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Abstract

Small shallow cumulus clouds (< 1 km) over the tropical oceans appear to possess the ability to self-organise into mesoscale

(10-100 km) patterns. To better understand the processes leading to such self-organized convection, we present Cloud Botany,

an ensemble of 103 large-eddy simulations on domains of 150 km, produced by the Dutch Large Eddy Simulation (DALES)

model on supercomputer Fugaku. Each simulation is run in an idealized, fixed, larger-scale environment, controlled by six

free parameters. We vary these over characteristic ranges for the winter trades, including parameter combinations observed

during the EUREC4A (Elucidating the role of clouds–circulation coupling in climate) field campaign. In contrast to simulation

setups striving for maximum realism, Cloud Botany provides a platform for studying idealized, and therefore more clearly

interpretable causal relationships between conditions in the larger-scale environment and patterns in mesoscale, self-organized

shallow convection. We find that any simulation that supports cumulus clouds eventually develops mesoscale patterns in their

cloud fields. We also find a rich variety in these patterns as our control parameters change, including cold pools lined by cloudy

arcs, bands of cross-wind clouds and aggregated patches, sometimes topped by thin anvils. Many of these features are similar to

cloud patterns found in nature. The published data set consists of raw simulation output on full 3D grids and 2D cross-sections,

as well as post-processed quantities aggregated over the vertical (2D), horizontal (1D) and all spatial dimensions (time-series).

The data set is directly accessible from Python through the use of the EUREC4A intake catalog.
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Key Points:19

• We present Cloud Botany, an ensemble of idealized LES simulations of the win-20

ter trade wind regions, controlled by six varied parameters.21

• The parameter ranges are chosen to match the climatology of the trade wind re-22

gion.23

• The simulations show a variety of cloud organization patterns: small cumulus, stripes,24

cold pools, cloud arcs, and anvils.25
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Abstract26

Small shallow cumulus clouds (<1 km) over the tropical oceans appear to possess the27

ability to self-organise into mesoscale (10-100 km) patterns. To better understand the28

processes leading to such self-organized convection, we present Cloud Botany, an ensem-29

ble of 103 large-eddy simulations on domains of 150 km, produced by the Dutch Large30

Eddy Simulation (DALES) model on supercomputer Fugaku. Each simulation is run in31

an idealized, fixed, larger-scale environment, controlled by six free parameters. We vary32

these over characteristic ranges for the winter trades, including parameter combinations33

observed during the EUREC4A (Elucidating the role of clouds–circulation coupling in34

climate) field campaign. In contrast to simulation setups striving for maximum realism,35

Cloud Botany provides a platform for studying idealized, and therefore more clearly in-36

terpretable causal relationships between conditions in the larger-scale environment and37

patterns in mesoscale, self-organized shallow convection. We find that any simulation38

that supports cumulus clouds eventually develops mesoscale patterns in their cloud fields.39

We also find a rich variety in these patterns as our control parameters change, includ-40

ing cold pools lined by cloudy arcs, bands of cross-wind clouds and aggregated patches,41

sometimes topped by thin anvils. Many of these features are similar to cloud patterns42

found in nature. The published data set consists of raw simulation output on full 3D grids43

and 2D cross-sections, as well as post-processed quantities aggregated over the vertical44

(2D), horizontal (1D) and all spatial dimensions (time-series). The data set is directly45

accessible from Python through the use of the EUREC4A intake catalog.46

Plain Language Summary47

The organization of shallow cumulus clouds over the tropical ocean has recently48

received a lot of attention. This type of organization is potentially important for how49

the clouds are affected by a changing climate and also for how they modulate further warm-50

ing. We present a collection of 103 detailed simulations of shallow cumulus clouds in ide-51

alized atmospheric environments. These environments are described by six parameters,52

and our collection is formed by systematically simulating different parameter combina-53

tions. This way an ensemble is created that spans up a multidimensional phase space54

of environmental conditions typical for the subtropical Atlantic Ocean. This approach55

allows us to form a picture of how the environmental conditions relate to the cloud or-56

ganization that develops in the simulations. At a glance, most simulations evolve sim-57

ilarly: They quickly form small cumulus clouds, which then grow in size. Often this leads58

to rainfall, which then causes further heterogeneity. The data is openly available online,59

and will serve future studies of cumulus clouds, their organization, and how they inter-60

act with the climate.61

1 Introduction62

According to the Encyclopedia Britannica, botany is the “branch of biology that63

deals with the study of plants, including their structure, properties, and biochemical pro-64

cesses. Also included are plant classification [...] and interactions with the environment”65

(Pelczar et al., 2022). While conceived by biologists, this definition fits curiously well with66

how meteorologists think about clouds. In fact, Luke Howard’s cloud taxonomy (Howard,67

1803) seems to have been explicitly inspired by Linnean nomenclature (Pedgley, 2003).68

Meteorologists, like botanists, to this day use this taxonomy to facilitate our study of69

cloud features, underlying processes and interactions with their atmospheric environment.70

A recent example, with which we will concern ourselves here, focuses on cloudiness71

over the swaths of the tropical oceans known as the trades. During winter, this region72

is inhabited by shallow cumulus clouds, which in small-domain large-eddy simulations73

(LES, domain sizes O(10) km) appear homogeneously organized over the horizontal plane74

(e.g., Siebesma et al., 2003a), and which have historically remained unresolved by mod-75
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els of global scale (resolution O(100) km). Thus, cloud structures in the range of scales76

in between, (O(10−100) km, which we will refer to collectively as the mesoscales) have77

been rather sparsely studied (Nuijens & Siebesma, 2019). Yet, satellite observations of78

the trade wind region reveal that shallow clouds are organized into a rich spectrum of79

patterns at these scales (Agee, 1984; Stevens et al., 2020). Simple, botanical descriptions80

of such mesoscale cloud patterns, e.g. through classification (Stevens et al., 2020) or char-81

acterization (Denby, 2020; Janssens et al., 2021), are at present guiding our understand-82

ing of how cloud patterns interact with their environment (Schulz et al., 2021), and re-83

vealing their importance in setting the trade-wind contribution to Earth’s energy bal-84

ance and its sensitivity to changes in our climate (Bony et al., 2020).85

The goal of improving our understanding of the mesoscale, marine trades has mo-86

bilized an entire community, centered around the EUREC4A field campaign (Stevens et87

al., 2021). Fortunately, advances in computational capabilities now allow these obser-88

vations to be complemented by i) global and regional models running at a sufficiently89

fine resolution to begin resolving shallow convection (e.g., Stevens et al., 2019) and ii)90

detailed process models - “classical” LES codes - running on sufficiently large domains91

to capture the mesoscale (e.g., Seifert et al., 2015; Lamaakel & Matheou, 2022). In par-92

ticular, these models facilitate understanding of the degree to which mesoscale cloud pat-93

terns originate in larger-scale dynamics, which set the environment in which clouds form,94

or small-scale processes, which govern individual cumulus structures. Regional simula-95

tions running at less than a kilometre resolution are beginning to appear (Schulz & Stevens,96

2023; Schulz, 2021); these attain a detailed representation of the larger scale and are there-97

fore well-suited to investigate the importance of those scales. However, we still miss a98

systematic exploration of large-domain (> 100 km) LES that maintains a simple rep-99

resentation of the larger-scale environment, but does not compromise on its turbulence-100

resolving resolution of around 100m.101

To bridge that gap, this paper presents Cloud Botany, an ensemble of 103 simu-102

lations on domains of 150 km at 100 m horizontal resolution, enabled by the comput-103

ing capabilities of supercomputer Fugaku. With Cloud Botany, we take a step back from104

the pursuit of realistic regional or global simulations. Instead, we hypothesize that if we105

wish to understand the role played by cumulus convection in organizing the tropical mesoscale,106

it is helpful to begin by idealizing and fixing the larger-scale environment and bound-107

ary forcings on a mesoscale domain, and study the response of freely developing cloud108

patterns to variations in these idealized forcings. Therefore, we will parameterize the ver-109

tical structure of the trade-wind environment with six parameters. We then co-vary these110

parameters across the range of typically observed conditions in the trades, which results111

in the ensemble of initial conditions and boundary forcings that our simulations run un-112

der. Such ensembles successfully explain parameter-dependencies in small-domain sim-113

ulations of the trades (e.g., Bellon & Stevens, 2012; Nuijens & Stevens, 2012; Schalkwijk114

et al., 2013; Feingold et al., 2016; Glassmeier et al., 2021; Shen et al., 2022); we designed115

Cloud Botany to test if extending this approach to large LES domains can help under-116

stand the origins of mesoscale cloud patterns.117

The construction of the simulation ensemble and description of the resulting data118

products are the main focus of the present manuscript. We aim to use the data to in-119

vestigate targeted questions, such as how the smallest energetic scales of motion self-organize120

into mesoscale structures (e.g., Seifert et al., 2015; Bretherton & Blossey, 2017; Janssens121

et al., 2022) under varying conditions. However, the simulations also come forth from122

a general curiosity as to which trade-wind cloud structures our LES model can actually123

produce (and which not), and how we might describe and classify these. It is in this sense124

that our exploration comes closest to paralleling the botanist’s quest. Most importantly,125

we hope the data set is useful to a community with a broad range of research questions126

pertaining to the understanding of the detailed dynamics of the mesoscale trades.127
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The paper is organized as follows. We begin by describing the creation of the ini-128

tial and boundary conditions that define our simulation ensemble (Section 2). Running129

each simulation still requires the choice of several other parameters which we hold fixed130

over the ensemble. These are outlined in Section 3. Section 4 describes the workflow of131

setting up and running the simulations on Fugaku, and how its output is translated into132

accessible data sets. Section 5 describes the salient features of these data products, be-133

fore Section 6 gives a brief overview of some frequently recurring cloud patterns. A con-134

clusion is offered in Section 7.135

2 Creating an LES ensemble in a parameter space136

To study how self-organized cloud patterns in LES respond to variations in the larger-137

scale environment, we will initialize and force LESs with simple, functional representa-138

tions of the vertical structure of the trade-wind environment (“profiles”). The param-139

eters that control these profiles will span a “parameter space”, which we will explore by140

co-varying the parameters. To cover this space with around 100 simulations, we must141

keep its dimensionality as low as possible. Therefore, we wish to find a set of profiles which142

is controlled by a minimal number of parameters. At the same time, we want these pro-143

files retain enough realism to remain useful for comparing variability over our simula-144

tion ensemble to variability in the real-world sub-tropics.145

In this section, we will elaborate on how we design a parameter space that strikes146

this balance. We will first present our chosen set of idealized profiles and their free pa-147

rameters (Section 2.1). We will then judge the realism of these profiles by analyzing how148

well we can fit them to reanalysis and observations (Section 2.2). Finally, we will use the149

variability in the parameters as fitted to observations to inform the ranges we will co-150

vary our parameters over, resulting in the set of initial conditions and forcings that make151

up our ensemble (Section 2.3).152

2.1 Idealizations of the trade-wind environment153

Cloud Botany is based on simulations conducted with the Dutch Large Eddy Sim-154

ulation (DALES Heus et al., 2010; Ouwersloot et al., 2017). In the configuration used155

here, DALES solves numerical approximations of the anelastic equations of atmospheric156

motion in a three-dimensional domain over a sea surface with a homogeneous temper-157

ature. The domain is discretized by a staggered grid. To initialize our idealized DALES158

simulations, we specify vertical profiles for five of its prognostic quantities: Liquid-water159

potential temperature θl, total specific humidity qt, horizontal velocity in east–west (u)160

and south–north (v) directions, and sub-filter scale (SFS) turbulent kinetic energy e; ver-161

tical velocities w are zero when horizontally averaged and do not require initialization.162

Similarly, we will parameterize scales larger than the simulation domain with idealized163

profiles for i) geostrophic horizontal wind (ug, vg), ii) a large scale vertical velocity (wls)164

and iii) large scale tendencies of moistening and heating, which we keep constant over165

2.5 days of simulation. We will model these profiles of initial conditions and large-scale166

forcings using profiles that capture basic aspects of the trade-wind environment’s expected,167

physical structure with at most two free parameters. Thus, our parameter space will con-168

tain both parameters that set the initial state of the atmosphere in our simulations, and169

parameters that explicitly force the atmospheric state; their common denominator is that170

they all explain an appreciable amount of variability in the environment, and are thought171

to be important cloud-controlling variables. Parameters that are kept fixed over the en-172

semble are listed in Table 1.173

We set both the initial profiles and geostrophic wind profiles of horizontal veloc-
ities u and v to

u(z) = u0 + uzz, v(z) = 0 (1)
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Table 1. Parameters held constant in the experiment setup.

Parameter [unit] Value Description

uz [1/s] 0.00222 initial zonal wind shear
∆θl0 [K] 1.25 initial difference in θl between surface and first atmospheric layer
zml [m] 500 initial mixed layer height
w∞ [cm/s] -0.45 background subsidence velocity
hw∞ [m] 2500 scale height of background subsidence
hw1 [m] 5300 scale height of first additional mode of imposed vertical velocity
∂tθl,ls,0 [K/day] -0.5 large scale temperature tendency in first model level
∂tθl,ls,z [K/day/m] 2.5·10−4 large scale temperature tendency slope
∂tqt,ls,0 [g/kg/day] -1.49 large scale humidity tendency at surface
∂tqt,ls,z [g/kg/day/m] 3.73·10−4 large scale humidity tendency slope
τ∞ [h] 6 nudging time scale at top of domain
zmax [m] 3000 height around which the transition from

strong (z > zmax) to weak (z < zmax) nudging is centered
a 2 constant for setting nudging time scale
b 3 constant for setting nudging time scale
c 7.4 constant for setting nudging time scale

where u0 is the initial near-surface wind and uz = ∂u/∂z denotes the initial vertical174

shear of horizontal wind speed. The geostrophic wind is assumed to remain constant in175

time during each simulation. Except for a few exceptions, all simulations will be initialised176

with the same zonal shear strength. As our analysis is positioned in the downstream trades,177

we assume v0 = 0, vz = 0 for all our experiments, i.e. the geostrophic wind is predom-178

inantly east–west.179

Profiles of the initial liquid water potential temperature θl follow a similar, linear
approximation. However, they are slightly modified to account for their lowest levels co-
varying with the surface conditions (Pearson correlation r = 0.57 between θl at the low-
est ERA5 level and the surface). To avoid long model spinups where surface fluxes at-
tempt to re-calibrate an out-of-equilibrium mixed- and cloud layer, we therefore initial-
ize θl with a residual layer of constant height zml = 500 m. Having chosen a (poten-
tial) sea-surface temperature, θl0, we simply set the residual layer’s value to the reanalysis-
mean difference in θl between the lowest ERA5 level and the surface, ∆θl0. This gives
the following definition for θl:

θl(z) =

{
θl0 −∆θl0 if z < zml

θl0 −∆θl0 + Γ (z − zml) if z ≥ zml

(2)

Hence, the initial profile of θl is fully determined by setting θl0 and Γ. In observations,180

u0 and Γ seem to be important control parameters for the size and degree of clustering181

of trade-wind clouds (Bony et al., 2020; Schulz et al., 2021). To test whether similar de-182

pendencies can be observed in our LES setup, we have deliberately chosen u and θl to183

be specified by these parameters.184

Profiles of the total humidity qt are modelled with a similar initial well-mixed layer,
but drop off exponentially above zml, following Vogel et al. (2020):

qt(z) =


qt,ml if z < zml

qt,ml e
−
z − zml

hqt if z ≥ zml

(3)

The free parameters of this parameterization are the initial mixed-layer moisture qt,ml185

and the moisture scale height hqt . The surface moisture is assumed to be at saturation,186
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and thus follows from θl0 and the surface pressure, and the difference in moisture between187

the first model level and the surface may be diagnosed in turn.188

Finally, we will impose profiles of the large scale vertical velocity wls that includes
two terms: i) a term representing the downwelling branch of the Hadley cell, modelled
by exponential decay with height following e.g. Bellon and Stevens (2012), and ii) a si-
nusoidal term, a single period of which represents mesoscale circulations, as frequently
observed during EUREC4A (George et al., 2022):

wls(z) = −w∞

1− e
−

z

hw∞

+

w1 sin

(
2π

hw1

z

)
if z < hw1

0 if z ≥ hw1

(4)

Varying w1 captures a substantial amount of the mesoscale variability in vertical veloc-189

ity in the trades (George et al., 2022). Therefore, we fix the free-tropospheric, asymp-190

totic subsidence w∞ and its scale height hw∞ . Furthermore, we assume i) that the ver-191

tical depth of the circulations, encapsulated by hw1
, scales with the boundary-layer height,192

which LES studies of the phenomenon indicate to be reasonable (Bretherton & Blossey,193

2017; Narenpitak et al., 2021; Janssens et al., 2022), and ii) that it to first order is con-194

stant in time. This leaves the strength of the sinusoidal term w1 as a free parameter in195

our large scale vertical velocity profiles.196

Importantly, we do not fix the large scale vertical velocity profiles to satisfy a Weak197

Temperature Gradient (WTG) constraint on the mean flow in the free troposphere, in198

which horizontally averaged vertical motion is diagnosed given a radiative heating rate199

and Γ (Bellon & Stevens, 2012; Nuijens & Stevens, 2012). Not enforcing WTG allows200

richer responses of the boundary layer to its forcing (Betts & Ridgway, 1989), and is more201

representative of the real trades, where free-tropospheric tendencies in heating and moist-202

ening are not usually small (e.g., Nitta & Esbensen, 1974). This choice prevents the free-203

troposphere from acquiring quasi-equilibrium, and requires us to add a subtle nudging204

to prevent the tendencies from becoming overly adventurous; we return to this in Sec-205

tion 3.206

In all, our idealized framework has six free parameters that set the environment207

we launch our simulations in, spanning a six-dimensional parameter space: surface wind208

u0, surface temperature θl0, temperature lapse rate Γ, surface humidity qt,ml, humidity209

scale height hqt and large-scale vertical velocity variability w1.210

2.2 Quality of fits211

To assess how idealized the chosen functional forms are with respect to the verti-212

cal structure of the real trade-wind environment, we will compare them with the ERA5213

global reanalysis (Hersbach et al., 2020), sampled every 3 hours between 9.8–16.8 N and214

62.22–54.22 W between Jan-01-2020 and Mar-31-2020. This domain and period are rep-215

resentative for the trades in general (Medeiros & Nuijens, 2016) and span the winter dur-216

ing which the EUREC4A campaign was conducted (Jan-20-2020 to Feb-20-2020). We217

complement use of ERA5 with the JOANNE data set (George et al., 2021), gathered dur-218

ing the campaign by launching densely spaced meteorological dropsondes from an air-219

craft along the perimeter of a 200 km circle. This spatial scale roughly fits that of our220

horizontal domain size. Therefore, we will directly use this data at the spatial scale of221

the circle and time scale of a day’s flights.222

We fit all profiles in our ERA5 database with Equations 1–4, using a non-linear least223

squares algorithm. The results are shown in the central rows of Table 2. Quality of fit224

is assessed in terms of the signal-to-noise ratio of each parameter, averaged over all fits,225

with the noise taken as the mean standard error of the least squares fit. Based on these226

numbers, we subjectively judge the fits of θl to be excellent, those of qt and u adequate,227

and those of w1 inadequate. The poor fit of w1 reflects both significant deviations from228

–6–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Table 2. Properties of environmental control parameters, fit to the ERA-5 database, and

selected for Cloud Botany. Mean SNR denotes the signal to noise ratio averaged over all fits;

10–90% refers to the value of the 10th and 90th percentile of each parameter over the fits. The

range over which the parameters in Cloud Botany are varied is reported in the table’s bottom

row. Temp. abbreviates temperature; hum. stands for humidity, and ML for mixed layer.

θl0 [K] Γ [K/km] qt,ml [g/kg] hqt [m] u0 [m/s] w1 [cm/s]
surf. temp. temp. lapse rate ML hum. hum. scale surf. wind large-scale w

Mean 299 5 14.1 1810 -10.6 0.0393
Mean st. error 0.432 0.147 0.553 175 0.782 0.331
Mean SNR 821 40.1 28.4 11.7 16.0 0.034

10–90% 298 – 300 0.00454 – 0.00528 12.8 – 15.4 1180 – 2510 -14.2 – -6.93 -0.984 – 1.14
Selected range 297.5 – 299.5 0.0045 – 0.0055 13.5 – 15.0 1200 – 2500 -15 – -5 -0.350 – 0.180

the prescribed functional form, and variability in higher-order modes in the ERA-5 database229

than our simple approximation captures. Since ERA5 agrees well with the JOANNE data230

(George et al., 2022), these higher-frequency fluctuations are unlikely entirely spurious.231

Therefore, we revisit the design of wls below.232

By excluding v, we artificially remove momentum from our simulated environment.233

To investigate the consequences, we have fit profiles of v in the same manner as for u.234

The resulting meridional surface wind (v0) is on average around 15% the strength of the235

zonal surface wind (u0), while the meridional shear vz ≈ 0. We compensate for this gen-236

eral lack of momentum in the simulations by also investigating marginally broader ranges237

in u0 in our parameter sweeps (see below).238

2.3 Chosen parameter ranges239

To keep our simulation number manageable while capturing as much of the vari-240

ability that occurs in the winter trades as possible, Cloud Botany consists primarily of241

simulations conducted at the corners of a hypercube in our six-dimensional parameter242

space, i.e. 26 = 64 simulations. These stem from considering all possible combinations243

of our environmental control parameters, at a minimum and a maximum point informed244

by the 10th and 90th percentile of each parameter’s variability over the ERA5 fits (second-245

to-last row in Table 2). This choice makes our simulations indicative of the envelope of246

conditions observed in the trades; they are thus not to be confused with the climatol-247

ogy that would have resulted from sampling the multivariate probability distribution func-248

tions of the fitted parameters. To still capture parameter dependencies in more typically249

observed conditions, we supplement the hypercube corners with “sweeps”: Runs that span250

the range between the extrema in several steps for each control parameter, with all other251

parameters held at the center of the hypercube.252

Since the chosen parameters will be varied independently of each other, it is pru-253

dent to quantify their independence in observations, i.e. whether they each capture a unique254

aspect of the environment’s variability. Pairwise Pearson correlations of our ERA5 fits255

broadly confirm this: All coefficients are below 0.4, with the largest correlations exist-256

ing between θl0 and Γ (0.340), θl0 and qt,ml (0.353), Γ and hqt(0.356), and qt,ml and hqt257

(0.396). All other correlations are below 0.25.258

The final ranges over which we run each control parameter are given in the bot-259

tom row of Table 2. For Γ, hqt and u0, these directly results from rounding the 10th and260

90th percentile values. Variability in θl0 subsumes both variability in surface pressure261
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and Sea-Surface Temperature (SST). Since we keep the surface pressure over our ensem-262

ble fixed at 1016.05 hPa, we adjust the rounded range over which we vary θl0 to better263

match the variability in SST. This results in a downwards adjustment of 0.5K. In pre-264

liminary experiments, combinations of high-end free-tropospheric moisture and free-running265

free-tropospheric tendencies would sometimes produce clouds near our domain tops, which266

after spurious boundary interactions with our radiation scheme would yield temperatures267

exceeding the local boiling point and crash our thermodynamics scheme. Conversely, sim-268

ulations with less cloud-layer moisture than the ERA5 envelope would often not even269

develop clouds. To avoid these situations, we narrow the envelope of qt,ml slightly to avoid270

unrealistically dry and moist free-tropospheric moisture profiles and initial profiles that271

exceed a relative humidity of 100%. As we shall see in Section 6, even the final ensem-272

ble still contains some runs that fail in this manner.273

There are certain inherent limitations to modelling variability in wls with a frame-274

work as simple as ours: it does not adequately represent high-frequency vertical modes,275

nor does prescribing wls allow the convection developing in our simulations to interact276

with vertical velocity structures of scales larger than our domain. Our compromise aims277

to i) capture sufficient w variability to satisfy our main objective – studying environmen-278

tal dependencies – and ii) ensure that the variability we capture is more representative279

of the reanalysis than traditional exponential (Bellon & Stevens, 2012; Blossey et al., 2013)280

or linear (Stevens et al., 2001; Siebesma et al., 2003a; Yamaguchi et al., 2019) approx-281

imations. Therefore, we set w∞ to a number characteristic of the ERA5 mean in the free282

troposphere, where its variation is not expected to be important for the current study,283

and vary w1 according to how it varied between the moistest and driest 50% of circles284

flown by the HALO aircraft during EUREC4A (George et al., 2022). We separate the285

vertical velocity variability by moisture variability (and not by the vertical velocity it-286

self), since the moisture variability tends to co-vary with the degree to which vertical287

velocity patterns lead to aggregated cloud structures (Bretherton & Blossey, 2017; George288

et al., 2022), and we are in search of such variability in the cloudiness. The resulting fits289

are shown in Figure 1.290

The remaining parameters needed to complete Equations 1–4 are reported in Ta-291

ble 1, and the complete ensemble of initial and boundary conditions that emerges is plot-292

ted in Figure 2.293

3 Design of fixed LES parameters294

While Section 2 describes the set of initial and lower boundary conditions that vary295

over our simulation ensemble, running a simulation still requires the prescription of a model296

grid, a precipitation model, a radiation model, and two larger-scale advective forcings.297

These are all kept the same for all simulations; we briefly describe them in turn below.298

Our simulations run for 60 hours on horizontally square domains of 153.6 km, with299

a height of 7 km. The domains have periodic boundary conditions in the two horizon-300

tal directions. To discretize this cuboid, we use a grid with a horizontal spacing of 100301

m, and vertical spacing of 20 m in our first model level, stretched by 1% in each level302

above. This yields 1536 grid points on a horizontal side, and 175 vertical grid levels. Ad-303

vection of momentum, θl and e is discretized with a sixth order scheme, advection of qt304

and precipitation species with a fifth order scheme (Wicker & Skamarock, 2002). The305

sources and sinks of precipitation are modelled with a warm microphysics scheme based306

on Seifert and Beheng (2001), whose two moments we prognose. We prescribe a (fixed)307

cloud-droplet number concentration of 7·107/m3.308

Radiative heating rates are calculated interactively with RRTMG (Iacono et al.,309

2008). As the importance of diurnal, radiative variability in the downstream trades has310

recently been emphasized (Vial et al., 2019, 2021; Albright et al., 2021), we include in311
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Figure 1. Envelopes and mean of the vertical velocity in the JOANNE data set (George et

al., 2021), over the 50% moistest (blue) and driest (red) circles flown by the HALO aircraft dur-

ing the EUREC4A field campaign. Dashed lines indicate the profiles constructed with Equation 4

and the parameters reported in Tables 2 and 1.

the model’s shortwave component the diurnal cycle representative for Feb-01-2020 at 13.1312

N and 52 W. Required input profiles for ozone, water vapor and temperature derive from313

ERA5, averaged over the EUREC4A region and period. These are prescribed over the314

entire modelled column for ozone, and stitched to the prognosed profiles of temperature315

and water vapor within our numerical domain from the 7 km domain top until a height316

corresponding to the 100 Pa pressure level (which we refer to as the top of the atmosphere317

- TOA). Default profiles are adopted for all other trace gases.318

We add two large-scale forcings to the simulations. The first are (horizontally con-
stant) tendencies that aim to be representative of the typical drying (for qt) and cool-
ing (for θl) of our region of interest through advection on a horizontal scale larger than
we simulate. We estimate these tendencies from JOANNE following a linear approxima-
tion, held at zero once they cross the ordinate (Figure 3):

∂tθl,ls = min(0, ∂tθl,ls,0 + ∂tθl,ls,zz) (5)

∂tqt,ls = min(0, ∂tqt,ls,0 + ∂tqt,ls,zz) (6)

These tendencies display variability around the fixed, approximate state we have cho-319

sen, which would have made their inclusion in our parameter space interesting. We ex-320

cluded such variations to keep the required simulation number tractable, but recommend321

investigating their importance in future extensions.322

Finally, our rich ensemble of initial conditions combine with our variation of wls

to form a rather broad variety of wls-induced heating and drying tendencies forced on
our slab-averaged prognostic variables in the free troposphere. To prevent these tenden-
cies from driving the initial state outside the ERA5 envelope, we impose a nudging ten-
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Figure 2. Profiles of θl, qt, relative humidity (RH), u and wls over the 10th–90th percentile

envelope in ERA-5 (reanalysis, shading), its mean (gray), and for initial and large-scale forc-

ing of Cloud Botany simulations: the centre (purple) and corners (pink) of the six-dimensional

hypercube.

dency on our prognostic variables (u, v, θl, qt) that forces them back towards their ini-
tial state with a height-dependent nudging time scale τ :

τ(z) = τ∞ +

(
b
π

2
arctan

[
a
π

2

(
1− z

zmax

)])c

(7)

In this relation, the inverse tangent is centered around the top of the cloud layer: zmax =323

3000 m. Below this height we wish the convection to develop freely, so we set the free324

parameters a, b and c such that τ increases to around 3 months near the surface. In the325

free-tropospheric limit, where we would like to exercise some control over the profiles,326

we let the profile return to τ∞ = 6 h. The fixed parameters of Equations 5 and 7 are327

listed in Table 1.328

4 Workflow to create the data set329

To turn the LES ensemble design into accessible data products, four steps need to330

be taken: i) creating a set of input files for each ensemble member, ii) running each sim-331

ulation, iii) converting simulation output to an easily accessible format and iv) upload-332

ing the data set to a data repository. In this section we briefly document how we carry333

out these steps.334

To produce the input files required to run each ensemble member, we used a Python335

script and EasyVVUQ (Groen et al., 2021), a framework for uncertainty quantification.336
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Figure 3. Inter-quartile range (IQR, shading) and mean (gray line) of JOANNE-derived ten-

dencies of heating and moistening, and idealized fit used to force Cloud Botany simulations (blue

line).

EasyVVUQ can sample a parameter space using different sampling strategies, for exam-337

ple based on quadrature methods suitable for uncertainty quantification methods. EasyVVUQ338

then produces model input files, using a template where the varied parameters are sub-339

stituted. We use this mechanism to produce a Fortran namelist, which is the main DALES340

configuration file, for each ensemble member. The input files for the initial vertical pro-341

files of the prognostic variables are produced with a Python script. The setup for using342

EasyVVUQ to run DALES experiments was presented in Jansson et al. (2021).343

All simulations were run with DALES on supercomputer Fugaku. Fugaku is based344

on the Fujitsu A64FX CPU, built on the ARM architecture with Scalable Vector Ex-345

tension. Each node of Fugaku has 48 CPU cores and 32 GB RAM, and is characterized346

by a high memory bandwidth and fast node interconnect Fugaku is a CPU-only system,347

i.e. it does not rely on accelerators such as GPUs. These properties seem to be a good348

fit for DALES, a CPU-only code, which in our experience is often memory-bandwidth349

limited and able to benefit from vectorized floating point mathematical operations. Port-350

ing DALES to Fugaku did not require extensive changes to the program, and was mostly351

a matter of adding the option to use the Fujitsu Fortran compiler. For improved per-352

formance, the possibility to store the prognostic fields in single precision was implemented.353

The single precision version is faster and requires less memory for storing the prognos-354

tic fields. The latter is particularly important on Fugaku which has relatively little RAM355

memory per core (around 600 MB). Further optimizations included rewriting and sim-356

plifying some loops for better vectorization, based on profiling the program. These mod-357

ifications have been found to be beneficial on other architectures as well, enabling us to358

maintain a single version of the code for all architectures. See Section Appendix A for359

details of the DALES version used and for accessing the code.360
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Table 3. Computational resources used for the simulation of ensemble member 1, the central

point in the parameter hypercube, on supercomputer Fugaku (one 2.0 GHz 48-core A64FX CPU

per node), and on the Dutch national supercomputer Snellius (two 2.6 GHz 64-core AMD Rome

7H12 CPUs per node).

System Time of simulation Nodes Cores Wall clock time Time per grid point and time step

Fugaku 0–12h 24 1152 46760 s 2.8 µs
36–48h 24 1152 110391 s 5.6 µs

Snellius 0–12h 8 1024 73717 s 4.0 µs
36–48h 8 1024 92094 s 4.5 µs

DALES is parallelized using Message Passing Interfaces (MPI) in x and y, the two361

horizontal directions. Each simulation was run on 24 nodes, with 24 × 48 MPI processes.362

The simulations lasted around 5 days (wall-clock time of running the simulation) per en-363

semble member. More details on the computational requirements of one specific ensem-364

ble member, are shown in table 3, compared with a similar run on Snellius, the Dutch365

national supercomputer. The results show that at the beginning of the simulation, DALES366

runs faster on Fugaku, comparing time required per grid point and time step. Further367

into the simulation, DALES runs slower on both systems, with a larger slowdown seen368

on Fugaku. This behavior is result of the cloud microphysics and precipitation scheme369

which is activated when precipitation occurs. This scheme has not been tuned for Fu-370

gaku yet, and appears to vectorize poorly. What the table doesn’t show is that the scal-371

ing efficiency for using more nodes is better on Fugaku.372

Each MPI process writes the output data for its own part of the simulation domain373

in the netCDF format. We used the uncompressed netCDF3 format, since it was found374

to require less RAM memory than netCDF4 during simulation. These netCDF tiles were375

then merged and converted to compressed netCDF4 using CDO 2.0.4 (Schulzweida, 2021).376

Finally, the netCDF files were converted to the Zarr format (Miles et al., 2022) and377

uploaded to the German Climate Computing Centre (DKRZ)’s SWIFT object storage378

for easy access, as described further in Section 5. As a backup, the netCDF files are kept379

on the tape archive of the European Centre for Medium-Range Weather Forecasts (ECMWF).380

5 Data set description381

Cloud Botany contains a rich set of idealized large-eddy simulations that provide382

valuable resources to study the dependency of shallow cumulus convection to environ-383

mental conditions. In addition to the vast range of environments, the large domain-size384

itself allows an investigation of scales that remain uncaptured in previous simulation stud-385

ies of trade-wind cumuli centered around the RICO (vanZanten et al., 2011) and BOMEX386

(Siebesma et al., 2003b) campaigns. Due to these large opportunities, we put additional387

effort into providing an easy and free access to these simulations.388

We acknowledge that the download of 40TB of simulation output is a burden and389

most users will only access portions of this data set, e.g. specific timesteps, specific mem-390

bers or height levels. To allow for a more modular access, the data set has been chun-391

ked along all its dimensions and saved as Zarr files which support these chunks. The Zarr392

fileformat allowed further to host Cloud Botany on the DKRZ SWIFT object storage.393

The combination of the Zarr format with an object storage leads to faster access rates394

compared to traditional filesystem based hosted data sets and make the Cloud Botany395

data set analysis ready.396
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An analysis in Python can be started by accessing the EUREC4A intake catalog397

(https://howto.eurec4a.eu/botany dales.html):398

import eurec4a399

cat = eurec4a.get_intake_catalog()400

botany_cat = cat.simulations.DALES.botany401

Further details on how to visualize and analyse this data set can be found in the inter-402

active How-To-EUREC4A book at https://howto.eurec4a.eu among other EUREC4A403

related data sets.404

All the simulations in the Cloud Botany ensemble are listed in Table A1 together405

with their parameters. Run 1 is at the center of the parameter hypercube, runs 2 to 65406

are its corners. The remaining runs 66 to 103, labeled ”sweep”, lie on lines through the407

center of the hypercube, where one parameter at a time is varied. The remark column408

gives subjective description of the clouds and cloud organization based on visual inspec-409

tion.410

The data is divided into several data sets, according to output frequency and di-411

mensionality. Each data set is indexed by ensemble member, time and spatial coordi-412

nates. The data sets and their variables are summarized in Tables A4 – A11. In general,413

we have stored 3D fields and 2D radiation fields hourly, and 2D fields such as the liq-414

uid water path as well as horizontal cross sections of the prognostic variables every 5 min-415

utes.416

As an aid to navigating the ensemble, we have prepared a web page with a set of417

plots and animations for each member. This page and the images and animations can418

be downloaded and used offline (Jansson, Janssens, Grönqvist, Siebesma, et al., 2023).419

6 Results420

In this section we include a preliminary exploration of the development of mesoscale421

cloud patterns in the Cloud Botany ensemble. We begin with Figure 4, which shows the422

evolution of several quantities of interest and snapshots of the cloud cover and precip-423

itation in simulation 1, the centre point of our parameter space. Its evolution is qual-424

itatively similar to that of many ensemble members. All simulations depart from cloud-425

free states at midnight UTC. The first 10 hours are characterized by the onset of con-426

vection and the development of small, unorganized cumuli. These non-precipitating clouds427

then gradually cluster into larger structures. This evolution is modulated by the diur-428

nal cycle of shortwave radiation. After sunrise, this gradually heats the domain, reduc-429

ing both the cloud fraction and horizontally averaged liquid-water path (LWP). After430

sunset, the cloud structures rapidly grow vertically and begin to precipitate around 24431

hours from the start of the simulation. The second diurnal cycle is then dominated by432

larger, precipitating convection cells, organized along cold pools and frequently topped433

by thin inversion clouds.434

Figure 5 shows a few examples of cloud patterns that develop under different pa-435

rameter combinations. Many of these develop precipitating convection, almost always436

paired with cold pools. When they appear, such cold pools typically dominate the cloud437

patterning. We find at least three different ways in which this happens. First, cold pools438

lined by arcs of cumuli (e.g. Figure 5 a) are ubiquitous across our precipitating simu-439

lations. Second, in simulations with strong surface wind, large lapse rates, small mois-440

ture scale heights and positive large-scale vertical velocity (e.g. runs 37, 45 in Figure 5441

b and c and 79, not shown), cold pools are produced by sufficiently vigorous convective442

cells that they produce large (> 50 km) sheets of thin, stratiform outflow layers, rem-443

iniscent of the structures termed “Flowers” by Stevens et al. (2020). At a glance, the ap-444
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Figure 4. Time series of simulation 1, the central point of the parameter hypercube. The

snapshots show cloud albedo in white (as parameterized by Zhang et al. (2005)) and rain water

path in blue. The time series curves show the liquid water path (LWP), rain water path (RWP)

and cloud fraction over time. The shaded background shows the diurnal cycle, the darker regions

are night (18h to 06h in local time). The times of the snapshots are indicated by gray vertical

lines.

–14–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 5. Different types of cloud organization seen in the Cloud Botany ensemble. a) Run 6,

cold pools, b) run 37, large cloud cluster topped by stratiform outflow, c) run 45, multiple such

clusters, on the edges of cold pools, d) run 84, line of precipitation, e) run 40, non-precipitating

cumulus in bands and f) run 66, non-precipitating cumulus in aggregated in quasi-circular clus-

ters. The wind is easterly, i.e. from the right side of the image.

pearance of such structures under stronger stratifications and higher surface winds ap-445

pears consistent with the observations by Bony et al. (2020); Schulz et al. (2021). Third,446

in runs 84 to 91 the wind shear is varied. At strong wind shears of both positive and neg-447

ative signs, cold pools are observed to deform into bands (Figure 5 d); such features are448

also found in runs 4 and 100.449

We also find a set of simulations with less vigorous, at most weakly precipitating450

convection, often at lower surface winds. When the winds blow weakly, the large-scale451

vertical velocity has a strong switching effect on the cloud formation: Negative w1 of-452

ten results in very weak, sometimes cloud-free convection (e.g. runs 18 and 50); merely453

switching w1 to its positive counterpart in the simulations (19 and 51) makes them pro-454

duce deeper, precipitating convection. Yet strikingly, all non- or weakly precipitating sim-455

ulations that support a cumulus layer still see their convection organize into mesoscale456

patterns (e.g. runs 8, 66-68), such as bands aligned with the mean wind (Figure 5 e) or457

into quasi-circular clusters (Figure 5 f). Figure 6 shows 3D renderings of parts of scenes458

b and e of figure 5.459

Runs 7, 15, 38, 39 and 47 did not finish due to a crash in the thermodynamics rou-460

tine, when temperature and moisture reach non-physical values. All these runs have a461

low lapse rate, sometimes allowing single plumes to permeate through to our domain top,462

where their spurious interactions with our boundary conditions makes them fail (see Sec-463

tion 2.3). Since we do not expect such deep convection to frequently occur during the464

suppressed conditions we aim to study, we recommend disregarding these runs. Addi-465
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Figure 6. Rendered 3D view of the central, large cloud structure in figure 5 b and of the

stripes in figure 5 e, above a reflecting plane representing the ocean. The rendered domain is

70×70 km. The rendering shows an isosurface of ql = 2 · 10−5 kg/kg.

tionally, runs 11, 14, 43, 46 and 87 only span 48h due to their computing jobs being in-466

terrupted.467

In summary, we can identify at least five visually distinct forms of convective pat-468

terning in our ensemble, several of which appear to match visually identified categories469

of cloud patterns in nature: “Sugar”, “Gravel”, the aforementioned “Flowers” and “Fish”470

(Stevens et al., 2020). In order of increasing visual complexity, we find simulations with471

i) no clouds, ii) small, randomly spaced cumulus, iii) clustered, non-precipitating cumu-472

lus (both ii and iii seem to fit the “Sugar” category), iv) precipitating convection and473

subsequent cold pools (“Gravel”), and mesoscale convective systems topped by thin strat-474

iform clouds (“Flowers”). Patterns larger than our domain size, such as “Fish” we can-475

not simulate; our dataset therefore cannot shed light on their formation. However, since476

Schulz et al. (2021) show that “Fish” originate in extratropical, synoptic disturbances,477

there is also no reason to expect such structures to form spontaneously in even larger-478

domain simulations forced by conditions that characterise the trades.479

7 Conclusions480

There are several approaches to improve understanding of the processes that un-481

derpin the rich spectrum of cloud patterns over the tropical ocean. Many attempts rest482

on the construction of models that strive for maximum realism across the entire relevant483

scale range, from the synoptics to the large-eddy scales of turbulence. In this paper we484

have presented Cloud Botany, an ensemble of large-eddy simulations on 150 km domains485

that instead represents the larger-scale environment in a highly idealized manner. We486

do this to elucidate the processes through which shallow convection can self-organize into487

mesoscale cloud patterns, and to study systematically how these processes vary as the488

larger-scale environment changes.489

We design our idealized large-scale environment by fitting functional forms of the490

vertical structure of liquid-water potential temperature, total specific humidity and hor-491

izontal wind from reanalysis, and vertical velocity from observations. For most of these,492

reasonable fits can be attained with very simple approximations, allowing us to span the493

range of observed conditions by varying only six parameters: these span a parameter space494

that we explore by simulating i) all possible combinations of high and low values in the495

parameters that are representative for observed variability over the boreal winter of 2020,496

and ii) sweeps of single parameters.497

In the Cloud Botany simulations, 93 out of 103 runs support cumulus-topped bound-498

ary layers. Strikingly, all those that do also self-organize into mesoscale cloud patterns.499

We typically first observe small, randomly spaced cumulus, which quickly begin self-aggregating500
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into mesoscale clusters. After a marked diurnal cycle, we often observe the onset of pre-501

cipitation after around 24 hours of simulation; subsequent cloud pattern varieties are dom-502

inated by cold pools and layers of thin inversion cloud. We also observe ample variabil-503

ity in the self-organized cloud patterns when we vary the parameters controlling the large-504

scale environment, all of which are closely reminiscent of cloud patterns observed in na-505

ture. We take these results to be early indications that parameter ensembles will prove506

fruitful for understanding the processes that govern the variability of the mesoscale trades,507

under a range of larger-scale conditions.508

We hope this makes Cloud Botany a valuable community resource for studies that509

simultaneously require the resolution of individual cloud structures, a mesoscale envi-510

ronment and variability over a range of conditions characteristic for the trades. It also511

serves as a point of departure for using parameter ensembles to study variability in con-512

vective clouds in other regions of the world, or in warmer climates. Finally, we see Cloud513

Botany as sitting on the abstract side of a spectrum of modeling approaches, which in-514

clude simulation setups under time-varying forcings derived from a numerical weather515

prediction model (Savazzi et al., 2022), on the lateral boundaries of open domains (Dauhut516

et al., 2022), Lagrangian LES (Narenpitak et al., 2021), mesoscale models with param-517

eterized convection (Beucher et al., 2022) and regional and global models with partially518

resolved convection (Schulz & Stevens, 2023; Stevens et al., 2019). All these will be needed519

to fully elucidate the subtleties that govern the interactions between clouds, their envi-520

ronment and climate at the trade-wind mesoscales.521
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Table A1. Summary of all simulations in the Cloud Botany ensemble, part 1

run θl0 u0 qt,ml hqt Γ w1 uz location remark
[K] [m/s] [g/kg] [m] [K/m] [cm/s] [s−1]

1 298.5 -10 14.25 1850 5 -0.085 0.0022 center cold pools
2 297.5 -15 13.5 1200 4.5 -0.35 0.0022 corner cold pools
3 297.5 -15 13.5 1200 4.5 0.18 0.0022 corner cold pools
4 297.5 -15 13.5 1200 5.5 -0.35 0.0022 corner cold pools
5 297.5 -15 13.5 1200 5.5 0.18 0.0022 corner cold pools
6 297.5 -15 13.5 2500 4.5 -0.35 0.0022 corner cold pools
7 297.5 -15 13.5 2500 4.5 0.18 0.0022 corner thermo. crash
8 297.5 -15 13.5 2500 5.5 -0.35 0.0022 corner weak precip
9 297.5 -15 13.5 2500 5.5 0.18 0.0022 corner cold pools

10 297.5 -15 15 1200 4.5 -0.35 0.0022 corner cold pools
11 297.5 -15 15 1200 4.5 0.18 0.0022 corner cold pools
12 297.5 -15 15 1200 5.5 -0.35 0.0022 corner cold pools
13 297.5 -15 15 1200 5.5 0.18 0.0022 corner cold pools
14 297.5 -15 15 2500 4.5 -0.35 0.0022 corner cold pools
15 297.5 -15 15 2500 4.5 0.18 0.0022 corner thermo. crash
16 297.5 -15 15 2500 5.5 -0.35 0.0022 corner cold pools
17 297.5 -15 15 2500 5.5 0.18 0.0022 corner cold pools
18 297.5 -5 13.5 1200 4.5 -0.35 0.0022 corner no clouds
19 297.5 -5 13.5 1200 4.5 0.18 0.0022 corner cold pools
20 297.5 -5 13.5 1200 5.5 -0.35 0.0022 corner no clouds
21 297.5 -5 13.5 1200 5.5 0.18 0.0022 corner cold pools
22 297.5 -5 13.5 2500 4.5 -0.35 0.0022 corner small cumulus
23 297.5 -5 13.5 2500 4.5 0.18 0.0022 corner cold pools
24 297.5 -5 13.5 2500 5.5 -0.35 0.0022 corner no clouds
25 297.5 -5 13.5 2500 5.5 0.18 0.0022 corner cold pools
26 297.5 -5 15 1200 4.5 -0.35 0.0022 corner small cumulus
27 297.5 -5 15 1200 4.5 0.18 0.0022 corner cold pools
28 297.5 -5 15 1200 5.5 -0.35 0.0022 corner small cumulus
29 297.5 -5 15 1200 5.5 0.18 0.0022 corner cold pools
30 297.5 -5 15 2500 4.5 -0.35 0.0022 corner organizing cumulus
31 297.5 -5 15 2500 4.5 0.18 0.0022 corner cold pools
32 297.5 -5 15 2500 5.5 -0.35 0.0022 corner small organizing cumulus
33 297.5 -5 15 2500 5.5 0.18 0.0022 corner cold pools
34 299.5 -15 13.5 1200 4.5 -0.35 0.0022 corner cold pools
35 299.5 -15 13.5 1200 4.5 0.18 0.0022 corner cold pools
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Table A2. Summary of all simulations in the Cloud Botany ensemble, part 2

run θl0 u0 qt,ml hqt Γ w1 uz location remark
[K] [m/s] [g/kg] [m] [K/m] [cm/s] [s−1]

36 299.5 -15 13.5 1200 5.5 -0.35 0.0022 corner cold pools
37 299.5 -15 13.5 1200 5.5 0.18 0.0022 corner cold pools, aggregated clouds
38 299.5 -15 13.5 2500 4.5 -0.35 0.0022 corner cold pools, thermo. crash
39 299.5 -15 13.5 2500 4.5 0.18 0.0022 corner cold pools, thermo. crash
40 299.5 -15 13.5 2500 5.5 -0.35 0.0022 corner arcs
41 299.5 -15 13.5 2500 5.5 0.18 0.0022 corner cold pools
42 299.5 -15 15 1200 4.5 -0.35 0.0022 corner cold pools
43 299.5 -15 15 1200 4.5 0.18 0.0022 corner cold pools
44 299.5 -15 15 1200 5.5 -0.35 0.0022 corner cold pools
45 299.5 -15 15 1200 5.5 0.18 0.0022 corner cold pools, aggregated clouds
46 299.5 -15 15 2500 4.5 -0.35 0.0022 corner cold pools
47 299.5 -15 15 2500 4.5 0.18 0.0022 corner thermo. crash
48 299.5 -15 15 2500 5.5 -0.35 0.0022 corner cold pools
49 299.5 -15 15 2500 5.5 0.18 0.0022 corner cold pools
50 299.5 -5 13.5 1200 4.5 -0.35 0.0022 corner no clouds
51 299.5 -5 13.5 1200 4.5 0.18 0.0022 corner cold pools
52 299.5 -5 13.5 1200 5.5 -0.35 0.0022 corner no clouds
53 299.5 -5 13.5 1200 5.5 0.18 0.0022 corner cold pools
54 299.5 -5 13.5 2500 4.5 -0.35 0.0022 corner no clouds
55 299.5 -5 13.5 2500 4.5 0.18 0.0022 corner cold pools
56 299.5 -5 13.5 2500 5.5 -0.35 0.0022 corner no clouds
57 299.5 -5 13.5 2500 5.5 0.18 0.0022 corner cold pools
58 299.5 -5 15 1200 4.5 -0.35 0.0022 corner no clouds
59 299.5 -5 15 1200 4.5 0.18 0.0022 corner cold pools
60 299.5 -5 15 1200 5.5 -0.35 0.0022 corner no clouds
61 299.5 -5 15 1200 5.5 0.18 0.0022 corner cold pools
62 299.5 -5 15 2500 4.5 -0.35 0.0022 corner small cumulus
63 299.5 -5 15 2500 4.5 0.18 0.0022 corner cold pools
64 299.5 -5 15 2500 5.5 -0.35 0.0022 corner no clouds
65 299.5 -5 15 2500 5.5 0.18 0.0022 corner cold pools
66 298.5 -4 14.25 1850 5 -0.085 0.0022 sweep u0 organizing cumulus, weak precip
67 298.5 -5 14.25 1850 5 -0.085 0.0022 sweep u0 organizing cumulus, weak precip
68 298.5 -6 14.25 1850 5 -0.085 0.0022 sweep u0 organizing cumulus, cold pools
69 298.5 -8 14.25 1850 5 -0.085 0.0022 sweep u0 cold pools
70 298.5 -12 14.25 1850 5 -0.085 0.0022 sweep u0 cold pools
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Table A3. Summary of all simulations in the Cloud Botany ensemble, part 3

run θl0 u0 qt,ml hqt Γ w1 uz location remark
[K] [m/s] [g/kg] [m] [K/m] [cm/s] [s−1]

71 298.5 -15 14.25 1850 5 -0.085 0.0022 sweep u0 cold pools
72 298.5 -10 14.25 1850 5 -0.2 0.0022 sweep wpamp cold pools
73 298.5 -10 14.25 1850 5 -0.1 0.0022 sweep wpamp cold pools
74 298.5 -10 14.25 1850 5 0 0.0022 sweep wpamp cold pools
75 298.5 -10 14.25 1850 5 0.1 0.0022 sweep wpamp cold pools
76 298.5 -10 14.25 1850 4 -0.085 0.0022 sweep Γ cold pools
77 298.5 -10 14.25 1850 4.5 -0.085 0.0022 sweep Γ cold pools
78 298.5 -10 14.25 1850 4.75 -0.085 0.0022 sweep Γ cold pools
79 298.5 -10 14.25 1850 5.25 -0.085 0.0022 sweep Γ cold pools, aggregated clouds
80 298.5 -10 14.25 1850 5.5 -0.085 0.0022 sweep Γ cold pools
81 298.5 -10 14.25 1850 6 -0.085 0.0022 sweep Γ cold pools
82 298.5 -10 14.25 1850 6.5 -0.085 0.0022 sweep Γ cold pools
83 298.5 -10 14.25 1850 7.5 -0.085 0.0022 sweep Γ cold pools
84 298.5 -10 14.25 1850 5 -0.085 -0.0044 sweep uz precip and bands
85 298.5 -10 14.25 1850 5 -0.085 -0.0033 sweep uz precip and bands
86 298.5 -10 14.25 1850 5 -0.085 -0.0022 sweep uz bands and arcs
87 298.5 -10 14.25 1850 5 -0.085 -0.0011 sweep uz cold pools
88 298.5 -10 14.25 1850 5 -0.085 0 sweep uz cold pools
89 298.5 -10 14.25 1850 5 -0.085 0.0011 sweep uz cold pools
90 298.5 -10 14.25 1850 5 -0.085 0.0033 sweep uz cold pools
91 298.5 -10 14.25 1850 5 -0.085 0.0044 sweep uz arcs, bands
92 297.5 -10 14.25 1850 5 -0.085 0.0022 sweep thls cold pools
93 299.5 -10 14.25 1850 5 -0.085 0.0022 sweep thls cold pools
94 300.5 -10 14.25 1850 5 -0.085 0.0022 sweep thls cold pools
95 301.5 -10 14.25 1850 5 -0.085 0.0022 sweep thls cold pools
96 298.5 -10 14.25 800 5 -0.085 0.0022 sweep hqt cold pools
97 298.5 -10 14.25 1200 5 -0.085 0.0022 sweep hqt cold pools
98 298.5 -10 14.25 1500 5 -0.085 0.0022 sweep hqt cold pools
99 298.5 -10 14.25 2200 5 -0.085 0.0022 sweep hqt cold pools
100 298.5 -10 14.25 2500 5 -0.085 0.0022 sweep hqt cold pools, arcs
101 298.5 -10 14.25 3000 5 -0.085 0.0022 sweep hqt cold pools
102 298.5 -10 13.5 1850 5 -0.085 0.0022 sweep qt0 cold pools
103 298.5 -10 15 1850 5 -0.085 0.0022 sweep qt0 cold pools
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Table A4. Variables in the timeseries data set, sampled every minute. Dimensions: (member,

time)

variable units description

cfrac - Cloud fraction
lmax kg/kg Maximum liquid water specific humidity
lwp bar kg/m2 Slab-averaged liquid-water path
lwp max kg/m2 Maximum Liquid-water path
obukh m Obukhov Length
qtstr K Turbulent humidity scale
rwp bar kg/m2 Rain water path
thlskin K Surface liquid water potential temperature
tstr K Turbulent temperature scale
twp bar kg/m2 Total water path
ustar m/s Surface friction velocity
vtke kg/s Vertical integral of e
we m/s Entrainment velocity
wmax m/s Maximum vertical velocity
wq kg/kg m/s Surface kinematic moisture flux
wtheta K m/s Surface kinematic potential temperature flux
wthetav K m/s Surface kinematic virtual potential temperature flux
z0 m Roughness height
zb m Cloud-base height
zc av m Average Cloud-top height
zc max m Maximum Cloud-top height
zi m Boundary layer height

(Jansson, Janssens, & Grönqvist, 2023). The scripts generating figures 4 and 5 serve as548

examples of accessing the Cloud Botany data through the intake catalog.549

An offline webpage containing basic profile and time-series plots as well as anima-550

tions of all the ensemble members is available at DOI:10.5281/zenodo.7692270 (Jansson,551

Janssens, Grönqvist, Siebesma, et al., 2023).552
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Table A5. Variables in the profiles data set containing horizontally averaged profiles, sampled

every 5 minutes, part 1. Dimensions: (member, time, z)

variable units description

cfrac - Cloud fraction
cs - Smagorinsky constant
dvrmn m Precipitation mean diameter
lwd W/m2 Long wave downward radiative flux
lwdca W/m2 Long wave clear air downward radiative flux
lwu W/m2 Long wave upward radiative flux
lwuca W/m2 Long wave clear air upward radiative flux
npaccr #/m3/s Accretion rain drop tendency
npauto #/m3/s Autoconversion rain drop tendency
npevap #/m3/s Evaporation rain drop tendency
npsed #/m3/s Sedimentation rain drop tendency
nptot #/m3/s Total rain drop tendency
nrrain #/m3 Rain droplet number concentration
preccount - Precipitation flux area fraction
precmn W/m2 Rain rate
presh Pa Pressure at cell center
ql kg/kg Liquid water specific humidity
ql2r (kg/kg)2 Resolved liquid water variance
qrmn kg/kg Precipitation specific humidity
qrpaccr kg/kg/s Accretion rain water content tendency
qrpauto kg/kg/s Autoconversion rain water content tendency
qrpevap kg/kg/s Evaporation rain water content tendency
qrpsed kg/kg/s Sedimentation rain water content tendency
qrptot kg/kg/s Total rain water content tendency
qt kg/kg Total water specific humidity
qt2D kg2/kg2/s Dissipation of qt variance
qt2Pr kg2/kg2/s Resolved production of qt variance
qt2Ps kg2/kg2/s SFS production of qt variance
qt2Res kg2/kg2/s Residual of qt budget
qt2S kg2/kg2/s Source of qt variance
qt2Tr kg2/kg2/s Resolved transport of qt variance
qt2r (kg/kg)2 Resolved total water variance
qt2tendf kg2/kg2/s Tendency of qt variance
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Table A6. Variables in the profiles data set containing horizontally averaged profiles, sampled

every 5 minutes, part 2. Dimensions: (member, time, z)

variable units description

raincount - Rain water content area fraction
rainrate W/m2 Echo rain rate
rhobf kg/m3 Full level base-state density
rhobh kg/m3 Half level base-state density
rhof kg/m3 Full level slab averaged density
skew - vertical velocity skewness
sv001 (kg/kg) Scalar 001 specific mixing ratio
sv0012r (kg/kg)2 Resolved scalar 001 variance
sv002 (kg/kg) Scalar 002 specific mixing ratio
sv0022r (kg/kg)2 Resolved scalar 002 variance
svp001 (kg/kg/s) Scalar 001 tendency
svp002 (kg/kg/s) Scalar 002 tendency
svpt001 (kg/kg/s) Scalar 001 turbulence tendency
svpt002 (kg/kg/s) Scalar 002 turbulence tendency
swd W/m2 Short wave downward radiative flux
swdca W/m2 Short wave clear air downward radiative flux
swu W/m2 Short wave upward radiative flux
swuca W/m2 Short wave clear air upward radiative flux
th2r K2 Resolved theta variance
thl K Liquid water potential temperature
thl2D K2/s Dissipation of thl variance
thl2Pr K2/s Resolved production of thl variance
thl2Ps K2/s SFS production of thl variance
thl2Res K2/s Residual of thl budget
thl2S K2/s Source of thl variance
thl2Tr K2/s Resolved transport of thl variance
thl2r K2 Resolved thl variance
thl2tendf K2/s Tendency of thl variance
thllwtend K/s Long wave radiative tendency
thlradls K/s Large scale radiative tendency
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Table A7. Variables in the profiles data set containing horizontally averaged profiles, sampled

every 5 minutes, part 3. Dimensions: (member, time, z)

variable units description

thlswtend K/s Short wave radiative tendency
thltend K/s Total radiative tendency
thv K Virtual potential temperature
thv2r K2 Resolved buoyancy variance
u m/s West-East velocity
u2r m2/s2 Resolved horizontal velocity variance (u)
uwr m2/s2 Resolved momentum flux (uw)
uws m2/s2 SFS-momentum flux (uw)
uwt m2/s2 Total momentum flux (vw)
v m/s South-North velocity
v2r m2/s2 Resolved horizontal velocity variance (v)
vwr m2/s2 Resolved momentum flux (vw)
vws m2/s2 SFS-momentum flux (vw)
vwt m2/s2 Total momentum flux (vw)
w2r m2/s2 Resolved vertical velocity variance
w2s m2/s2 SFS-TKE
wqlr kg/kg m/s Resolved liquid water flux
wqls kg/kg m/s SFS-liquid water flux
wqlt kg/kg m/s Total liquid water flux
wqtr kg/kg m/s Resolved moisture flux
wqts kg/kg m/s SFS-moisture flux
wqtt kg/kg m/s Total moisture flux
wsv001r kg/kg m/s Resolved scalar 001 flux
wsv001s kg/kg m/s SFS scalar 001 flux
wsv001t kg/kg m/s Total scalar 001 flux
wsv002r kg/kg m/s Resolved scalar 002 flux
wsv002s kg/kg m/s SFS scalar 002 flux
wsv002t kg/kg m/s Total scalar 002 flux
wthlr Km/s Resolved Theta l flux
wthls Km/s SFS-Theta l flux
wthlt Km/s Total Theta l flux
wthvr Km/s Resolved buoyancy flux
wthvs Km/s SFS-buoyancy flux
wthvt Km/s Total buoyancy flux

Table A8. Variables in the 2D data set, containing horizontal fields sampled every 5 minutes.

2D. Dimensions: (member, time, y, x)

variable units description

cldtop m xy cross sections cloud top height
hinvsrf m height of surface inversion
hmix m mixed layer height
lwp kg/m2 xy cross sections liquid water path
rwp kg/m2 xy cross sections rain water path
surfprec - surface precipitation
thetavmix K theta v averaged over mixed layer
twp kg/m2 total water path
umix m/s u averaged over mixed layer
vmix m/s v averaged over mixed layer
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Table A9. Variables in the 3D data set, the full 3D fields of the model sampled every hour.

Dimensions: (member, time, z, y, x)

variable units description

ql kg/kg Liquid water specific humidity
qt kg/kg Total water specific humidity
qr kg/kg Rain water specific humidity
thl K Liquid water potential temperature
u m/s West-East velocity
v m/s South-North velocity
w m/s Vertical velocity

Table A10. Variables in the cross xy data set, horizontal cross-sections of the prognostic

variables sampled every 5 minutes. Dimensions: (z, y, x)

variable units description

qlxy kg/kg xy cross sections of the Liquid water specific humidity
qrxy kg/kg xy cross sections of the Rain water specific humidity
qtxy kg/kg xy cross sections of the Total water specific humidity
thlxy K xy cross sections of the Liquid water potential temperature
uxy m/s xy cross sections of the West-East velocity
vxy m/s xy cross sections of the South-North velocity
wxy m/s xy cross sections of the Vertical velocity
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Table A11. Variables in the radiation data set, 2D radiation fluxes sampled every hour. TOA

stands for Top of Atmosphere, TOM for Top of Model. Dimensions: (member, time, y, x)

variable units description

clwvi kg/m2 condensed water path
hfls W/m2 surface upward latent heat flux
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prw kg/m2 water vapor path
rlds W/m2 surface downwelling longwave flux
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rsds W/m2 surface downwelling shortwave flux
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rsds dir W/m2 surface downwelling shortwave direct flux
rsdscs W/m2 surface downwelling shortwave flux - clear sky
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rsutoa W/m2 TOA outgoing shortwave flux
rsutoacs W/m2 TOA outgoing shortwave flux - clear sky
tabot K air temperature at lowest model level
uabot m/s eastward wind at lowest model level
vabot m/s northward wind at lowest model level
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