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Abstract

We use sparse dictionary learning to develop transformations between seismic velocity models of different resolution and spatial

extent. Starting with results in the common region of both models, the method can be used to enhance a regional lower-resolution

model to match the style and resolution of local higher-resolution results while preserving its regional coverage. The method

is demonstrated by applying it to two-dimensional Vs and three-dimensional VP and VS local and regional velocity models

in southern California. The enhanced reconstructed models exhibit clear visual improvements, especially in the reconstructed

VP/VS ratios, and better correlations with geological features. We demonstrate the improvements of the reconstructed model

relative to the original velocity model by comparing waveform simulation results to observations. The improved fitting to

observed waveforms extends beyond the domain of the overlapping region. The developed dictionary learning approach provides

physically interpretable results and offers a powerful tool for additional applications for data enhancement in earth sciences.
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Abstract14

We use sparse dictionary learning to develop transformations between seismic velocity mod-15

els of different resolution and spatial extent. Starting with results in the common region16

of both models, the method can be used to enhance a regional lower-resolution model to17

match the style and resolution of local higher-resolution results while preserving its re-18

gional coverage. The method is demonstrated by applying it to two-dimensional Vs and19

three-dimensional VP and VS local and regional velocity models in southern California. The20

enhanced reconstructed models exhibit clear visual improvements, especially in the recon-21

structed VP /VS ratios, and better correlations with geological features. We demonstrate22

the improvements of the reconstructed model relative to the original velocity model by23

comparing waveform simulation results to observations. The improved fitting to observed24

waveforms extends beyond the domain of the overlapping region. The developed dictionary25

learning approach provides physically interpretable results and offers a powerful tool for26

additional applications for data enhancement in earth sciences.27

Plain Language Summary28

Seismic velocity models are essential for many applications including derivation of earth-29

quake properties, studies of tectonic processes, and analysis of earthquake ground mo-30

tions. In various places there are velocity models of different spatial coverage and res-31

olution. To benefit from the complementary strengths of such models, we develop a new32

method for enhancing regional velocity models of relatively low-resolution with informa-33

tion contained in local higher-resolution models. The method builds a transformation34

between different models in their common local region based on a sparse dictionary learn-35

ing and then uses the transformation outside the common region. We apply the method36

to seismic velocity models in southern California and show that the enhanced regional37

model outperforms the original velocity model in fitting earthquake waveforms and also38

has better consistency with geological features. The method has a potential for improv-39

ing the quality of other data sets in earth science.40

1 Introduction41

Seismic velocity models are foundational to numerous applications including deriva-42

tions of earthquake source properties, simulations of seismic ground motion from scenario43

earthquakes, and a broad range of structural and tectonophysics topics. The spatial cov-44

erage and resolution of derived velocity models depend on the data and inversion methods45

used, and models of widely different scales and resolutions are often available in well-studied46

regions. In southern California, there are several regional velocity models with a nominal47

resolution of about 5 km (e.g. Lee et al., 2014; Shaw et al., 2015; Fang et al., 2022), along48

with models focusing on the San Jacinto and San Andreas faults with a nominal resolution49

of 2-3 km (e.g. Allam & Ben-Zion, 2012; Zigone et al., 2015; Fang et al., 2019; Share et50

al., 2019). More local models based on dense array data can have resolution approaching51

tens of meters (e.g. Hillers et al., 2016; Mordret et al., 2019) and results based on borehole52

data can resolve sub-cm features (e.g. Gibbs et al., 2001; Bonilla et al., 2002). Developing53

methods to merge velocity models of different scales and resolutions can provide multi-scale54

frameworks that benefit from the complementary strengths of the different results.55
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The most straightforward approach to combine models is to embed small-scale high-56

resolution velocity models within regional models and smooth the boundaries (e.g. Fichtner57

et al., 2018; Ajala & Persaud, 2021). While this approach is simple, the obtained seismic58

velocities near the boundaries between models depend on ad-hoc choices of the applied59

smoothing parameters. Importantly, local perturbations to seismic wavefields generated60

near the boundaries between models can affect the seismic wavefield on a regional scale61

(e.g. Juarez & Ben-Zion, 2020; Ajala & Persaud, 2021; Yeh & Olsen, 2022). Furthermore,62

embedding only updates the low-resolution model in the area covered by the high-resolution63

results, without enhancing the outer region, and such procedures disregard useful informa-64

tion from the low-resolution results in the area covered by the high-resolution model. In65

the present study we develop a method for merging multi-scale velocity models by estab-66

lishing a transformation between models of different resolutions. Specifically, we develop a67

transformation by comparing high- and low- resolution imaging results in a given region and68

then utilize this transformation to enhance the low-resolution model both in the overlapping69

region as well as outside it.70

The developed methodology is inspired by progress made in machine learning algorithms71

for super-resolution (Dong et al., 2015) and style transfer (Gatys et al., 2016) of images. To72

merge seismic velocity models, we use a data-driven approach based on sparse dictionary73

learning (Yang et al., 2008; Mairal et al., 2009). Since the available amount of data is74

limited, we opt for this approach over Convolutional Neural Networks (CNN) that demand75

a large number of trainable parameters. Dictionary learning involves a linear decomposition76

of an input signal utilizing a small set of basis signals, referred to as atoms, which are77

learned from the data. This technique has achieved impressive outcomes in various image78

and video processing tasks. In seismology, dictionary learning was used for signal denoising79

(Beckouche & Ma, 2014) and for seismic tomography (Bianco & Gerstoft, 2018). Dictionary80

learning has the added benefits of being physically interpretable (in contrast to CNN), and81

better generalization capability than CNN when the dataset is limited (Sulam et al., 2020).82

In the following sections, we first introduce a framework for representing seismic velocity83

models using dictionaries and subsequently devise a method for developing a transforma-84

tion between models that can enrich the lower-resolution model. As initial applications,85

we implement the technique on both 2D and 3D velocity models in southern California86

with different resolution and spatial extent. We generate an enhanced reconstructed ver-87

sion of the regional community velocity model CVM-S4.26 (Lee et al., 2014) utilizing a88

higher-resolution model around the San Jacinto fault zone (Fang et al., 2019), and demon-89

strate by comparing waveform simulations with observations that the reconstructed model90

outperforms the original version.91

2 Methods92

2.1 Dictionary representation of velocity models93

Dictionary Learning involves identifying a sparse representation of input data in the94

form of a linear combination of basis atoms inferred from the input data (Mairal et al.,95

2009), and it provided important results in compressed sensing and signal recovery. In96

this section, we present a novel method for applications on merging and enhancing seismic97

velocity models.98
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Figure 1. Dictionary representation of seismic velocity models and transformation between

them. (a) Horizontal slice of CVM-S4.26 at 2 km depth with a resolution of 0.09◦×0.09◦. The red

square indicates the patch used in (c). (b) A dictionary consisting of 20 atoms learned from the

velocity model in (a). (c) Each patch extracted from the velocity model can be represented as a

linear superposition of atoms in the dictionary. (d) The patch extracted from the model in (e) at

the same location can be represented using another dictionary with the same sparse representation.

(e) Horizontal slice of the Fang et al. (2019) model in the same region as (a) but with higher-

resolution. (f) A dictionary learned from the velocity model in (e). All atoms are reshaped to the

window size for better visualization.
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Seismic velocity models are represented as 2D or 3D grids that contain information99

about P wave velocity VP and/or S wave velocity VS at a set of specific spatial locations.100

Given a seismic velocity model M, we can utilize a sliding window which has the same101

dimension as the model to extract patches from it, resulting in N patches p1, ...,pN that102

represent values inside subsections of the model (Figure 1a). To simplify the description,103

we flatten each patch into a 1D array with length L representing the number of grids within104

the window (Dong et al., 2015). For example, L = 9 if the size of a 2D window is 3 × 3,105

and L = 90 if the window is a 3 × 3 × 10 cube. The set of flattened patches is denoted as106

P ∈ RL×N .107

The dictionary representation of the seismic velocity model is used to find a linear108

relationship among the patches in P and their low-dimensional projections, i.e., a dictionary109

D∗ = [d1, ...,dK ] ∈ RL×K contains K prototype atoms (with K < N usually), each with110

the same length as the patches (Figure 1b). Each patch pj ∈ RL can be represented as a111

sparse linear combination of the atoms in D∗:112

pj ≈ D∗cj =

K∑
i=1

ci,jd i, (1)113

where cj = [c1,j , ..., cK,j ]
T and ci,j and ci,j represents the sparse coefficients for patches pj114

for atoms d i (Figure 1c). These linear combinations can be written in a matrix form as115

P ≈ D∗C∗, (2)116

where C∗ = [c1, ..., cN ] ∈ RK×N is the sparse representation matrix with very few nonzero117

entries (Kreutz-Delgado et al., 2003).118

To solve the dictionary D∗ and coefficients C∗ from patches, we use a sparse coding119

algorithm (e.g. Rubinstein et al., 2010) that seeks to minimize the difference between the120

patches and the reconstruction from linear superposition121

D∗,C∗ = argmin
D,C

∥P−DC∥22 + λ∥C∥0. (3)122

where ∥ · ∥2 and ∥ · ∥0 are the second and zero order norm, respectively. The regularization123

parameter λ controls the tradeoff between the sparsity and the minimization error. Various124

algorithms, such as Orthogonal Matching Pursuit (OMP) (Mallat & Zhang, 1993) and125

Least Absolute Shrinkage and Selection Operator (LASSO) Tibshirani (1996), can be used126

to solve this optimization problem (3). After obtaining the dictionary D∗ and corresponding127

representation matrix C∗ using the sparse coding algorithm, the reconstructed patches is128

calculated as P̂ = D∗C∗. The updated velocity model can be then developed by stitching129

the reconstructed patches together in their original spatial order (Dong et al., 2015).130

2.2 Transformation between two seismic velocity models131

The dictionary representation technique can facilitate the transformation between two132

different seismic velocity models by establishing a correspondence between their respective133

dictionaries. Suppose we have an initial modelM1 and a second more local modelM2 with a134

higher-resolution that is spatially included inM1 (Figure 1a,e). Our goal is to transformM1135

to model M̂, with resolution and values in the common region of both models consistent with136

M2 and enhanced resolution outside the overlapping region. Essentially, this transformation137

should improve M1 to match the resolution and style of M2 while preserving its coverage.138

–5–



manuscript submitted to JGR: Solid Earth

To solve the problem described above, we divide it into three steps. In the first step,139

we extract patches PU
1 = [p1

1, ...,p
N1
1 ] ∈ RL1×N1 from the entire M1. A subset of PU

1 , P1 =140

[p1
1, ...,p

N2
1 ] ∈ RL1×N2 shares spatial locations with patches P2 = [p1

2, ...,p
N2
2 ] ∈ RL1×N2

141

extracted from M2. Such pairs of patches, e.g., pi
1 and pi

2, extracted from the same spatial142

locations are aligned by their index in P1 and P2. The length of the patches, L1 and L2,143

may differ due to the different resolution of M1 and M2. In the second step, we transfer144

the patches from PU
1 to P̂ to ensure that under this transformation the transformed P1 is145

consistent with P2. Finally, the transformed patches P̂ are put back to their original spatial146

location to rebuild the transformed velocity model M̂.147

The dictionary representation technique described in section 2.1 is applied in the second148

step, i.e., the transformation of patches from PU
1 to P̂. First, we represent patches in P1 as149

sparse linear combination of K atoms in a dictionary D1 = [d1
1, ...,d

K
1 ] ∈ RL1×K

150

P1 ≈ D1C. (4)151

This produces a sparse representation C ∈ RK×N2 that contains the sparse coefficients for152

each patch in P1 (Figure 1c). The dictionary D1 and the sparse representation C can be153

obtained simultaneously using sparse coding algorithms (section 2.1). We also represent the154

patches in P2 as a linear combination of atoms in a second (higher-resolution) dictionary155

D2 = [d1
2, ...,d

K
2 ] ∈ RL2×K with the same sparse representation C (Figure 1d,f)156

P2 ≈ D2C. (5)157

The atom d j
2 in D2 have one-to-one corresponding to d j

1 in D1 due to the duality between158

P1 and P2. Therefore, we can first represent PU
1 on D1 using a representation matrix CU

159

and then construct the transferred patches P̂ = D2C
U.160

In practice, we randomly divide the patches P1 and P2 into training set PT
1 , P

T
2 and161

validation set PV
1 , P

V
2 , and put each pair of patches with the same location in the same162

dataset. The training set is utilized to learn the dictionary and sparse representation matrix,163

while the validation set is used to select optimal parameters. We use the OMP algorithm to164

obtain the dictionary D1 for the train set PT
1 and the corresponding sparse representation165

CT from following optimization:166

D1,C
T = argmin

D,C
∥PT

1 −DC∥22 + λ∥C∥0. (6)167

For the derived sparse representation CT, we calculate the corresponding dictionary168

D2 = argmin
D

∥PT
2 −DCT∥22 (7)169

from PT
2 using the Least Squares Method. Then we use the validation set to evaluate the170

performance of the trained dictionaries D1 and D2. The patches in PV
1 are represented on171

the trained D1 using a sparse representation172

CV = argmin
C

∥PV
1 −D1C∥22 + λ∥C∥0. (8)173

We then compare the difference between the transferred validation set P̂
V

= D2C
V and174

PV
2 . The difference between patches P and the baseline patches P0 is defined as175

D(P,P0) =
∥P−P0∥2

∥P0∥2
. (9)176

The optimal hyper-parameters in the training procedure (e.g, the K number of atoms in177

a dictionary and the sparsity control parameter λ) are found by minimizing the difference178

D(P̂
V
,PV

2 ).179

–6–
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Figure 2. (a) Horizontal slice of Vp at 2 km depth from CVM-S4.26. The sampled resolution

is 0.09◦ × 0.09◦. (b) Reconstruction of the model in (a) using a dictionary representation. (c) The

difference (error) between the reconstruction and the original model normalized at each grid by the

value in the original model. Black lines mark major fault traces.

3 Results180

3.1 Capability of the dictionary representation181

As the basis of our methodology for transforming seismic velocity models, we first182

demonstrate the capability of representing a seismic velocity model using a dictionary with183

minimal error. We use a horizontal slice of VP at 2 km depth from the CVM-S4.26 model184

(Lee et al., 2014) as an example (Figure 2a). This waveform-based community velocity185

model for southern California was shown to have a good overall performance in a validation186

study using waveform simulations (Lu & Ben-Zion, 2022). With a horizontal resolution of187

0.09◦×0.09◦, there are 30 grid points along the longitude direction and 24 grid points along188

the latitude direction in this horizontal slice.189

We extract 616 patches from this model using a sliding window of size 3 × 3 and a190

stride (amount of grid points of window’s movement over the model in one direction) of191

1. In the training of the dictionary using OMP, we set the regularization parameter λ as192

0.1 and the number of atoms in the dictionary to be 20 (Figure 1b). The resulting sparse193

representation of the model in the dictionary is then used to reconstruct the model (Figure194

2b). The average error between the reconstruction and the original model is 2.2% while the195

peak error at a single grid is 7%, demonstrating accurate reconstruction using the dictionary196

representation. We applied the dictionary representation to other 2D or 3D velocity models197

utilized in this study and the resulting errors are found to be consistently small.198

3.2 Transformation between 2D VS models199

In this section, we evaluate the performance of the method for 2D sections of VS results.200

Zigone et al. (2015) derived a 3D VS model around the San Jacinto and San Andreas faults201

in Southern California from Rayleigh wave velocities constructed from the ambient seismic202

noise. The model, referred to below as Z2015 and chosen as the target model M2, has203

high-resolution in the top 7 km. As illustrated in Figure 3a with a horizontal slice at a204

–7–
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Figure 3. (a-c) Horizontal slices of VS at 2 km depth from the Z2015 model (a), CVM-S4.26

(b), and the reconstructed model (c). The resolution of the Z2015 and reconstructed models is

0.01◦ × 0.01◦, while the resolution of CVMS is 0.03◦ × 0.03◦. Black lines show major fault traces.

(d) low-resolution dictionary D1 and (e) high-resolution dictionary D2 learned from the training

data. All atoms are reshaped to the window size for better visualization.

depth of 2 km, the results exhibit informative lateral variations including low velocity zones205

and velocity contrasts across the main faults. On the other hand, the regional model CVM-206

S4.26 used as the initial modelM1 shows clearly low velocity sediments in the Salton Trough207

(Figure 3b), outside the spatial extent of Z2015. The horizontal resolution of M1 and M2208

are 0.03◦ × 0.03◦ and 0.01◦ × 0.01◦, respectively, and the range of CVM-S4.26 used in the209

analysis is larger than that of M2 (Figures 3a,b).210

Patches are extracted from the overlapping area using a 6×6 sliding square window on211

M1 with a stride of 1 and a 18×18 sliding window onM2 with a stride of 3. To have efficient212

training of dictionaries, we compute the cross-correlation (CC) between upsampled low-213

resolution patches and their corresponding high-resolution patches. We only utilize patch214

pairs with CC > 0 for both training and validation. Following this selection process, 1131215

patch pairs are available for analysis in this example application, from which we randomly216

select 1000 pairs as the training set PT
1 and PT

2 , while the remaining pairs are allocated for217

the validation set PV
1 and PV

2 .218

Out of 40 combinations of hyperparameter configurations, the optimal number of atoms219

in D1 and D2 is determined to be 20, with an optimal sparsity control factor of 0.1. The220

dictionaries that were trained are presented in Figures 3d,e. Notably, there is a coherence be-221

tween the texture of atom pairs in the low-resolution dictionary D1 and the high-resolution222

dictionary D2. This coherence is learned from the patches spontaneously rather than pre-223

defined. The difference between PT
2 and the transformed P̂

T

1 is 6.1%, while the difference224

between PV
2 and the transformed P̂

V

1 is 7.6%. To evaluate the performance of trained dic-225

tionaries, we upsample M1 to the same resolution as M2 using bicubic interpolation, and226

the difference between M2 and the upsampled M1 in the overlapping region is 11.55%. The227

–8–
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difference between models decreases on both training and validation sets, indicating the ef-228

fectiveness of the method. Subsequently, the transformation is applied to the entire region229

of M1, and the reconstructed model is shown in Figure 3c. This model is smoother than230

CVM-S4.26 in the entire domain (Figure 3b) and more consistent with the Z2015 model in231

the common region. Additionally, the reconstructed model shows a good consistency with232

geological features, e.g., low velocities around both the San Jacinto and San Andreas faults.233

3.3 Transformation between both 3D VP and VS models234

To demonstrate more general application scenarios, we show the efficacy of our method-235

ology by analyzing 3D velocity models that incorporate both VP and VS . Merging and236

enhancing 3D models can improve derivation of earthquake source properties, simulations237

of ground motion, and other applications. Additionally, the VP /VS ratio is an important238

parameter that provides key information on various geological and mechanical aspects such239

as lithology, rock damage, partial melting and water saturation. A seismic velocity model240

of high quality should display coherent geological features in the VP /VS ratios.241

Fang et al. (2019) developed a joint inversion technique that utilizes both body and242

surface wave data to improve the resolution of VP (Figure 4, middle row) and VS (Figure 5,243

middle row). The resulting velocity model (referred to as F2019) exhibits distinct regions of244

VP /VS ratios along the coast, in the vicinity of the San Jacinto and San Andreas faults, and245

the Salton Sea regions (Figure 6, middle row). In contrast, the regional seismic tomography246

model CVM-S4.26 lacks coherent regions of VP /VS ratios consistent with geological features247

(Figure 6, top row). When transforming an under-constrained VP /VS ratio model to a well-248

constrained model, it is important to verify that the resulting VP /VS ratios correlate well249

with geological features.250

In this case study, the initial seismic velocity model M1 is taken from velocities at 5251

different depth sections (1, 2, 3, 4, and 5 km) of the CVM-S4.26, while the target model252

M2 is taken from velocities of the F2019 model at the same depths. Both models have253

two sets of velocities, VP and VS , with a total of 10 layers representing values at different254

depths. The horizontal resolution resolutions of M1 and M2 are 0.09◦ × 0.09◦ and 0.03◦ ×255

0.03◦, respectively. To ensure the smoothness of the transformed model, we employ bicubic256

interpolation to upsample M1 to match the horizontal resolution of M2. We then extract257

patches from both models using a 9× 9× 10 sliding window (10 being the number of layers)258

with a stride of 1. The resulting patch pairs total 980, from which 800 are randomly selected259

for the training set and the remaining pairs are used for validation. Each of our trained260

dictionaries contain 20 atoms with a dimension of 9 × 9 × 10. After transformation, the261

difference between PT
2 and the transformed P̂

T

1 is 2.9%, while the difference between PV
2262

and the transformed P̂
V

1 is 3.4%. As a baseline, the difference between patches extracted263

from M1 and M2 in the overlapping region is 8.1%. Both reconstructions of training and264

validation patches are more consistent with the target model, compared to the initial model.265

The reconstructed VP /VS exhibits significant visual improvements with respect to the266

initial model and enhanced similarity to the target model. The updated regional VP /VS267

results display clearly several zones with coherent values (Figure 6, bottom row), which268

extend the correlations with geological characteristics shown in the F2019 model. The269

coherence is also clear in a cross-section that traverses both the San Jacinto and San Andreas270

faults (Figure 7).271
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Figure 4. Horizontal slices of VP at 1, 2, 3, 4, and 5 km depths from CVM-S4.26 (top row),

F2019 model (middle row) and the reconstructed model (bottom row). Black lines show major

fault traces, as well as the Salton Sea. The red line at the bottom row shows the vertical cross

section shown in Figure 7.

Figure 5. Same as Figure 4 for VS .
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manuscript submitted to JGR: Solid Earth

Figure 6. Same as Figure 4 for VP /VS .

Figure 7. Vertical profiles of VP (top row), VS (middle row) and VP /VS (bottom row) along

the cross-section indicated in Figure 4 in CVM-S4.26 (first column), F2019 model (second column)

and the reconstructed model (third column). The locations of the San Andreas Fault (SAF) and

San Jacinto Fault Zone (SJFZ) are marked by black triangles.

–11–
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4 Discussion272

We present a method based on sparse dictionary learning for developing transformations273

between seismic velocity models of different resolutions. The developed technique is used to274

merge local high-resolution tomographic results within a larger scale lower-resolution model,275

while simultaneously enhancing the information in the larger scale model. The method is276

illustrated using VP , VS , and VP /VS tomographic results of local and regional velocity models277

in Southern California. The utilized sparse dictionary learning is amenable to interpretation278

and generalizations. Reconstructed 2D slices and 3D volumes of the regional CVM-S4.26279

model (Lee et al., 2014) exhibit visual enhancements and resemblance to results of local280

higher-resolution target models (Zigone et al., 2015; Fang et al., 2019), which are especially281

clear for VP /VS ratios. The superiority of the reconstructed regional model relative to the282

original version is demonstrated further below by examining correlations of results with283

geological features and model validation with numerical simulations of seismic waveforms.284

4.1 Interpretability of the dictionary-based method285

Sparse dictionary learning is a highly interpretable approach that produces a set of286

fundamental atoms that can be visualized, and the sparse representation can itself be phys-287

ically meaningful. For instance, we can define the dominant atom dm for a given patch288

pj as the atom with the largest coefficient in the sparse representation of the patch, i.e.,289

cm,j = max(ci,j), and assign the index of the dominant atom (m) to the center location of290

the patch. This procedure may be used to classify different regions and obtain a map of291

dominant atoms distribution which can be further analyzed.292

To illustrate, we compare the distribution of the dominant atoms in the results of293

section 3.3 with velocity profiles and geological features (Figure 8). Patches from areas with294

low VP , VS and high VP /VS ratios, such as the north end of SJFZ and around the SAF,295

mostly have the first atom as the dominant one (red colored in Figure 8)a). To investigate296

the relationship between atoms and subsurface structures, a cluster analysis is performed297

on vertical velocity profiles (each profile contains VP and VS values over the 1-5 km depth298

section at a given latitude and longitude) from the F2019 model. The profiles are partitioned299

into six sets using a K-means algorithm that minimize the inter-cluster variance (Eymold300

& Jordan, 2019). The spatial distribution of the dominant atoms is correlated with the301

clusters of seismic velocity profiles; e.g., the green colored area in Figure 8b is consistent302

with the spatial distribution of first-atom-dominated patches. In addition, the distribution303

of the dominant atoms is well correlated with the geological map (Figure 8c). The results304

indicate that the spatial distribution of the first atoms has important information on the305

geological units and seismic velocities at depth.306

Comparing the distribution of the first-atom-dominated patches with the geological307

map (Figure 8c) shows that it is highly consistent with the distribution of the surface rocks.308

This consistency further indicates that the surface geological features and rock types are309

related to the velocity structure at the examined 1-5 km depth sections. The physical310

interpretability of dictionary learning can thus facilitate establishing correlations between311

regions in the reconstructed velocity models and geological features.312
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Figure 8. (a) Indexes of the dominant atom for the F2019 model in section 3.3. Location of first-

atom-dominated patches are colored by dark red. All atoms other than atoms 1-4 are represented

by O. (b) Clustering of velocity profiles by the K-means algorithm. The cluster corresponding

to first-atom-dominated patches is green colored. (c) A geological map for Southern California

extracted from the website of the California Geological Survey (see Data Availability). The main

rock types in the study region are: Continental sedimentary rocks (light yellow), plutonic rocks

(pink) and metavolcanic rocks (green).

4.2 Validation of the reconstructed model313

To demonstrate further the utility of the presented method, we compare waveform314

simulation results using the reconstructed model and CVM-S4.26 for a test earthquake315

(Figure 9a). The hypocentre location of this M4.4 event (Event ID: 38245496) is taken from316

the relocated catalog of Hauksson et al. (2012, extended to later years) and the moment317

tensor solution used in the simulation is taken from the catalog of Wang and Zhan (2020).318

The reconstructed model used in this simulation is obtained by transforming the top 10 km319

of CVM-S4.26 to the F2019 model using the same dictionary learning approach described320

in section 3.3. To have a more representative comparison, we also interpolate the top 10 km321

of CVM-S4.26 to the same resolution as F2019 and refer to this as a baseline model. Since322

the first layer of both the reconstructed and baseline models are at 1 km depth, we extract323

the surface velocities from CVM-S4.26 and add them on top of both models. As in Lu and324

Ben-Zion (2022), the surface topography is implemented by deforming the mesh grid in the325

vertical direction. Since the F2019 model only provides seismic velocities, we approximate326

the density (ρ) and quality factors (QP , QS) using empirical results from (Brocher, 2005)327

and (Taborda et al., 2016).328

The simulations use the SPECFEM3D code (Komatitsch & Tromp, 2002) to compute329

synthetic waveforms at 3 stations (CI.HEC, CI.BBR, and CI.IKP). The simulation domain330

is centered at coordinates (116.53◦W, 33.64◦N) and has a lateral dimension of 320 km × 280331

km in the local Cartesian coordinate (Li et al., 2022). The number of spectral elements along332

both x and y is 256, making the simulation domain as dense as the grid of the CVM-S4.26333

and reconstructed models. We compare observed waveforms and synthetic waveforms in the334

period band of 0.4-2 Hz, which allows us to focus on the depth range of the enhanced velocity335

model. As demonstrated in Figure 9, the simulation results based on the reconstructed336

model exhibit a closer fit to the observations than those produced using the baseline model337

for both the body waves and surface waves portions of the seismograms. This improvement338
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Figure 9. (a) Locations of the event and stations (CI.HEC, CI.BBR, and CI.IKP) used for

validation. Black lines show major fault traces. The red polygon represents the coverage of the

F2019 model. (b-d) Vertical components of observational (black lines) and synthetic waveforms

at station CI.HEC (b), CI.BBR (c), and CI.IKP (d). The synthetic waveforms are computed for

both the reconstructed model (red lines) and the baseline model (CVM-S4.26, blue lines). The

CC between observations and simulations are denoted on the bottom-left corner of each panel. All

waveforms are bandpass filtered from 0.4 to 2 Hz normalized and by the maximum amplitude of

the observed waveform.
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is also supported by an increase in the CC between the synthetic and observed waveforms339

and it exists also for stations outside the common region. The close fit of the simulated340

amplitude of multiple phases to data indicates that the reconstructed model can improve341

predictions of earthquake ground motion.342

4.3 Limitatioins and outlook for future research343

The developed sparse dictionary learning method for transferring high-resolution seis-344

mic velocity results to lower velocity models is shown to be effective, but it has several345

limitations. First, the method requires a local seismic velocity model of high quality, which346

may not always be available. Furthermore, factors such as overall consistency between the347

regional and local models, as well as the resolution, coverage, and geological features in the348

data utilized, can influence the quality of the trained dictionaries and the reconstructed349

models. Additionally, the selection of hyper-parameters (section 2.2) may vary for different350

models and should be tuned through experimentation and validation. In the present work351

we aimed primarily to develop and illustrate the method, and have conducted only exam-352

ple waveform simulations for validation. A future study will include a more comprehensive353

validation using multiple earthquakes, virtual seismic noise sources, and many stations.354

The developed method for merging and enhancing velocity models can be applied to355

other regions that have well-developed regional seismic velocity models and local high quality356

models, such as northern California, Europe and Japan. The improved multi-scale velocity357

models can have numerous applications in the field of seismology. Examples include more358

accurate derivation of earthquake source properties and more realistic simulations of ground359

motion over a wider range of frequencies leading to better estimates of seismic hazard. The360

concept of dictionary representation and transformation presented in this paper can be ap-361

plied to additional earth science datasets. For instance, high-resolution surface deformation362

observed from InSAR is limited to areas with high correlations not including, for example,363

highly vegetated regions (e.g. Wei & Sandwell, 2010). An approach similar to the one364

developed in this paper can enhance regional low-resolution deformation observations with365

higher-resolution local results. Furthermore, the low temporal resolution of InSAR data can366

be improved by high temporal resolution GPS data regarding the timeline as an extra dimen-367

sion (e.g. Xu et al., 2022). The interpretability of the dictionary learning method can also368

allow discovering spatial and temporal correlations between different physical quantities,369

such as geological features, seismic velocity structure and surface deformation.370

Data Availability371

The CVM-S4.26 model is available on the UCVM software provided by the Southern372

California Earthquake Center (https://www.scec.org/software/ucvm). Other seismic373

velocity models used in this study are from Zigone et al. (2015) and Fang et al. (2019). The374

earthquake waveform data used in this paper is retrieved from the data center of the southern375

California network CI (https://scedc.caltech.edu/data). The geological data in Figure376

8 were obtained from the CGS website (https://maps.conservation.ca.gov/cgs/gmc/).377
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Abstract14

We use sparse dictionary learning to develop transformations between seismic velocity mod-15

els of different resolution and spatial extent. Starting with results in the common region16

of both models, the method can be used to enhance a regional lower-resolution model to17

match the style and resolution of local higher-resolution results while preserving its re-18

gional coverage. The method is demonstrated by applying it to two-dimensional Vs and19

three-dimensional VP and VS local and regional velocity models in southern California. The20

enhanced reconstructed models exhibit clear visual improvements, especially in the recon-21

structed VP /VS ratios, and better correlations with geological features. We demonstrate22

the improvements of the reconstructed model relative to the original velocity model by23

comparing waveform simulation results to observations. The improved fitting to observed24

waveforms extends beyond the domain of the overlapping region. The developed dictionary25

learning approach provides physically interpretable results and offers a powerful tool for26

additional applications for data enhancement in earth sciences.27

Plain Language Summary28

Seismic velocity models are essential for many applications including derivation of earth-29

quake properties, studies of tectonic processes, and analysis of earthquake ground mo-30

tions. In various places there are velocity models of different spatial coverage and res-31

olution. To benefit from the complementary strengths of such models, we develop a new32

method for enhancing regional velocity models of relatively low-resolution with informa-33

tion contained in local higher-resolution models. The method builds a transformation34

between different models in their common local region based on a sparse dictionary learn-35

ing and then uses the transformation outside the common region. We apply the method36

to seismic velocity models in southern California and show that the enhanced regional37

model outperforms the original velocity model in fitting earthquake waveforms and also38

has better consistency with geological features. The method has a potential for improv-39

ing the quality of other data sets in earth science.40

1 Introduction41

Seismic velocity models are foundational to numerous applications including deriva-42

tions of earthquake source properties, simulations of seismic ground motion from scenario43

earthquakes, and a broad range of structural and tectonophysics topics. The spatial cov-44

erage and resolution of derived velocity models depend on the data and inversion methods45

used, and models of widely different scales and resolutions are often available in well-studied46

regions. In southern California, there are several regional velocity models with a nominal47

resolution of about 5 km (e.g. Lee et al., 2014; Shaw et al., 2015; Fang et al., 2022), along48

with models focusing on the San Jacinto and San Andreas faults with a nominal resolution49

of 2-3 km (e.g. Allam & Ben-Zion, 2012; Zigone et al., 2015; Fang et al., 2019; Share et50

al., 2019). More local models based on dense array data can have resolution approaching51

tens of meters (e.g. Hillers et al., 2016; Mordret et al., 2019) and results based on borehole52

data can resolve sub-cm features (e.g. Gibbs et al., 2001; Bonilla et al., 2002). Developing53

methods to merge velocity models of different scales and resolutions can provide multi-scale54

frameworks that benefit from the complementary strengths of the different results.55
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The most straightforward approach to combine models is to embed small-scale high-56

resolution velocity models within regional models and smooth the boundaries (e.g. Fichtner57

et al., 2018; Ajala & Persaud, 2021). While this approach is simple, the obtained seismic58

velocities near the boundaries between models depend on ad-hoc choices of the applied59

smoothing parameters. Importantly, local perturbations to seismic wavefields generated60

near the boundaries between models can affect the seismic wavefield on a regional scale61

(e.g. Juarez & Ben-Zion, 2020; Ajala & Persaud, 2021; Yeh & Olsen, 2022). Furthermore,62

embedding only updates the low-resolution model in the area covered by the high-resolution63

results, without enhancing the outer region, and such procedures disregard useful informa-64

tion from the low-resolution results in the area covered by the high-resolution model. In65

the present study we develop a method for merging multi-scale velocity models by estab-66

lishing a transformation between models of different resolutions. Specifically, we develop a67

transformation by comparing high- and low- resolution imaging results in a given region and68

then utilize this transformation to enhance the low-resolution model both in the overlapping69

region as well as outside it.70

The developed methodology is inspired by progress made in machine learning algorithms71

for super-resolution (Dong et al., 2015) and style transfer (Gatys et al., 2016) of images. To72

merge seismic velocity models, we use a data-driven approach based on sparse dictionary73

learning (Yang et al., 2008; Mairal et al., 2009). Since the available amount of data is74

limited, we opt for this approach over Convolutional Neural Networks (CNN) that demand75

a large number of trainable parameters. Dictionary learning involves a linear decomposition76

of an input signal utilizing a small set of basis signals, referred to as atoms, which are77

learned from the data. This technique has achieved impressive outcomes in various image78

and video processing tasks. In seismology, dictionary learning was used for signal denoising79

(Beckouche & Ma, 2014) and for seismic tomography (Bianco & Gerstoft, 2018). Dictionary80

learning has the added benefits of being physically interpretable (in contrast to CNN), and81

better generalization capability than CNN when the dataset is limited (Sulam et al., 2020).82

In the following sections, we first introduce a framework for representing seismic velocity83

models using dictionaries and subsequently devise a method for developing a transforma-84

tion between models that can enrich the lower-resolution model. As initial applications,85

we implement the technique on both 2D and 3D velocity models in southern California86

with different resolution and spatial extent. We generate an enhanced reconstructed ver-87

sion of the regional community velocity model CVM-S4.26 (Lee et al., 2014) utilizing a88

higher-resolution model around the San Jacinto fault zone (Fang et al., 2019), and demon-89

strate by comparing waveform simulations with observations that the reconstructed model90

outperforms the original version.91

2 Methods92

2.1 Dictionary representation of velocity models93

Dictionary Learning involves identifying a sparse representation of input data in the94

form of a linear combination of basis atoms inferred from the input data (Mairal et al.,95

2009), and it provided important results in compressed sensing and signal recovery. In96

this section, we present a novel method for applications on merging and enhancing seismic97

velocity models.98
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Figure 1. Dictionary representation of seismic velocity models and transformation between

them. (a) Horizontal slice of CVM-S4.26 at 2 km depth with a resolution of 0.09◦×0.09◦. The red

square indicates the patch used in (c). (b) A dictionary consisting of 20 atoms learned from the

velocity model in (a). (c) Each patch extracted from the velocity model can be represented as a

linear superposition of atoms in the dictionary. (d) The patch extracted from the model in (e) at

the same location can be represented using another dictionary with the same sparse representation.

(e) Horizontal slice of the Fang et al. (2019) model in the same region as (a) but with higher-

resolution. (f) A dictionary learned from the velocity model in (e). All atoms are reshaped to the

window size for better visualization.
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Seismic velocity models are represented as 2D or 3D grids that contain information99

about P wave velocity VP and/or S wave velocity VS at a set of specific spatial locations.100

Given a seismic velocity model M, we can utilize a sliding window which has the same101

dimension as the model to extract patches from it, resulting in N patches p1, ...,pN that102

represent values inside subsections of the model (Figure 1a). To simplify the description,103

we flatten each patch into a 1D array with length L representing the number of grids within104

the window (Dong et al., 2015). For example, L = 9 if the size of a 2D window is 3 × 3,105

and L = 90 if the window is a 3 × 3 × 10 cube. The set of flattened patches is denoted as106

P ∈ RL×N .107

The dictionary representation of the seismic velocity model is used to find a linear108

relationship among the patches in P and their low-dimensional projections, i.e., a dictionary109

D∗ = [d1, ...,dK ] ∈ RL×K contains K prototype atoms (with K < N usually), each with110

the same length as the patches (Figure 1b). Each patch pj ∈ RL can be represented as a111

sparse linear combination of the atoms in D∗:112

pj ≈ D∗cj =

K∑
i=1

ci,jd i, (1)113

where cj = [c1,j , ..., cK,j ]
T and ci,j and ci,j represents the sparse coefficients for patches pj114

for atoms d i (Figure 1c). These linear combinations can be written in a matrix form as115

P ≈ D∗C∗, (2)116

where C∗ = [c1, ..., cN ] ∈ RK×N is the sparse representation matrix with very few nonzero117

entries (Kreutz-Delgado et al., 2003).118

To solve the dictionary D∗ and coefficients C∗ from patches, we use a sparse coding119

algorithm (e.g. Rubinstein et al., 2010) that seeks to minimize the difference between the120

patches and the reconstruction from linear superposition121

D∗,C∗ = argmin
D,C

∥P−DC∥22 + λ∥C∥0. (3)122

where ∥ · ∥2 and ∥ · ∥0 are the second and zero order norm, respectively. The regularization123

parameter λ controls the tradeoff between the sparsity and the minimization error. Various124

algorithms, such as Orthogonal Matching Pursuit (OMP) (Mallat & Zhang, 1993) and125

Least Absolute Shrinkage and Selection Operator (LASSO) Tibshirani (1996), can be used126

to solve this optimization problem (3). After obtaining the dictionary D∗ and corresponding127

representation matrix C∗ using the sparse coding algorithm, the reconstructed patches is128

calculated as P̂ = D∗C∗. The updated velocity model can be then developed by stitching129

the reconstructed patches together in their original spatial order (Dong et al., 2015).130

2.2 Transformation between two seismic velocity models131

The dictionary representation technique can facilitate the transformation between two132

different seismic velocity models by establishing a correspondence between their respective133

dictionaries. Suppose we have an initial modelM1 and a second more local modelM2 with a134

higher-resolution that is spatially included inM1 (Figure 1a,e). Our goal is to transformM1135

to model M̂, with resolution and values in the common region of both models consistent with136

M2 and enhanced resolution outside the overlapping region. Essentially, this transformation137

should improve M1 to match the resolution and style of M2 while preserving its coverage.138
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To solve the problem described above, we divide it into three steps. In the first step,139

we extract patches PU
1 = [p1

1, ...,p
N1
1 ] ∈ RL1×N1 from the entire M1. A subset of PU

1 , P1 =140

[p1
1, ...,p

N2
1 ] ∈ RL1×N2 shares spatial locations with patches P2 = [p1

2, ...,p
N2
2 ] ∈ RL1×N2

141

extracted from M2. Such pairs of patches, e.g., pi
1 and pi

2, extracted from the same spatial142

locations are aligned by their index in P1 and P2. The length of the patches, L1 and L2,143

may differ due to the different resolution of M1 and M2. In the second step, we transfer144

the patches from PU
1 to P̂ to ensure that under this transformation the transformed P1 is145

consistent with P2. Finally, the transformed patches P̂ are put back to their original spatial146

location to rebuild the transformed velocity model M̂.147

The dictionary representation technique described in section 2.1 is applied in the second148

step, i.e., the transformation of patches from PU
1 to P̂. First, we represent patches in P1 as149

sparse linear combination of K atoms in a dictionary D1 = [d1
1, ...,d

K
1 ] ∈ RL1×K

150

P1 ≈ D1C. (4)151

This produces a sparse representation C ∈ RK×N2 that contains the sparse coefficients for152

each patch in P1 (Figure 1c). The dictionary D1 and the sparse representation C can be153

obtained simultaneously using sparse coding algorithms (section 2.1). We also represent the154

patches in P2 as a linear combination of atoms in a second (higher-resolution) dictionary155

D2 = [d1
2, ...,d

K
2 ] ∈ RL2×K with the same sparse representation C (Figure 1d,f)156

P2 ≈ D2C. (5)157

The atom d j
2 in D2 have one-to-one corresponding to d j

1 in D1 due to the duality between158

P1 and P2. Therefore, we can first represent PU
1 on D1 using a representation matrix CU

159

and then construct the transferred patches P̂ = D2C
U.160

In practice, we randomly divide the patches P1 and P2 into training set PT
1 , P

T
2 and161

validation set PV
1 , P

V
2 , and put each pair of patches with the same location in the same162

dataset. The training set is utilized to learn the dictionary and sparse representation matrix,163

while the validation set is used to select optimal parameters. We use the OMP algorithm to164

obtain the dictionary D1 for the train set PT
1 and the corresponding sparse representation165

CT from following optimization:166

D1,C
T = argmin

D,C
∥PT

1 −DC∥22 + λ∥C∥0. (6)167

For the derived sparse representation CT, we calculate the corresponding dictionary168

D2 = argmin
D

∥PT
2 −DCT∥22 (7)169

from PT
2 using the Least Squares Method. Then we use the validation set to evaluate the170

performance of the trained dictionaries D1 and D2. The patches in PV
1 are represented on171

the trained D1 using a sparse representation172

CV = argmin
C

∥PV
1 −D1C∥22 + λ∥C∥0. (8)173

We then compare the difference between the transferred validation set P̂
V

= D2C
V and174

PV
2 . The difference between patches P and the baseline patches P0 is defined as175

D(P,P0) =
∥P−P0∥2

∥P0∥2
. (9)176

The optimal hyper-parameters in the training procedure (e.g, the K number of atoms in177

a dictionary and the sparsity control parameter λ) are found by minimizing the difference178

D(P̂
V
,PV

2 ).179
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Figure 2. (a) Horizontal slice of Vp at 2 km depth from CVM-S4.26. The sampled resolution

is 0.09◦ × 0.09◦. (b) Reconstruction of the model in (a) using a dictionary representation. (c) The

difference (error) between the reconstruction and the original model normalized at each grid by the

value in the original model. Black lines mark major fault traces.

3 Results180

3.1 Capability of the dictionary representation181

As the basis of our methodology for transforming seismic velocity models, we first182

demonstrate the capability of representing a seismic velocity model using a dictionary with183

minimal error. We use a horizontal slice of VP at 2 km depth from the CVM-S4.26 model184

(Lee et al., 2014) as an example (Figure 2a). This waveform-based community velocity185

model for southern California was shown to have a good overall performance in a validation186

study using waveform simulations (Lu & Ben-Zion, 2022). With a horizontal resolution of187

0.09◦×0.09◦, there are 30 grid points along the longitude direction and 24 grid points along188

the latitude direction in this horizontal slice.189

We extract 616 patches from this model using a sliding window of size 3 × 3 and a190

stride (amount of grid points of window’s movement over the model in one direction) of191

1. In the training of the dictionary using OMP, we set the regularization parameter λ as192

0.1 and the number of atoms in the dictionary to be 20 (Figure 1b). The resulting sparse193

representation of the model in the dictionary is then used to reconstruct the model (Figure194

2b). The average error between the reconstruction and the original model is 2.2% while the195

peak error at a single grid is 7%, demonstrating accurate reconstruction using the dictionary196

representation. We applied the dictionary representation to other 2D or 3D velocity models197

utilized in this study and the resulting errors are found to be consistently small.198

3.2 Transformation between 2D VS models199

In this section, we evaluate the performance of the method for 2D sections of VS results.200

Zigone et al. (2015) derived a 3D VS model around the San Jacinto and San Andreas faults201

in Southern California from Rayleigh wave velocities constructed from the ambient seismic202

noise. The model, referred to below as Z2015 and chosen as the target model M2, has203

high-resolution in the top 7 km. As illustrated in Figure 3a with a horizontal slice at a204
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Figure 3. (a-c) Horizontal slices of VS at 2 km depth from the Z2015 model (a), CVM-S4.26

(b), and the reconstructed model (c). The resolution of the Z2015 and reconstructed models is

0.01◦ × 0.01◦, while the resolution of CVMS is 0.03◦ × 0.03◦. Black lines show major fault traces.

(d) low-resolution dictionary D1 and (e) high-resolution dictionary D2 learned from the training

data. All atoms are reshaped to the window size for better visualization.

depth of 2 km, the results exhibit informative lateral variations including low velocity zones205

and velocity contrasts across the main faults. On the other hand, the regional model CVM-206

S4.26 used as the initial modelM1 shows clearly low velocity sediments in the Salton Trough207

(Figure 3b), outside the spatial extent of Z2015. The horizontal resolution of M1 and M2208

are 0.03◦ × 0.03◦ and 0.01◦ × 0.01◦, respectively, and the range of CVM-S4.26 used in the209

analysis is larger than that of M2 (Figures 3a,b).210

Patches are extracted from the overlapping area using a 6×6 sliding square window on211

M1 with a stride of 1 and a 18×18 sliding window onM2 with a stride of 3. To have efficient212

training of dictionaries, we compute the cross-correlation (CC) between upsampled low-213

resolution patches and their corresponding high-resolution patches. We only utilize patch214

pairs with CC > 0 for both training and validation. Following this selection process, 1131215

patch pairs are available for analysis in this example application, from which we randomly216

select 1000 pairs as the training set PT
1 and PT

2 , while the remaining pairs are allocated for217

the validation set PV
1 and PV

2 .218

Out of 40 combinations of hyperparameter configurations, the optimal number of atoms219

in D1 and D2 is determined to be 20, with an optimal sparsity control factor of 0.1. The220

dictionaries that were trained are presented in Figures 3d,e. Notably, there is a coherence be-221

tween the texture of atom pairs in the low-resolution dictionary D1 and the high-resolution222

dictionary D2. This coherence is learned from the patches spontaneously rather than pre-223

defined. The difference between PT
2 and the transformed P̂

T

1 is 6.1%, while the difference224

between PV
2 and the transformed P̂

V

1 is 7.6%. To evaluate the performance of trained dic-225

tionaries, we upsample M1 to the same resolution as M2 using bicubic interpolation, and226

the difference between M2 and the upsampled M1 in the overlapping region is 11.55%. The227
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difference between models decreases on both training and validation sets, indicating the ef-228

fectiveness of the method. Subsequently, the transformation is applied to the entire region229

of M1, and the reconstructed model is shown in Figure 3c. This model is smoother than230

CVM-S4.26 in the entire domain (Figure 3b) and more consistent with the Z2015 model in231

the common region. Additionally, the reconstructed model shows a good consistency with232

geological features, e.g., low velocities around both the San Jacinto and San Andreas faults.233

3.3 Transformation between both 3D VP and VS models234

To demonstrate more general application scenarios, we show the efficacy of our method-235

ology by analyzing 3D velocity models that incorporate both VP and VS . Merging and236

enhancing 3D models can improve derivation of earthquake source properties, simulations237

of ground motion, and other applications. Additionally, the VP /VS ratio is an important238

parameter that provides key information on various geological and mechanical aspects such239

as lithology, rock damage, partial melting and water saturation. A seismic velocity model240

of high quality should display coherent geological features in the VP /VS ratios.241

Fang et al. (2019) developed a joint inversion technique that utilizes both body and242

surface wave data to improve the resolution of VP (Figure 4, middle row) and VS (Figure 5,243

middle row). The resulting velocity model (referred to as F2019) exhibits distinct regions of244

VP /VS ratios along the coast, in the vicinity of the San Jacinto and San Andreas faults, and245

the Salton Sea regions (Figure 6, middle row). In contrast, the regional seismic tomography246

model CVM-S4.26 lacks coherent regions of VP /VS ratios consistent with geological features247

(Figure 6, top row). When transforming an under-constrained VP /VS ratio model to a well-248

constrained model, it is important to verify that the resulting VP /VS ratios correlate well249

with geological features.250

In this case study, the initial seismic velocity model M1 is taken from velocities at 5251

different depth sections (1, 2, 3, 4, and 5 km) of the CVM-S4.26, while the target model252

M2 is taken from velocities of the F2019 model at the same depths. Both models have253

two sets of velocities, VP and VS , with a total of 10 layers representing values at different254

depths. The horizontal resolution resolutions of M1 and M2 are 0.09◦ × 0.09◦ and 0.03◦ ×255

0.03◦, respectively. To ensure the smoothness of the transformed model, we employ bicubic256

interpolation to upsample M1 to match the horizontal resolution of M2. We then extract257

patches from both models using a 9× 9× 10 sliding window (10 being the number of layers)258

with a stride of 1. The resulting patch pairs total 980, from which 800 are randomly selected259

for the training set and the remaining pairs are used for validation. Each of our trained260

dictionaries contain 20 atoms with a dimension of 9 × 9 × 10. After transformation, the261

difference between PT
2 and the transformed P̂

T

1 is 2.9%, while the difference between PV
2262

and the transformed P̂
V

1 is 3.4%. As a baseline, the difference between patches extracted263

from M1 and M2 in the overlapping region is 8.1%. Both reconstructions of training and264

validation patches are more consistent with the target model, compared to the initial model.265

The reconstructed VP /VS exhibits significant visual improvements with respect to the266

initial model and enhanced similarity to the target model. The updated regional VP /VS267

results display clearly several zones with coherent values (Figure 6, bottom row), which268

extend the correlations with geological characteristics shown in the F2019 model. The269

coherence is also clear in a cross-section that traverses both the San Jacinto and San Andreas270

faults (Figure 7).271
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Figure 4. Horizontal slices of VP at 1, 2, 3, 4, and 5 km depths from CVM-S4.26 (top row),

F2019 model (middle row) and the reconstructed model (bottom row). Black lines show major

fault traces, as well as the Salton Sea. The red line at the bottom row shows the vertical cross

section shown in Figure 7.

Figure 5. Same as Figure 4 for VS .
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Figure 6. Same as Figure 4 for VP /VS .

Figure 7. Vertical profiles of VP (top row), VS (middle row) and VP /VS (bottom row) along

the cross-section indicated in Figure 4 in CVM-S4.26 (first column), F2019 model (second column)

and the reconstructed model (third column). The locations of the San Andreas Fault (SAF) and

San Jacinto Fault Zone (SJFZ) are marked by black triangles.
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4 Discussion272

We present a method based on sparse dictionary learning for developing transformations273

between seismic velocity models of different resolutions. The developed technique is used to274

merge local high-resolution tomographic results within a larger scale lower-resolution model,275

while simultaneously enhancing the information in the larger scale model. The method is276

illustrated using VP , VS , and VP /VS tomographic results of local and regional velocity models277

in Southern California. The utilized sparse dictionary learning is amenable to interpretation278

and generalizations. Reconstructed 2D slices and 3D volumes of the regional CVM-S4.26279

model (Lee et al., 2014) exhibit visual enhancements and resemblance to results of local280

higher-resolution target models (Zigone et al., 2015; Fang et al., 2019), which are especially281

clear for VP /VS ratios. The superiority of the reconstructed regional model relative to the282

original version is demonstrated further below by examining correlations of results with283

geological features and model validation with numerical simulations of seismic waveforms.284

4.1 Interpretability of the dictionary-based method285

Sparse dictionary learning is a highly interpretable approach that produces a set of286

fundamental atoms that can be visualized, and the sparse representation can itself be phys-287

ically meaningful. For instance, we can define the dominant atom dm for a given patch288

pj as the atom with the largest coefficient in the sparse representation of the patch, i.e.,289

cm,j = max(ci,j), and assign the index of the dominant atom (m) to the center location of290

the patch. This procedure may be used to classify different regions and obtain a map of291

dominant atoms distribution which can be further analyzed.292

To illustrate, we compare the distribution of the dominant atoms in the results of293

section 3.3 with velocity profiles and geological features (Figure 8). Patches from areas with294

low VP , VS and high VP /VS ratios, such as the north end of SJFZ and around the SAF,295

mostly have the first atom as the dominant one (red colored in Figure 8)a). To investigate296

the relationship between atoms and subsurface structures, a cluster analysis is performed297

on vertical velocity profiles (each profile contains VP and VS values over the 1-5 km depth298

section at a given latitude and longitude) from the F2019 model. The profiles are partitioned299

into six sets using a K-means algorithm that minimize the inter-cluster variance (Eymold300

& Jordan, 2019). The spatial distribution of the dominant atoms is correlated with the301

clusters of seismic velocity profiles; e.g., the green colored area in Figure 8b is consistent302

with the spatial distribution of first-atom-dominated patches. In addition, the distribution303

of the dominant atoms is well correlated with the geological map (Figure 8c). The results304

indicate that the spatial distribution of the first atoms has important information on the305

geological units and seismic velocities at depth.306

Comparing the distribution of the first-atom-dominated patches with the geological307

map (Figure 8c) shows that it is highly consistent with the distribution of the surface rocks.308

This consistency further indicates that the surface geological features and rock types are309

related to the velocity structure at the examined 1-5 km depth sections. The physical310

interpretability of dictionary learning can thus facilitate establishing correlations between311

regions in the reconstructed velocity models and geological features.312
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Figure 8. (a) Indexes of the dominant atom for the F2019 model in section 3.3. Location of first-

atom-dominated patches are colored by dark red. All atoms other than atoms 1-4 are represented

by O. (b) Clustering of velocity profiles by the K-means algorithm. The cluster corresponding

to first-atom-dominated patches is green colored. (c) A geological map for Southern California

extracted from the website of the California Geological Survey (see Data Availability). The main

rock types in the study region are: Continental sedimentary rocks (light yellow), plutonic rocks

(pink) and metavolcanic rocks (green).

4.2 Validation of the reconstructed model313

To demonstrate further the utility of the presented method, we compare waveform314

simulation results using the reconstructed model and CVM-S4.26 for a test earthquake315

(Figure 9a). The hypocentre location of this M4.4 event (Event ID: 38245496) is taken from316

the relocated catalog of Hauksson et al. (2012, extended to later years) and the moment317

tensor solution used in the simulation is taken from the catalog of Wang and Zhan (2020).318

The reconstructed model used in this simulation is obtained by transforming the top 10 km319

of CVM-S4.26 to the F2019 model using the same dictionary learning approach described320

in section 3.3. To have a more representative comparison, we also interpolate the top 10 km321

of CVM-S4.26 to the same resolution as F2019 and refer to this as a baseline model. Since322

the first layer of both the reconstructed and baseline models are at 1 km depth, we extract323

the surface velocities from CVM-S4.26 and add them on top of both models. As in Lu and324

Ben-Zion (2022), the surface topography is implemented by deforming the mesh grid in the325

vertical direction. Since the F2019 model only provides seismic velocities, we approximate326

the density (ρ) and quality factors (QP , QS) using empirical results from (Brocher, 2005)327

and (Taborda et al., 2016).328

The simulations use the SPECFEM3D code (Komatitsch & Tromp, 2002) to compute329

synthetic waveforms at 3 stations (CI.HEC, CI.BBR, and CI.IKP). The simulation domain330

is centered at coordinates (116.53◦W, 33.64◦N) and has a lateral dimension of 320 km × 280331

km in the local Cartesian coordinate (Li et al., 2022). The number of spectral elements along332

both x and y is 256, making the simulation domain as dense as the grid of the CVM-S4.26333

and reconstructed models. We compare observed waveforms and synthetic waveforms in the334

period band of 0.4-2 Hz, which allows us to focus on the depth range of the enhanced velocity335

model. As demonstrated in Figure 9, the simulation results based on the reconstructed336

model exhibit a closer fit to the observations than those produced using the baseline model337

for both the body waves and surface waves portions of the seismograms. This improvement338
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Figure 9. (a) Locations of the event and stations (CI.HEC, CI.BBR, and CI.IKP) used for

validation. Black lines show major fault traces. The red polygon represents the coverage of the

F2019 model. (b-d) Vertical components of observational (black lines) and synthetic waveforms

at station CI.HEC (b), CI.BBR (c), and CI.IKP (d). The synthetic waveforms are computed for

both the reconstructed model (red lines) and the baseline model (CVM-S4.26, blue lines). The

CC between observations and simulations are denoted on the bottom-left corner of each panel. All

waveforms are bandpass filtered from 0.4 to 2 Hz normalized and by the maximum amplitude of

the observed waveform.
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is also supported by an increase in the CC between the synthetic and observed waveforms339

and it exists also for stations outside the common region. The close fit of the simulated340

amplitude of multiple phases to data indicates that the reconstructed model can improve341

predictions of earthquake ground motion.342

4.3 Limitatioins and outlook for future research343

The developed sparse dictionary learning method for transferring high-resolution seis-344

mic velocity results to lower velocity models is shown to be effective, but it has several345

limitations. First, the method requires a local seismic velocity model of high quality, which346

may not always be available. Furthermore, factors such as overall consistency between the347

regional and local models, as well as the resolution, coverage, and geological features in the348

data utilized, can influence the quality of the trained dictionaries and the reconstructed349

models. Additionally, the selection of hyper-parameters (section 2.2) may vary for different350

models and should be tuned through experimentation and validation. In the present work351

we aimed primarily to develop and illustrate the method, and have conducted only exam-352

ple waveform simulations for validation. A future study will include a more comprehensive353

validation using multiple earthquakes, virtual seismic noise sources, and many stations.354

The developed method for merging and enhancing velocity models can be applied to355

other regions that have well-developed regional seismic velocity models and local high quality356

models, such as northern California, Europe and Japan. The improved multi-scale velocity357

models can have numerous applications in the field of seismology. Examples include more358

accurate derivation of earthquake source properties and more realistic simulations of ground359

motion over a wider range of frequencies leading to better estimates of seismic hazard. The360

concept of dictionary representation and transformation presented in this paper can be ap-361

plied to additional earth science datasets. For instance, high-resolution surface deformation362

observed from InSAR is limited to areas with high correlations not including, for example,363

highly vegetated regions (e.g. Wei & Sandwell, 2010). An approach similar to the one364

developed in this paper can enhance regional low-resolution deformation observations with365

higher-resolution local results. Furthermore, the low temporal resolution of InSAR data can366

be improved by high temporal resolution GPS data regarding the timeline as an extra dimen-367

sion (e.g. Xu et al., 2022). The interpretability of the dictionary learning method can also368

allow discovering spatial and temporal correlations between different physical quantities,369

such as geological features, seismic velocity structure and surface deformation.370

Data Availability371

The CVM-S4.26 model is available on the UCVM software provided by the Southern372

California Earthquake Center (https://www.scec.org/software/ucvm). Other seismic373

velocity models used in this study are from Zigone et al. (2015) and Fang et al. (2019). The374

earthquake waveform data used in this paper is retrieved from the data center of the southern375

California network CI (https://scedc.caltech.edu/data). The geological data in Figure376

8 were obtained from the CGS website (https://maps.conservation.ca.gov/cgs/gmc/).377
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