolution satellite images 304 
could provide more details about the atmospheric phenomenon. These results implied that CAE 305 
could be a better choice for researchers who wants to take advantage of the increasing 306 
availability of high-resolution datasets. The full table of the results of the high-resolution 307 
experiment can be found in the supporting information. 308 
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 320 

4.3 Experiment 3: the sizes of the latent space 321 

In experiments 1 and 2, we forced the dimension of latent spaces to be 2048. This number 322 
is set to be consistent with the pre-trained model (PT). For algorithms other than pre-trained 323 
models, will the performance be different if we change the sizes of the latent spaces? 324 

We conducted the same classification tasks for latent space dimensions ranging from 4 325 
(2^2) to 2048 (2^11), and the results are shown in Figure 5. Figure 5 indicates that the hit rate 326 
(POD) didn't change much when using smaller latent space. However, the false-alarm rate 327 
increased, so the threat score dropped. This trend is consistent for both methods, while the 328 
optimal latent space size differs for various weather events. 329 

Another observation from Figure 5 is that PCA seemed more robust than CAE when 330 
using a smaller latent space dimension. Take the FT event, for example; if we look at the threat 331 
score (the black lines), CAE (the dashed line) underperformed PCA (the solid line) when the 332 
dimension size was smaller than 128. This crossover varied in other events, but CAE always lost 333 
advantages when the latent space dimension was small. Moreover, the change in the 334 
classification metrics for PCA is much smoother than for CAE, which indicates the classic linear 335 
transformation algorithm is more robust in nature. 336 
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5.1 The reconstruction from the latent space 350 

Among the investigated representation learning methods, both PCA and CAE provide 351 
mechanisms to reconstruct the data from the latent space. We selected one case for each weather 352 
type and illustrated the original data (left panel), the reconstruction with the first 2048 principal 353 
components (the center panel), and that with the CAE (the right panel) in Figure 5. Figure 5 354 
shows that both reconstruction methods keep the general pattern and lose fine details, which is 355 
expected since we compress the data size from 65,535 points to 2,048. However, while the 356 
reconstruction with CAE represented a smooth and blurry version of the original image, the PCA 357 
reconstruction exhibited high-frequency noises in the figures. Such results are expected when 358 
applying PCA to spatial data because the low-frequency modes usually come with larger 359 
eigenvalues; hence, our reconstructions remove certain high-frequency information (Novembre 360 
and Stephens, 2008). 361 
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Figure 6. The original GRidSat-B1 images (left column) and their reconstructions (center column 363 
for PCA and right column for CAE) of five selected cases. 364 

 365 

5.2 The interpretation of the representations 366 

The approach proposed in this study combined learned representations and a generalized 367 
linear model to identify weather events. The significance tests of GLM can indicate the 368 
importance of the learned features. Therefore, for each classification task, the proposed 369 
framework can lead to an interpretable model as long as we can interpret the learned 370 
representations. For example, table 2 summarizes the GLM results of using CAE-derived feature 371 
vectors to predict the SWF event. Here we use the latent space size of 8 for readability. In table 372 
2, we see that feature 1, 2, and 5 pass the significance test at the level of P < 0.001 and may be 373 
worth further investigation. The same analysis can be performed with feature vectors derived 374 
from PCA and other representation-learning algorithms. 375 

Although we used GLM in this study, other classification algorithms that can indicate the 376 
relative importance of predicting variables, e.g., tree-based algorithms such as random forest 377 
(Breiman, 2001) and gradient boosting machine (Friedman, 2001), can also serve as alternatives. 378 

As discussed in the method section, PCA has long been used in atmospheric science 379 
studies. Each principal component can be directly illustrated on the map and interpreted by 380 
domain experts. In contrast, autoencoders mapped the data into an abstract latent space where 381 
each dimension is a nonlinear mapping of the input space. Thus, direct visualization of the axis 382 
of the latent vectors may not be human-readable, hindering its interpretability. 383 

 384 

Table 2. The summary table of the generalized linear model (logistic regression) for predicting 385 
the SWF event using CAE-derived features. 386 

Feature Coeficient Std-Error z P>|z| 95% CI 

0 0 0 NA NA [0, 0] 
1 4.34e-1 5.1e-2 8.489 0.000 [0.334, 0.535] 
2 8.96e-17 8.6e-18 10.425 0.000 [7.4e-17,1.2e-16] 
3 4.16e-2 7.0e-2 0.596 0.551 [-0.095, 0.178] 
4 -1.04e-17 8.6e-18 -1.199 0.230 [-2.7e-17, 6.57e-18] 
5 -3.99e-1 3.0e-2 -13.206 0.000 [-0.458, -0.339] 
6 0 0 NA NA [0, 0] 
7 7.6e-3 3.0e-2 0.255 0.799 [-0.051, 0.066] 

 387 

 388 

 389 
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5.3 The computational costs 390 

Finally, we want to note the investigated algorithms' computational cost as a reference. 391 
All experiments of this study were conducted on a server with 12 CPU cores of 3.7GHz. The 392 
server has 64GB memory and an NVIDIA RTX-2080Ti GPU for accelerating deep neural 393 
network computation. The computational and storage costs are summarized in Table 3. As 394 
shown in Table 3, CAE is the most affordable method for computation time and storage space, 395 
given that GPU acceleration is available. The software package used for PCA by default uses all 396 
CPU cores and gets decent acceleration. We also conducted another deep learning method in the 397 
original experimental design, Variational Autoencoder (CVAE). However, the classification 398 
results were not comparable to other methods and hence were not shown in the report.  399 

 400 

Table 3. The computational cost of PCA and CAE. 401 

 PCA CAE 

Learning Time (256x256) ~26 minutes ~6 minutes 

                            (512x512) ~183 minutes ~23 minutes 

Storage (256x256) 1.1GB 1.8MB 

 (512x512) 4.1GB 6.2MB 

CPU 12 1 

GPU acceleration No Yes 

 402 

 403 

5.4 Concluding Remarks 404 

In this study, we investigated representation learning algorithms on satellite images and 405 
evaluated the learned latent spaces with classifications of various weather events. The 406 
experiment results suggested that the convolutional autoencoder (CAE) can effectively project 407 
the data into latent spaces and showed the highest threat scores in all tasks. At the same time, the 408 
classic linear transform, PCA, yielded a similar hit rate but a higher false-alarm rate. The pre-409 
trained model performed exceptionally well at recognizing tropical cyclones but was inferior in 410 
other tasks. 411 

The classification performance for different weather events varied depending on how 412 
relevant their definitions are to the brightness temperature. For example, while SWF events and 413 
tropical cyclones usually occur with significantly high clouds, their hit rates and threat scores are 414 
much higher than subjectively defined events such as front.  415 

Further experiments suggested that representations learned from higher-resolution 416 
datasets are superior in all classification tasks, and the CAE can benefit more than other 417 
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algorithms. We also found that smaller latent space sizes had little impact on the classification 418 
task's hit rate as long as the dimension size was larger than 128. However, a small latent space 419 
dimension could cause a significantly higher false-alarm rate.  420 

In terms of interpretability, the features learned by PCA can be easily visualized in the 421 
physical domain and interpreted by domain experts. In contrast, though the visualization of CAE 422 
is possible, the lack of a direct connection to physical attributions could be the weakness of this 423 
approach. 424 

The convolutional autoencoder (CAE) is an effective and efficient representation learning 425 
algorithm. The feature vectors learned with CAE showed good performance in various 426 
classification tasks, and its performance benefits from high-resolution satellite images more than 427 
other algorithms. However, its lack of physical interpretability suggested further studies on 428 
incorporating physics terms into the deep neural network algorithms to construct efficient and 429 
physically interpretable representations. 430 

Finally, we want to comment on the implications of our work for disaster reduction. 431 
While a high hit rate in identifying extreme weather events is crucial, our results suggested that 432 
both PCA and CAE with a small latent space size can be useful for risk management. If we 433 
consider the future availability of high-resolution and multiple-modal data, CAE is a technology 434 
worth investing in. 435 
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Figure 1. The flow chart of the experiment design. 565 

Figure 2. The performance diagram (Roebber plot) of experiment 1. The standard metrics of 566 
binary classification tasks, i.e., probability of detection (POD; also known as the hit rate), false 567 
alarm ratio (FAR) or its opposite, the success ratio (SR), bias and critical success index (CSI; 568 
also known as the threat score) are represented as the x-axis, y-axis, the solid contours, and the 569 
dashed lines. The weather events are shown as different symbols, while algorithms are shown in 570 
different colors. 571 

Figure 3. The performance diagram (Roebber plot) of experiment 2. The weather events are 572 
shown as different symbols, while algorithms are shown in different colors. 573 

Figure 4. The change in evaluation metrics between high-resolution (512x512) and low-574 
resolution (256x256) datasets. A positive value means the evaluation metric of the high-575 
resolution experiment is higher than that in the low-resolution configuration. Positive values of 576 
threat score (panel a) and hit rate (panel b) and negative values of false-alarm rate (panel c) 577 
represent an improvement while using high-resolution data. 578 

Figure 5. The threat scores (dash-dotted line), the hit rates (solid line), and the false-alarm rates 579 
(dashed line) of the classification with different sizes of the latent space. The PCA is colored in 580 
red, and CAE in green. 581 

Figure 6. The original GRidSat-B1 images (left column) and their reconstructions (center 582 
column for PCA and right column for CAE) of five selected cases. 583 

 584 

Table 1. The counts and frequency of the selected events during 2013~2016. 585 

Table 2. The summary table of the generalized linear model (logistic regression) for predicting 586 
the SWF event using CAE-derived features. 587 

Table 3. The computational cost of PCA and CAE. 588 
 589 


