Cloud Botany: Shallow cumulus clouds in an ensemble of idealized large-domain large-eddy simulations of the trades

Fredrik Jansson¹, Martin Janssens², Johanna H Grönqvist³, Pier Siebesma¹, Franziska Glassmeier⁴, Jisk Jakob Attema⁵, Victor Azizi⁵, Masaki Satoh⁶, Yousuke Sato⁷, Hauke Schulz⁸, and Tobias Kölling⁹

¹TU Delft
²Wageningen University & Research
³ [^] Abo Akademi University
⁴TU Delft
⁵Netherlands eScience Center
⁶University of Tokyo
⁷Hokkaido University
⁸University of Washington
⁹Max Planck Institute for Meteorology

May 4, 2023

Abstract

Small shallow cumulus clouds (< 1 km) over the tropical oceans appear to possess the ability to self-organise into mesoscale (10-100 km) patterns. To better understand the processes leading to such self-organized convection, we present Cloud Botany, an ensemble of 103 large-eddy simulations on domains of 150 km, produced by the Dutch Large Eddy Simulation (DALES) model on supercomputer Fugaku. Each simulation is run in an idealized, fixed, larger-scale environment, controlled by six free parameters. We vary these over characteristic ranges for the winter trades, including parameter combinations observed during the EUREC4A (Elucidating the role of clouds-circulation coupling in climate) field campaign. In contrast to simulation setups striving for maximum realism, Cloud Botany provides a platform for studying idealized, and therefore more clearly interpretable causal relationships between conditions in the larger-scale environment and patterns in mesoscale, self-organized shallow convection. We find that any simulation that supports cumulus clouds eventually develops mesoscale patterns in their cloud fields. We also find a rich variety in these patterns as our control parameters change, including cold pools lined by cloudy arcs, bands of cross-wind clouds and aggregated patches, sometimes topped by thin anvils. Many of these features are similar to cloud patterns found in nature. The published data set consists of raw simulation output on full 3D grids and 2D cross-sections, as well as post-processed quantities aggregated over the vertical (2D), horizontal (1D) and all spatial dimensions (time-series). The data set is directly accessible from Python through the use of the EUREC4A intake catalog.

Cloud Botany: Shallow cumulus clouds in an ensemble of idealized large-domain large-eddy simulations of the trades

Fredrik Jansson¹, Martin Janssens^{1,2}, Johanna H. Grönqvist^{3,4}, A. Pier Siebesma^{1,5}, Franziska Glassmeier¹, Jisk Attema⁶, Victor Azizi⁶, Masaki Satoh⁷, Yousuke Sato^{8,9}, Hauke Schulz^{10,11}, Tobias Kölling¹⁰

7	¹ Department of Geoscience & Remote Sensing, Delft University of Technology
8	² Department of Meteorology & Air Quality, Wageningen University & Research
9	³ Department of Physics, Abo Akademi University, Turku, Finland
10	⁴ Institute of Physics, University of Amsterdam, Amsterdam, Netherlands
11	⁵ Royal Netherlands Meteorological Institute, de Bilt, Netherlands
12	⁶ Netherlands eScience Center, Amsterdam, Netherlands
13	⁷ Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
14	⁸ Department of Earth and Planetary Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
15	⁹ RIKEN Center for Computational Science, Kobe, Japan
16	¹⁰ Atmosphere in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany
17	¹¹ Cooperative Institute for Climate, Ocean, and Ecosystem Studies (CICOES), University of Washington,
18	Seattle, WA, United States

 We present Cloud Botany, an ensemble of idealized LES simulations of ter trade wind regions, controlled by six varied parameters. The parameter ranges are chosen to match the climatology of the trade gion. The simulations show a variety of cloud ensemination patterner small and 	
 ter trade wind regions, controlled by six varied parameters. The parameter ranges are chosen to match the climatology of the trade gion. The simulations show a variety of cloud exemption patterns: small and 	the win-
 The parameter ranges are chosen to match the climatology of the trade gion. The simulations show a variety of cloud engenization patterned small and 	
23 gion.The simulations show a variaty of aloud argonization patterns, small and	e wind re-
• The simulations show a variety of aloud expension patterns, small as	
• The simulations show a variety of cloud organization patterns: small cu	umulus, stripes,
²⁵ cold pools, cloud arcs, and anvils.	

Key Points:

4 5 6

19

Corresponding author: Fredrik Jansson, fjansson@abo.fi

26 Abstract

Small shallow cumulus clouds (<1 km) over the tropical oceans appear to possess the 27 ability to self-organise into mesoscale (10-100 km) patterns. To better understand the 28 processes leading to such self-organized convection, we present Cloud Botany, an ensem-29 ble of 103 large-eddy simulations on domains of 150 km, produced by the Dutch Large 30 Eddy Simulation (DALES) model on supercomputer Fugaku. Each simulation is run in 31 an idealized, fixed, larger-scale environment, controlled by six free parameters. We vary 32 these over characteristic ranges for the winter trades, including parameter combinations 33 observed during the EUREC⁴A (Elucidating the role of clouds-circulation coupling in 34 climate) field campaign. In contrast to simulation setups striving for maximum realism, 35 Cloud Botany provides a platform for studying idealized, and therefore more clearly in-36 terpretable causal relationships between conditions in the larger-scale environment and 37 patterns in mesoscale, self-organized shallow convection. We find that any simulation 38 that supports cumulus clouds eventually develops mesoscale patterns in their cloud fields. 39 We also find a rich variety in these patterns as our control parameters change, includ-40 ing cold pools lined by cloudy arcs, bands of cross-wind clouds and aggregated patches, 41 sometimes topped by thin anvils. Many of these features are similar to cloud patterns 42 found in nature. The published data set consists of raw simulation output on full 3D grids 43 and 2D cross-sections, as well as post-processed quantities aggregated over the vertical 44 (2D), horizontal (1D) and all spatial dimensions (time-series). The data set is directly 45 accessible from Python through the use of the EUREC⁴A intake catalog. 46

47 Plain Language Summary

The organization of shallow cumulus clouds over the tropical ocean has recently 48 received a lot of attention. This type of organization is potentially important for how 49 the clouds are affected by a changing climate and also for how they modulate further warm-50 ing. We present a collection of 103 detailed simulations of shallow cumulus clouds in ide-51 alized atmospheric environments. These environments are described by six parameters, 52 and our collection is formed by systematically simulating different parameter combina-53 tions. This way an ensemble is created that spans up a multidimensional phase space 54 of environmental conditions typical for the subtropical Atlantic Ocean. This approach 55 allows us to form a picture of how the environmental conditions relate to the cloud or-56 ganization that develops in the simulations. At a glance, most simulations evolve sim-57 ilarly: They quickly form small cumulus clouds, which then grow in size. Often this leads 58 to rainfall, which then causes further heterogeneity. The data is openly available online, 59 and will serve future studies of cumulus clouds, their organization, and how they inter-60 act with the climate. 61

62 1 Introduction

According to the Encyclopedia Britannica, botany is the "branch of biology that 63 deals with the study of plants, including their structure, properties, and biochemical pro-64 cesses. Also included are plant classification [...] and interactions with the environment" 65 (Pelczar et al., 2022). While conceived by biologists, this definition fits curiously well with 66 how meteorologists think about clouds. In fact, Luke Howard's cloud taxonomy (Howard, 67 1803) seems to have been explicitly inspired by Linnean nomenclature (Pedgley, 2003). 68 Meteorologists, like botanists, to this day use this taxonomy to facilitate our study of 69 cloud features, underlying processes and interactions with their atmospheric environment. 70

A recent example, with which we will concern ourselves here, focuses on cloudiness over the swaths of the tropical oceans known as the trades. During winter, this region is inhabited by shallow cumulus clouds, which in small-domain large-eddy simulations (LES, domain sizes O(10) km) appear homogeneously organized over the horizontal plane (e.g., Siebesma et al., 2003a), and which have historically remained unresolved by mod-

els of global scale (resolution O(100) km). Thus, cloud structures in the range of scales 76 in between, (O(10-100) km, which we will refer to collectively as the mesoscales) have 77 been rather sparsely studied (Nuijens & Siebesma, 2019). Yet, satellite observations of 78 the trade wind region reveal that shallow clouds are organized into a rich spectrum of 79 patterns at these scales (Agee, 1984; Stevens et al., 2020). Simple, botanical descriptions 80 of such mesoscale cloud patterns, e.g. through classification (Stevens et al., 2020) or char-81 acterization (Denby, 2020; Janssens et al., 2021), are at present guiding our understand-82 ing of how cloud patterns interact with their environment (Schulz et al., 2021), and re-83 vealing their importance in setting the trade-wind contribution to Earth's energy bal-84 ance and its sensitivity to changes in our climate (Bony et al., 2020). 85

The goal of improving our understanding of the mesoscale, marine trades has mo-86 bilized an entire community, centered around the EUREC⁴A field campaign (Stevens et 87 al., 2021). Fortunately, advances in computational capabilities now allow these obser-88 vations to be complemented by i) global and regional models running at a sufficiently 89 fine resolution to begin resolving shallow convection (e.g., Stevens et al., 2019) and ii) 90 detailed process models - "classical" LES codes - running on sufficiently large domains 91 to capture the mesoscale (e.g., Seifert et al., 2015; Lamaakel & Matheou, 2022). In par-92 ticular, these models facilitate understanding of the degree to which mesoscale cloud pat-93 terns originate in larger-scale dynamics, which set the environment in which clouds form, 94 or small-scale processes, which govern individual cumulus structures. Regional simula-95 tions running at less than a kilometre resolution are beginning to appear (Schulz & Stevens, 96 2023; Schulz, 2021); these attain a detailed representation of the larger scale and are there-97 fore well-suited to investigate the importance of those scales. However, we still miss a 98 systematic exploration of large-domain (> 100 km) LES that maintains a simple representation of the larger-scale environment, but does not compromise on its turbulence-100 resolving resolution of around 100m. 101

To bridge that gap, this paper presents Cloud Botany, an ensemble of 103 simu-102 lations on domains of 150 km at 100 m horizontal resolution, enabled by the comput-103 ing capabilities of supercomputer Fugaku. With Cloud Botany, we take a step back from 104 the pursuit of realistic regional or global simulations. Instead, we hypothesize that if we 105 wish to understand the role played by cumulus convection in organizing the tropical mesoscale, 106 it is helpful to begin by idealizing and fixing the larger-scale environment and bound-107 ary forcings on a mesoscale domain, and study the response of freely developing cloud 108 patterns to variations in these idealized forcings. Therefore, we will parameterize the ver-109 tical structure of the trade-wind environment with six parameters. We then co-vary these 110 parameters across the range of typically observed conditions in the trades, which results 111 in the ensemble of initial conditions and boundary forcings that our simulations run un-112 der. Such ensembles successfully explain parameter-dependencies in small-domain sim-113 ulations of the trades (e.g., Bellon & Stevens, 2012; Nuijens & Stevens, 2012; Schalkwijk 114 et al., 2013; Feingold et al., 2016; Glassmeier et al., 2021; Shen et al., 2022); we designed 115 Cloud Botany to test if extending this approach to large LES domains can help under-116 stand the origins of mesoscale cloud patterns. 117

The construction of the simulation ensemble and description of the resulting data 118 products are the main focus of the present manuscript. We aim to use the data to in-119 vestigate targeted questions, such as how the smallest energetic scales of motion self-organize 120 into mesoscale structures (e.g., Seifert et al., 2015; Bretherton & Blossey, 2017; Janssens 121 et al., 2022) under varying conditions. However, the simulations also come forth from 122 a general curiosity as to which trade-wind cloud structures our LES model can actually 123 produce (and which not), and how we might describe and classify these. It is in this sense 124 that our exploration comes closest to paralleling the botanist's quest. Most importantly, 125 we hope the data set is useful to a community with a broad range of research questions 126 pertaining to the understanding of the detailed dynamics of the mesoscale trades. 127

The paper is organized as follows. We begin by describing the creation of the ini-128 tial and boundary conditions that define our simulation ensemble (Section 2). Running 129 each simulation still requires the choice of several other parameters which we hold fixed 130 over the ensemble. These are outlined in Section 3. Section 4 describes the workflow of 131 setting up and running the simulations on Fugaku, and how its output is translated into 132 accessible data sets. Section 5 describes the salient features of these data products, be-133 fore Section 6 gives a brief overview of some frequently recurring cloud patterns. A con-134 clusion is offered in Section 7. 135

¹³⁶ 2 Creating an LES ensemble in a parameter space

To study how self-organized cloud patterns in LES respond to variations in the larger-137 scale environment, we will initialize and force LESs with simple, functional representa-138 tions of the vertical structure of the trade-wind environment ("profiles"). The param-139 eters that control these profiles will span a "parameter space", which we will explore by 140 co-varying the parameters. To cover this space with around 100 simulations, we must 141 keep its dimensionality as low as possible. Therefore, we wish to find a set of profiles which 142 is controlled by a minimal number of parameters. At the same time, we want these pro-143 files retain enough realism to remain useful for comparing variability over our simula-144 tion ensemble to variability in the real-world sub-tropics. 145

In this section, we will elaborate on how we design a parameter space that strikes this balance. We will first present our chosen set of idealized profiles and their free parameters (Section 2.1). We will then judge the realism of these profiles by analyzing how well we can fit them to reanalysis and observations (Section 2.2). Finally, we will use the variability in the parameters as fitted to observations to inform the ranges we will covary our parameters over, resulting in the set of initial conditions and forcings that make up our ensemble (Section 2.3).

153

2.1 Idealizations of the trade-wind environment

Cloud Botany is based on simulations conducted with the Dutch Large Eddy Sim-154 ulation (DALES Heus et al., 2010; Ouwersloot et al., 2017). In the configuration used 155 here, DALES solves numerical approximations of the anelastic equations of atmospheric 156 motion in a three-dimensional domain over a sea surface with a homogeneous temper-157 ature. The domain is discretized by a staggered grid. To initialize our idealized DALES 158 simulations, we specify vertical profiles for five of its prognostic quantities: Liquid-water 159 potential temperature θ_l , total specific humidity q_t , horizontal velocity in east-west (u) 160 and south-north (v) directions, and sub-filter scale (SFS) turbulent kinetic energy e; ver-161 tical velocities w are zero when horizontally averaged and do not require initialization. 162 Similarly, we will parameterize scales larger than the simulation domain with idealized 163 profiles for i) geostrophic horizontal wind (u_q, v_q) , ii) a large scale vertical velocity (w_{ls}) 164 and iii) large scale tendencies of moistening and heating, which we keep constant over 165 2.5 days of simulation. We will model these profiles of initial conditions and large-scale 166 forcings using profiles that capture basic aspects of the trade-wind environment's expected. 167 physical structure with at most two free parameters. Thus, our parameter space will con-168 tain both parameters that set the initial state of the atmosphere in our simulations, and 169 parameters that explicitly force the atmospheric state; their common denominator is that 170 they all explain an appreciable amount of variability in the environment, and are thought 171 to be important cloud-controlling variables. Parameters that are kept fixed over the en-172 semble are listed in Table 1. 173

We set both the initial profiles and geostrophic wind profiles of horizontal velocities u and v to

$$u(z) = u_0 + u_z z, \quad v(z) = 0 \tag{1}$$

Parameter [unit]	Value	Description
$\overline{u_z [1/\mathrm{s}]}$	0.00222	initial zonal wind shear
$\Delta \theta_{l0}$ [K]	1.25	initial difference in θ_l between surface and first atmospheric layer
z_{ml} [m]	500	initial mixed layer height
$w_{\infty} [\mathrm{cm/s}]$	-0.45	background subsidence velocity
$h_{w_{\infty}}$ [m]	2500	scale height of background subsidence
h_{w_1} [m]	5300	scale height of first additional mode of imposed vertical velocity
$\partial_t \theta_{l,ls,0} \left[\mathrm{K/day} \right]$	-0.5	large scale temperature tendency in first model level
$\partial_t \theta_{l,ls,z} \left[\mathrm{K/day/m} \right]$	$2.5 \cdot 10^{-4}$	large scale temperature tendency slope
$\partial_t q_{t,ls,0} \left[{\rm g/kg/day} \right]$	-1.49	large scale humidity tendency at surface
$\partial_t q_{t,ls,z} \left[{\rm g/kg/day/m} \right]$	$3.73 \cdot 10^{-4}$	large scale humidity tendency slope
$ au_{\infty}$ [h]	6	nudging time scale at top of domain
z_{max} [m]	3000	height around which the transition from
		strong $(z > z_{max})$ to weak $(z < z_{max})$ nudging is centered
a	2	constant for setting nudging time scale
b	3	constant for setting nudging time scale
С	7.4	constant for setting nudging time scale

Table 1. Parameters held constant in the experiment setup.

where
$$u_0$$
 is the initial near-surface wind and $u_z = \partial u/\partial z$ denotes the initial vertical
shear of horizontal wind speed. The geostrophic wind is assumed to remain constant in
time during each simulation. Except for a few exceptions, all simulations will be initialised
with the same zonal shear strength. As our analysis is positioned in the downstream trades
we assume $v_0 = 0, v_z = 0$ for all our experiments, i.e. the geostrophic wind is predom-
inantly east-west.

Profiles of the initial liquid water potential temperature θ_l follow a similar, linear approximation. However, they are slightly modified to account for their lowest levels covarying with the surface conditions (Pearson correlation r = 0.57 between θ_l at the lowest ERA5 level and the surface). To avoid long model spinups where surface fluxes attempt to re-calibrate an out-of-equilibrium mixed- and cloud layer, we therefore initialize θ_l with a residual layer of constant height $z_{ml} = 500$ m. Having chosen a (potential) sea-surface temperature, θ_{l0} , we simply set the residual layer's value to the reanalysismean difference in θ_l between the lowest ERA5 level and the surface, $\Delta \theta_{l0}$. This gives the following definition for θ_l :

$$\theta_l(z) = \begin{cases} \theta_{l0} - \Delta \theta_{l0} & \text{if } z < z_{ml} \\ \theta_{l0} - \Delta \theta_{l0} + \Gamma \left(z - z_{ml} \right) & \text{if } z \ge z_{ml} \end{cases}$$
(2)

Hence, the initial profile of θ_l is fully determined by setting θ_{l0} and Γ . In observations, u_0 and Γ seem to be important control parameters for the size and degree of clustering of trade-wind clouds (Bony et al., 2020; Schulz et al., 2021). To test whether similar dependencies can be observed in our LES setup, we have deliberately chosen u and θ_l to be specified by these parameters.

Profiles of the total humidity q_t are modelled with a similar initial well-mixed layer, but drop off exponentially above z_{ml} , following Vogel et al. (2020):

$$q_t(z) = \begin{cases} q_{t,ml} & \text{if } z < z_{ml} \\ q_{t,ml} e^{-\frac{z - z_{ml}}{h_{q_t}}} & \text{if } z \ge z_{ml} \end{cases}$$
(3)

The free parameters of this parameterization are the initial mixed-layer moisture $q_{t,ml}$

and the moisture scale height h_{q_t} . The surface moisture is assumed to be at saturation,

and thus follows from θ_{l0} and the surface pressure, and the difference in moisture between the first model level and the surface may be diagnosed in turn.

Finally, we will impose profiles of the large scale vertical velocity w_{ls} that includes two terms: i) a term representing the downwelling branch of the Hadley cell, modelled by exponential decay with height following e.g. Bellon and Stevens (2012), and ii) a sinusoidal term, a single period of which represents mesoscale circulations, as frequently observed during EUREC⁴A (George et al., 2022):

$$w_{ls}(z) = -w_{\infty} \left(1 - e^{-\frac{z}{h_{w_{\infty}}}} \right) + \begin{cases} w_1 \sin\left(\frac{2\pi}{h_{w_1}}z\right) & \text{if } z < h_{w_1} \\ 0 & \text{if } z \ge h_{w_1} \end{cases}$$
(4)

Varying w_1 captures a substantial amount of the mesoscale variability in vertical veloc-189 ity in the trades (George et al., 2022). Therefore, we fix the free-tropospheric, asymp-190 totic subsidence w_{∞} and its scale height $h_{w_{\infty}}$. Furthermore, we assume i) that the ver-191 tical depth of the circulations, encapsulated by h_{w_1} , scales with the boundary-layer height, 192 which LES studies of the phenomenon indicate to be reasonable (Bretherton & Blossey, 193 2017; Narenpitak et al., 2021; Janssens et al., 2022), and ii) that it to first order is con-194 stant in time. This leaves the strength of the sinusoidal term w_1 as a free parameter in 195 our large scale vertical velocity profiles. 196

Importantly, we do not fix the large scale vertical velocity profiles to satisfy a Weak 197 Temperature Gradient (WTG) constraint on the mean flow in the free troposphere, in 198 which horizontally averaged vertical motion is diagnosed given a radiative heating rate 199 and Γ (Bellon & Stevens, 2012; Nuijens & Stevens, 2012). Not enforcing WTG allows 200 richer responses of the boundary layer to its forcing (Betts & Ridgway, 1989), and is more 201 representative of the real trades, where free-tropospheric tendencies in heating and moist-202 ening are not usually small (e.g., Nitta & Esbensen, 1974). This choice prevents the free-203 troposphere from acquiring quasi-equilibrium, and requires us to add a subtle nudging 204 to prevent the tendencies from becoming overly adventurous; we return to this in Sec-205 tion 3. 206

In all, our idealized framework has six free parameters that set the environment we launch our simulations in, spanning a six-dimensional parameter space: surface wind u_0 , surface temperature θ_{l0} , temperature lapse rate Γ , surface humidity $q_{t,ml}$, humidity scale height h_{q_t} and large-scale vertical velocity variability w_1 .

2.2 Quality of fits

211

To assess how idealized the chosen functional forms are with respect to the verti-212 cal structure of the real trade-wind environment, we will compare them with the ERA5 213 global reanalysis (Hersbach et al., 2020), sampled every 3 hours between 9.8–16.8 N and 214 62.22–54.22 W between Jan-01-2020 and Mar-31-2020. This domain and period are rep-215 resentative for the trades in general (Medeiros & Nuijens, 2016) and span the winter dur-216 ing which the EUREC⁴A campaign was conducted (Jan-20-2020 to Feb-20-2020). We 217 complement use of ERA5 with the JOANNE data set (George et al., 2021), gathered dur-218 ing the campaign by launching densely spaced meteorological dropsondes from an air-219 craft along the perimeter of a 200 km circle. This spatial scale roughly fits that of our 220 horizontal domain size. Therefore, we will directly use this data at the spatial scale of 221 the circle and time scale of a day's flights. 222

We fit all profiles in our ERA5 database with Equations 1–4, using a non-linear least squares algorithm. The results are shown in the central rows of Table 2. Quality of fit is assessed in terms of the signal-to-noise ratio of each parameter, averaged over all fits, with the noise taken as the mean standard error of the least squares fit. Based on these numbers, we subjectively judge the fits of θ_l to be excellent, those of q_t and u adequate, and those of w_1 inadequate. The poor fit of w_1 reflects both significant deviations from

Table 2. Properties of environmental control parameters, ht to the ERA-5 database, and
selected for Cloud Botany. Mean SNR denotes the signal to noise ratio averaged over all fits;
1090% refers to the value of the 10th and 90th percentile of each parameter over the fits. The
range over which the parameters in Cloud Botany are varied is reported in the table's bottom
row. Temp. abbreviates temperature; hum. stands for humidity, and ML for mixed layer.

	θ_{l0} [K] surf. temp.	Γ [K/km] temp. lapse rate	$q_{t,ml}$ [g/kg] ML hum.	h_{q_t} [m] hum. scale	$u_0 [m/s]$ surf. wind	$w_1 \text{ [cm/s]}$ large-scale w
Mean	299	5	14.1	1810	-10.6	0.0393
Mean st. error	0.432	0.147	0.553	175	0.782	0.331
Mean SNR	821	40.1	28.4	11.7	16.0	0.034
10–90% Selected range	298 - 300 297.5 - 299.5	$\begin{array}{r} 0.00454 - 0.00528 \\ 0.0045 - 0.0055 \end{array}$	12.8 - 15.4 13.5 - 15.0	1180 - 2510 1200 - 2500	-14.26.93 -155	-0.984 - 1.14 -0.350 - 0.180

the prescribed functional form, and variability in higher-order modes in the ERA-5 database than our simple approximation captures. Since ERA5 agrees well with the JOANNE data (George et al., 2022), these higher-frequency fluctuations are unlikely entirely spurious. Therefore, we revisit the design of w_{ls} below.

²³³ By excluding v, we artificially remove momentum from our simulated environment. ²³⁴ To investigate the consequences, we have fit profiles of v in the same manner as for u. ²³⁵ The resulting meridional surface wind (v_0) is on average around 15% the strength of the ²³⁶ zonal surface wind (u_0) , while the meridional shear $v_z \approx 0$. We compensate for this gen-²³⁷ eral lack of momentum in the simulations by also investigating marginally broader ranges ²³⁸ in u_0 in our parameter sweeps (see below).

2.3 Chosen parameter ranges

239

To keep our simulation number manageable while capturing as much of the vari-240 ability that occurs in the winter trades as possible, Cloud Botany consists primarily of 241 simulations conducted at the corners of a hypercube in our six-dimensional parameter 242 space, i.e. $2^6 = 64$ simulations. These stem from considering all possible combinations 243 of our environmental control parameters, at a minimum and a maximum point informed 244 by the 10th and 90th percentile of each parameter's variability over the ERA5 fits (second-245 to-last row in Table 2). This choice makes our simulations indicative of the envelope of 246 conditions observed in the trades; they are thus not to be confused with the climatol-247 ogy that would have resulted from sampling the multivariate probability distribution func-248 tions of the fitted parameters. To still capture parameter dependencies in more typically 249 observed conditions, we supplement the hypercube corners with "sweeps": Runs that span 250 the range between the extrema in several steps for each control parameter, with all other 251 parameters held at the center of the hypercube. 252

Since the chosen parameters will be varied independently of each other, it is prudent to quantify their independence in observations, i.e. whether they each capture a unique aspect of the environment's variability. Pairwise Pearson correlations of our ERA5 fits broadly confirm this: All coefficients are below 0.4, with the largest correlations existing between θ_{l0} and Γ (0.340), θ_{l0} and $q_{t,ml}$ (0.353), Γ and h_{q_t} (0.356), and $q_{t,ml}$ and h_{q_t} (0.396). All other correlations are below 0.25.

The final ranges over which we run each control parameter are given in the bottom row of Table 2. For Γ , h_{q_t} and u_0 , these directly results from rounding the 10th and 90th percentile values. Variability in θ_{l0} subsumes both variability in surface pressure

and Sea-Surface Temperature (SST). Since we keep the surface pressure over our ensem-262 ble fixed at 1016.05 hPa, we adjust the rounded range over which we vary θ_{l0} to better 263 match the variability in SST. This results in a downwards adjustment of 0.5K. In pre-264 liminary experiments, combinations of high-end free-tropospheric moisture and free-running free-tropospheric tendencies would sometimes produce clouds near our domain tops, which 266 after spurious boundary interactions with our radiation scheme would yield temperatures 267 exceeding the local boiling point and crash our thermodynamics scheme. Conversely, sim-268 ulations with less cloud-layer moisture than the ERA5 envelope would often not even 269 develop clouds. To avoid these situations, we narrow the envelope of $q_{t,ml}$ slightly to avoid 270 unrealistically dry and moist free-tropospheric moisture profiles and initial profiles that 271 exceed a relative humidity of 100%. As we shall see in Section 6, even the final ensem-272 ble still contains some runs that fail in this manner. 273

There are certain inherent limitations to modelling variability in w_{ls} with a frame-274 work as simple as ours: it does not adequately represent high-frequency vertical modes, 275 nor does prescribing w_{ls} allow the convection developing in our simulations to interact 276 with vertical velocity structures of scales larger than our domain. Our compromise aims 277 to i) capture sufficient w variability to satisfy our main objective – studying environmen-278 tal dependencies – and ii) ensure that the variability we capture is more representative 279 of the reanalysis than traditional exponential (Bellon & Stevens, 2012; Blossey et al., 2013) 280 or linear (Stevens et al., 2001; Siebesma et al., 2003a; Yamaguchi et al., 2019) approx-281 imations. Therefore, we set w_{∞} to a number characteristic of the ERA5 mean in the free 282 troposphere, where its variation is not expected to be important for the current study, 283 and vary w_1 according to how it varied between the moistest and driest 50% of circles 284 flown by the HALO aircraft during $EUREC^4A$ (George et al., 2022). We separate the 285 vertical velocity variability by moisture variability (and not by the vertical velocity it-286 self), since the moisture variability tends to co-vary with the degree to which vertical 287 velocity patterns lead to aggregated cloud structures (Bretherton & Blossey, 2017; George 288 et al., 2022), and we are in search of such variability in the cloudiness. The resulting fits 289 are shown in Figure 1. 290

The remaining parameters needed to complete Equations 1–4 are reported in Table 1, and the complete ensemble of initial and boundary conditions that emerges is plotted in Figure 2.

²⁹⁴ **3** Design of fixed LES parameters

While Section 2 describes the set of initial and lower boundary conditions that vary over our simulation ensemble, running a simulation still requires the prescription of a model grid, a precipitation model, a radiation model, and two larger-scale advective forcings. These are all kept the same for all simulations; we briefly describe them in turn below.

Our simulations run for 60 hours on horizontally square domains of 153.6 km, with 299 a height of 7 km. The domains have periodic boundary conditions in the two horizon-300 tal directions. To discretize this cuboid, we use a grid with a horizontal spacing of 100 301 m, and vertical spacing of 20 m in our first model level, stretched by 1% in each level 302 above. This yields 1536 grid points on a horizontal side, and 175 vertical grid levels. Ad-303 vection of momentum, θ_l and e is discretized with a sixth order scheme, advection of q_t 304 and precipitation species with a fifth order scheme (Wicker & Skamarock, 2002). The 305 sources and sinks of precipitation are modelled with a warm microphysics scheme based 306 on Seifert and Beheng (2001), whose two moments we prognose. We prescribe a (fixed) 307 cloud-droplet number concentration of $7 \cdot 10^7 / \text{m}^3$. 308

Radiative heating rates are calculated interactively with RRTMG (Iacono et al., 2008). As the importance of diurnal, radiative variability in the downstream trades has recently been emphasized (Vial et al., 2019, 2021; Albright et al., 2021), we include in

Figure 1. Envelopes and mean of the vertical velocity in the JOANNE data set (George et al., 2021), over the 50% moistest (blue) and driest (red) circles flown by the HALO aircraft during the $EUREC^4A$ field campaign. Dashed lines indicate the profiles constructed with Equation 4 and the parameters reported in Tables 2 and 1.

the model's shortwave component the diurnal cycle representative for Feb-01-2020 at 13.1 312 N and 52 W. Required input profiles for ozone, water vapor and temperature derive from 313 ERA5, averaged over the EUREC⁴A region and period. These are prescribed over the 314 entire modelled column for ozone, and stitched to the prognosed profiles of temperature 315 and water vapor within our numerical domain from the 7 km domain top until a height 316 corresponding to the 100 Pa pressure level (which we refer to as the top of the atmosphere 317 - TOA). Default profiles are adopted for all other trace gases. 318

We add two large-scale forcings to the simulations. The first are (horizontally constant) tendencies that aim to be representative of the typical drying (for q_t) and cooling (for θ_l) of our region of interest through advection on a horizontal scale larger than we simulate. We estimate these tendencies from JOANNE following a linear approximation, held at zero once they cross the ordinate (Figure 3):

$$\partial_t \theta_{l,ls} = \min(0, \quad \partial_t \theta_{l,ls,0} + \partial_t \theta_{l,ls,z} z) \tag{5}$$

$$\partial_t q_{t,ls} = \min(0, \quad \partial_t q_{t,ls,0} + \partial_t q_{t,ls,z} z) \tag{6}$$

These tendencies display variability around the fixed, approximate state we have cho-319 sen, which would have made their inclusion in our parameter space interesting. We ex-320 cluded such variations to keep the required simulation number tractable, but recommend 321 investigating their importance in future extensions.

322

Finally, our rich ensemble of initial conditions combine with our variation of w_{ls} to form a rather broad variety of w_{ls} -induced heating and drying tendencies forced on our slab-averaged prognostic variables in the free troposphere. To prevent these tendencies from driving the initial state outside the ERA5 envelope, we impose a nudging ten-

Figure 2. Profiles of θ_l , q_t , relative humidity (RH), u and w_{ls} over the 10th–90th percentile envelope in ERA-5 (reanalysis, shading), its mean (gray), and for initial and large-scale forcing of Cloud Botany simulations: the centre (purple) and corners (pink) of the six-dimensional hypercube.

dency on our prognostic variables (u, v, θ_l, q_t) that forces them back towards their initial state with a height-dependent nudging time scale τ :

$$\tau(z) = \tau_{\infty} + \left(b\frac{\pi}{2}\arctan\left[a\frac{\pi}{2}\left(\frac{1-z}{z_{\max}}\right)\right]\right)^{c}$$
(7)

In this relation, the inverse tangent is centered around the top of the cloud layer: $z_{\text{max}} =$ 324 3000 m. Below this height we wish the convection to develop freely, so we set the free parameters a, b and c such that τ increases to around 3 months near the surface. In the free-tropospheric limit, where we would like to exercise some control over the profiles, we let the profile return to $\tau_{\infty} = 6$ h. The fixed parameters of Equations 5 and 7 are listed in Table 1.

³²⁹ 4 Workflow to create the data set

To turn the LES ensemble design into accessible data products, four steps need to be taken: i) creating a set of input files for each ensemble member, ii) running each simulation, iii) converting simulation output to an easily accessible format and iv) uploading the data set to a data repository. In this section we briefly document how we carry out these steps.

To produce the input files required to run each ensemble member, we used a Python script and EasyVVUQ (Groen et al., 2021), a framework for uncertainty quantification.

Figure 3. Inter-quartile range (IQR, shading) and mean (gray line) of JOANNE-derived tendencies of heating and moistening, and idealized fit used to force Cloud Botany simulations (blue line).

EasyVVUQ can sample a parameter space using different sampling strategies, for example based on quadrature methods suitable for uncertainty quantification methods. EasyVVUQ then produces model input files, using a template where the varied parameters are substituted. We use this mechanism to produce a Fortran namelist, which is the main DALES configuration file, for each ensemble member. The input files for the initial vertical profiles of the prognostic variables are produced with a Python script. The setup for using EasyVVUQ to run DALES experiments was presented in Jansson et al. (2021).

All simulations were run with DALES on supercomputer Fugaku. Fugaku is based 344 on the Fujitsu A64FX CPU, built on the ARM architecture with Scalable Vector Ex-345 tension. Each node of Fugaku has 48 CPU cores and 32 GB RAM, and is characterized 346 by a high memory bandwidth and fast node interconnect Fugaku is a CPU-only system, 347 i.e. it does not rely on accelerators such as GPUs. These properties seem to be a good 348 fit for DALES, a CPU-only code, which in our experience is often memory-bandwidth 349 limited and able to benefit from vectorized floating point mathematical operations. Port-350 ing DALES to Fugaku did not require extensive changes to the program, and was mostly 351 a matter of adding the option to use the Fujitsu Fortran compiler. For improved per-352 formance, the possibility to store the prognostic fields in single precision was implemented. 353 The single precision version is faster and requires less memory for storing the prognos-354 tic fields. The latter is particularly important on Fugaku which has relatively little RAM 355 memory per core (around 600 MB). Further optimizations included rewriting and sim-356 plifying some loops for better vectorization, based on profiling the program. These mod-357 ifications have been found to be beneficial on other architectures as well, enabling us to 358 maintain a single version of the code for all architectures. See Section Appendix A for 359 details of the DALES version used and for accessing the code. 360

Table 3. Computational resources used for the simulation of ensemble member 1, the central point in the parameter hypercube, on supercomputer Fugaku (one 2.0 GHz 48-core A64FX CPU per node), and on the Dutch national supercomputer Snellius (two 2.6 GHz 64-core AMD Rome 7H12 CPUs per node).

System	Time of simulation	Nodes	Cores	Wall clock time	Time per grid point and time step
Fugaku	0–12h	24	1152	46760 s	$2.8 \ \mu s$
-	3648h	24	1152	$110391 {\rm \ s}$	$5.6 \ \mu s$
Snellius	0-12h	8	1024	$73717~\mathrm{s}$	$4.0 \ \mu s$
	36-48h	8	1024	$92094~{\rm s}$	$4.5 \ \mu s$

DALES is parallelized using Message Passing Interfaces (MPI) in x and y, the two 361 horizontal directions. Each simulation was run on 24 nodes, with 24×48 MPI processes. 362 The simulations lasted around 5 days (wall-clock time of running the simulation) per en-363 semble member. More details on the computational requirements of one specific ensem-364 ble member, are shown in table 3, compared with a similar run on Snellius, the Dutch 365 national supercomputer. The results show that at the beginning of the simulation, DALES 366 runs faster on Fugaku, comparing time required per grid point and time step. Further 367 into the simulation, DALES runs slower on both systems, with a larger slowdown seen 368 on Fugaku. This behavior is result of the cloud microphysics and precipitation scheme 369 which is activated when precipitation occurs. This scheme has not been tuned for Fu-370 gaku yet, and appears to vectorize poorly. What the table doesn't show is that the scal-371 ing efficiency for using more nodes is better on Fugaku. 372

Each MPI process writes the output data for its own part of the simulation domain in the netCDF format. We used the uncompressed netCDF3 format, since it was found to require less RAM memory than netCDF4 during simulation. These netCDF tiles were then merged and converted to compressed netCDF4 using CDO 2.0.4 (Schulzweida, 2021).

Finally, the netCDF files were converted to the Zarr format (Miles et al., 2022) and uploaded to the German Climate Computing Centre (DKRZ)'s SWIFT object storage for easy access, as described further in Section 5. As a backup, the netCDF files are kept on the tape archive of the European Centre for Medium-Range Weather Forecasts (ECMWF).

³⁸¹ 5 Data set description

Cloud Botany contains a rich set of idealized large-eddy simulations that provide valuable resources to study the dependency of shallow cumulus convection to environmental conditions. In addition to the vast range of environments, the large domain-size itself allows an investigation of scales that remain uncaptured in previous simulation studies of trade-wind cumuli centered around the RICO (vanZanten et al., 2011) and BOMEX (Siebesma et al., 2003b) campaigns. Due to these large opportunities, we put additional effort into providing an easy and free access to these simulations.

We acknowledge that the download of 40TB of simulation output is a burden and 389 most users will only access portions of this data set, e.g. specific timesteps, specific mem-390 bers or height levels. To allow for a more modular access, the data set has been chun-391 ked along all its dimensions and saved as Zarr files which support these chunks. The Zarr 392 fileformat allowed further to host Cloud Botany on the DKRZ SWIFT object storage. 393 The combination of the Zarr format with an object storage leads to faster access rates 394 compared to traditional filesystem based hosted data sets and make the Cloud Botany 395 data set analysis ready. 396

An analysis in Python can be started by accessing the EUREC⁴A intake catalog (https://howto.eurec4a.eu/botany_dales.html):

```
399 import eurec4a
```

```
400 cat = eurec4a.get_intake_catalog()
401 botany_cat = cat.simulations.DALES.botany
```

Further details on how to visualize and analyse this data set can be found in the interactive How-To-EUREC4A book at https://howto.eurec4a.eu among other EUREC4A related data sets.

All the simulations in the Cloud Botany ensemble are listed in Table A1 together with their parameters. Run 1 is at the center of the parameter hypercube, runs 2 to 65 are its corners. The remaining runs 66 to 103, labeled "sweep", lie on lines through the center of the hypercube, where one parameter at a time is varied. The remark column gives subjective description of the clouds and cloud organization based on visual inspection.

The data is divided into several data sets, according to output frequency and dimensionality. Each data set is indexed by ensemble member, time and spatial coordinates. The data sets and their variables are summarized in Tables A4 – A11. In general, we have stored 3D fields and 2D radiation fields hourly, and 2D fields such as the liquid water path as well as horizontal cross sections of the prognostic variables every 5 minutes.

As an aid to navigating the ensemble, we have prepared a web page with a set of
plots and animations for each member. This page and the images and animations can
be downloaded and used offline (Jansson, Janssens, Grönqvist, Siebesma, et al., 2023).

420 6 Results

In this section we include a preliminary exploration of the development of mesoscale 421 cloud patterns in the Cloud Botany ensemble. We begin with Figure 4, which shows the 422 evolution of several quantities of interest and snapshots of the cloud cover and precip-423 itation in simulation 1, the centre point of our parameter space. Its evolution is qual-424 itatively similar to that of many ensemble members. All simulations depart from cloud-425 free states at midnight UTC. The first 10 hours are characterized by the onset of con-426 vection and the development of small, unorganized cumuli. These non-precipitating clouds 427 then gradually cluster into larger structures. This evolution is modulated by the diur-428 nal cycle of shortwave radiation. After sunrise, this gradually heats the domain, reduc-429 ing both the cloud fraction and horizontally averaged liquid-water path (LWP). After 430 sunset, the cloud structures rapidly grow vertically and begin to precipitate around 24 431 hours from the start of the simulation. The second diurnal cycle is then dominated by 432 larger, precipitating convection cells, organized along cold pools and frequently topped 433 by thin inversion clouds. 434

Figure 5 shows a few examples of cloud patterns that develop under different pa-435 rameter combinations. Many of these develop precipitating convection, almost always 436 paired with cold pools. When they appear, such cold pools typically dominate the cloud 437 patterning. We find at least three different ways in which this happens. First, cold pools 438 lined by arcs of cumuli (e.g. Figure 5 a) are ubiquitous across our precipitating simu-439 lations. Second, in simulations with strong surface wind, large lapse rates, small mois-440 ture scale heights and positive large-scale vertical velocity (e.g. runs 37, 45 in Figure 5 441 b and c and 79, not shown), cold pools are produced by sufficiently vigorous convective 442 cells that they produce large (> 50 km) sheets of thin, stratiform outflow layers, rem-443 iniscent of the structures termed "Flowers" by Stevens et al. (2020). At a glance, the ap-444

Figure 4. Time series of simulation 1, the central point of the parameter hypercube. The snapshots show cloud albedo in white (as parameterized by Zhang et al. (2005)) and rain water path in blue. The time series curves show the liquid water path (LWP), rain water path (RWP) and cloud fraction over time. The shaded background shows the diurnal cycle, the darker regions are night (18h to 06h in local time). The times of the snapshots are indicated by gray vertical lines.

Figure 5. Different types of cloud organization seen in the Cloud Botany ensemble. a) Run 6, cold pools, b) run 37, large cloud cluster topped by stratiform outflow, c) run 45, multiple such clusters, on the edges of cold pools, d) run 84, line of precipitation, e) run 40, non-precipitating cumulus in bands and f) run 66, non-precipitating cumulus in aggregated in quasi-circular clusters. The wind is easterly, i.e. from the right side of the image.

pearance of such structures under stronger stratifications and higher surface winds appears consistent with the observations by Bony et al. (2020); Schulz et al. (2021). Third,
in runs 84 to 91 the wind shear is varied. At strong wind shears of both positive and negative signs, cold pools are observed to deform into bands (Figure 5 d); such features are
also found in runs 4 and 100.

We also find a set of simulations with less vigorous, at most weakly precipitating 450 convection, often at lower surface winds. When the winds blow weakly, the large-scale 451 vertical velocity has a strong switching effect on the cloud formation: Negative w_1 of-452 ten results in very weak, sometimes cloud-free convection (e.g. runs 18 and 50); merely 453 switching w_1 to its positive counterpart in the simulations (19 and 51) makes them pro-454 duce deeper, precipitating convection. Yet strikingly, all non- or weakly precipitating sim-455 ulations that support a cumulus layer still see their convection organize into mesoscale 456 patterns (e.g. runs 8, 66-68), such as bands aligned with the mean wind (Figure 5 e) or 457 into quasi-circular clusters (Figure 5 f). Figure 6 shows 3D renderings of parts of scenes 458 b and e of figure 5. 459

Runs 7, 15, 38, 39 and 47 did not finish due to a crash in the thermodynamics routine, when temperature and moisture reach non-physical values. All these runs have a low lapse rate, sometimes allowing single plumes to permeate through to our domain top, where their spurious interactions with our boundary conditions makes them fail (see Section 2.3). Since we do not expect such deep convection to frequently occur during the suppressed conditions we aim to study, we recommend disregarding these runs. Addi-

Figure 6. Rendered 3D view of the central, large cloud structure in figure 5 b and of the stripes in figure 5 e, above a reflecting plane representing the ocean. The rendered domain is 70×70 km. The rendering shows an isosurface of $q_l = 2 \cdot 10^{-5}$ kg/kg.

tionally, runs 11, 14, 43, 46 and 87 only span 48h due to their computing jobs being interrupted.

In summary, we can identify at least five visually distinct forms of convective pat-468 terning in our ensemble, several of which appear to match visually identified categories 469 of cloud patterns in nature: "Sugar", "Gravel", the aforementioned "Flowers" and "Fish" 470 (Stevens et al., 2020). In order of increasing visual complexity, we find simulations with 471 i) no clouds, ii) small, randomly spaced cumulus, iii) clustered, non-precipitating cumu-472 lus (both ii and iii seem to fit the "Sugar" category), iv) precipitating convection and 473 subsequent cold pools ("Gravel"), and mesoscale convective systems topped by thin strat-474 iform clouds ("Flowers"). Patterns larger than our domain size, such as "Fish" we can-475 not simulate; our dataset therefore cannot shed light on their formation. However, since 476 Schulz et al. (2021) show that "Fish" originate in extratropical, synoptic disturbances, 477 there is also no reason to expect such structures to form spontaneously in even larger-478 domain simulations forced by conditions that characterise the trades. 479

480 7 Conclusions

There are several approaches to improve understanding of the processes that un-481 derpin the rich spectrum of cloud patterns over the tropical ocean. Many attempts rest 482 on the construction of models that strive for maximum realism across the entire relevant 483 scale range, from the synoptics to the large-eddy scales of turbulence. In this paper we 484 have presented Cloud Botany, an ensemble of large-eddy simulations on 150 km domains 485 that instead represents the larger-scale environment in a highly idealized manner. We 486 do this to elucidate the processes through which shallow convection can self-organize into 487 mesoscale cloud patterns, and to study systematically how these processes vary as the 488 larger-scale environment changes. 489

We design our idealized large-scale environment by fitting functional forms of the 490 vertical structure of liquid-water potential temperature, total specific humidity and hor-491 izontal wind from reanalysis, and vertical velocity from observations. For most of these, 492 reasonable fits can be attained with very simple approximations, allowing us to span the 493 range of observed conditions by varying only six parameters: these span a parameter space 494 that we explore by simulating i) all possible combinations of high and low values in the 495 parameters that are representative for observed variability over the boreal winter of 2020, 496 and ii) sweeps of single parameters. 497

In the Cloud Botany simulations, 93 out of 103 runs support cumulus-topped bound ary layers. Strikingly, all those that do also self-organize into mesoscale cloud patterns.
 We typically first observe small, randomly spaced cumulus, which quickly begin self-aggregating

into mesoscale clusters. After a marked diurnal cycle, we often observe the onset of precipitation after around 24 hours of simulation; subsequent cloud pattern varieties are dominated by cold pools and layers of thin inversion cloud. We also observe ample variability in the self-organized cloud patterns when we vary the parameters controlling the largescale environment, all of which are closely reminiscent of cloud patterns observed in nature. We take these results to be early indications that parameter ensembles will prove
fruitful for understanding the processes that govern the variability of the mesoscale trades,
under a range of larger-scale conditions.

509 We hope this makes Cloud Botany a valuable community resource for studies that simultaneously require the resolution of individual cloud structures, a mesoscale envi-510 ronment and variability over a range of conditions characteristic for the trades. It also 511 serves as a point of departure for using parameter ensembles to study variability in con-512 vective clouds in other regions of the world, or in warmer climates. Finally, we see Cloud 513 Botany as sitting on the abstract side of a spectrum of modeling approaches, which in-514 clude simulation setups under time-varying forcings derived from a numerical weather 515 prediction model (Savazzi et al., 2022), on the lateral boundaries of open domains (Dauhut 516 et al., 2022), Lagrangian LES (Narenpitak et al., 2021), mesoscale models with param-517 eterized convection (Beucher et al., 2022) and regional and global models with partially 518 resolved convection (Schulz & Stevens, 2023; Stevens et al., 2019). All these will be needed 519 to fully elucidate the subtleties that govern the interactions between clouds, their envi-520 ronment and climate at the trade-wind mesoscales. 521

522 Appendix A Tables

523 Acknowledgments

The research was supported by the European Union's Horizon 2020 research and innovation program under grant agreement no. 820829 (CONSTRAIN project). FG acknowledges support from The Branco Weiss Fellowship - Society in Science, administered by ETH Zürich, and from an NWO Veni grant. DALES performance improvements were made with support from the ESIWACE2 project, which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 823988.

Access to supercomputer Fugaku was provided by RIKEN through the HPCI System Research Project (project hp200321). Furthermore, we acknowledge the use of ECMWF's computing and archive facilities in the research reported here. We thank the staff of the Fugaku helpdesk at RIKEN for their friendly and fast assistance and DKRZ, the German Climate Computing Centre, for hosting the dataset. We thank SURF (www.surf.nl) for the support in using the National Supercomputer Snellius.

537 Code and data availability

The main data product in this article is the Cloud Botany ensemble, accessible through the EUREC⁴A intake catalog, see https://howto.eurec4a.eu/intro.html.

The version of DALES used for the Cloud Botany experiment is based on DALES v4.3 DOI:10.5281/zenodo.4604726, (Arabas et al., 2021), with modifications for running on Fugaku and for optimization. The exact version used is available on GitHub, https://github.com/dalesteam/dales/tree/fugaku, commit ca69c, and also archived as DOI:10.5281/zenodo.7405654 (Arabas et al., 2022). Support for running on Fugaku and most of the optimizations have subsequently been merged into DALES v4.4.

The DALES input files for the ensemble, the Python scripts used to generate them, and Jupyter notebooks producing the article figures are archived at DOI:10.5281/zenodo.7709435

run	θ_{l0}	u_0	$q_{t,ml}$	h_{q_t}	Г [K/m]	w_1	u_z	location	remark
		[III/S]	[g/ kg]	[111]		[CIII/S]	[8]		
1	298.5	-10	14.25	1850	5	-0.085	0.0022	center	cold pools
2	297.5	-15	13.5	1200	4.5	-0.35	0.0022	corner	cold pools
3	297.5	-15	13.5	1200	4.5	0.18	0.0022	corner	cold pools
4	297.5	-15	13.5	1200	5.5	-0.35	0.0022	corner	cold pools
5	297.5	-15	13.5	1200	5.5	0.18	0.0022	corner	cold pools
6	297.5	-15	13.5	2500	4.5	-0.35	0.0022	corner	cold pools
7	297.5	-15	13.5	2500	4.5	0.18	0.0022	corner	thermo. crash
8	297.5	-15	13.5	2500	5.5	-0.35	0.0022	corner	weak precip
9	297.5	-15	13.5	2500	5.5	0.18	0.0022	corner	cold pools
10	297.5	-15	15	1200	4.5	-0.35	0.0022	corner	cold pools
11	297.5	-15	15	1200	4.5	0.18	0.0022	corner	cold pools
12	297.5	-15	15	1200	5.5	-0.35	0.0022	corner	cold pools
13	297.5	-15	15	1200	5.5	0.18	0.0022	corner	cold pools
14	297.5	-15	15	2500	4.5	-0.35	0.0022	corner	cold pools
15	297.5	-15	15	2500	4.5	0.18	0.0022	corner	thermo. crash
16	297.5	-15	15	2500	5.5	-0.35	0.0022	corner	cold pools
17	297.5	-15	15	2500	5.5	0.18	0.0022	corner	cold pools
18	297.5	-5	13.5	1200	4.5	-0.35	0.0022	corner	no clouds
19	297.5	-5	13.5	1200	4.5	0.18	0.0022	corner	cold pools
20	297.5	-5	13.5	1200	5.5	-0.35	0.0022	corner	no clouds
21	297.5	-5	13.5	1200	5.5	0.18	0.0022	corner	cold pools
22	297.5	-5	13.5	2500	4.5	-0.35	0.0022	corner	small cumulus
23	297.5	-5	13.5	2500	4.5	0.18	0.0022	corner	cold pools
24	297.5	-5	13.5	2500	5.5	-0.35	0.0022	corner	no clouds
25	297.5	-5	13.5	2500	5.5	0.18	0.0022	corner	cold pools
26	297.5	-5	15	1200	4.5	-0.35	0.0022	corner	small cumulus
27	297.5	-5	15	1200	4.5	0.18	0.0022	corner	cold pools
28	297.5	-5	15	1200	5.5	-0.35	0.0022	corner	small cumulus
29	297.5	-5	15	1200	5.5	0.18	0.0022	corner	cold pools
30	297.5	-5	15	2500	4.5	-0.35	0.0022	corner	organizing cumulus
31	297.5	-5	15	2500	4.5	0.18	0.0022	corner	cold pools
32	297.5	-5	15	2500	5.5	-0.35	0.0022	corner	small organizing cumulus
33	297.5	-5	15	2500	5.5	0.18	0.0022	corner	cold pools
34	299.5	-15	13.5	1200	4.5	-0.35	0.0022	corner	cold pools
35	299.5	-15	13.5	1200	4.5	0.18	0.0022	corner	cold pools

 Table A1.
 Summary of all simulations in the Cloud Botany ensemble, part 1

run	θ_{l0} [K]	u_0 [m/s]	$q_{t,ml}$ [g/kg]	h_{q_t} [m]	Г [K/m]	w_1 [cm/s]	u_z [s ⁻¹]	location	remark
36	200 5		13.5	1200	55	_0.35	0.0022	corner	cold pools
37	299.5 299.5	-15	13.5 13.5	1200	5.5	-0.55	0.0022 0.0022	corner	cold pools aggregated clouds
38	299.5 299.5	-15	13.5 13.5	2500	4.5	-0.35	0.0022 0.0022	corner	cold pools, thermo, crash
30	299.5	-15	13.0	2500	4.5	0.55	0.0022 0.0022	corner	cold pools, thermo, crash
40	299.5	-15	13.0	2500	4.0 5.5	-0.35	0.0022 0.0022	corner	arcs
41	200.0 299.5	-15	13.5	2500	5.5	0.00	0.0022 0.0022	corner	cold pools
42	299.5	-15	10.0	1200	4.5	-0.35	0.0022 0.0022	corner	cold pools
43	299.5	-15	15	1200	4.5	0.08	0.0022	corner	cold pools
44	299.5	-15	15	1200	5.5	-0.35	0.0022	corner	cold pools
45	299.5	-15	15	1200	5.5	0.18	0.0022	corner	cold pools, aggregated clouds
46	299.5	-15	15	2500	4.5	-0.35	0.0022	corner	cold pools
47	299.5	-15	15	2500	4.5	0.18	0.0022	corner	thermo, crash
48	299.5	-15	15	2500	5.5	-0.35	0.0022	corner	cold pools
49	299.5	-15	15	2500	5.5	0.18	0.0022	corner	cold pools
50	299.5	-5	13.5	1200	4.5	-0.35	0.0022	corner	no clouds
51	299.5	-5	13.5	1200	4.5	0.18	0.0022	corner	cold pools
52	299.5	-5	13.5	1200	5.5	-0.35	0.0022	corner	no clouds
53	299.5	-5	13.5	1200	5.5	0.18	0.0022	corner	cold pools
54	299.5	-5	13.5	2500	4.5	-0.35	0.0022	corner	no clouds
55	299.5	-5	13.5	2500	4.5	0.18	0.0022	corner	cold pools
56	299.5	-5	13.5	2500	5.5	-0.35	0.0022	corner	no clouds
57	299.5	-5	13.5	2500	5.5	0.18	0.0022	corner	cold pools
58	299.5	-5	15	1200	4.5	-0.35	0.0022	corner	no clouds
59	299.5	-5	15	1200	4.5	0.18	0.0022	corner	cold pools
60	299.5	-5	15	1200	5.5	-0.35	0.0022	corner	no clouds
61	299.5	-5	15	1200	5.5	0.18	0.0022	corner	cold pools
62	299.5	-5	15	2500	4.5	-0.35	0.0022	corner	small cumulus
63	299.5	-5	15	2500	4.5	0.18	0.0022	corner	cold pools
64	299.5	-5	15	2500	5.5	-0.35	0.0022	corner	no clouds
65	299.5	-5	15	2500	5.5	0.18	0.0022	corner	cold pools
66	298.5	-4	14.25	1850	5	-0.085	0.0022	sweep u 0	organizing cumulus, weak precip
67	298.5	-5	14.25	1850	5	-0.085	0.0022	sweep u 0	organizing cumulus, weak precip
68	298.5	-6	14.25	1850	5	-0.085	0.0022	sweep u 0 $$	organizing cumulus, cold pools
69	298.5	-8	14.25	1850	5	-0.085	0.0022	sweep u 0 $$	cold pools
70	298.5	-12	14.25	1850	5	-0.085	0.0022	sweep u 0 $$	cold pools

Table A2. Summary of all simulations in the Cloud Botany ensemble, part 2

run	θ_{l0}	u_0	$q_{t,ml}$	h_{q_t}	Г	w_1		location	remark
	[K]	[m/s]	[g/kg]	[m]	[K/m]	[cm/s]	$[s^{-1}]$		
71	298.5	-15	14.25	1850	5	-0.085	0.0022	sweep u0	cold pools
72	298.5	-10	14.25	1850	5	-0.2	0.0022	sweep wpamp	cold pools
73	298.5	-10	14.25	1850	5	-0.1	0.0022	sweep wpamp	cold pools
74	298.5	-10	14.25	1850	5	0	0.0022	sweep wpamp	cold pools
75	298.5	-10	14.25	1850	5	0.1	0.0022	sweep wpamp	cold pools
76	298.5	-10	14.25	1850	4	-0.085	0.0022	sweep Γ	cold pools
77	298.5	-10	14.25	1850	4.5	-0.085	0.0022	sweep Γ	cold pools
78	298.5	-10	14.25	1850	4.75	-0.085	0.0022	sweep Γ	cold pools
79	298.5	-10	14.25	1850	5.25	-0.085	0.0022	sweep Γ	cold pools, aggregated clouds
80	298.5	-10	14.25	1850	5.5	-0.085	0.0022	sweep Γ	cold pools
81	298.5	-10	14.25	1850	6	-0.085	0.0022	sweep Γ	cold pools
82	298.5	-10	14.25	1850	6.5	-0.085	0.0022	sweep Γ	cold pools
83	298.5	-10	14.25	1850	7.5	-0.085	0.0022	sweep Γ	cold pools
84	298.5	-10	14.25	1850	5	-0.085	-0.0044	sweep u_z	precip and bands
85	298.5	-10	14.25	1850	5	-0.085	-0.0033	sweep u_z	precip and bands
86	298.5	-10	14.25	1850	5	-0.085	-0.0022	sweep u_z	bands and arcs
87	298.5	-10	14.25	1850	5	-0.085	-0.0011	sweep u_z	cold pools
88	298.5	-10	14.25	1850	5	-0.085	0	sweep u_z	cold pools
89	298.5	-10	14.25	1850	5	-0.085	0.0011	sweep u_z	cold pools
90	298.5	-10	14.25	1850	5	-0.085	0.0033	sweep u_z	cold pools
91	298.5	-10	14.25	1850	5	-0.085	0.0044	sweep u_z	arcs, bands
92	297.5	-10	14.25	1850	5	-0.085	0.0022	sweep this	cold pools
93	299.5	-10	14.25	1850	5	-0.085	0.0022	sweep this	cold pools
94	300.5	-10	14.25	1850	5	-0.085	0.0022	sweep this	cold pools
95	301.5	-10	14.25	1850	5	-0.085	0.0022	sweep this	cold pools
96	298.5	-10	14.25	800	5	-0.085	0.0022	sweep h_{q_t}	cold pools
97	298.5	-10	14.25	1200	5	-0.085	0.0022	sweep h_{q_t}	cold pools
98	298.5	-10	14.25	1500	5	-0.085	0.0022	sweep h_{q_t}	cold pools
99	298.5	-10	14.25	2200	5	-0.085	0.0022	sweep h_{q_t}	cold pools
100	298.5	-10	14.25	2500	5	-0.085	0.0022	sweep h_{q_t}	cold pools, arcs
101	298.5	-10	14.25	3000	5	-0.085	0.0022	sweep h_{q_t}	cold pools
102	298.5	-10	13.5	1850	5	-0.085	0.0022	sweep $qt0$	cold pools
103	298.5	-10	15	1850	5	-0.085	0.0022	sweep qt0	cold pools

 Table A3.
 Summary of all simulations in the Cloud Botany ensemble, part 3

variable	units	description
cfrac	-	Cloud fraction
lmax	kg/kg	Maximum liquid water specific humidity
lwp_bar	kg/m^2	Slab-averaged liquid-water path
lwp_max	$\rm kg/m^2$	Maximum Liquid-water path
obukh	m	Obukhov Length
qtstr	Κ	Turbulent humidity scale
rwp_bar	$\rm kg/m^2$	Rain water path
thlskin	K	Surface liquid water potential temperature
tstr	Κ	Turbulent temperature scale
twp_bar	$\rm kg/m^2$	Total water path
ustar	m/s	Surface friction velocity
vtke	kg/s	Vertical integral of e
we	m/s	Entrainment velocity
wmax	m/s	Maximum vertical velocity
wq	kg/kg m/s	Surface kinematic moisture flux
wtheta	K m/s	Surface kinematic potential temperature flux
wthetav	K m/s	Surface kinematic virtual potential temperature flux
z0	m	Roughness height
zb	m	Cloud-base height
zc_av	m	Average Cloud-top height
zc_max	m	Maximum Cloud-top height
zi	m	Boundary layer height

 Table A4.
 Variables in the timeseries data set, sampled every minute. Dimensions: (member, time)

⁵⁴⁸ (Jansson, Janssens, & Grönqvist, 2023). The scripts generating figures 4 and 5 serve as ⁵⁴⁹ examples of accessing the Cloud Botany data through the intake catalog.

An offline webpage containing basic profile and time-series plots as well as animations of all the ensemble members is available at DOI:10.5281/zenodo.7692270 (Jansson, Janssens, Grönqvist, Siebesma, et al., 2023).

553 Author Contribution

FJ, JHG, MJ, PS, FG, YS, MS formulated the project. VA, JA, FJ ported and optimized DALES for Fugaku and implemented single-precision floating point support. MJ analyzed the ERA5 data to obtain parameter ranges. MS and YS provided early access to Fugaku and the chance to test DALES there in advance of the project. FJ ran the simulations. HS, TK, FJ prepared the dataset for online access. FJ, MJ, and JHG wrote the article text, in collaboration with all the authors.

560 References

- Agee, E. M. (1984). Observations from space and thermal convection: A historical perspective. Bulletin of the American Meteorological Society, 65(9), 938 949.
 doi: 10.1175/1520-0477(1984)065(0938:OFSATC)2.0.CO;2
- Albright, A. L., Fildier, B., Touzé-Peiffer, L., Pincus, R., Vial, J., & Muller, C.
- (2021). Atmospheric radiative profiles during EUREC4A. Earth System
 Science Data, 13(2), 617–630.
- Arabas, S., Axelsen, S., Attema, J., Beets, C., Boeing, S. J., de Bruine, M., ...

Table A5. Variables in the profiles data set containing horizontally averaged profiles, sampledevery 5 minutes, part 1. Dimensions: (member, time, z)

variable	units	description
cfrac	-	Cloud fraction
cs	-	Smagorinsky constant
dvrmn	m	Precipitation mean diameter
lwd	W/m^2	Long wave downward radiative flux
lwdca	W/m^2	Long wave clear air downward radiative flux
lwu	W/m^2	Long wave upward radiative flux
lwuca	W/m^2	Long wave clear air upward radiative flux
npaccr	$\#/m^3/s$	Accretion rain drop tendency
npauto	$\#/m^3/s$	Autoconversion rain drop tendency
npevap	$\#/m^3/s$	Evaporation rain drop tendency
npsed	$\#/m^3/s$	Sedimentation rain drop tendency
nptot	$\#/m^3/s$	Total rain drop tendency
nrrain	$\#/m^3$	Rain droplet number concentration
preccount	-	Precipitation flux area fraction
precmn	W/m^2	Rain rate
presh	Pa	Pressure at cell center
ql	m kg/kg	Liquid water specific humidity
ql2r	$(kg/kg)^2$	Resolved liquid water variance
qrmn	m kg/kg	Precipitation specific humidity
qrpaccr	$\rm kg/kg/s$	Accretion rain water content tendency
qrpauto	$\rm kg/kg/s$	Autoconversion rain water content tendency
qrpevap	$\rm kg/kg/s$	Evaporation rain water content tendency
qrpsed	$\rm kg/kg/s$	Sedimentation rain water content tendency
qrptot	$\rm kg/kg/s$	Total rain water content tendency
qt	m kg/kg	Total water specific humidity
qt2D	$\mathrm{kg^2/kg^2/s}$	Dissipation of qt variance
qt2Pr	$\mathrm{kg^2/kg^2/s}$	Resolved production of qt variance
qt2Ps	$\rm kg^2/kg^2/s$	SFS production of qt variance
qt2Res	$\mathrm{kg^2/kg^2/s}$	Residual of qt budget
qt2S	$\mathrm{kg^2/kg^2/s}$	Source of qt variance
qt2Tr	$\rm kg^2/kg^2/s$	Resolved transport of qt variance
qt2r	$(kg/kg)^2$	Resolved total water variance
qt2tendf	$\mathrm{kg^2/kg^2/s}$	Tendency of qt variance

Table A6. Variables in the profiles data set containing horizontally averaged profiles, sampled every 5 minutes, part 2. Dimensions: (member, time, z)

variable	units	description
raincount	-	Rain water content area fraction
rainrate	W/m^2	Echo rain rate
rhobf	$ m kg/m^3$	Full level base-state density
rhobh	$ m kg/m^3$	Half level base-state density
rhof	$\rm kg/m^3$	Full level slab averaged density
skew	-	vertical velocity skewness
sv001	(kg/kg)	Scalar 001 specific mixing ratio
sv0012r	$(kg/kg)^2$	Resolved scalar 001 variance
sv002	(kg/kg)	Scalar 002 specific mixing ratio
sv0022r	$(kg/kg)^2$	Resolved scalar 002 variance
svp001	(kg/kg/s)	Scalar 001 tendency
svp002	(kg/kg/s)	Scalar 002 tendency
svpt001	(kg/kg/s)	Scalar 001 turbulence tendency
svpt002	(kg/kg/s)	Scalar 002 turbulence tendency
swd	W/m^2	Short wave downward radiative flux
swdca	W/m^2	Short wave clear air downward radiative flux
swu	W/m^2	Short wave upward radiative flux
swuca	W/m^2	Short wave clear air upward radiative flux
th2r	\mathbf{K}^2	Resolved theta variance
thl	Κ	Liquid water potential temperature
thl2D	K^2/s	Dissipation of the variance
$ ext{thl2Pr}$	K^2/s	Resolved production of the variance
thl2Ps	K^2/s	SFS production of the variance
thl2Res	K^2/s	Residual of thl budget
$ ext{thl2S}$	K^2/s	Source of the variance
thl2Tr	K^2/s	Resolved transport of the variance
thl2r	K^2	Resolved thl variance
thl2tendf	K^2/s	Tendency of the variance
thllwtend	$\mathrm{K/s}$	Long wave radiative tendency
thlradls	$\rm K/s$	Large scale radiative tendency

variable	units	description
thlswtend	K/s	Short wave radiative tendency
thltend	K/s	Total radiative tendency
$_{\rm thv}$	K	Virtual potential temperature
thv2r	${\rm K}^2$	Resolved buoyancy variance
u	m/s	West-East velocity
u2r	m^2/s^2	Resolved horizontal velocity variance (u)
uwr	m^2/s^2	Resolved momentum flux (uw)
uws	m^2/s^2	SFS-momentum flux (uw)
uwt	m^2/s^2	Total momentum flux (vw)
v	m/s	South-North velocity
v2r	m^2/s^2	Resolved horizontal velocity variance (v)
vwr	m^2/s^2	Resolved momentum flux (vw)
vws	m^2/s^2	SFS-momentum flux (vw)
vwt	m^2/s^2	Total momentum flux (vw)
w2r	m^2/s^2	Resolved vertical velocity variance
w2s	m^2/s^2	SFS-TKE
wqlr	kg/kg m/s	Resolved liquid water flux
wqls	kg/kg m/s	SFS-liquid water flux
wqlt	$\rm kg/kg~m/s$	Total liquid water flux
wqtr	kg/kg m/s	Resolved moisture flux
wqts	kg/kg m/s	SFS-moisture flux
wqtt	$\rm kg/kg~m/s$	Total moisture flux
wsv001r	$\rm kg/kg~m/s$	Resolved scalar 001 flux
wsv001s	$\rm kg/kg~m/s$	SFS scalar 001 flux
wsv001t	$\rm kg/kg~m/s$	Total scalar 001 flux
wsv002r	$\rm kg/kg~m/s$	Resolved scalar 002 flux
wsv002s	$\rm kg/kg~m/s$	SFS scalar 002 flux
wsv002t	kg/kg m/s	Total scalar 002 flux
wthlr	$\mathrm{Km/s}$	Resolved Theta_l flux
wthls	$\mathrm{Km/s}$	SFS-Theta_l flux
wthlt	$\mathrm{Km/s}$	Total Theta_l flux
wthvr	$\mathrm{Km/s}$	Resolved buoyancy flux
wthvs	$\mathrm{Km/s}$	SFS-buoyancy flux
wthvt	$\mathrm{Km/s}$	Total buoyancy flux

Table A7. Variables in the profiles data set containing horizontally averaged profiles, sampled every 5 minutes, part 3. Dimensions: (member, time, z)

Table A8. Variables in the 2D data set, containing horizontal fields sampled every 5 minutes. 2D. Dimensions: (member, time, y, x)

waniabla	unita	decemintion
variable	umus	description
cldtop	m	xy cross sections cloud top height
hinvsrf	m	height of surface inversion
hmix	m	mixed layer height
lwp	$\mathrm{kg/m^2}$	xy cross sections liquid water path
rwp	$\mathrm{kg/m^2}$	xy cross sections rain water path
surfprec	-	surface precipitation
thetavmix	Κ	theta_v averaged over mixed layer
twp	$\mathrm{kg/m^2}$	total water path
umix	m/s	u averaged over mixed layer
vmix	m/s	\boldsymbol{v} averaged over mixed layer

variable	units	description
ql	kg/kg	Liquid water specific humidity
qt	kg/kg	Total water specific humidity
\mathbf{qr}	kg/kg	Rain water specific humidity
thl	Κ	Liquid water potential temperature
u	m/s	West-East velocity
v	m/s	South-North velocity
W	m/s	Vertical velocity

Table A9. Variables in the 3D data set, the full 3D fields of the model sampled every hour. Dimensions: (member, time, z, y, x)

Table A10. Variables in the cross_xy data set, horizontal cross-sections of the prognostic variables sampled every 5 minutes. Dimensions: (z, y, x)

variable	units	description
qlxy qrxy qtxy	kg/kg kg/kg kg/kg	xy cross sections of the Liquid water specific humidity xy cross sections of the Rain water specific humidity xy cross sections of the Total water specific humidity
thlxy	K _/	xy cross sections of the Liquid water specific humany xy cross sections of the Liquid water potential temperature
uxy vxy	m/s m/s	xy cross sections of the West-East velocity xy cross sections of the South-North velocity
wxy	m/s	xy cross sections of the Vertical velocity

568	van Zanten, M. (2021, March). dalesteam/dales: Dales 4.3. Zenodo. doi:
569	10.5281/zenodo.4604726
570	Arabas, S., Axelsen, S., Attema, J., Beets, C., Boeing, S. J., de Bruine, M., van
571	Zanten, M. (2022, December). dalesteam/dales: v4.3 for cloud botany on
572	fugaku. Zenodo. doi: 10.5281/zenodo.7405654
573	Bellon, G., & Stevens, B. (2012). Using the sensitivity of large-eddy simulations to
574	evaluate atmospheric boundary layer models. Journal of the Atmospheric Sci-
575	$ences, \ 69(5), \ 1582-1601.$
576	Betts, A. K., & Ridgway, W. (1989). Climatic equilibrium of the atmospheric con-
577	vective boundary layer over a tropical ocean. Journal of the Atmospheric Sci-
578	$ences, \ 46(17), \ 2621-2641.$
579	Beucher, F., Couvreux, F., Bouniol, D., Faure, G., Favot, F., Dauhut, T., & Ayet,
580	A. (2022). Process-oriented evaluation of the oversea arome configuration:
581	Focus on the representation of cloud organisation. Quarterly Journal of the
582	Royal Meteorological Society.
583	Blossey, P. N., Bretherton, C. S., Zhang, M., Cheng, A., Endo, S., Heus, T., Xu,
584	KM. (2013). Marine low cloud sensitivity to an idealized climate change:
585	The cgils les intercomparison. Journal of Advances in Modeling Earth Systems,
586	5(2), 234–258.
587	Bony, S., Schulz, H., Vial, J., & Stevens, B. (2020). Sugar, gravel, fish, and flow-
588	ers: Dependence of mesoscale patterns of trade-wind clouds on environmental
589	conditions. Geophysical research letters, $47(7)$, e2019GL085988.
590	Bretherton, C., & Blossey, P. (2017). Understanding mesoscale aggregation of shal-
591	low cumulus convection using large-eddy simulation. Journal of Advances in
592	Modeling Earth Systems, $9(8)$, 2798–2821.
593	Dauhut, T., Couvreux, F., Bouniol, D., Beucher, F., Volkmer, L., Pörtge, V.,
594	others (2022). Flower trade-wind clouds are shallow mesoscale convective

Table A11. Variables in the radiation data set, 2D radiation fluxes sampled every hour. TOA stands for Top of Atmosphere, TOM for Top of Model. Dimensions: (member, time, y, x)

variable	units	description
clwvi	$\rm kg/m^2$	condensed water path
hfls	W/m^2	surface upward latent heat flux
hfss	W/m^2	surface upward sensible heat flux
prw	$ m kg/m^2$	water vapor path
rlds	W/m^2	surface downwelling longwave flux
rldscs	W/m^2	surface downwelling longwave flux - clear sky
rlus	W/m^2	surface upwelling longwave flux
rluscs	W/m^2	surface upwelling longwave flux - clear sky
rlut	W/m^2	TOM outgoing longwave flux
rlutcs	W/m^2	TOM outgoing longwave flux - clear sky
rlutoa	W/m^2	TOA outgoing longwave flux
rlutoacs	W/m^2	TOA outgoing longwave flux - clear sky
rsds	W/m^2	surface downwelling shortwave flux
rsds_dif	W/m^2	surface downwelling shortwave diffuse flux
$rsds_dir$	W/m^2	surface downwelling shortwave direct flux
rsdscs	W/m^2	surface downwelling shortwave flux - clear sky
rsdt	W/m^2	TOM incoming shortwave flux
rsdtoa	W/m^2	TOA incoming shortwave flux
rsus	W/m^2	surface upwelling shortwave flux
rsuscs	W/m^2	surface upwelling shortwave flux - clear sky
rsut	W/m^2	TOM outgoing shortwave flux
rsutcs	W/m^2	TOM outgoing shortwave flux - clear sky
rsutoa	W/m^2	TOA outgoing shortwave flux
rsutoacs	W/m^2	TOA outgoing shortwave flux - clear sky
tabot	Κ	air temperature at lowest model level
uabot	m/s	eastward wind at lowest model level
vabot	m/s	northward wind at lowest model level

595	systems. Quarterly Journal of the Royal Meteorological Society.
596	Denby L (2020) Discovering the importance of mesoscale cloud organization
590	through unsupervised classification $Geophysical Research Letters \sqrt{7}(1)$
508	e2019GL085190
590	Feingold C. McComiskey A. Vamaguchi T. Johnson I.S. Carslaw K.S. &
599	Schmidt K S (2016) New approaches to quantifying aerosol influence on
601	the cloud radiative effect Proceedings of the National Academy of Sciences
600	112(21) 5812-5810 doi: 10.1073/pnas.1514035112
602	Coorgo C Stoward B Bony S Dingue B Fairell C Schulz H others
603	(2021) [2021] [2
604	north atlantic meso-scale environments Earth System Science Data 13(11)
605	$5953_{-}5979$
000	Coorgo C. Stovens B. Bony S. Vogel B. & Naumann A. K. (2022) The ubia
607	uity of challow circulations in the trades (Toch Bon) Conornicus Montings
608	doi: 10.5104/organhore.org/22.13444
609	Clagmain E. Hoffmann E. Johnson J.C. Varaguchi T. Candom K.C. & Fain
610	Glassmeler, F., Honmann, F., Johnson, J. S., Yamaguchi, I., Carsiaw, K. S., & Fein-
611	dota, <i>Geience</i> , 271(6528), 485,480, doi: 10,1126/geience.abd2080
612	Charles D. Archaried H. Leneradez V. Edeling W. N. Lenerer, E. Dichardson
613	Groen, D., Arabnejad, H., Jancauskas, V., Edening, W. N., Jansson, F., Richardson,
614	R. A., Coveney, P. V. (2021). VECMAtk: a scalable verification, validation
615	Transactions of the Devel Cosister A: Mathematical Division and Engineering
616	Sciences 270(2107) 20200221 doi: 10.1008/rate 2020.0221
617	Hanshach H. Ball D. Damiefond D. Hinshana, C. Hanémi A. Muñaz Sabatan I.
618	others (2020) The orange global reanalysis Ougretarily Lowroad of the Royal
619	Metaomological Society 1/6(720) 1000 2040
620	Hence T van Haamwaarden C C Japhan H L Sichaama A D Avalaan S
621	neus, I., van heerwaarden, C. C., Jonker, H. J., Stedesina, A. F., Axelsen, S.,
622	with the Dutch Atmospheric Lange Eddy Simulation (DALES) Coccei Model
623	Den 2 415 444
624	Howard I (1902) I on the modifications of clouds and on the principles of their
625	production succession and destructions of clouds, and on the principles of their
626	before the Askerian Society in the session 1802. 3 The Philosophical Magazine
627	17(65) 5-11
628	Incone M. I. Delemere, I.S. Mlewer, F. I. Shephard, M. W. Clough, S. A. fr
629	Colling W D (2008) Redictive forcing by long lived groenhouse gases:
630	Colculations with the per radiative transfer models <i>Lowrnal of Coordinated</i>
631	Calculations with the act radiative transfer models. <i>Journal of Geophysical</i> Research: $Atmospheres$ 112(D13)
632	Innesence M. Vilà I. van Hoerwaarden C. C. de Roode S. R. Sieherma A. P. k
633	Classmoior F (2022) Non precipitating shallow cumulus convection is intrin
634	sically unstable to length-scale growth <u>Journal of the Atmospheric Sciences</u>
035	doi: 10.1175/IAS-D-22-0111.1
030	Janssons M. Vilà Guorau de Arollano, I. Schoffer, M. Antonisson, C. Siehosma
637	Janssens, M., Vila-Guerau de Arenano, J., Schener, M., Antonissen, C., Siebesina, A. P. & Classmoior E. (2021). Cloud patterns in the trades have four inter-
638	protable dimensions <i>Coonductical Research Letters</i> /8(5) o2020CL001001
640	(e2020GL001001 2020GL001001) doi: 10.1020/2020GL001001
640	Jansson F. Edeling W. Attama I. & Crommelin D. (2021) Assessing uncertain-
641	ties from physical parameters and modelling choices in an atmospheric large
642	eddy simulation model Philosophical Transactions of the Royal Society 4:
644	Mathematical Physical and Engineering Sciences 379(2107) 20200073 doi:
645	10 1098/rsta 2020 0073
646	Jansson F. Janssens M. & Grönqvist, J. (2023 March) figure-
647	son/cloudbotanuscripts: v1.0.0. Zenodo doi: 10.5281/zenodo 7709435
648	Jansson F. Janssens M. Gröngvist, J. Siebesma P. Glassmeier F. Attema J.
640	Kölling T (2023 March) Cloud Botanu LES ensemble visualizations
049	ronnig, r. (2020, march). Coour Dorany DDS chochoic visualisations.

 Lamaakel, O., & Matheou, G. (2022). Organization development in precipitating shallow cumulus convection: Evolution turbulence characteristics. Journal of the Atmospheric Sciences. Medeiros, B., & Nuijens, L. (2016). Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models. Proceedings of the National Academy of Sciences, 113(22), E3062-E3070. Miles, A., Jakirkham, Bussonnier, M., Moore, J., Orfanos, D. P., Fulton, A., Banibirve, A. (2022, October). zarr-developers/zarr-python: v2.13.3. Zenodo. doi: 10.5281/zenodo.7174882 Narenpitak, P., Kazil, J., Yamaguchi, T., Quinn, P. K., & Feingold, G. (2021). From sugar to flowers: A transition of shallow cumulus organization during atomic. Journal of Advances in Modeling Earth Systems, 13, e2021MS002619. Nitta, T., & Ezbensen, S. (1974). Heat and moisture budget analyses using bornex data. Monthy Weather Review. 102(1), 17-28. Nuijens, L., & Stebersen, S. (2019). Boundary layer clouds and convection over subtropical oceans in our current and in a warmer climate. Current Climate Change Reports, 5(2), 80-94. Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168-184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and sinilarity to other representations. Boundary: Layer McLaordology, 162(1), 71-89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51-55. Pelezar, R. M., Pelczar, M. J., & Steere, W. C. (2022), Jan). Botany. Retrieved from https://www.britannica.com/science/botay Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.)	650	Zenodo, doi: 10.5281/zenodo.7692270
 Shallow cumulus convection: Evolution turbulence characteristics. Journal of the Atmospheric Sciences. Medeiros, B., & Nuijens, L. (2016). Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models. Proceedings of the National Academy of Sciences, 113(22), E3062-E3070. Miles, A., jakirkham, Bussonnier, M., Moore, J., Orfanos, D. P., Fulton, A., Ban- ihirwe, A. (2022, October). zarr-developers/zarr-python: v2.13.3. Zenodo. doi: 10.5281/zenodo.7174882 Narenpitak, P., Kazil, J., Yamaguchi, T., Quinn, P. K., & Feingold, G. (2021). From sugar to flowers: A transition of shallow cumulus organization during atomic. Journal of Advances in Modeling Earth Systems, 13, 20201NS002619. Nitta, T., & Esbensen, S. (1974). Heat and moisture budget analyses using bomex data. Monthly Weather Review, 102(1), 17–28. Nuijens, L., & Stebersma, A. P. (2019). Boundary layer clouds and convection over subtropical oceans in our current and in a warmer climate. Current Climate Change Reports, 5(2), 80–94. Nuijens, L., & Stebersm, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168–184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary Layer Metoorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Pelezar, R. M., Pelezar, M. J., & Steere, W. C. (2022). Unveiling con- vective momentum transport on different scieles during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebersma, A. P. (2013). Simple solutions to steady- state cumulus regimes in the convective boundary layer. Journal of	651	Lamaakel O & Matheou G (2022) Organization development in precipitating
 the Atmospheric Sciences. the Atmospheric Sciences. Medeiros, B., & Nuijens, L. (2016). Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models. Proceedings of the National Academy of Sciences, 113(22), E3062-E3070. Miles, A., jakirkham, Bussonnier, M., Moore, J., Orfanos, D. P., Fulton, A., Banikir, A., Rog22, October). zarr-developers/zarr-python: v2.13.3. Zenodo. doi: 10.5281/zenodo.7174882 Narenpitak, P., Kazil, J., Yamaguchi, T., Quinn, P. K., & Feingold, G. (2021). From sugar to flowers: A transition of shallow cumulus organization during atomic. Journal of Advances in Modeling Earth Systems, 13, e2021MS002619. Nitta, T., & Esbensen, S. (1974). Heat and moisture budget analyses using bomex data. Monthly Weather Review, 102(1), 17-28. Nuijens, L., & Siebesma, A. P. (2019). Boundary layer clouds and convection over subtropical oceans in our current and in a warmer climate. Current Climate Change Reports, 5(2), 80-94. Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168-184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary Layer Meteorology, 162(1), 71-89. Pedelge, D. (2003). Luke howard and his clouds. Weather, 58(2), 51-55. Pelezar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany Swazi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu2-8166 Schaliz, H. (2021). Meso-scale patterns of shallow	652	shallow cumulus convection: Evolution turbulence characteristics <i>Journal of</i>
 Medeiro, B., & Nuijens, L. (2016). Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models. Proceedings of the National Academy of Sciences, 115(22), E302-E3070. Miles, A., jakirkham, Bussonnier, M., Moore, J., Orfanos, D. P., Fulton, A., Banihirwe, A. (2022, October). zarr-developers/zarr-python: v2.13.3. Zenodo. doi: 10.5281/zenodo.1714882 Narenpitak, P., Kazil, J., Yamaguchi, T., Quinn, P. K., & Feingold, G. (2021). From sugar to flowers: A transition of shallow cumulus organization during atomic. Journal of Advances in Modeling Earth Systems, 13, e2021MS002619. Nitta, T., & Esbensen, S. (1974). Heat and moisture budget analyses using bomex data. Monthly Weather Review, 102(1), 17–28. Nuijens, L., & Siebesma, A. P. (2019). Boundary layer clouds and convection over subtropical oceans in our current and in a warmer climate. Current Climate Change Reports, 5(2), 80–94. Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168–184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary: Layer Metcorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Pelezar, R. M., Pelezar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany Savazi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC/4 (Tech. Rep.). Copernicus Meetings. doi: 10.5191/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Stebesma, R. P. (2013). Botany. Retrieved from https://www.britannica.com/science/botany	652	the Atmospheric Sciences
 Martio, D., & Yuques, D. (2010). Contact models. Proceedings of the National Academy of Sciences, 113(22), E3062–E3070. Miles, A., jakirkham, Bussonnier, M., Moore, J., Ortanos, D. P., Fulton, A., Banihirwe, A. (2022. October). zarr-developers/zarr-python: v2.13.3. Zenodo. doi: 10.5281/zenodo.7174882 Narenpitak, P. Kazil, J., Yamaguchi, T., Quinn, P. K., & Feingold, G. (2021). From sugar to flowers: A transition of shallow cimulus organization during atomic. Journal of Advances in Modeling Earth Systems, 13, e2021MS002619. Nitt, T., & Esbensen, S. (1974). Heat and moisture budget analyses using bomex data. Monthly Weather Review, 102(1), 17–28. Nuijens, L., & Siebensen, A. P. (2019). Boundary layer clouds and convection over subtropical occans in our current and in a warmer climate. Current Climate Change Reports, 5(2), 80–94. Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168–184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary Layer Meteorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Pelczar, R. M., Pelczar, M. J., & Stepesma, A. P. (2012). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/eguphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Stebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656–3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctral dissertation, Universitå: Hamburg). doi: 10.17617/2.335704 Schulz, H.,	653	Medeiros B & Nuijens L (2016) Clouds at Barbados are representative of clouds
 of the National Academy of Sciences, 113(22), E3062-E3070. of the National Academy of Sciences, 113(22), E3062-E3070. Miles, A., jakirkham, Bussonnier, M., Moore, J., Orfanos, D. P., Fulton, A., Ban- ihirwe, A. (2022, October). zarr-developers/zarr-python: v2.13.3. Zenodo. doi: 10.5281/zenodo.7174882 Narenpitak, P., Kazil, J., Yamaguchi, T., Quinn, P. K., & Feingold, G. (2021). From sugar to flowers: A transition of shallow cumulus organization during atomic. Journal of Advances in Modeling Earth Systems, 13, e2021MS002619. Nitta, T., & Esbensen, S. (1974). Heat and moisture budget analyses using bomex data. Monthly Weather Review, 102(1), 17-28. Nuijens, L., & Siebesma, A. P. (2019). Boundary layer clouds and convection over subtropical occans in our current and in a warmer climate. Current Climate Change Reports, 5(2), 80-94. Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168-184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary- Layer Meteorology, 162(1), 71-89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51-55. Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling con- vective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.1761/2.3357004 Schulz, H., Eastman, R., & Stevens, B. (2021). Chara	655	across the trade wind regions in observations and climate models <i>Proceedings</i>
 Miles, A., jakikham, Bussonnier, M., Moore, J., Orfanos, D. P., Fulton, A., Ban- ihirwe, A. (2022, October). zarr-developers/zarr-python: v2.13.3. Zenodo. doi: 10.5281/zenodo.7174882 Narenpitak, P., Kazil, J., Yamaguchi, T., Quinn, P. K., & Feingold, G. (2021). From sugar to flowers: A transition of shallow cumulus organization during atomic. Journal of Advances in Modeling Earth Systems, 13. e. 2021MS002619. Nitta, T., & Esbensen, S. (1974). Heat and moisture budget analyses using bomex data. Monthly Weather Review, 102(1), 17–28. Nuijens, L., & Siebesma, A. P. (2019). Boundary layer clouds and convection over subtropical oceans in our current and in a warmer climate. Current Climate Change Reports, 5(2), 80–94. Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168–184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary- Layer Meteorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Pelczar, R. M., Pelczar, M. J., & Steerer, W. C. (2022, Jan). Botany. Retrieved from https://www.britanica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling con- vective momentum transport at different scales during EURECIA (Tech. Rep.). Copernicus Meetings. doi: 10.5194/geuphere-egu22-8166 Schulz, H., (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universitä Hamburg). doi: 10.17617/2.3357904 Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. cartharxiv.org. doi: 10.31223/X511651 <l< td=""><td>656</td><td>of the National Academy of Sciences 113(22) E3062–E3070</td></l<>	656	of the National Academy of Sciences 113(22) E3062–E3070
 Mines A., Jackhami, A., Moole, J., Moole, J., Juno, J. L., Juno, J. J. Juno, J. K., K. (2022, October). zarr-deplopers/zarr-python: v2.13.3. Zenodo. doi: 10.5281/zenodo.7174882 Narenpitak, P., Kazil, J., Yamaguchi, T., Quinn, P. K., & Feingold, G. (2021). From sugar to flowers: A transition of shallow cumulus organization during atomic. Journal of Advances in Modeling Earth Systems, 13, e2021MS002619. Nitta, T., & Esbensen, S. (1974). Heat and moisture budget analyses using bomex data. Monthly Weather Review, 102(1), 17–28. Nuijens, L., & Siebesma, A. P. (2019). Boundary layer clouds and convection over subtropical oceans in our current and in a warmer climate. Current Climate Change Reports, 5(2), 80–94. Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 60(1), 168–184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary-Layer Meteorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.1716/12/23357904 Schulz, H., & Stevens, B. (2021). Dotarcterization and evolution of organized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021DJ03575.<!--</td--><td>050</td><td>Miles A jakirkham Bussennier M Moore I Orfanos D P Fulton A Ban-</td>	050	Miles A jakirkham Bussennier M Moore I Orfanos D P Fulton A Ban-
 Narenpitak, P., Kazil, J., Yamaguchi, Yan teccorperior law phasm centors inductor tools in the interpitate in the interpitate interpitate in the interpitate inte	659	ibirwe A (2022 October) zarr-developers/zarr-nuthon: v2 13.3 Zenodo doi:
 Narenpitak, P., Kazil, J., Yamaguchi, T., Quinn, P. K., & Feingold, G. (2021). From sugar to flowers: A transition of shallow cumulus organization during atomic. Journal of Alvances in Modeling Earth Systems, 13, e2021MS002619. Nitta, T., & Esbensen, S. (1974). Heat and moisture budget analyses using bomex data. Monthly Weather Review, 102(1), 17–28. Nuijens, L., & Siebesma, A. P. (2019). Boundary layer clouds and convection over subtropical oceans in our current and in a warmer climate. Current Climate Change Reports, 5(2), 80–94. Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168–184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary: Layer Meteorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Petzar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botang. Retrieved from https://www.britannica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656–3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universitä Hamburg). doi: 10.17617/2.3357904 Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. cartharxiv.org. doi: 10.31223/X5H651	650	10 5281/zenodo 7174882
 Macaphai, F., Rams, F., Kams, F. Y., Kams, J. Y., Jang, J. Y., Kams, J. Y., Jang, J. Y., Kams, J. Y., Jang, J	660	Narenpitak P Kazil I Yamaguchi T Quinn P K & Feingold G (2021) From
 Journal of Advances in Modeling Earth Systems, 13, e2021MIS002619. Nitta, T., & Esbensen, S. (1974). Heat and moisture budget analyses using bornex data. Monthly Weather Review, 102(1), 17–28. Nuijens, L., & Stebesma, A. P. (2019). Boundary layer clouds and convection over subtropical oceans in our current and in a warmer climate. Current Climate Change Reports, 5(2), 80–94. Nuijens, L., & Stebesma, A. P. (2019). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168–184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary-Layer Meteorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective memeritum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmos spheric Sciences, 70(11), 3656–3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., Stevens, B. (2023). On the representation of shallow convection in the trades thallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulz, H., & Stevens, B. (2011). Calo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.52	661	sugar to flowers: A transition of shallow cumulus organization during atomic
 Nita, T., & Esbensen, S. (1974). Heat and moisture budget analyses using bomex data. Monthly Weather Review, 102(1), 17–28. Nuijens, L., & Stebesma, A. P. (2019). Boundary layer clouds and convection over subtropical oceans in our current and in a warmer climate. Current Climate Change Reports, 5(2), 80–94. Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine climate. climate, S. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary Layer Meteorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britamica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656–3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universitä Hamburg). doi: 10.17617/2.3357904 Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. cartharxiv.org. doi: 10.5281/zenodo.5614769 Schulz, H., & Kevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. cartharxiv.org. doi: 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Schulz, H., & Stevens, B. (2021). Characterization for simulating autoconversion, accretion and selfcollection. Atmospheric resea	662	Journal of Advances in Modeling Earth Systems 13 e2021MS002619
 Minu, Y., & Lobenko, S. (1971). How minimized solution to subject analytes and you and yo	662	Nitta T & Esbensen S (1974) Heat and moisture budget analyses using homes
 Nuines, L., & Siebesma, A. P. (2019). Boundary layer clouds and convection over subtropical oceans in our current and in a warmer climate. Current Climate Charge Reports, 5(2), 80–94. Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168–184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary-Layer Meteorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany Savazzi, A. C. M., Nujens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656–3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.51281/zenodo.5614769 Schulz, H., & Btevens, B. (2023). On the representation of shallow convection. In the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulz, H., & Btevens, B. (2023). On the representation of shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. Shei, X., heus	664	data Monthly Weather Review 102(1) 17-28
 Kujek, E., & Stevens, R. T. (2017). Doubled y layer Golds and Convection over subtropical oceans in our current and in a warmer climate. Current Climate Change Reports, 5(2), 80–94. Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168–184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary-Layer Meteorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britamica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656–3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265–281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Model	004	Nuijons I is Siehesma A P (2010) Boundary layer clouds and convection over
 Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168–184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary-Layer Meteorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656–3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades (Japanized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades during autoconversion, accretion and selfcollection. Atmospheric research, 59, 265–281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal	665	subtropical oceans in our current and in a warmer climate
 Nuijens, L., & Stevens, B. (2012). The influence of wind speed on shallow marine cumulus convection. Journal of the atmospheric sciences, 69(1), 168–184. Ouwersloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary-Layer Meteorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656–3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of organized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2021). October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265–281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937.	000	Subtropical oceans in our current and in a warmer chinate. $Change Reports 5(2) 80-94$
 Kujeks, E., & Stevens, D. (2012). The infinite of whit speed of whit speed of whit speed of white speed speed white speed whi	007	Nuitions I be Storong B (2012) The influence of wind speed on shallow marine
 ⁶⁹⁹ Ouversloot, H., Moene, A., Attema, J., & De Arellano, J. VG. (2017). Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary-Layer Meteorology, 162(1), 71–89. ⁶⁷⁰ Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. ⁶⁷¹ Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany ⁶⁷² Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 ⁶⁷⁴ Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656–3672. ⁶⁷⁵ Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 ⁶⁷⁶ Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of organized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmosphers, 126(17), e2021JD034575. ⁶⁷⁶ Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 ⁶⁷⁶ Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265–281. ⁶⁷⁷ Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. ⁶⁷⁸ Sheema, A. P., Breth	668	C_{2012} running convection Lowrad of the atmospheric sciences $60(1)$ 168–184
 ⁶⁷⁶ Odwerslob, H., Moene, A., Attenna, J., & De Alenhalo, J. V.G. (2017). Ealge-endly simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Boundary-Layer Meteorology, 162(1), 71–89. ⁶⁷⁷ Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. ⁶⁷⁸ Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany ⁶⁷⁹ Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 ⁶⁷⁹ Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656–3672. ⁶⁷⁹ Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 ⁶⁷⁰ Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of organized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. ⁶⁷¹ Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 ⁶⁷² Schulz, H., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265–281. ⁶⁷⁴ Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. ⁶⁷⁵ Shen, Z., Sridhar, A	669	Ouwersloot H. Moone A. Attemp. I. & De Arellane, I. V. C. (2017). Large eddy.
 and numerical conditions, and similarity to other representations. Boundary- Layer Meteorology, 162(1), 71–89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022). Jan). Botany. Retrieved from https://www.britannica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling con- vective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady- state cumulus regimes in the convective boundary layer. Journal of the Atmo- spheric Sciences, 70(11), 3656–3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of or- ganized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulz, H., & Bcheng, K. D. (2001). A double-moment parameterization for sim- ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 205–281. Seifert, A., Meheng, K. D. (2001). A double-moment parameterization for sim- ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 205–281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider,	670	simulation comparison of neutral flow over a canopy: Sensitivities to physical
 Layer Meteorology, 162(1), 71-89. Pedgley, D. (2003). Luke howard and his clouds. Weather, 58(2), 51-55. Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Stebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656-3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of organized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918-1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bre	671	and numerical conditions, and similarity to other representations.
 ¹⁵⁷ Pedgey, D. (2003). Luke howard and his clouds. Weather, 58(2), 51–55. ¹⁵⁷ Pelczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany ¹⁵⁷ Savazi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 ¹⁵⁸ Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656–3672. ¹⁵⁹ Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 ¹⁵⁰ Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of organized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. ¹⁵⁰ Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 ¹⁵¹ Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 ¹⁵² Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265–281. ¹⁵⁴ Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. ¹⁵⁵ Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in	672	Layer Meteorology $162(1)$ 71–80
 Fedgley, D. (2003). Dike nowald and ins clouds. Weather, 55(2), 51-53. Felczar, R. M., Pelczar, M. J., & Steere, W. C. (2022, Jan). Botany. Retrieved from https://www.britannica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22.8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656-3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of organized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918-1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021M	673	Dadglow D (2003) Luke howard and his clouds Weather $58(2)$ 51 55
 Felcad, R. M., Felcar, M. J., & Steele, W. C. (202, Jan). Boland. Redicted from https://www.britannica.com/science/botany Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling con- vective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady- state cumulus regimes in the convective boundary layer. Journal of the Atmo- spheric Sciences, 70(11), 3656-3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of or- ganized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for sim- ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. Seifert, A., Hues, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A.,	674	Deleger P. M. Deleger M. L. & Steere W. C. (2022, Jan). Betery, Detrieved from
 Savazzi, A. C. M., Nuijens, L., de Rooy, W., & Siebesma, P. (2022). Unveiling convective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656–3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of organized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265–281. Steifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the	675	https://www.britannica.com/acianca/betany
 Savazzi, A. C. M., Nujens, L., de hooy, W., & Stedesna, T. (2022). Unterling the vective momentum transport at different scales during EUREC4A (Tech. Rep.). Copernicus Meetings. doi: 10.5194/egusphere-egu22-8166 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656–3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of or-ganized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265–281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10).<!--</td--><td>676</td><td>Savaggi A C M Nujiona I do Booy W & Siebooma D (2022) Unweiling con</td>	676	Savaggi A C M Nujiona I do Booy W & Siebooma D (2022) Unweiling con
 ⁶⁷⁵Copernicus Meetings doi: 10.5194/egusphere-egu22-8166 ⁶⁷⁶Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady- state cumulus regimes in the convective boundary layer. Journal of the Atmo- spheric Sciences, 70(11), 3656-3672. ⁶⁸¹Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 ⁶⁸⁴Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of or- ganized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. ⁶⁸⁵Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 ⁶⁹¹Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 ⁶⁹⁵Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for sim- ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. ⁶⁹⁶Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. ⁶⁹⁷Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631. ⁶⁹⁸Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences, 60(10). 	677	vective momentum transport at different scales during FUPEC/A (Tool, Bon)
 Schalkwijk, J., Jonker, H. J., & Siebesma, A. P. (2013). Simple solutions to steady- state cumulus regimes in the convective boundary layer. Journal of the Atmo- spheric Sciences, 70(11), 3656–3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., (2021). Meso-scale patterns of shallow convection and evolution of or- ganized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for sim- ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences, 60(10). 	678	Conornicus Montings doi: 10.5104/ogusphoro.ogu22.8166
 Schalkwijk, J., Sohker, H. J., & Stebesma, K. F. (2013). Simple solutions to steady-state cumulus regimes in the convective boundary layer. Journal of the Atmospheric Sciences, 70(11), 3656-3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of organized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918-1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences, 60(10). 	679	Schallzwijk I. Jonkor H. I. & Siebesma A. P. (2013). Simple solutions to stoady.
 spheric Sciences, 70(11), 3656-3672. Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of or-ganized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 74(1), 1918–1937. Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences, 60(10). 	680	state cumulus regimes in the convective boundary layer. <i>Lowred of the Atmo-</i>
 Schulz, H. (2021). Meso-scale patterns of shallow convection in the trades (Doctoral dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of or-ganized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126 (17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918-1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	692	state cultures regimes in the convective boundary layer. Southat of the $Mino-$ subgrig Sciences $70(11)$ 3656–3679
 Schulz, H. (2021). InSolvate patterns of shardo contection in the track (Boctorial dissertation, Universität Hamburg). doi: 10.17617/2.3357904 Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of or- ganized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for sim- ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918-1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	002	Schulz H (2021) Meso-scale patterns of shallow convection in the trades (Doctoral
 Schulz, H., Eastman, R., & Stevens, B. (2021). Characterization and evolution of or- ganized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for sim- ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918-1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	083	dissertation Universität Hamburg) doi: 10.17617/2.3357004
 Schulz, H., Bashhan, R., & Stevens, B. (2021). Characterization and evolution of of ganized shallow convection in the downstream north atlantic trades. Journal of Geophysical Research: Atmospheres, 126 (17), e2021JD034575. Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for sim- ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918-1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	084	Schulz H. Eastman R. & Stevens B. (2021). Characterization and evolution of or
 ⁶⁶⁶ Geophysical Research: Atmospheres, 126 (17), e2021JD034575. ⁶⁶⁷ Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the ⁶⁶⁹ trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. ⁶⁹⁰ doi: 10.31223/X5H651 ⁶⁹¹ Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ ⁶⁹² 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 ⁶⁹³ Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for sim- ⁶⁹⁴ ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, ⁶⁹⁵ 265-281. ⁶⁹⁶ Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the ⁶⁹⁷ transient and near-equilibrium behavior of precipitating shallow convection. ⁶⁹⁸ Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. ⁶⁹⁹ Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of ⁷⁰⁰ large-eddy simulations forced by global climate models. Journal of Advances in ⁷⁰¹ Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 ⁷⁰² Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, ⁷⁰³ P. G., others (2003a). A large eddy simulation intercomparison study of ⁷⁰⁴ shallow cumulus convection. 	685	ganized shallow convection in the downstream north atlantic trades. <i>Lowral</i> of
 Schulz, H., & Stevens, B. (2023). On the representation of shallow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for sim- ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918-1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	686	Geonbusical Research: Atmospheres 196(17) e2021 ID034575
 Schulz, H., & Stevens, B. (2023). On the representation of shahow convection in the trades by large-domain, hecto-meter, large-eddy simulations. eartharxiv.org. doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for sim- ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265-281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918-1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	007	Schulz H & Stovens B (2023) On the representation of shallow convection in the
 doi: 10.31223/X5H651 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265–281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	688	trades by large-domain hecto-meter large-eddy simulations <i>eartharriv ora</i>
 Schulzweida, U. (2021, October). Cdo user guide. Retrieved from https://doi.org/ 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for sim- ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265–281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. 	600	doi: 10.31223/X5H651
 ⁶⁹¹ Berlinzweida, C. (2021, October). Cub user guide. Retrieved from Recips.//doi.org/ ⁶⁹² 10.5281/zenodo.5614769 doi: 10.5281/zenodo.5614769 ⁶⁹³ Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for sim- ⁶⁹⁴ ulating autoconversion, accretion and selfcollection. Atmospheric research, 59, ⁶⁹⁵ 265–281. ⁶⁹⁶ Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the ⁶⁹⁷ transient and near-equilibrium behavior of precipitating shallow convection. ⁶⁹⁸ Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. ⁶⁹⁹ Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of ⁶⁹¹ large-eddy simulations forced by global climate models. Journal of Advances in ⁶⁹² Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 ⁶⁹³ Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, ⁶⁹⁴ P. G., others (2003a). A large eddy simulation intercomparison study of ⁶⁹⁵ shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	090	Schulzweide II (2021 October) Cda user guide Betrieved from https://doi.org/
 Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265–281. Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	691	10 5281/zenodo 5614769 doi: 10 5281/zenodo 5614760
 ⁶⁹⁵ Schert, A., & Beneng, R. D. (2001). A double-moment parameterization for similating autoconversion, accretion and selfcollection. Atmospheric research, 59, 265–281. ⁶⁹⁶ Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. ⁶⁹⁷ Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 ⁷⁰⁸ Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	692	Seifert A & Reheng K D (2001) A double-moment parameterization for sim-
 ⁶⁹⁴ 1265–281. ⁶⁹⁵ 265–281. ⁶⁹⁶ Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the ⁶⁹⁷ transient and near-equilibrium behavior of precipitating shallow convection. ⁶⁹⁸ Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. ⁶⁹⁹ Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of ⁷⁰⁰ large-eddy simulations forced by global climate models. Journal of Advances in ⁷⁰¹ Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 ⁷⁰² Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, ⁷⁰³ P. G., others (2003a). A large eddy simulation intercomparison study of ⁷⁰⁴ shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	693	ulating autoconversion accretion and selfcollection Atmospheric research 59
 Seifert, A., Heus, T., Pincus, R., & Stevens, B. (2015). Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. <i>Journal of Advances in Modeling Earth Systems</i>, 7(4), 1918–1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. <i>Journal of Advances in</i> <i>Modeling Earth Systems</i>, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. <i>Journal of the Atmospheric Sciences</i>. 60(10). 	694	265-281
 ⁶⁹⁶ benerit, A., Heus, H., W. Stevens, D. (2019). Darge eddy simulation of the ⁶⁹⁷ transient and near-equilibrium behavior of precipitating shallow convection. ⁶⁹⁸ Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. ⁶⁹⁹ Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of ⁷⁰⁰ large-eddy simulations forced by global climate models. Journal of Advances in ⁷⁰¹ Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 ⁷⁰² Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, ⁷⁰³ P. G., others (2003a). A large eddy simulation intercomparison study of ⁷⁰⁴ shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	606	Seifert A Heus T Pincus B & Stevens B (2015) Large-eddy simulation of the
 Journal of Advances in Modeling Earth Systems, 7(4), 1918–1937. Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	607	transient and near-equilibrium behavior of precipitating shallow convection
 Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy simulations forced by global climate models. <i>Journal of Advances in</i> <i>Modeling Earth Systems</i>, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. <i>Journal of the Atmospheric Sciences</i>. 60(10). 	609	Lowrnal of Advances in Modeling Earth Systems $7(4)$ 1918–1937
 ⁶⁰⁹ bitch, E., Shthar, H., Tan, E., Satuga, H., & Schneider, T. (2022). A horary of large-eddy simulations forced by global climate models. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 ⁷⁰² Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	600	Shen Z Sridhar A Tan Z Jaruga A & Schneider T (2022) A library of
 Modeling Earth Systems, 14(3), e2021MS002631. doi: 10.1029/2021MS002631 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	700	large-eddy simulations forced by global climate models <i>Journal of Advances in</i>
 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. <i>Journal of the Atmospheric Sciences</i>. 60(10). 	701	Modeling Earth Systems 1/(3) e2021MS002631 doi: 10.1020/2021MS002631
 P. G., others (2003a). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10). 	702	Siebesma A P Bretherton C S Brown A Chlond A Cuvart I Duvnkerke
shallow cumulus convection. Journal of the Atmospheric Sciences. 60(10).	703	P. G others (2003a) A large eddy simulation intercomparison study of
	704	shallow cumulus convection. Journal of the Atmospheric Sciences. $60(10)$.

705	1201 - 1219.
706	Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duvnkerke,
707	P. G., Stevens, D. E. (2003b). A large eddy simulation intercomparison
708	study of shallow cumulus convection. Journal of the Atmospheric Sciences,
709	60(10), 1201-1219. doi: 10.1175/1520-0469(2003)60(1201:ALESIS)2.0.CO;2
710	Stevens, B., Ackerman, A. S., Albrecht, B. A., Brown, A. R., Chlond, A., Cuxart, J.,
711	others (2001). Simulations of trade wind cumuli under a strong inversion.
712	Journal of the Atmospheric Sciences, 58(14), 1870–1891.
713	Stevens, B., Bony, S., Brogniez, H., Hentgen, L., Hohenegger, C., Kiemle, C.,
714	others (2020). Sugar, gravel, fish and flowers: Mesoscale cloud patterns in the
715	trade winds. Quarterly Journal of the Royal Meteorological Society, 146(726),
716	141–152.
717	Stevens, B., Bony, S., Farrell, D., Ament, F., Blyth, A., Fairall, C., others
718	(2021). EUREC4A. Earth System Science Data, $13(8)$, $4067-4119$. doi:
719	10.5194/essd-13-4067-2021
720	Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X.,
721	others (2019). DYAMOND: the dynamics of the atmospheric general circu-
722	lation modeled on non-hydrostatic domains. Progress in Earth and Planetary
723	Science, $6(1)$, 1–17.
724	vanZanten, M. C., Stevens, B., Nuijens, L., Siebesma, A. P., Ackerman, A. S., Bur-
725	net, F., Wyszogrodzki, A. (2011). Controls on precipitation and cloudiness
726	in simulations of trade-wind cumulus as observed during RICO. Journal of
727	Advances in Modeling Earth Systems, 3(2). doi: 10.1029/2011MS000056
728	Vial, J., Vogel, R., Bony, S., Stevens, B., Winker, D. M., Cai, X., Brogniez,
729	H. (2019). A new look at the daily cycle of trade wind cumuli. Journal of
730	advances in modeling earth systems, 11(10), 3148–3166.
731	Vial, J., Vogel, R., & Schulz, H. (2021). On the daily cycle of mesoscale cloud organ-
732	ization in the winter trades. Quarterly Journal of the Royal Meteorological So- 1/0(720), 2050, 2052
733	ciety, 147((38), 2850-2873.
734	vogel, R., Nuljens, L., & Stevens, B. (2020). Influence of deepening and mesoscale
735	organization of shahow convection on stratiform cloudiness in the downstream trades. Overtarly low mal of the Bouel Meteorelegies Cosister $1/6(726)$, 174
736	125 Cuarterity Journal of the Royal Meleorological Society, 140(120), 114–
737	Wicker I I & Skamarock W C (2002) Time splitting methods for elastic mod
738	als using forward time schemes Monthly weather review 130(8) 2088-2007
739	Vamaguchi T Feingold G & Kazil I (2019) Aerosol-cloud interactions in trade
740	wind cumulus clouds and the role of vertical wind shear Journal of Geophysi-
741	cal Research: Atmospheres 12/(22) 12244–12261
743	Zhang, Y., Stevens, B., & Ghil, M. (2005). On the diurnal cycle and susceptibility to
744	aerosol concentration in a stratocumulus-topped mixed laver. <i>Quarterlu Jour-</i>
745	nal of the Royal Meteorological Society, 131(608), 1567-1583. doi: 10.1256/ai
746	.04.103