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Abstract

The 1997 New Year’s flood event was the most costly in California’s history. This compound extreme event was driven

by a category 5 atmospheric river that led to widespread snowmelt. Extreme precipitation, snowmelt, and saturated soils

produced heavy runoff causing widespread inundation in the Sacramento Valley. This study recreates the 1997 flood using

the Regionally Refined Mesh capabilities of the Energy Exascale Earth System Model (RRM-E3SM) under prescribed ocean

conditions. Understanding the processes causing extreme events inform practical efforts to anticipate and prepare for such

events in the future, and also provides a rich context to evaluate model skill in representing extremes. Three California-focused

RRM grids, with horizontal resolution refinement of 14km down to 3.5km, and six forecast lead times, 28 December 1996

at 00Z through 30 December 1996 at 12Z, are assessed for their ability to recreate the 1997 flood. Planetary to synoptic

scale atmospheric circulations and integrated vapor transport are weakly influenced by horizontal resolution refinement over

California. Topography and mesoscale circulations, such as the Sierra barrier jet, are prominently influenced by horizontal

resolution. The finest resolution RRM-E3SM simulation best represents storm total precipitation and storm duration snowpack

changes. Traditional time-series and causal analysis frameworks are used to examine runoff sensitivities state-wide and above

major reservoirs. These frameworks show that horizontal resolution plays a more prominent role in shaping reservoir inflows,

namely the magnitude and time-series shape, than forecast lead time, 2-to-4 days prior to the 1997 flood onset.
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Figure 16. Same as Figure 12, however, each stacked bar chart represents one of the six

forecasts produced by RRM-E3SM (3.5km) and conveys the strength of causal influence of four

hydrometeorological variables, integrated vapor transport (IVT), total precipitation (PRECT),

snow water equivalent (SWE), and 10 cm soil moisture (SOILWATER), on total runoff (overland

flow, interflow, and baseflow). The forecast initialization date is indicated by different styles of

hatching.
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Figure 1. a) Special Sensor Microwave Imager (SSM/I) integrated water vapor on 1 January

1997. b) Tahoe City precipitation, snowfall, and snow depth from 1 December 1996 to 10 Jan-

uary 1997. c) Examples of all-time peak daily flows set during the event on major river systems

in California and Nevada. d) Reservoir releases from Lake Oroville approached 4,530 cubic me-

ters per second (160,000 cubic feet per second). (e) Flooding inundated the Sacramento Valley

of California following heavy rainfall and snowmelt. Images d) and e) courtesy of the California

Department of Water Resources.
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Figure 2. The Regionally Refined Mesh enabled Energy Exascale Earth System Model

(RRM-E3SM) cases used to recreate the 1997 flood at horizontal resolutions of a) 0.125◦

(∼14km) b) 0.063◦ (∼7km) and c) 0.031◦ (∼3.5km) focused over California. Each RRM-

E3SM case’s topography is provided to the right of the grid refinement map. Note that ocean

bathymetry is not represented in the RRM-E3SM simulations, but is included here for illustrative

purposes.
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Figure 3. a) Forecast ensemble average integrated vapor transport (IVT) with 850mb geopo-

tential height (dashed; units in meters) fields for ERA5 and each RRM-E3SM case. b) Difference

in IVT between ERA5 and RRM-E3SM (14km), RRM-E3SM (7km) and RRM-E3SM (3.5km)

(top, middle, and bottom rows, respectively), when the AR makes landfall in California on 1 Jan-

uary 1997. c-d) 850 mb geopotential height for ERA5 (gray-to-white contours) and RRM-E3SM

(colored contours) over California (c) and the Northeastern Pacific (d), also at the time of AR

landfall.
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Figure 4. AR characteristics for the forecast ensemble average between the period of 31 De-

cember 1996 up to 4 January 1997. Characteristics include the Ralph et al. (2019) category scale

(left column), maximum integrated vapor transport (IVT, second column), maximum integrated

water vapor (IWV, third column), and maximum integrated total wind (right column) for a)

ERA5 b) RRM-E3SM (14km) c) RRM-E3SM (7km) and d) RRM-E3SM (3.5km).
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Figure 5. a) Storm total precipitation (31 December 1996 to 4 January 1997) from the

Livneh product. Green dots highlight the locations of the 52 precipitation gauges used by

NOAA to produce the 1997 flood event storm summary (https://www.cnrfc.noaa.gov/

storm summaries/ol.php?storm=jan1997). b) Violin plots of reanalysis and model estimate

storm total precipitation derived from the nearest grid cell to the 52 stations shown in a). The

mean is shown with a white dot, and white lines indicate the 25th, median, and 75th percentiles.

The shape of each violin reflects the probability density function of the data.

–42–
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Figure 6. Sierra-perpendicular and Sierra-parallel cross sections of meridional (v) and zonal

(u) winds at the start of the 1997 flood event AR landfall (1 January 1997) for ERA5 and the

six-forecast ensemble average estimates provided by RRM-E3SM. The longitudinal and latitudi-

nal cross-section transect lines are shown on the right-most column sub-panel figures overlaid on

California. In the case of Sierra-perpendicular (Sierra-parallel), positive values mean that winds

are blowing from South to North (West to East).
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Figure 7. Sierra-parallel and Sierra-perpendicular vertical profiles of zonal (u) and meridional

(v) wind speeds at the latitudinal location of the jet maxima with altitude for ERA5 and the

six-forecast ensemble average RRM-E3SM simulations. a) shows the latitudinal and longitudinal

transects and positive wind direction from the Sierra perspective. b-e) shows the vertical wind

profiles at the intersection of the transects for the duration of the 1997 flood (31 December 1996

through 3 January 1997).
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Figure 8. Return periods of the 4-day precipitation totals (Rx4day; 31 December 1996

through 3 January 1997) estimated using a non-stationary GEV framework on the Livneh prod-

uct. To estimate the return period, the annual maxima of the Rx4day are interpolated to the

precipitation gauge locations using first-order conservative remapping. The five stations shown

(out of 52 total) are selected to indicate the minimum, 25th, 50th, 75th, and maximum Rx4day

across the gauge locations. The left (right) y-axis provides Rx4day in English (metric) units. The

horizontal and vertical dashed lines show the Rx4day and the corresponding return period in the

Livneh product, as do the annotations in the bottom right. The x-axis (return period) is plotted

on the log scale.
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Figure 9. a) Storm duration change in snow water equivalent, dSWE, (31 December 1996

through 4 January 1997) from the Margulis product. Black dots highlight the locations of the 50

SNOTEL stations within the vicinity of the 1997 flood. b) Violin plots of reanalysis and model

estimate storm duration dSWE derived from the nearest grid cell to the 50 stations shown in

a). The mean is shown with a white dot, and white lines indicate the 25th, median, and 75th

percentiles. The shape of each violin reflects the probability density function of the data.
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Figure 10. Forecast ensemble average precipitation characteristics, including storm total

precipitation, snowfall partition, precipitation efficiency, and runoff efficiency for a) RRM-E3SM

(14km) b) RRM-E3SM (7km) and c) RRM-E3SM (3.5km) over the overlapping forecast period of

31 December 1996 to 4 January 1997.
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Figure 11. Forecast ensemble average reservoir inflow rates from each of the RRM-E3SM sim-

ulations across eight major reservoirs in California. The top figure shows the location of the eight

reservoirs and the areal extent of the watersheds that feed into them (black outlines) overlaid

onto Margulis product estimates of snow water equivalent, SWE, at the start of the 1997 flood.

The black lines in the sub-panel plots represent measured inflows into each reservoir.
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Figure 12. Causal inference estimates for the magnitude of the impact of hydrometeorologi-

cal variables on total runoff (overland flow, interflow, and baseflow). The four variables include

integrated vapor transport (IVT), total precipitation (PRECT), snow water equivalent (SWE),

and 10 cm soil moisture content (SOILWATER). The magnitude of the influence of each variable

on total runoff (overland flow, interflow and baseflow) is represented by an individual component

of a stacked bar chart. Each component has a range between 0 and 1. RRM-E3SM cases (desig-

nated by hatching) are stacked next to each other for each region assessed including California

(Hydrologic Unit Code 18) and the headwater regions of the 10 major reservoirs in California

(ordered by latitude from northernmost to southernmost).
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Figure 13. Taylor diagrams representing all grid cells within the hydrologic unit code (HUC-

2) California Region, region 18 in Seaber et al. (1987), for the forecast period of 31 December

1996 up to 4 January 1997. a) Storm duration maximum integrated water vapor (IWV) com-

pared to ERA5; b) storm total precipitation compared to the Livneh product; and c) storm

duration change in snow water equivalent, dSWE, compared to the Margulis product. Each tri-

angle represents one of the six RRM-E3SM forecasts initialized from 28 December 1996 at 00Z

to 30 December 1996 at 12Z. Bold triangles represent the forecast ensemble average. Upward

(downward) triangle orientation represents a positive (negative) bias compared to each reference

dataset. Black radial lines provide general guidance for groupings of Pearson pattern correlation.

The black and gray dashed azimuthal lines centered around REF indicate the root mean squared

error and standard deviations from the reference dataset.
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Figure 14. Same as Figures 5 and 9, but the violin plots now compare the initialization

dates for each of the six RRM-E3SM (3.5km) forecasts. Panels a) and b) show storm total pre-

cipitation and panels c) and d) storm duration change in snow water equivalent (dSWE). The

six-forecast ensemble average (ensavg) is also shown in black.
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Figure 15. Time series for precipitation, snow water equivalent, and runoff simulated by

RRM-E3SM (3.5km) across forecast lead time evaluated at station locations and in regions iden-

tified in the upper left maps. The left-column sub-panel plots represent cumulative totals and the

right-column sub-panel plots represent hourly rates. Black lines represent station observations.

Vertical gray lines indicate the period during which the 1997 flood occurred.
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Key Points:19

• Energy Exascale Earth System Model forecasts at 3.5km grid spacing skillfully recre-20

ate the hydrometeorology of California’s 1997 flood21

• Horizontal resolution alters the representation of key flood drivers such as the Sierra22

barrier jet, precipitation extremes, and snowmelt23

• Forecast lead time 2-to-4 days prior to the onset of the 1997 flood minimally in-24

fluences forecast precipitation and snowmelt skill25
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Abstract26

The 1997 New Year’s flood event was the most costly in California’s history. This27

compound extreme event was driven by a category 5 atmospheric river that led to widespread28

snowmelt. Extreme precipitation, snowmelt, and saturated soils produced heavy runoff29

causing widespread inundation in the Sacramento Valley. This study recreates the 199730

flood using the Regionally Refined Mesh capabilities of the Energy Exascale Earth Sys-31

tem Model (RRM-E3SM) under prescribed ocean conditions. Understanding the pro-32

cesses causing extreme events inform practical efforts to anticipate and prepare for such33

events in the future, and also provides a rich context to evaluate model skill in repre-34

senting extremes. Three California-focused RRM grids, with horizontal resolution refine-35

ment of 14km down to 3.5km, and six forecast lead times, 28 December 1996 at 00Z through36

30 December 1996 at 12Z, are assessed for their ability to recreate the 1997 flood. Plan-37

etary to synoptic scale atmospheric circulations and integrated vapor transport are weakly38

influenced by horizontal resolution refinement over California. Topography and mesoscale39

circulations, such as the Sierra barrier jet, are prominently influenced by horizontal res-40

olution. The finest resolution RRM-E3SM simulation best represents storm total pre-41

cipitation and storm duration snowpack changes. Traditional time-series and causal anal-42

ysis frameworks are used to examine runoff sensitivities state-wide and above major reser-43

voirs. These frameworks show that horizontal resolution plays a more prominent role in44

shaping reservoir inflows, namely the magnitude and time-series shape, than forecast lead45

time, 2-to-4 days prior to the 1997 flood onset.46

Plain Language Summary47

The 1997 California New Year’s flood event caused over a billion dollars in dam-48

ages. This storm became a central part in guiding efforts to reduce flood risks. Earth49

system models are increasingly asked to recreate extreme weather events. However, the50

ability of Earth system models to recreate such events requires rigorous testing. Test-51

ing ensures that models provide value in anticipating and planning for future flood events.52

This is particularly important given the changing climate. We evaluated the Department53

of Energy’s flagship Earth system model, the Energy Exascale Earth System Model, in54

its ability to recreate the weather and flood characteristics of the 1997 flood. The model55

resolution, important for resolving mountain terrain and storm interactions, and fore-56

cast lead time, important for storm progression accuracy, are assessed. The multi-forecast57
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average from the highest-resolution model best recreates the observed precipitation, snow-58

pack changes, and flood characteristics. Our findings provide confidence that the high-59

est resolution model could be used to study how a 1997-like flood event would be altered60

in a warmer world.61

Introduction62

California is especially susceptible to major cool season flood events (Kattelmann,63

1997). Atmospheric rivers (ARs) are largely responsible, accounting for 84% of flood dam-64

ages in the western United States (Corringham et al., 2019). The most notable Califor-65

nia flood event, measured by its intensity, duration, and inundation area, occurred in 1861/186266

(Porter et al., 2011; Huang & Swain, 2022). It was thought to be AR-driven and inun-67

dated portions of both the Sacramento and San Joaquin valleys and portions of the present-68

day metropolitan area of Los Angeles. Because of its impact, this event has emerged as69

an important “design storm” for California water managers and led to the development70

of the colloquially termed “ARkStorm”, which combines aspects of AR-induced flood71

events that occurred in 1969 and 1986. The 1861/1862 flood event happened during a72

time in California’s history when the population density and built infrastructure was at73

a much smaller scale than today. Since the 1860s, urbanization has resulted in the loss74

of floodplains in many communities that are vulnerable to flooding despite significant75

investments in constructing flood control infrastructure (Whipple et al., 2017; Whipple76

& Viers, 2019). In many low-lying regions throughout the Central Valley, aging levee sys-77

tems and subsidence continue to expose populations and industries to flood impacts (Hanak78

& Lund, 2012). Sequences of heavy precipitation-producing storms, many of which were79

ARs, during the winters of 2017 and 2023 highlight the present susceptibility of Califor-80

nia to major riverine flooding. Climate change may further exacerbate impacts felt by81

these storms (Gershunov et al., 2019; Rhoades et al., 2021; Corringham et al., 2022; Huang82

& Swain, 2022), particularly in the most underserved communities (Wing et al., 2022),83

highlighting the need for detailed analyses aimed at understanding how these storms drive84

compound extremes under historical and future climate conditions.85

The most costly flood event ($1.6 billion) in California history was the New Year’s86

flood event of 1997, hereafter “1997 flood” (Lott et al., 1997). Major flood losses occurred87

throughout the western United States, including losses of $500 million in Nevada and88

$125 million in Washington. The combination of flood area and severity across the west-89
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ern United States ranks the 1997 flood as the #2 superflood between 1950 and 2010 (Tarouilly90

et al., 2021). At least half a million people were displaced by the flooding and the ma-91

jority of California counties (43/58) were declared disaster zones (Lott et al., 1997).92

The 1997 flood was primarily made up of three storms that occurred between 2593

December 1996 and 2 January 1997 with inundation afterward (Galewsky & Sobel, 2005).94

Antecedent conditions played an important role in driving up the economic cost of this95

event; earlier storms throughout late November and December of 1996 built an abun-96

dant snowpack and elevated soil moisture content throughout the Central Valley and the97

Sierra Nevada (Figure 1). Between 30 December 1996 and 3 January 1997 storms pro-98

duced more than 750 mm of precipitation in certain regions of northern California (e.g.,99

840 mm, or 33 in, at Bucks Lake in Plumas County, California; (Figure 1; https://www100

.cnrfc.noaa.gov/storm summaries/ol.php?storm=jan1997). Heavy rainfall with snow101

above 3,000 m elevation commenced on 30 December 1996; the Central Sierra Snow Lab102

(CSSL; located at 2,100 m) reported 137 mm of rainfall on 30-31 December 1996 (Osterhuber103

& Schwartz, 2021). On New Year’s Day of 1997, an extreme AR event made landfall (Fig-104

ure 1). Maximum temperatures at 2,100 m elevation hit 7◦C and reached 3◦C at 2,900105

m on 1 January 1997 when 120 mm of rain fell at the CSSL (Osterhuber & Schwartz,106

2021; Heggli et al., 2022). Prior to the onset of rainfall on 29 December 1996, snow den-107

sities were ready to produce terrestrial water input (32%), rising to 35% on 30 Decem-108

ber 1996 (Heggli et al., 2022). The CSSL lost 100 mm of snow water equivalent (SWE)109

between 30 December 1996 and 1 January 1997 ultimately contributing to the develop-110

ment of a warm-snow drought water year (Hatchett & McEvoy, 2018). When combined111

with saturated soils and sufficiently ripe snowpack to melt and convey water to the land112

surface, the extreme multi-day precipitation caused major rivers to reach flood stage, with113

several setting all-time peak flows (Figure 1; https://www.cnrfc.noaa.gov/storm summaries/114

ol.php?storm=jan1997). As a result of the December-January storms, this two-month115

period set the record for the wettest since records began in 1920, measured via Califor-116

nia’s 8-station index, with a total of ∼1,200 mm of precipitation. However, despite the117

wet start, the remainder of the water year was drier than normal leading to below-normal118

snowpack and reservoir levels at the end of the required flood pool period in April. The119

1997 flood event thus represents an object lesson both for the study of extreme precip-120

itation and runoff but also for reservoir and flood management in a highly variable cli-121

mate.122
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A growing area of climate research is focused on understanding cascading, compound,123

and/or sequential hydrometeorological extreme events (Fish et al., 2019; AghaKouchak124

et al., 2020; Raymond et al., 2020). Simultaneously, the climate research community has125

sought to provide more credible and salient decision-relevant information to practition-126

ers and management communities through iterative, co-produced research (Lemos et al.,127

2018; Jagannathan et al., 2021; Siirila-Woodburn et al., 2021). Examining historically128

significant, decision-relevant extreme events, through high-resolution climate model “sto-129

ryline” recreations can be both be useful for water resource managers (Shepherd, 2019;130

Gutowski et al., 2020; Bukovsky et al., 2023) and have also been frequently used in event131

attribution studies (Wehner et al., 2019). Storylines are physically based model recre-132

ations of impactful weather events, often chosen through iterative discussions between133

scientists and stakeholders, that are then simulated under plausible past and future cli-134

mate scenarios. However, it is important to note that while such studies can provide in-135

formation on the local dynamic and thermodynamic effects of climate change on extreme136

events, they do not provide information about the influence of large-scale circulation changes137

on the return probability of such events.138

Storyline event recreations also have practical model development implications. Cli-139

mate models are mostly optimized around mean state performance for different hydrom-140

eteorological performance metrics (Fasullo, 2020), rather than extremes. This is espe-141

cially true from the perspective of land-atmosphere interactions that drive compound142

extremes (La Follette et al., 2021). Storyline approaches can also help to convey infor-143

mation on model uncertainty, namely the role of structural and scenario uncertainty (Lehner144

et al., 2020), in a more understandable and decision-relevant way. Therefore, the recre-145

ation of the 1997 flood is a useful exercise in understanding the nature of extreme events146

and determining whether our cutting-edge modeling approaches are fit for purpose in147

simulating them. An additional benefit of storyline approaches is that the climate mod-148

els used and the resultant climate research conducted becomes tailored toward greater149

practitioner relevance over time (Lemos et al., 2012).150

In this study, we recreate the 1997 flood using the U.S. Department of Energy’s151

flagship climate model, the Energy Exascale Earth System Model, and its regionally re-152

fined mesh capabilities (RRM-E3SM). We chose the 1997 flood because it is the flood153

of record most recently experienced by current water managers, was relatively well-monitored154

by a network of meteorological and hydrologic measurements, and occurred during a pe-155
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riod in which atmospheric reanalysis products have higher skill (Uppala et al., 2005; Hers-156

bach et al., 2020). This event also allows us to assess the relative contributions of E3SM157

horizontal resolution and forecast initialization time in shaping the fidelity of the flood158

event recreation. We pay particular attention to the interactions across the submodels159

of E3SM (e.g., atmospheric and land-surface) and their representation of key hydrom-160

eteorological variables before/during/after the event. This is the first time RRM-E3SM161

has been systematically used, across resolution and forecast lead time, to generate a sto-162

ryline recreation of a western United States hydrometeorological extreme. Our scientific163

questions include:164

(1) To what degree does horizontal model resolution influence land-atmosphere inter-165

actions and hydrometeorological impacts associated with the 1997 flood?166

(2) What is the forecast lead time that best balances the short-term antecedent pre-167

conditioning of soils and snowpack and post-storm impacts when recreating the168

1997 flood?169

(3) Is RRM-E3SM fit-for-purpose in representing a compound extreme event such as170

the 1997 flood?171

The manuscript is organized as follows. We first highlight details about our RRM-172

E3SM experimental setup. We then discuss the various in-situ, reanalysis, regional cli-173

mate model, and gridded climate products used to assess and juxtapose RRM-E3SM skill174

in recreating the 1997 flood. We then discuss our results and how they fit within the broader175

literature. Finally, we summarize our major findings and provide suggestions for future176

research.177

Methods178

Energy Exascale Earth System Model (E3SM) version 2179

The Energy Exascale Earth System Model version 2 (E3SMv2; Golaz et al., 2022)180

used for this analysis allows for regionally refined mesh (RRM-E3SM) simulations over181

a targeted region of interest. Recent studies find that RRM-E3SM performs compara-182

bly to uniform 0.25◦ (∼25km) horizontal resolution simulations for water cycle-related183

processes and provides several improvements to uniform 1.00◦ (∼111km) horizontal res-184

olution simulations (Tang et al., 2019, 2022). These improvements are particularly im-185

portant in regions of complex terrain such as the California Sierra Nevada. A detailed186
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description of E3SMv2’s atmospheric dynamical core, physics and dynamics, horizon-187

tal grids, vertical discretization, radiation, tracer transport schemes, and subgrid-scale188

parameterization choices (e.g., cloud microphysics scheme) can be found in Golaz et al.189

(2022). More specific findings related to RRM-E3SM are described in Tang et al. (2022),190

while Harrop et al. (2022) provides additional details on water cycle process fidelity in191

both the atmosphere and land-surface in E3SM at uniform horizontal resolutions of 1.00◦192

versus 0.25◦ over the United States.193

The RRM-E3SM meshes were produced using TempestRemap (Ullrich & Taylor,194

2015; Ullrich et al., 2016); the topography was generated with the NCAR Topo tool (Lauritzen195

et al., 2015) and smoothed for model stability purposes using the framework discussed196

in Zarzycki et al. (2015) and a coefficient of 3e−16 (c in Equation 1 of Zarzycki et al.,197

2015). The refinement regions and topographic representation in the simulations over198

California for the three RRM-E3SM cases are shown in Figure 2. Hereafter, RRM-E3SM199

simulations with a maximum refinement resolution over California at 14km, 7km, and200

3.5km will be referred to as, RRM-E3SM (14km), RRM-E3SM (7km), and RRM-E3SM201

(3.5km), respectively. In all simulations, the E3SM default setting of 72 vertical levels202

is used. As found in other variable-resolution and regionally refined mesh Earth system203

model analyses over the last decade, horizontal resolution influences the simulation fi-204

delity of synoptic-to-mesoscale trajectory of storm tracks and eddies (Rauscher et al.,205

2013; Rauscher & Ringler, 2014; Sakaguchi et al., 2016; Liu et al., 2023). Resolution also206

influences the representation of topography, which in turn affects how coastal landfalling207

storms are orographically uplifted, the rain-snow partitioning of the storm’s precipita-208

tion, and the build-up and evolution of mountain snowpack throughout the cool-season209

(Rhoades et al., 2016; Huang et al., 2016; Wu et al., 2017; Rhoades, Ullrich, & Zarzy-210

cki, 2018; Rhoades, Ullrich, Zarzycki, Johansen, et al., 2018; Xu et al., 2018; Rhoades,211

Jones, O’Brien, et al., 2020; Rhoades, Jones, Srivastava, et al., 2020; Bambach et al., 2021;212

Xu et al., 2021; Maina et al., 2022). Similarly, land-surface cover and soil heterogene-213

ity increase at finer resolutions, which can alter the surface-through-subsurface water and214

energy balance interactions of the hydrologic cycle (e.g., soil moisture).215

Betacast216

The 1997 flood event forecast ensemble was produced for six different 8-day peri-217

ods starting on 28 December 1996 at 00Z through 30 December 1996 at 12Z, initialized218
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at 12-hour increments between those dates, using the “Betacast” framework described219

in Zarzycki et al. (2014) and the Atmosphere Model Intercomparison Project (AMIP)220

protocols (Gates et al., 1999). The land surface conditions are spun-up for five years prior221

to the first forecast, with a standalone simulation of the E3SM Land Surface Model (ELM)222

forced by the 6-hourly atmospheric data from the fifth generation of the European Cen-223

tre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5; Copernicus Cli-224

mate Change Service Climate Data Store (CDS), 2017). This ensures that antecedent225

land surface conditions (namely soil moisture content and mountain snowpack) are con-226

sistent with the actual 1997 flood event conditions on the day each RRM-E3SM forecast227

is started. Subsequent forecast cycles use the 12-hour land forecast from the previous228

cycle for initialization. This approach gives nearly identical results to spinning up each229

forecast cycle’s land surface independently (not shown).230

The atmospheric initial state is generated using high-order remap algorithms to take231

data from the ERA5 reanalyses and map them onto the corresponding RRM-E3SM grid.232

The pressure field is adjusted based on the technique in Trenberth et al. (1993) to ac-233

count for differences in ERA5 and RRM-E3SM orography that may result in geostrophic234

imbalances. Observed ocean surface conditions (i.e., sea surface temperatures and sea235

ice extent) are also prescribed by interpolating NOAA Optimum Interpolation (OI) data236

(Reynolds et al., 2007) to the model grid. After initialization from ERA5, the RRM-E3SM237

forecasts are “free-running”: the atmosphere and land surface models are fully coupled238

and allowed to freely solve the governing equations that drive these systems.239

All RRM-E3SM simulations utilize the hydrostatic dynamical core in E3SM. No-240

tably, the effective resolution is 4-5x the actual grid spacing (Ullrich, 2014; Klaver et al.,241

2020). Further, it has been shown that non-hydrostatic dynamical cores minimally in-242

fluence midlatitude wintertime precipitation (slight drying) from resolutions of 36-to-4km,243

even in idealized mountain environments (Yang et al., 2017; Liu et al., 2022). With each244

2x refinement in horizontal resolution, the RRM-E3SM dynamics and physics timestep245

and second-order viscosity diffusion strength at the model top were halved. For RRM-246

E3SM (14km), the atmospheric dynamics and physics timesteps and diffusion strength247

were 40 and 600 seconds and 4e−4, for RRM-E3SM (7km) they were 20 and 300 seconds248

and 2e−4, and for RRM-E3SM (3.5km) they were 10 and 150 seconds and 1e−4, respec-249

tively. The only additional differences across cases were the macrophysics-microphysics250

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

subgrid-scale parameterization substeps, set to 6 in RRM-E3SM (14km) and RRM-E3SM251

(7km) and 3 in RRM-E3SM (3.5km).252

Atmospheric River Detection and Categorization253

We used TempestExtremes (TE; namely the SpineARs and StitchBlobs algorithms)254

to detect the primary AR that made landfall during the 1997 flood on 1 January 1997255

(Ullrich & Zarzycki, 2017; Zarzycki & Ullrich, 2017). TE is a “relative threshold” based256

AR detector (ARDT), meaning that it is minimally sensitive to fixed thresholding issues257

(i.e., an AR event only exists beyond ∼250 kg/m/s), which may have important impli-258

cations for assessing future AR characteristic changes (O’Brien et al., 2022). Our param-259

eter settings for TE and the extensions made to TE to estimate AR landfalling charac-260

teristics, such as the AR category scale (Ralph et al., 2019), are important for estimat-261

ing water resource impacts (e.g., AR-induced flood damages in Corringham et al., 2022)262

as discussed in more detail in Rhoades, Jones, O’Brien, et al. (2020), Rhoades, Jones,263

Srivastava, et al. (2020) and Rhoades et al. (2021). Although it is advantageous to use264

several ARDTs for climatology-based analyses of ARs (O’Brien et al., 2022), particu-265

larly when assessing climate change-related impacts, we use only TE because the pri-266

mary AR during the 1997 flood was a category 5 event and recent findings in Zhou et267

al. (2021) have shown that ARDTs largely agree when identifying characteristics of cat-268

egory 4-5 AR events.269

Validation270

To evaluate the hydrometeorological forecast skill of RRM-E3SM in recreating the271

1997 flood, we use a mixture of in-situ observations, reanalysis, gridded climate prod-272

ucts, and more conventional regional climate modeling strategies. We obtained in-situ273

observations from 50 sites in the SNOw TELemetry (SNOTEL) network (https://www274

.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/snowpack/snowpackMaps)275

and 52 precipitation gauge sites from the California Data Exchange Center (CDEC) that276

are used in the National Oceanic and Atmospheric Administration (NOAA) storm sum-277

mary (https://www.cnrfc.noaa.gov/storm summaries/ol.php?storm=jan1997). We278

obtained daily reservoir inflow observations from the US Army Corps of Engineers Wa-279

ter Control Data System (https://www.spk-wc.usace.army.mil/plots/california280
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.html), retrieving inflow information for the 1997 Water Year from the Shasta, Oroville,281

Folsom, New Melones, Pine Flat, Terminus, Success, and Isabella Reservoirs.282

We used reanalysis and gridded climate products to evaluate storm-total precip-283

itation and pre-and post-event changes in snow water equivalent (SWE). Storm-total pre-284

cipitation is evaluated against Pierce et al. (2021) which is an updated version of the Livneh285

product (Livneh et al., 2015), hereafter Livneh, and against the ERA5 reanalysis prod-286

uct, due to its use in providing initial conditions for the RRM-E3SM simulations. Ac-287

cording to Pierce et al. (2021), the updated Livneh product better preserves extreme event288

precipitation totals by more systematically accounting for daily time adjustments in pre-289

cipitation gauge data (i.e., rounding-related issues related to the time of day the station290

observation is taken). We also conducted a preliminary analysis comparing Livneh with291

other widely used gridded climate products, Newman et al. (2015) (Newman) and Daly292

et al. (2008) (Parameter-elevation Regressions on Independent Slopes Model, PRISM)293

as shown in Figure S1. Compared with the 52 precipitation gauge measurements, we found294

that Livneh was either a better estimate (compared with Newman) or was indistinguish-295

able (compared with PRISM) in its representation of the 4-day precipitation totals pro-296

duced during the 1997 flood. In order to estimate the return periods of the 4-day pre-297

cipitation totals during the 1997 flood, we applied a non-stationary generalized extreme298

value (NS-GEV) analysis to the annual maximum of 4-day precipitation totals (Rx4day)299

in the Livneh product interpolated to the 52 gauge locations using the first-order con-300

servative remapping (P. W. Jones, 1999). In the NS-GEV framework, we first apply the301

Mann–Kendall (MK) trend test (Mann, 1945) to the Rx4day data at each gauge loca-302

tion to determine if the data has a significant trend at the 5% level. If the Rx4day data303

at a location has a significant trend, we fit time as a covariate in the location or/and scale304

parameters of the GEV distribution fitted to the Rx4day data at that gauge location.305

The complete procedure is outlined in Srivastava et al. (2021).306

We assess pre- and post-event changes in SWE against the Fang et al. (2022) west-307

ern United States-wide snow reanalysis product (hereafter Margulis due to it being an308

updated version of Margulis et al., 2016). The Margulis reanalysis product has shown309

skill in estimating peak SWE in the California Sierra Nevada when compared with air-310

borne LiDAR SWE measurements (e.g., 1 April mean SWE depth differences of -0.15311

to +0.05 m across 2015-2021), which have essentially become the snow community stan-312

dard for spatially complete estimates of snow depth and SWE in recent years (Painter313
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et al., 2016; Stillinger et al., 2023). We also compare and contrast RRM-E3SM skill with314

a set of simulations produced with a more traditional and widely-used dynamical down-315

scaling approach. These simulations were produced using the Weather Research and Fore-316

casting (WRF) model run at 14km resolution over California that is bounded laterally317

and at the model top with ERA5 (A. D. Jones et al., 2022). All gridded data that is in-318

tercompared has been regridded from its native grid resolution to a regular latitude-longitude319

grid resolution of 14 km using bilinear interpolation provided by the Earth System Mod-320

eling Framework (ESMF) Offline Regridding Weight Generator (The NCAR Command321

Language (Version 6.6.2), 2022).322

Causal Inference323

The complexity of Earth system interactions within the RRM-E3SM simulations324

and the large number of grid cells within the spatial domain of analysis makes it diffi-325

cult to unambiguously disentangle the impact of resolution and forecast lead time on pro-326

cesses and interactions between hydrometeorological variables. Thus, in the present study,327

we use causal inference to gain insights into the interactions between atmospheric and328

land-surface variables on one hand, and total runoff on the other. To the best of our knowl-329

edge, this is the first application of this framework for this style of problem. Causal in-330

ference allows us to move beyond canonical correlation analysis while reducing the di-331

mensionality of analysis to investigate interactions in the model. The goal of causal in-332

ference methods is to determine causal relationships between hydrometeorological vari-333

ables by using concepts of statistical conditional independence on time series data. These334

methods are gaining popularity in the Earth and environmental sciences community (Sugihara335

et al., 2012; Runge et al., 2019; Ombadi et al., 2020; Runge, 2023) and offer a unique per-336

spective to evaluate relationships.337

We use the Peter-Clark (PC) algorithm (Spirtes & Glymour, 1991), a causal in-338

ference method that utilizes graph theory and graphical rules to recover causal relations339

from time series data. The PC algorithm starts with a fully connected graph where all340

variables are causally related to each other, then iteratively and systematically removes341

causal relations using conditional independence tests. One of the main advantages of the342

PC algorithm is its ability to reduce the number of variables in the conditioning set, thereby343

mitigating the “curse of dimensionality”. We chose to use the PC algorithm because it344

provides good performance in hydrometeorological systems, especially in controlling the345
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number of falsely detected causal links (Ombadi et al., 2020). For our conditional inde-346

pendence tests, we used information-theoretic conditional independence instead of par-347

tial correlation due to its ability to detect nonlinear relationships (Ombadi et al., 2021).348

Our causal analysis considers contemporaneous causality between the time series of the349

five key hydrometeorological variables evaluated in this study (i.e., integrated vapor trans-350

port [IVT], precipitation, SWE, 10 cm soil moisture content, and total runoff volume)351

for all grid cells within a specific spatial domain (e.g., California-wide or the mountain-352

ous headwaters of a surface reservoir). Causality was assessed at a statistical significance353

level of 0.05.354

Results and Discussion355

Murphy (1993) provides terminology to discuss forecast verification qualities that356

both forecasters and users of forecasts find important. In this study, we will evaluate RRM-357

E3SM’s representation of the California New Year’s flood event of 1997 according to fore-358

cast quality (forecast correspondence to observations) and forecast value (forecast util-359

ity to decision makers). We use the effects of horizontal resolution and forecast lead time360

to assess forecast quality and value via measures of bias (the difference between forecast361

and observation), association (linear correlation between forecast and observation), sharp-362

ness (forecast capability in representing extremes), and through measures of value (e.g.,363

reservoir inflow volumes).364

Resolution influence on atmospheric process representation of the 1997365

flood366

We first compare the influence of regional grid refinement over California by eval-367

uating how the representation of the large-scale atmospheric circulations that shaped the368

landfalling AR on New Year’s Day of 1997 differ according to the resolution of the re-369

gional refinement domain. Figure 3 compares the large-scale IVT fields and circulation370

patterns of ERA5 and the three grid refinement resolutions at the start of the major AR371

landfall on 1 January 1997. The RRM-E3SM values are six-member forecast averages.372

The RRM-E3SM simulations forecast the low-pressure center near the Pacific Northwest373

coastline further southwest than it is in ERA5 on this date (Supplemental Figure S2).374

The simulations generally agree across resolutions on the spatial distribution of AR cat-375

egories from the California Bay Area up through the Sacramento Valley (Figure 4 and376
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Figure S3). Agreement is also found with ERA5 in the northern portions of California,377

particularly with regard to category 5 AR conditions (Figure S4); however, all RRM-E3SM378

simulations systematically produce AR categories that are too high in southern Califor-379

nia. This appears to be due to a disagreement in the AR width and/or the centroid of380

the AR landfall location with ERA5, which occurs further South (as indicated by pos-381

itive IVT anomaly from central to southern California in Figure 3) and due to uniformly382

higher wind speeds (Figure S4). Notably, ERA5 may under-represent AR activity in south-383

ern California compared to other reanalyses (Collow et al., 2022).384

Although IVT is important from a forecasting perspective, particularly since it al-385

lows for longer forecast lead times than precipitation (Lavers et al., 2016), IVT is sim-386

ply one metric indicating the potential for precipitation to occur, and its orientation with387

respect to terrain can suppress or enhance precipitation (Ricciotti & Cordeira, 2022).388

Therefore, we also evaluate how the precipitation potential across RRM-E3SM simula-389

tions is realized in the 1997 flood, particularly its association and sharpness. The fore-390

cast ensemble average storm total precipitation amounts are shown in Figure 5. This fig-391

ure compares simulated precipitation values with reanalysis and gridded climate prod-392

ucts as well as a conventionally used regional climate model (WRF, forced by ERA5)393

at the grid cells nearest to the 52 precipitation gauges used in NOAA’s storm summary394

of the 1997 flood. Refinement from 14km to 3.5km in RRM-E3SM has an appreciable395

effect on the statistical distribution of storm total precipitation, including the mean, me-396

dian, and maximum. RRM-E3SM (3.5km) matches the distribution of storm total pre-397

cipitation at the 52 precipitation gauge sites better than other datasets, including the398

Livneh product. RRM-E3SM (3.5km) agreement (r=0.73) in storm total precipitation399

holds across individual precipitation gauge sites as well (Figure S5), particularly precip-400

itation gauges in the northern Sierra Nevada, which have the highest precipitation to-401

tals (e.g., Buck’s Lake and La Porte). Note that the WRF simulations were conducted402

at 14km resolution and do not represent an even comparison with RRM-E3SM (7km)403

or RRM-E3SM (3.5km). The superior skill of models, relative to statistical interpola-404

tion and extrapolation techniques utilized in gridded climate products, in representing405

mountain precipitation processes have been noted before (J. Lundquist et al., 2019).406

In contrast to landfalling AR characteristics, we found storm total precipitation407

to be resolution-dependent. We hypothesize that this is likely a result of more realistic408

topographic representations of California’s Coast Ranges and Sierra Nevada. In addi-409
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tion, we hypothesize that important mesoscale circulation features known to influence410

the spatiotemporal characteristics of precipitation in northern California are better re-411

solved. One such feature is the Sierra Barrier Jet (SBJ), a classic terrain-parallel low-412

level jet. The SBJ results from the blocking, slowing, and subsequent counter-clockwise413

turning of low-level winds as they interact with the Sierra Nevada in a stable or moist-414

neutral environment. The SBJ has a typical core of peak winds at ∼500m to 1km (∼950-415

900 hPa) above the Central Valley with wind speeds ≥15 m/s (Neiman et al., 2010, 2013).416

The location and strength of the SBJ play an important role in driving California’s pre-417

cipitation maxima during AR events (Neiman et al., 2013). This precipitation maximum418

usually occurs northwest and upstream of the Sierra Nevada crest, typically around the419

Buck’s Lake precipitation gauge (39.85◦N, 121.24◦W) in the headwaters of the Oroville420

Dam. To examine RRM-E3SM skill in representing the SBJ, we compare winds using421

analogous cross-sections and transect lines outlined in Hughes et al. (2012) that dissect422

the typical locations of the SBJ in California.423

Figure 6 shows cross-sections of zonal and meridional winds for ERA5 and the RRM-424

E3SM simulations at the start of the AR landfall on 1 January 1997. Similarly to pre-425

vious findings, wind speeds are generally stronger in RRM-E3SM cases compared with426

ERA5. However, the altitude, latitudinal, and longitudinal locations of the wind speed427

maximum do generally agree with ERA5. RRM-E3SM simulates the SBJ and locates428

its core between 950-900 hPa at around 40◦N, 122◦W. Resolution plays an important429

role in better resolving the location of the wind speed maximum both with altitude and430

latitudinally. Similarly, RRM-E3SM (3.5km) shows higher wind speeds from 1000-900431

hPa and more orographic uplift potential along the windward sides of both the Coast432

Ranges and the Sierra Nevada. This favors more orographic precipitation, as is shown433

in Figure 5.434

To assess RRM-E3SM skill in representing the entire lifecycle of the SBJ, we now435

show vertical profiles of both meridional and zonal winds, from both a Sierra-parallel and436

Sierra-perpendicular perspective, compared with ERA5 (Figure 7). Prior to the onset437

of the flood event, on 31 December 1996, the RRM-E3SM simulations show the jet be-438

ginning to form at the right altitude relative to ERA5, but slightly stronger. On the first439

day of the flood event (1 January 1997), RRM-E3SM (3.5km) best represents the alti-440

tude location (∼950-1000 hPa) and strength (20-25 m/s) of the SBJ. The jet altitude441

and latitudinal location and strength match with the findings of Neiman et al. (2013)442
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for other couplets of AR-SBJ events identified using a combination of in-situ measure-443

ments including vertical wind profilers and reanalysis products. The RRM-E3SM results444

also corroborate the conclusion made by Hughes et al. (2012) that approximately a six-445

kilometer horizontal resolution is needed to properly represent the SBJ in model sim-446

ulations. However, regardless of RRM-E3SM resolution, the SBJ becomes both weaker447

and/or lower in altitude relative to ERA5 on 3-4 January 1997.448

Resolution influence on land-surface process representation of the 1997449

flood450

Although the 1997 flood was one of the most costly and damaging floods in north-451

ern California history, a non-stationary return period analysis of the Livneh product at452

the 52 gauge sites indicates that it was, at most, a 1-in-20-year event at a few gauge lo-453

cations, based on 4-day precipitation total estimates over the 105-year record covering454

1915-2019 (Figure 8). At 50% of gauge locations, the return period of the event was less455

than 6 years. This implies that the flooding was notable due to it being a compound ex-456

treme shaped by not only the precipitation provided by the sequence of storms, culmi-457

nating in a category 5 AR landfall on 1 January 1997 but also antecedent land surface458

conditions that were primed for snowmelt and runoff generation. The importance of an-459

tecedent conditions and land surface feedbacks was shown by Ivancic and Shaw (2015)460

where only 36% of the 99th percentile discharge events occurred due to a 99th percentile461

precipitation event when evaluated CONUS-wide between 1950-2000.462

To evaluate the role that antecedent and land surface conditions played in shap-463

ing the flood event, we now assess the change in snow water equivalent, or dSWE, for464

the category 5 AR storm duration (Figure 9). Analogously to the storm total precipi-465

tation analysis, we show storm duration dSWE across 50 SNOTEL sites throughout north-466

ern California, southern Oregon, and Nevada compared to the Margulis product. Model467

resolution also plays an important role in the distributions of both positive and nega-468

tive dSWE in the California Sierra Nevada. This is likely due to the influence of topo-469

graphic resolution on the simulated freezing level and the rain-snow partitioning of the470

AR event, which in turn influences the land surface representation of the accumulation471

and ablation of the mountain snowpack at mid-to-high elevations. The 50 SNOTEL sites472

indicate that more negative dSWE occurred over the duration of the 1997 flood (-152473

mm / -6 in). However, at higher elevations, positive dSWE also occurred (+102 mm /474
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+4 in). In comparison, the Margulis product indicates that more positive dSWE occurred475

(up to +254 mm, or +10 inches, in certain locations). Although a general negative dSWE476

skew in the statistical distribution is shown for RRM-E3SM, with every 2x refinement477

in resolution over California the simulations more closely approximate the statistical dis-478

tribution from the 50 SNOTEL location observations.479

Figure 10 shows the effects of resolution on the spatial representation of precipi-480

tation and runoff characteristics. The differences across each RRM-E3SM case are ex-481

plicitly shown in Figure S6. Storm total precipitation is enhanced at finer horizontal res-482

olutions, particularly along the Coast Range and crest of the Sierra Nevada, upwards of483

250 mm in RRM-E3SM (3.5km) relative to RRM-E3SM (14km). However, a general dry484

(wet) bias across RRM-E3SM simulations is seen in northwestern California’s Klamath485

Mountains (Sierra Nevada) when compared with the Livneh product (Figure S7). No-486

tably, the Livneh product had a general dry bias compared with precipitation gauge mea-487

surements (Figure 5 and S5). This indicates that Sierra Nevada crest precipitation over-488

estimates in RRM-E3SM may not be as severe as is shown in Figure S7, corroborates489

the findings of J. Lundquist et al. (2019), and would support the claims made about the490

underrepresentation of gridded climate products’ AR-related precipitation in J. D. Lundquist491

et al. (2015).492

Model resolution also plays a key role in shaping both the rain-snow partitioning493

of precipitation and the efficiency at which water vapor becomes precipitation (Figure494

10 and S6). Snowfall is enhanced by upwards of 20% in high-elevation regions of the Cal-495

ifornia Sierra Nevada, particularly in the headwaters of the American River through the496

Kern River watersheds. Similarly, the precipitation efficiency (the amount of precipita-497

tion per unit of integrated water vapor) is enhanced by upwards of 20% throughout the498

Klamath Mountains, Coastal Ranges, and the Sierra Nevada in RRM-E3SM (3.5km).499

The combination of enhanced and more efficient precipitation and alterations to rain-500

snow partitioning changes the signature of runoff efficiency (the total runoff amount per501

total precipitation amount). Runoff efficiency is generally enhanced by upwards of 60%502

at low- to mid-elevations in northern California in RRM-E3SM (3.5km) compared to RRM-503

E3SM (14km), whereas in the high-elevation southern Sierra Nevada, a decrease is sim-504

ulated. The enhanced runoff efficiency in RRM-E3SM (3.5km) is likely associated with505

more precipitation that is falling on wetter soils and, importantly, more snowmelt (as506

seen with more grid cells with runoff efficiencies at or exceeding 1). Conversely, runoff507
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efficiencies decline in RRM-E3SM (3.5km) where snowfall is enhanced, which agrees with508

SNOTEL sites that indicate that positive dSWE changes occurred during the 1997 flood509

(Figure 9).510

Even without a calibrated hydrologic model, comparing simulated inflow to observed511

inflow provides context for how well the model captures the key hydrologic-focused land-512

atmosphere interactions. This is because, in order to properly estimate reservoir inflows513

in the context of the 1997 flood, it is necessary that the model properly forecast the AR514

translational speed, plume intensity, and landfall location; the antecedent land surface515

conditions (e.g., snowpack and soil moisture); and the land-atmosphere interactions dur-516

ing and after the storm. Furthermore, model evaluation should also be done in decision-517

relevant regions (e.g., watersheds) instead of arbitrary latitude-longitude boxes. There-518

fore, to evaluate the value of the RRM-E3SM forecasts, we investigate reservoir inflows519

from the headwaters of eight major reservoirs, which represent a third (13.3 million-acre520

feet) of California’s surface reservoir storage (Figure 11). Reservoir inflows are computed521

as basin averages of total runoff provided by the land-surface model in RRM-E3SM. In522

the headwaters of the two largest reservoirs (Lakes Shasta and Oroville), all simulations523

overestimate inflows, and resolution systematically increases the volume of water flow-524

ing through the system. This may be due to several factors, including a lack of param-525

eter calibration in the land surface model (e.g., soil characteristics) and/or antecedent526

soil moisture being too high. Unfortunately, we could not find estimates of soil moisture527

content, from either in-situ or remote sensing sources, and were unable to evaluate soil528

moisture as we did precipitation and snowpack. We were also unable to find piezome-529

ter data recording groundwater height changes.530

Although the magnitude of reservoir inflows is biased even in RRM-E3SM (3.5km),531

the shape of the reservoir inflow time series improves at finer resolutions in both Shasta532

and Oroville, with a more distinct peak inflow on 1 January 1997. This resolution de-533

pendence also holds for two other key northern California reservoirs (e.g., Folsom and534

New Melones). Unlike the results for Shasta and Oroville, the antecedent conditions (i.e.,535

reservoir inflows at the beginning of 30 December 1996) in Folsom and New Melones Reser-536

voirs seem to play a lesser role in model performance, with model drift in reservoir in-537

flow estimates starting to occur one to two days after the forecasts have begun. Mov-538

ing further south along the western slopes of the Sierra Nevada to Pine Flat and Ter-539

minus, RRM-E3SM (3.5km) matches reservoir inflows remarkably well, regardless of an-540
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tecedent condition issues. Finally, RRM-E3SM simulations in the headwaters of Success541

and Isabella reservoirs match neither the amplitude nor shape of reservoir inflows, par-542

ticularly Isabella. The lack of match between simulated and observed inflows is likely543

influenced by infrastructure and/or management decisions made above the reservoirs in544

these headwater regions, especially since RRM-E3SM simulations do not account for these545

factors.546

To better contextualize RRM-E3SM runoff forecasts across resolution, we employ547

the PC causal inference algorithm with conditional mutual information test (Spirtes &548

Glymour, 1991; Ombadi et al., 2020). The influential strength of four hydrometeorolog-549

ical variables (i.e., IVT, precipitation, SWE, and 10 cm soil moisture content) on total550

runoff (overland flow, interflow, and baseflow) across California and within its 10 ma-551

jor reservoir headwater regions is shown in Figure 12 and Figure S8. The higher the stacked552

bar, the more variance is explained in total runoff. Each of the four hydrometeorolog-553

ical variables contributes a value ranging between zero and one, with a maximum pos-554

sible total of four across variables. Across California, our causal analysis framework agrees555

with our prior suggestions that resolution plays an important role in amplifying the strength556

that both soil moisture content and SWE play in total runoff magnitude. With that said,557

atmospheric conditions (IVT and precipitation) heavily influence the total runoff signal558

across California comprising 84-94% of the total variance explained by the four chosen559

hydrometeorological variables (Figure S9). However, this causal relationship does change560

considerably from one reservoir headwater region to another (particularly in the central561

to southern Sierra Nevada).562

Through this causal inference framework, we can also see that in certain reservoir563

headwater regions, resolution plays a systematic role in either adding more interactions564

between total runoff (more components contributing to each stacked bar) and all of the565

hydrometeorological variables (e.g., New Melones) or simplifying interactions to a sin-566

gle (e.g., Oroville) or fewer hydrometeorological variable(s) (e.g., Shasta). In other head-567

water regions, there is an insensitivity to resolution (e.g., Don Pedro and Isabella). In568

New Melones Lake, where runoff interaction diversity increases the most, IVT and SWE569

play no role in shaping runoff in RRM-E3SM (14km) and RRM-E3SM (7km), with a nearly570

a 50/50 split between precipitation and soil moisture, whereas RRM-E3SM (3.5km) shows571

a more equal interaction between all four hydrometeorological variables and runoff. Con-572

versely, in Lakes Shasta and Oroville, three hydrometeorological variables play a key role573
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in runoff forecasts in RRM-E3SM (14km) and RRM-E3SM (7km), yet precipitation be-574

comes the dominant variable of influence in RRM-E3SM (3.5km), 91% and 100%, respec-575

tively (Figure S9). Finally, both Lake Don Pedro and Isabella Lake have an insensitiv-576

ity to resolution where precipitation and soil moisture content play comparable roles in577

shaping total runoff across RRM-E3SM simulations.578

Forecast lead time influence on atmospheric and land-surface process rep-579

resentation of the 1997 flood580

To summarize the resolution dependence of RRM-E3SM simulations found thus581

far, we use Taylor diagrams (Figure 13) to show that although large-scale meteorology582

is relatively insensitive to finer horizontal resolutions (14km to 3.5km), even for land-583

falling AR characteristics (Figure 4), storm characteristics (e.g., storm total precipita-584

tion) and land-atmosphere interactions (e.g., storm duration dSWE) are sensitive to res-585

olution. Dispersion in model results associated with forecast lead time is also shown. This586

will be the focus for the rest of our analysis, but to decrease the dimensionality of our587

analysis we focus on the best-performing simulation, RRM-E3SM (3.5km).588

In RRM-E3SM (3.5km) both storm total precipitation and storm duration dSWE589

are weakly and not systematically sensitive to forecast lead time (Figure 14). The high-590

est storm total precipitation and positive storm duration dSWE occurred in the forecast591

that was initialized on 1996-12-29 at 00Z. This finding is counter to our original hypoth-592

esis that forecast skill should increase as forecast lead time gets closer to 31 December593

1996. This assumption was made because the 30 December 1996 at 12Z forecast has the594

least amount of time to drift from the conditions provided by ERA5 which could influ-595

ence, for example, the AR intensity, landfall location, and translational speed.596

Although forecast lead time does not appear to have a significant influence on storm597

total precipitation and storm duration dSWE over the period of 31 December 1996 to598

4 January 1997, these metrics may mask temporal dependencies. To determine whether599

there are important diurnal and/or day-to-day differences across forecast lead times, Fig-600

ure 15 shows both 6-hourly rates and cumulative 6-hourly totals for precipitation, dSWE,601

and runoff. The cumulative total precipitation estimated at the 52 precipitation gauge602

stations is well bracketed by the six RRM-E3SM (3.5km) forecasts. Hourly rates in pre-603

cipitation show that precipitation diverges most across the six forecasts on 3 January604
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1997 (or four to six days post initialization of the forecast). From the perspective of dSWE,605

evaluated across the 50 SNOTEL sites, the six forecasts generally have similar tenden-606

cies throughout the flood period, but also disagree most on 3-4 January 1997. Negative607

dSWE values, an indication of the magnitude of snow ablation caused by the AR, were608

highest on 3 January 1997 in both observations and forecasts. The forecast spread on609

3 January 1997 was -2 mm/hour to -7 mm/hour, which was generally stronger than was610

observed at SNOTEL sites. Undoubtedly, the spread in precipitation and SWE across611

forecasts from 3-4 January 1997 influenced runoff rates and totals in the reservoir head-612

water regions.613

Finally, we evaluate how RRM-E3SM (3.5km) forecast lead time influences the causal614

strength and relationship between runoff and the four key hydrometeorological variables615

(i.e., IVT, precipitation, SWE, and 10 cm soil moisture content) over the period of 31616

December 1996 to 4 January 1997. Interestingly, California-wide causal strength of the617

hydrometeorological variables on runoff generally is maintained across the six forecast618

lead times. Atmospheric conditions (IVT and precipitation) dominate the runoff signal619

(74-87% range across forecasts for the total variance explained for the four hydromete-620

orological variables chosen). The dominance of atmospheric conditions on runoff across621

forecasts holds in the headwaters of both Lakes Shasta and Oroville. However, akin to622

the resolution-focused results, antecedent conditions and land surface feedbacks play a623

larger role in shaping runoff in the reservoir headwater regions of the central to south-624

ern Sierra Nevada. For example, in the central and southern Sierra Nevada (New Mel-625

ones Lake, Lake Don Pedro, and Isabella Lake) the role of antecedent and land surface626

conditions represents 46-51%, 40-51%, and 30-51%, respectively, on the causal relation-627

ship with runoff. Again, these percentages represent the range across forecasts for the628

total variance explained for just the four hydrometeorological variables chosen. The com-629

parative randomness of forecast lead time relative to resolution on the causal strength630

and relationship of hydrometeorological variables on total runoff is likely due to the dif-631

ficulty of exactly recreating the category 5 AR event life cycle. ARs have complex spa-632

tiotemporal structures that are hard to predict at watershed scales, particularly the AR633

landfall location latitude; the sweeping comma-shaped nature, topographic orthogonal-634

ity, and translational speed of the AR plume at landfall; and the precise precipitation635

magnitude and rain-snow partitioning over the storm duration. This combined with bi-636

ases in the forecast land-surface initial conditions, most of which are not truly constrained637
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by in-situ observations (e.g., soil moisture probe data and groundwater table levels), could638

help to explain the randomness of forecast lead time on total runoff at individual reser-639

voir regions.640

Summary and Conclusions641

We used a storyline approach to recreate California’s flood of record, the New Year’s642

flood of 1997, using a regionally refined Earth system modeling approach, RRM-E3SM.643

This is the first time RRM-E3SM has been used to systematically evaluate a key west-644

ern United States hydrometeorological extreme event. We assessed how both forecast645

lead time and model horizontal resolution focused over California influenced forecast skill646

in recreating the flood event. Across several formal measures of forecast quality and value,647

RRM-E3SM (3.5km) had the highest skill in recreating the 1997 flood compared with648

lower-resolution versions of E3SM validated against in-situ, reanalysis, and gridded cli-649

mate products.650

RRM-E3SM’s ability to simulate the North Pacific large-scale circulation patterns651

and IVT fields and landfalling AR characteristics prior to and during the 1997 flood were652

minimally influenced by the refinement of horizontal resolution over California. RRM-653

E3SM simulations largely agreed with ERA5 in the northern portions of California, par-654

ticularly for extreme AR conditions. However, all RRM-E3SM simulations systemati-655

cally produce excessively high AR categories in southern California; this is due to ele-656

vated amounts of water vapor in southern California and winds that are systematically657

higher than ERA5 throughout California. Regional refinement resolution in E3SM is im-658

portant to the representation of storm total precipitation and storm duration changes659

in snow water equivalent. We find that RRM-E3SM (3.5km) best represents the statis-660

tical distributions of storm total precipitation at 52 precipitation gauge sites, with par-661

ticular improvement in the precipitation maxima. We attribute this to a better repre-662

sentation of both California’s mountainous topography as well as important mesoscale663

circulations in driving precipitation location and magnitude, notably the Sierra barrier664

jet. Enhanced snowfall at higher elevations and snowpack ablation at low-to-mid eleva-665

tions are also better represented in RRM-E3SM (3.5km), as shown by comparison to 50666

snow pillow sites and a gridded climate product.667

–21–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Reservoir inflows represent the integrated watershed response resulting from inter-668

actions between atmospheric processes with topography. These interactions drive the sim-669

ulated precipitation patterns and subsequently interact with land surface processes such670

as snowpack accumulation and melt, soil moisture content, and surface-through-subsurface671

flow. Simulated inflows exhibit mixed forecast skill across RRM-E3SM simulations. In672

general, reservoir inflow time series magnitude and, in some cases, shape were off across673

RRM-E3SM simulations. This is partly due to the integrated surface-through-subsurface674

hydrology being simulated with uncalibrated (or “out-of-the-box”) parameter settings.675

Using these parameter values shows how E3SM’s default settings, often optimized for676

mean state skill, represent extreme runoff. Notably, although uncalibrated, RRM-E3SM677

(3.5km) more consistently matched the time series shape of reservoir inflows across five678

of the eight major reservoirs in California. Future work will leverage the skillfully-resolved679

atmospheric fields, particularly in RRM-E3SM (3.5km), to run offline integrated hydro-680

logic models (Maina et al., 2022) to assess partitioning between overland flow and ground-681

water recharge and/or water infrastructure models (Yates et al., 2022) to assess flood682

inundation potential associated with management decisions.683

In addition to not accounting for water management infrastructure in E3SM, there684

were difficulties in validating certain aspects of the 1997 flood. Specifically, although the685

antecedent conditions (e.g., soil moisture content and groundwater table levels) provided686

by the “Betacast” offline five-year ELM spinup procedure driven by ERA5 meteorology687

undoubtedly shaped reservoir inflow estimates, more observationally-constrained initial688

conditions for the simulations were not available. Soil moisture content data (both in-689

situ and remote sensing-based estimates) were impossible to find at sub-monthly timescales690

prior to the year 2000 and, in particular, in mountains from missing data gaps, partly691

due to the effects of complex terrain and cloudy days on satellite retrievals. Similarly,692

observational estimates of groundwater table depths (e.g., piezometers and/or satellite-693

based estimates) were not publicly available.694

Forecast lead time resulted in a random effect on the hydrometeorological repre-695

sentation of the 1997 flood. We speculate this is because the forecast lead times chosen696

(2-to-4 days prior to the 1997 flood onset) were comfortably within the forecast predictabil-697

ity of large-scale synoptic events like ARs (Haiden et al., 2021) and results were there-698

fore dependent on more chaotic spinup processes, mesoscale processes with the main pre-699

cipitation shield, and small-scale interactions of flow with orography. Although exam-700
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ining the sub-seasonal-to-seasonal forecast skill of E3SM is beyond the scope of this study,701

L’Heureux et al. (2021) has shown that precipitation forecast skill across seven Earth702

system model forecasts for California begins to sharply drop with lead times of 8-14 days.703

Alternatively, to isolate why 2-to-4 day forecast lead time had a relatively random ef-704

fect on storm total precipitation RRM-E3SM can be run similarly to a weather forecast705

model, where data produced outside of the regionally refined domain is swapped with706

reanalysis data (Kruse et al., 2022; Zhang et al., 2022), to better constrain the lateral707

boundary conditions and, ultimately, the lifecycle of the AR propagation and landfall.708

Alternatively, the use of perturbed physics ensembles may help to further constrain which709

subgrid-scale parameterization most influenced drift in AR propagation and landfall and710

hydrometeorological characteristics of the RRM-E3SM forecasts (Mulholland et al., 2017).711

Last, given the noted uncertainties in land surface initial conditions, an AR-induced flood712

event that overlaps with recent high-resolution satellite-based estimates (Vergopolan et713

al., 2022) could be performed with RRM-E3SM to better isolate the role of antecedent714

conditions (e.g., soil moisture content) on flood event characteristics (e.g., reservoir in-715

flows). Practically, the lack of hydrometeorological sensitivity with forecast lead time be-716

tween two to four days prior to the onset of the flood event implies that if a flood man-717

ager is interested in event evolution at a specific point an ensemble forecast approach718

is necessary (e.g., simulations spanning multiple lead times and/or perturbed physics).719

Overall, RRM-E3SM (3.5km) forecast ensemble average skill in recreating the 1997720

flood gives confidence in its utility to aid flood resiliency planning. To further the util-721

ity of these storyline simulations, in future work, we will investigate flood characteris-722

tics if a 1997-like flood event were to have happened without anthropogenic climate change723

or were to happen again at different global warming levels. We hope that these story-724

line recreations of the 1997 flood event in past and future climates can supplement on-725

going efforts in water resource agency flood resiliency planning efforts related to extreme726

events, especially those involving compounding and/or cascading processes.727
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Figure 1. a) Special Sensor Microwave Imager (SSM/I) integrated water vapor on 1 January

1997. b) Tahoe City precipitation, snowfall, and snow depth from 1 December 1996 to 10 Jan-

uary 1997. c) Examples of all-time peak daily flows set during the event on major river systems

in California and Nevada. d) Reservoir releases from Lake Oroville approached 4,530 cubic me-

ters per second (160,000 cubic feet per second). (e) Flooding inundated the Sacramento Valley

of California following heavy rainfall and snowmelt. Images d) and e) courtesy of the California

Department of Water Resources.
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Figure 2. The Regionally Refined Mesh enabled Energy Exascale Earth System Model

(RRM-E3SM) cases used to recreate the 1997 flood at horizontal resolutions of a) 0.125◦

(∼14km) b) 0.063◦ (∼7km) and c) 0.031◦ (∼3.5km) focused over California. Each RRM-

E3SM case’s topography is provided to the right of the grid refinement map. Note that ocean

bathymetry is not represented in the RRM-E3SM simulations, but is included here for illustrative

purposes.
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Figure 3. a) Forecast ensemble average integrated vapor transport (IVT) with 850mb geopo-

tential height (dashed; units in meters) fields for ERA5 and each RRM-E3SM case. b) Difference

in IVT between ERA5 and RRM-E3SM (14km), RRM-E3SM (7km) and RRM-E3SM (3.5km)

(top, middle, and bottom rows, respectively), when the AR makes landfall in California on 1 Jan-

uary 1997. c-d) 850 mb geopotential height for ERA5 (gray-to-white contours) and RRM-E3SM

(colored contours) over California (c) and the Northeastern Pacific (d), also at the time of AR

landfall.
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Figure 4. AR characteristics for the forecast ensemble average between the period of 31 De-

cember 1996 up to 4 January 1997. Characteristics include the Ralph et al. (2019) category scale

(left column), maximum integrated vapor transport (IVT, second column), maximum integrated

water vapor (IWV, third column), and maximum integrated total wind (right column) for a)

ERA5 b) RRM-E3SM (14km) c) RRM-E3SM (7km) and d) RRM-E3SM (3.5km).
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Figure 5. a) Storm total precipitation (31 December 1996 to 4 January 1997) from the

Livneh product. Green dots highlight the locations of the 52 precipitation gauges used by

NOAA to produce the 1997 flood event storm summary (https://www.cnrfc.noaa.gov/

storm summaries/ol.php?storm=jan1997). b) Violin plots of reanalysis and model estimate

storm total precipitation derived from the nearest grid cell to the 52 stations shown in a). The

mean is shown with a white dot, and white lines indicate the 25th, median, and 75th percentiles.

The shape of each violin reflects the probability density function of the data.
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Figure 6. Sierra-perpendicular and Sierra-parallel cross sections of meridional (v) and zonal

(u) winds at the start of the 1997 flood event AR landfall (1 January 1997) for ERA5 and the

six-forecast ensemble average estimates provided by RRM-E3SM. The longitudinal and latitudi-

nal cross-section transect lines are shown on the right-most column sub-panel figures overlaid on

California. In the case of Sierra-perpendicular (Sierra-parallel), positive values mean that winds

are blowing from South to North (West to East).
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Figure 7. Sierra-parallel and Sierra-perpendicular vertical profiles of zonal (u) and meridional

(v) wind speeds at the latitudinal location of the jet maxima with altitude for ERA5 and the

six-forecast ensemble average RRM-E3SM simulations. a) shows the latitudinal and longitudinal

transects and positive wind direction from the Sierra perspective. b-e) shows the vertical wind

profiles at the intersection of the transects for the duration of the 1997 flood (31 December 1996

through 3 January 1997).
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Figure 8. Return periods of the 4-day precipitation totals (Rx4day; 31 December 1996

through 3 January 1997) estimated using a non-stationary GEV framework on the Livneh prod-

uct. To estimate the return period, the annual maxima of the Rx4day are interpolated to the

precipitation gauge locations using first-order conservative remapping. The five stations shown

(out of 52 total) are selected to indicate the minimum, 25th, 50th, 75th, and maximum Rx4day

across the gauge locations. The left (right) y-axis provides Rx4day in English (metric) units. The

horizontal and vertical dashed lines show the Rx4day and the corresponding return period in the

Livneh product, as do the annotations in the bottom right. The x-axis (return period) is plotted

on the log scale.
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Figure 9. a) Storm duration change in snow water equivalent, dSWE, (31 December 1996

through 4 January 1997) from the Margulis product. Black dots highlight the locations of the 50

SNOTEL stations within the vicinity of the 1997 flood. b) Violin plots of reanalysis and model

estimate storm duration dSWE derived from the nearest grid cell to the 50 stations shown in

a). The mean is shown with a white dot, and white lines indicate the 25th, median, and 75th

percentiles. The shape of each violin reflects the probability density function of the data.
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Figure 10. Forecast ensemble average precipitation characteristics, including storm total

precipitation, snowfall partition, precipitation efficiency, and runoff efficiency for a) RRM-E3SM

(14km) b) RRM-E3SM (7km) and c) RRM-E3SM (3.5km) over the overlapping forecast period of

31 December 1996 to 4 January 1997.
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Figure 11. Forecast ensemble average reservoir inflow rates from each of the RRM-E3SM sim-

ulations across eight major reservoirs in California. The top figure shows the location of the eight

reservoirs and the areal extent of the watersheds that feed into them (black outlines) overlaid

onto Margulis product estimates of snow water equivalent, SWE, at the start of the 1997 flood.

The black lines in the sub-panel plots represent measured inflows into each reservoir.
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Figure 12. Causal inference estimates for the magnitude of the impact of hydrometeorologi-

cal variables on total runoff (overland flow, interflow, and baseflow). The four variables include

integrated vapor transport (IVT), total precipitation (PRECT), snow water equivalent (SWE),

and 10 cm soil moisture content (SOILWATER). The magnitude of the influence of each variable

on total runoff (overland flow, interflow and baseflow) is represented by an individual component

of a stacked bar chart. Each component has a range between 0 and 1. RRM-E3SM cases (desig-

nated by hatching) are stacked next to each other for each region assessed including California

(Hydrologic Unit Code 18) and the headwater regions of the 10 major reservoirs in California

(ordered by latitude from northernmost to southernmost).
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Figure 13. Taylor diagrams representing all grid cells within the hydrologic unit code (HUC-

2) California Region, region 18 in Seaber et al. (1987), for the forecast period of 31 December

1996 up to 4 January 1997. a) Storm duration maximum integrated water vapor (IWV) com-

pared to ERA5; b) storm total precipitation compared to the Livneh product; and c) storm

duration change in snow water equivalent, dSWE, compared to the Margulis product. Each tri-

angle represents one of the six RRM-E3SM forecasts initialized from 28 December 1996 at 00Z

to 30 December 1996 at 12Z. Bold triangles represent the forecast ensemble average. Upward

(downward) triangle orientation represents a positive (negative) bias compared to each reference

dataset. Black radial lines provide general guidance for groupings of Pearson pattern correlation.

The black and gray dashed azimuthal lines centered around REF indicate the root mean squared

error and standard deviations from the reference dataset.
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Figure 14. Same as Figures 5 and 9, but the violin plots now compare the initialization

dates for each of the six RRM-E3SM (3.5km) forecasts. Panels a) and b) show storm total pre-

cipitation and panels c) and d) storm duration change in snow water equivalent (dSWE). The

six-forecast ensemble average (ensavg) is also shown in black.

–51–



Figure 15.



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 15. Time series for precipitation, snow water equivalent, and runoff simulated by

RRM-E3SM (3.5km) across forecast lead time evaluated at station locations and in regions iden-

tified in the upper left maps. The left-column sub-panel plots represent cumulative totals and the

right-column sub-panel plots represent hourly rates. Black lines represent station observations.

Vertical gray lines indicate the period during which the 1997 flood occurred.
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Figure 16. Same as Figure 12, however, each stacked bar chart represents one of the six

forecasts produced by RRM-E3SM (3.5km) and conveys the strength of causal influence of four

hydrometeorological variables, integrated vapor transport (IVT), total precipitation (PRECT),

snow water equivalent (SWE), and 10 cm soil moisture (SOILWATER), on total runoff (overland

flow, interflow, and baseflow). The forecast initialization date is indicated by different styles of

hatching.
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Key Points:19

• Energy Exascale Earth System Model forecasts at 3.5km grid spacing skillfully recre-20

ate the hydrometeorology of California’s 1997 flood21

• Horizontal resolution alters the representation of key flood drivers such as the Sierra22

barrier jet, precipitation extremes, and snowmelt23

• Forecast lead time 2-to-4 days prior to the onset of the 1997 flood minimally in-24

fluences forecast precipitation and snowmelt skill25
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Abstract26

The 1997 New Year’s flood event was the most costly in California’s history. This27

compound extreme event was driven by a category 5 atmospheric river that led to widespread28

snowmelt. Extreme precipitation, snowmelt, and saturated soils produced heavy runoff29

causing widespread inundation in the Sacramento Valley. This study recreates the 199730

flood using the Regionally Refined Mesh capabilities of the Energy Exascale Earth Sys-31

tem Model (RRM-E3SM) under prescribed ocean conditions. Understanding the pro-32

cesses causing extreme events inform practical efforts to anticipate and prepare for such33

events in the future, and also provides a rich context to evaluate model skill in repre-34

senting extremes. Three California-focused RRM grids, with horizontal resolution refine-35

ment of 14km down to 3.5km, and six forecast lead times, 28 December 1996 at 00Z through36

30 December 1996 at 12Z, are assessed for their ability to recreate the 1997 flood. Plan-37

etary to synoptic scale atmospheric circulations and integrated vapor transport are weakly38

influenced by horizontal resolution refinement over California. Topography and mesoscale39

circulations, such as the Sierra barrier jet, are prominently influenced by horizontal res-40

olution. The finest resolution RRM-E3SM simulation best represents storm total pre-41

cipitation and storm duration snowpack changes. Traditional time-series and causal anal-42

ysis frameworks are used to examine runoff sensitivities state-wide and above major reser-43

voirs. These frameworks show that horizontal resolution plays a more prominent role in44

shaping reservoir inflows, namely the magnitude and time-series shape, than forecast lead45

time, 2-to-4 days prior to the 1997 flood onset.46

Plain Language Summary47

The 1997 California New Year’s flood event caused over a billion dollars in dam-48

ages. This storm became a central part in guiding efforts to reduce flood risks. Earth49

system models are increasingly asked to recreate extreme weather events. However, the50

ability of Earth system models to recreate such events requires rigorous testing. Test-51

ing ensures that models provide value in anticipating and planning for future flood events.52

This is particularly important given the changing climate. We evaluated the Department53

of Energy’s flagship Earth system model, the Energy Exascale Earth System Model, in54

its ability to recreate the weather and flood characteristics of the 1997 flood. The model55

resolution, important for resolving mountain terrain and storm interactions, and fore-56

cast lead time, important for storm progression accuracy, are assessed. The multi-forecast57

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

average from the highest-resolution model best recreates the observed precipitation, snow-58

pack changes, and flood characteristics. Our findings provide confidence that the high-59

est resolution model could be used to study how a 1997-like flood event would be altered60

in a warmer world.61

Introduction62

California is especially susceptible to major cool season flood events (Kattelmann,63

1997). Atmospheric rivers (ARs) are largely responsible, accounting for 84% of flood dam-64

ages in the western United States (Corringham et al., 2019). The most notable Califor-65

nia flood event, measured by its intensity, duration, and inundation area, occurred in 1861/186266

(Porter et al., 2011; Huang & Swain, 2022). It was thought to be AR-driven and inun-67

dated portions of both the Sacramento and San Joaquin valleys and portions of the present-68

day metropolitan area of Los Angeles. Because of its impact, this event has emerged as69

an important “design storm” for California water managers and led to the development70

of the colloquially termed “ARkStorm”, which combines aspects of AR-induced flood71

events that occurred in 1969 and 1986. The 1861/1862 flood event happened during a72

time in California’s history when the population density and built infrastructure was at73

a much smaller scale than today. Since the 1860s, urbanization has resulted in the loss74

of floodplains in many communities that are vulnerable to flooding despite significant75

investments in constructing flood control infrastructure (Whipple et al., 2017; Whipple76

& Viers, 2019). In many low-lying regions throughout the Central Valley, aging levee sys-77

tems and subsidence continue to expose populations and industries to flood impacts (Hanak78

& Lund, 2012). Sequences of heavy precipitation-producing storms, many of which were79

ARs, during the winters of 2017 and 2023 highlight the present susceptibility of Califor-80

nia to major riverine flooding. Climate change may further exacerbate impacts felt by81

these storms (Gershunov et al., 2019; Rhoades et al., 2021; Corringham et al., 2022; Huang82

& Swain, 2022), particularly in the most underserved communities (Wing et al., 2022),83

highlighting the need for detailed analyses aimed at understanding how these storms drive84

compound extremes under historical and future climate conditions.85

The most costly flood event ($1.6 billion) in California history was the New Year’s86

flood event of 1997, hereafter “1997 flood” (Lott et al., 1997). Major flood losses occurred87

throughout the western United States, including losses of $500 million in Nevada and88

$125 million in Washington. The combination of flood area and severity across the west-89
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ern United States ranks the 1997 flood as the #2 superflood between 1950 and 2010 (Tarouilly90

et al., 2021). At least half a million people were displaced by the flooding and the ma-91

jority of California counties (43/58) were declared disaster zones (Lott et al., 1997).92

The 1997 flood was primarily made up of three storms that occurred between 2593

December 1996 and 2 January 1997 with inundation afterward (Galewsky & Sobel, 2005).94

Antecedent conditions played an important role in driving up the economic cost of this95

event; earlier storms throughout late November and December of 1996 built an abun-96

dant snowpack and elevated soil moisture content throughout the Central Valley and the97

Sierra Nevada (Figure 1). Between 30 December 1996 and 3 January 1997 storms pro-98

duced more than 750 mm of precipitation in certain regions of northern California (e.g.,99

840 mm, or 33 in, at Bucks Lake in Plumas County, California; (Figure 1; https://www100

.cnrfc.noaa.gov/storm summaries/ol.php?storm=jan1997). Heavy rainfall with snow101

above 3,000 m elevation commenced on 30 December 1996; the Central Sierra Snow Lab102

(CSSL; located at 2,100 m) reported 137 mm of rainfall on 30-31 December 1996 (Osterhuber103

& Schwartz, 2021). On New Year’s Day of 1997, an extreme AR event made landfall (Fig-104

ure 1). Maximum temperatures at 2,100 m elevation hit 7◦C and reached 3◦C at 2,900105

m on 1 January 1997 when 120 mm of rain fell at the CSSL (Osterhuber & Schwartz,106

2021; Heggli et al., 2022). Prior to the onset of rainfall on 29 December 1996, snow den-107

sities were ready to produce terrestrial water input (32%), rising to 35% on 30 Decem-108

ber 1996 (Heggli et al., 2022). The CSSL lost 100 mm of snow water equivalent (SWE)109

between 30 December 1996 and 1 January 1997 ultimately contributing to the develop-110

ment of a warm-snow drought water year (Hatchett & McEvoy, 2018). When combined111

with saturated soils and sufficiently ripe snowpack to melt and convey water to the land112

surface, the extreme multi-day precipitation caused major rivers to reach flood stage, with113

several setting all-time peak flows (Figure 1; https://www.cnrfc.noaa.gov/storm summaries/114

ol.php?storm=jan1997). As a result of the December-January storms, this two-month115

period set the record for the wettest since records began in 1920, measured via Califor-116

nia’s 8-station index, with a total of ∼1,200 mm of precipitation. However, despite the117

wet start, the remainder of the water year was drier than normal leading to below-normal118

snowpack and reservoir levels at the end of the required flood pool period in April. The119

1997 flood event thus represents an object lesson both for the study of extreme precip-120

itation and runoff but also for reservoir and flood management in a highly variable cli-121

mate.122
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A growing area of climate research is focused on understanding cascading, compound,123

and/or sequential hydrometeorological extreme events (Fish et al., 2019; AghaKouchak124

et al., 2020; Raymond et al., 2020). Simultaneously, the climate research community has125

sought to provide more credible and salient decision-relevant information to practition-126

ers and management communities through iterative, co-produced research (Lemos et al.,127

2018; Jagannathan et al., 2021; Siirila-Woodburn et al., 2021). Examining historically128

significant, decision-relevant extreme events, through high-resolution climate model “sto-129

ryline” recreations can be both be useful for water resource managers (Shepherd, 2019;130

Gutowski et al., 2020; Bukovsky et al., 2023) and have also been frequently used in event131

attribution studies (Wehner et al., 2019). Storylines are physically based model recre-132

ations of impactful weather events, often chosen through iterative discussions between133

scientists and stakeholders, that are then simulated under plausible past and future cli-134

mate scenarios. However, it is important to note that while such studies can provide in-135

formation on the local dynamic and thermodynamic effects of climate change on extreme136

events, they do not provide information about the influence of large-scale circulation changes137

on the return probability of such events.138

Storyline event recreations also have practical model development implications. Cli-139

mate models are mostly optimized around mean state performance for different hydrom-140

eteorological performance metrics (Fasullo, 2020), rather than extremes. This is espe-141

cially true from the perspective of land-atmosphere interactions that drive compound142

extremes (La Follette et al., 2021). Storyline approaches can also help to convey infor-143

mation on model uncertainty, namely the role of structural and scenario uncertainty (Lehner144

et al., 2020), in a more understandable and decision-relevant way. Therefore, the recre-145

ation of the 1997 flood is a useful exercise in understanding the nature of extreme events146

and determining whether our cutting-edge modeling approaches are fit for purpose in147

simulating them. An additional benefit of storyline approaches is that the climate mod-148

els used and the resultant climate research conducted becomes tailored toward greater149

practitioner relevance over time (Lemos et al., 2012).150

In this study, we recreate the 1997 flood using the U.S. Department of Energy’s151

flagship climate model, the Energy Exascale Earth System Model, and its regionally re-152

fined mesh capabilities (RRM-E3SM). We chose the 1997 flood because it is the flood153

of record most recently experienced by current water managers, was relatively well-monitored154

by a network of meteorological and hydrologic measurements, and occurred during a pe-155
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riod in which atmospheric reanalysis products have higher skill (Uppala et al., 2005; Hers-156

bach et al., 2020). This event also allows us to assess the relative contributions of E3SM157

horizontal resolution and forecast initialization time in shaping the fidelity of the flood158

event recreation. We pay particular attention to the interactions across the submodels159

of E3SM (e.g., atmospheric and land-surface) and their representation of key hydrom-160

eteorological variables before/during/after the event. This is the first time RRM-E3SM161

has been systematically used, across resolution and forecast lead time, to generate a sto-162

ryline recreation of a western United States hydrometeorological extreme. Our scientific163

questions include:164

(1) To what degree does horizontal model resolution influence land-atmosphere inter-165

actions and hydrometeorological impacts associated with the 1997 flood?166

(2) What is the forecast lead time that best balances the short-term antecedent pre-167

conditioning of soils and snowpack and post-storm impacts when recreating the168

1997 flood?169

(3) Is RRM-E3SM fit-for-purpose in representing a compound extreme event such as170

the 1997 flood?171

The manuscript is organized as follows. We first highlight details about our RRM-172

E3SM experimental setup. We then discuss the various in-situ, reanalysis, regional cli-173

mate model, and gridded climate products used to assess and juxtapose RRM-E3SM skill174

in recreating the 1997 flood. We then discuss our results and how they fit within the broader175

literature. Finally, we summarize our major findings and provide suggestions for future176

research.177

Methods178

Energy Exascale Earth System Model (E3SM) version 2179

The Energy Exascale Earth System Model version 2 (E3SMv2; Golaz et al., 2022)180

used for this analysis allows for regionally refined mesh (RRM-E3SM) simulations over181

a targeted region of interest. Recent studies find that RRM-E3SM performs compara-182

bly to uniform 0.25◦ (∼25km) horizontal resolution simulations for water cycle-related183

processes and provides several improvements to uniform 1.00◦ (∼111km) horizontal res-184

olution simulations (Tang et al., 2019, 2022). These improvements are particularly im-185

portant in regions of complex terrain such as the California Sierra Nevada. A detailed186
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description of E3SMv2’s atmospheric dynamical core, physics and dynamics, horizon-187

tal grids, vertical discretization, radiation, tracer transport schemes, and subgrid-scale188

parameterization choices (e.g., cloud microphysics scheme) can be found in Golaz et al.189

(2022). More specific findings related to RRM-E3SM are described in Tang et al. (2022),190

while Harrop et al. (2022) provides additional details on water cycle process fidelity in191

both the atmosphere and land-surface in E3SM at uniform horizontal resolutions of 1.00◦192

versus 0.25◦ over the United States.193

The RRM-E3SM meshes were produced using TempestRemap (Ullrich & Taylor,194

2015; Ullrich et al., 2016); the topography was generated with the NCAR Topo tool (Lauritzen195

et al., 2015) and smoothed for model stability purposes using the framework discussed196

in Zarzycki et al. (2015) and a coefficient of 3e−16 (c in Equation 1 of Zarzycki et al.,197

2015). The refinement regions and topographic representation in the simulations over198

California for the three RRM-E3SM cases are shown in Figure 2. Hereafter, RRM-E3SM199

simulations with a maximum refinement resolution over California at 14km, 7km, and200

3.5km will be referred to as, RRM-E3SM (14km), RRM-E3SM (7km), and RRM-E3SM201

(3.5km), respectively. In all simulations, the E3SM default setting of 72 vertical levels202

is used. As found in other variable-resolution and regionally refined mesh Earth system203

model analyses over the last decade, horizontal resolution influences the simulation fi-204

delity of synoptic-to-mesoscale trajectory of storm tracks and eddies (Rauscher et al.,205

2013; Rauscher & Ringler, 2014; Sakaguchi et al., 2016; Liu et al., 2023). Resolution also206

influences the representation of topography, which in turn affects how coastal landfalling207

storms are orographically uplifted, the rain-snow partitioning of the storm’s precipita-208

tion, and the build-up and evolution of mountain snowpack throughout the cool-season209

(Rhoades et al., 2016; Huang et al., 2016; Wu et al., 2017; Rhoades, Ullrich, & Zarzy-210

cki, 2018; Rhoades, Ullrich, Zarzycki, Johansen, et al., 2018; Xu et al., 2018; Rhoades,211

Jones, O’Brien, et al., 2020; Rhoades, Jones, Srivastava, et al., 2020; Bambach et al., 2021;212

Xu et al., 2021; Maina et al., 2022). Similarly, land-surface cover and soil heterogene-213

ity increase at finer resolutions, which can alter the surface-through-subsurface water and214

energy balance interactions of the hydrologic cycle (e.g., soil moisture).215

Betacast216

The 1997 flood event forecast ensemble was produced for six different 8-day peri-217

ods starting on 28 December 1996 at 00Z through 30 December 1996 at 12Z, initialized218
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at 12-hour increments between those dates, using the “Betacast” framework described219

in Zarzycki et al. (2014) and the Atmosphere Model Intercomparison Project (AMIP)220

protocols (Gates et al., 1999). The land surface conditions are spun-up for five years prior221

to the first forecast, with a standalone simulation of the E3SM Land Surface Model (ELM)222

forced by the 6-hourly atmospheric data from the fifth generation of the European Cen-223

tre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5; Copernicus Cli-224

mate Change Service Climate Data Store (CDS), 2017). This ensures that antecedent225

land surface conditions (namely soil moisture content and mountain snowpack) are con-226

sistent with the actual 1997 flood event conditions on the day each RRM-E3SM forecast227

is started. Subsequent forecast cycles use the 12-hour land forecast from the previous228

cycle for initialization. This approach gives nearly identical results to spinning up each229

forecast cycle’s land surface independently (not shown).230

The atmospheric initial state is generated using high-order remap algorithms to take231

data from the ERA5 reanalyses and map them onto the corresponding RRM-E3SM grid.232

The pressure field is adjusted based on the technique in Trenberth et al. (1993) to ac-233

count for differences in ERA5 and RRM-E3SM orography that may result in geostrophic234

imbalances. Observed ocean surface conditions (i.e., sea surface temperatures and sea235

ice extent) are also prescribed by interpolating NOAA Optimum Interpolation (OI) data236

(Reynolds et al., 2007) to the model grid. After initialization from ERA5, the RRM-E3SM237

forecasts are “free-running”: the atmosphere and land surface models are fully coupled238

and allowed to freely solve the governing equations that drive these systems.239

All RRM-E3SM simulations utilize the hydrostatic dynamical core in E3SM. No-240

tably, the effective resolution is 4-5x the actual grid spacing (Ullrich, 2014; Klaver et al.,241

2020). Further, it has been shown that non-hydrostatic dynamical cores minimally in-242

fluence midlatitude wintertime precipitation (slight drying) from resolutions of 36-to-4km,243

even in idealized mountain environments (Yang et al., 2017; Liu et al., 2022). With each244

2x refinement in horizontal resolution, the RRM-E3SM dynamics and physics timestep245

and second-order viscosity diffusion strength at the model top were halved. For RRM-246

E3SM (14km), the atmospheric dynamics and physics timesteps and diffusion strength247

were 40 and 600 seconds and 4e−4, for RRM-E3SM (7km) they were 20 and 300 seconds248

and 2e−4, and for RRM-E3SM (3.5km) they were 10 and 150 seconds and 1e−4, respec-249

tively. The only additional differences across cases were the macrophysics-microphysics250
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subgrid-scale parameterization substeps, set to 6 in RRM-E3SM (14km) and RRM-E3SM251

(7km) and 3 in RRM-E3SM (3.5km).252

Atmospheric River Detection and Categorization253

We used TempestExtremes (TE; namely the SpineARs and StitchBlobs algorithms)254

to detect the primary AR that made landfall during the 1997 flood on 1 January 1997255

(Ullrich & Zarzycki, 2017; Zarzycki & Ullrich, 2017). TE is a “relative threshold” based256

AR detector (ARDT), meaning that it is minimally sensitive to fixed thresholding issues257

(i.e., an AR event only exists beyond ∼250 kg/m/s), which may have important impli-258

cations for assessing future AR characteristic changes (O’Brien et al., 2022). Our param-259

eter settings for TE and the extensions made to TE to estimate AR landfalling charac-260

teristics, such as the AR category scale (Ralph et al., 2019), are important for estimat-261

ing water resource impacts (e.g., AR-induced flood damages in Corringham et al., 2022)262

as discussed in more detail in Rhoades, Jones, O’Brien, et al. (2020), Rhoades, Jones,263

Srivastava, et al. (2020) and Rhoades et al. (2021). Although it is advantageous to use264

several ARDTs for climatology-based analyses of ARs (O’Brien et al., 2022), particu-265

larly when assessing climate change-related impacts, we use only TE because the pri-266

mary AR during the 1997 flood was a category 5 event and recent findings in Zhou et267

al. (2021) have shown that ARDTs largely agree when identifying characteristics of cat-268

egory 4-5 AR events.269

Validation270

To evaluate the hydrometeorological forecast skill of RRM-E3SM in recreating the271

1997 flood, we use a mixture of in-situ observations, reanalysis, gridded climate prod-272

ucts, and more conventional regional climate modeling strategies. We obtained in-situ273

observations from 50 sites in the SNOw TELemetry (SNOTEL) network (https://www274

.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/snowpack/snowpackMaps)275

and 52 precipitation gauge sites from the California Data Exchange Center (CDEC) that276

are used in the National Oceanic and Atmospheric Administration (NOAA) storm sum-277

mary (https://www.cnrfc.noaa.gov/storm summaries/ol.php?storm=jan1997). We278

obtained daily reservoir inflow observations from the US Army Corps of Engineers Wa-279

ter Control Data System (https://www.spk-wc.usace.army.mil/plots/california280
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.html), retrieving inflow information for the 1997 Water Year from the Shasta, Oroville,281

Folsom, New Melones, Pine Flat, Terminus, Success, and Isabella Reservoirs.282

We used reanalysis and gridded climate products to evaluate storm-total precip-283

itation and pre-and post-event changes in snow water equivalent (SWE). Storm-total pre-284

cipitation is evaluated against Pierce et al. (2021) which is an updated version of the Livneh285

product (Livneh et al., 2015), hereafter Livneh, and against the ERA5 reanalysis prod-286

uct, due to its use in providing initial conditions for the RRM-E3SM simulations. Ac-287

cording to Pierce et al. (2021), the updated Livneh product better preserves extreme event288

precipitation totals by more systematically accounting for daily time adjustments in pre-289

cipitation gauge data (i.e., rounding-related issues related to the time of day the station290

observation is taken). We also conducted a preliminary analysis comparing Livneh with291

other widely used gridded climate products, Newman et al. (2015) (Newman) and Daly292

et al. (2008) (Parameter-elevation Regressions on Independent Slopes Model, PRISM)293

as shown in Figure S1. Compared with the 52 precipitation gauge measurements, we found294

that Livneh was either a better estimate (compared with Newman) or was indistinguish-295

able (compared with PRISM) in its representation of the 4-day precipitation totals pro-296

duced during the 1997 flood. In order to estimate the return periods of the 4-day pre-297

cipitation totals during the 1997 flood, we applied a non-stationary generalized extreme298

value (NS-GEV) analysis to the annual maximum of 4-day precipitation totals (Rx4day)299

in the Livneh product interpolated to the 52 gauge locations using the first-order con-300

servative remapping (P. W. Jones, 1999). In the NS-GEV framework, we first apply the301

Mann–Kendall (MK) trend test (Mann, 1945) to the Rx4day data at each gauge loca-302

tion to determine if the data has a significant trend at the 5% level. If the Rx4day data303

at a location has a significant trend, we fit time as a covariate in the location or/and scale304

parameters of the GEV distribution fitted to the Rx4day data at that gauge location.305

The complete procedure is outlined in Srivastava et al. (2021).306

We assess pre- and post-event changes in SWE against the Fang et al. (2022) west-307

ern United States-wide snow reanalysis product (hereafter Margulis due to it being an308

updated version of Margulis et al., 2016). The Margulis reanalysis product has shown309

skill in estimating peak SWE in the California Sierra Nevada when compared with air-310

borne LiDAR SWE measurements (e.g., 1 April mean SWE depth differences of -0.15311

to +0.05 m across 2015-2021), which have essentially become the snow community stan-312

dard for spatially complete estimates of snow depth and SWE in recent years (Painter313
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et al., 2016; Stillinger et al., 2023). We also compare and contrast RRM-E3SM skill with314

a set of simulations produced with a more traditional and widely-used dynamical down-315

scaling approach. These simulations were produced using the Weather Research and Fore-316

casting (WRF) model run at 14km resolution over California that is bounded laterally317

and at the model top with ERA5 (A. D. Jones et al., 2022). All gridded data that is in-318

tercompared has been regridded from its native grid resolution to a regular latitude-longitude319

grid resolution of 14 km using bilinear interpolation provided by the Earth System Mod-320

eling Framework (ESMF) Offline Regridding Weight Generator (The NCAR Command321

Language (Version 6.6.2), 2022).322

Causal Inference323

The complexity of Earth system interactions within the RRM-E3SM simulations324

and the large number of grid cells within the spatial domain of analysis makes it diffi-325

cult to unambiguously disentangle the impact of resolution and forecast lead time on pro-326

cesses and interactions between hydrometeorological variables. Thus, in the present study,327

we use causal inference to gain insights into the interactions between atmospheric and328

land-surface variables on one hand, and total runoff on the other. To the best of our knowl-329

edge, this is the first application of this framework for this style of problem. Causal in-330

ference allows us to move beyond canonical correlation analysis while reducing the di-331

mensionality of analysis to investigate interactions in the model. The goal of causal in-332

ference methods is to determine causal relationships between hydrometeorological vari-333

ables by using concepts of statistical conditional independence on time series data. These334

methods are gaining popularity in the Earth and environmental sciences community (Sugihara335

et al., 2012; Runge et al., 2019; Ombadi et al., 2020; Runge, 2023) and offer a unique per-336

spective to evaluate relationships.337

We use the Peter-Clark (PC) algorithm (Spirtes & Glymour, 1991), a causal in-338

ference method that utilizes graph theory and graphical rules to recover causal relations339

from time series data. The PC algorithm starts with a fully connected graph where all340

variables are causally related to each other, then iteratively and systematically removes341

causal relations using conditional independence tests. One of the main advantages of the342

PC algorithm is its ability to reduce the number of variables in the conditioning set, thereby343

mitigating the “curse of dimensionality”. We chose to use the PC algorithm because it344

provides good performance in hydrometeorological systems, especially in controlling the345
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number of falsely detected causal links (Ombadi et al., 2020). For our conditional inde-346

pendence tests, we used information-theoretic conditional independence instead of par-347

tial correlation due to its ability to detect nonlinear relationships (Ombadi et al., 2021).348

Our causal analysis considers contemporaneous causality between the time series of the349

five key hydrometeorological variables evaluated in this study (i.e., integrated vapor trans-350

port [IVT], precipitation, SWE, 10 cm soil moisture content, and total runoff volume)351

for all grid cells within a specific spatial domain (e.g., California-wide or the mountain-352

ous headwaters of a surface reservoir). Causality was assessed at a statistical significance353

level of 0.05.354

Results and Discussion355

Murphy (1993) provides terminology to discuss forecast verification qualities that356

both forecasters and users of forecasts find important. In this study, we will evaluate RRM-357

E3SM’s representation of the California New Year’s flood event of 1997 according to fore-358

cast quality (forecast correspondence to observations) and forecast value (forecast util-359

ity to decision makers). We use the effects of horizontal resolution and forecast lead time360

to assess forecast quality and value via measures of bias (the difference between forecast361

and observation), association (linear correlation between forecast and observation), sharp-362

ness (forecast capability in representing extremes), and through measures of value (e.g.,363

reservoir inflow volumes).364

Resolution influence on atmospheric process representation of the 1997365

flood366

We first compare the influence of regional grid refinement over California by eval-367

uating how the representation of the large-scale atmospheric circulations that shaped the368

landfalling AR on New Year’s Day of 1997 differ according to the resolution of the re-369

gional refinement domain. Figure 3 compares the large-scale IVT fields and circulation370

patterns of ERA5 and the three grid refinement resolutions at the start of the major AR371

landfall on 1 January 1997. The RRM-E3SM values are six-member forecast averages.372

The RRM-E3SM simulations forecast the low-pressure center near the Pacific Northwest373

coastline further southwest than it is in ERA5 on this date (Supplemental Figure S2).374

The simulations generally agree across resolutions on the spatial distribution of AR cat-375

egories from the California Bay Area up through the Sacramento Valley (Figure 4 and376
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Figure S3). Agreement is also found with ERA5 in the northern portions of California,377

particularly with regard to category 5 AR conditions (Figure S4); however, all RRM-E3SM378

simulations systematically produce AR categories that are too high in southern Califor-379

nia. This appears to be due to a disagreement in the AR width and/or the centroid of380

the AR landfall location with ERA5, which occurs further South (as indicated by pos-381

itive IVT anomaly from central to southern California in Figure 3) and due to uniformly382

higher wind speeds (Figure S4). Notably, ERA5 may under-represent AR activity in south-383

ern California compared to other reanalyses (Collow et al., 2022).384

Although IVT is important from a forecasting perspective, particularly since it al-385

lows for longer forecast lead times than precipitation (Lavers et al., 2016), IVT is sim-386

ply one metric indicating the potential for precipitation to occur, and its orientation with387

respect to terrain can suppress or enhance precipitation (Ricciotti & Cordeira, 2022).388

Therefore, we also evaluate how the precipitation potential across RRM-E3SM simula-389

tions is realized in the 1997 flood, particularly its association and sharpness. The fore-390

cast ensemble average storm total precipitation amounts are shown in Figure 5. This fig-391

ure compares simulated precipitation values with reanalysis and gridded climate prod-392

ucts as well as a conventionally used regional climate model (WRF, forced by ERA5)393

at the grid cells nearest to the 52 precipitation gauges used in NOAA’s storm summary394

of the 1997 flood. Refinement from 14km to 3.5km in RRM-E3SM has an appreciable395

effect on the statistical distribution of storm total precipitation, including the mean, me-396

dian, and maximum. RRM-E3SM (3.5km) matches the distribution of storm total pre-397

cipitation at the 52 precipitation gauge sites better than other datasets, including the398

Livneh product. RRM-E3SM (3.5km) agreement (r=0.73) in storm total precipitation399

holds across individual precipitation gauge sites as well (Figure S5), particularly precip-400

itation gauges in the northern Sierra Nevada, which have the highest precipitation to-401

tals (e.g., Buck’s Lake and La Porte). Note that the WRF simulations were conducted402

at 14km resolution and do not represent an even comparison with RRM-E3SM (7km)403

or RRM-E3SM (3.5km). The superior skill of models, relative to statistical interpola-404

tion and extrapolation techniques utilized in gridded climate products, in representing405

mountain precipitation processes have been noted before (J. Lundquist et al., 2019).406

In contrast to landfalling AR characteristics, we found storm total precipitation407

to be resolution-dependent. We hypothesize that this is likely a result of more realistic408

topographic representations of California’s Coast Ranges and Sierra Nevada. In addi-409
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tion, we hypothesize that important mesoscale circulation features known to influence410

the spatiotemporal characteristics of precipitation in northern California are better re-411

solved. One such feature is the Sierra Barrier Jet (SBJ), a classic terrain-parallel low-412

level jet. The SBJ results from the blocking, slowing, and subsequent counter-clockwise413

turning of low-level winds as they interact with the Sierra Nevada in a stable or moist-414

neutral environment. The SBJ has a typical core of peak winds at ∼500m to 1km (∼950-415

900 hPa) above the Central Valley with wind speeds ≥15 m/s (Neiman et al., 2010, 2013).416

The location and strength of the SBJ play an important role in driving California’s pre-417

cipitation maxima during AR events (Neiman et al., 2013). This precipitation maximum418

usually occurs northwest and upstream of the Sierra Nevada crest, typically around the419

Buck’s Lake precipitation gauge (39.85◦N, 121.24◦W) in the headwaters of the Oroville420

Dam. To examine RRM-E3SM skill in representing the SBJ, we compare winds using421

analogous cross-sections and transect lines outlined in Hughes et al. (2012) that dissect422

the typical locations of the SBJ in California.423

Figure 6 shows cross-sections of zonal and meridional winds for ERA5 and the RRM-424

E3SM simulations at the start of the AR landfall on 1 January 1997. Similarly to pre-425

vious findings, wind speeds are generally stronger in RRM-E3SM cases compared with426

ERA5. However, the altitude, latitudinal, and longitudinal locations of the wind speed427

maximum do generally agree with ERA5. RRM-E3SM simulates the SBJ and locates428

its core between 950-900 hPa at around 40◦N, 122◦W. Resolution plays an important429

role in better resolving the location of the wind speed maximum both with altitude and430

latitudinally. Similarly, RRM-E3SM (3.5km) shows higher wind speeds from 1000-900431

hPa and more orographic uplift potential along the windward sides of both the Coast432

Ranges and the Sierra Nevada. This favors more orographic precipitation, as is shown433

in Figure 5.434

To assess RRM-E3SM skill in representing the entire lifecycle of the SBJ, we now435

show vertical profiles of both meridional and zonal winds, from both a Sierra-parallel and436

Sierra-perpendicular perspective, compared with ERA5 (Figure 7). Prior to the onset437

of the flood event, on 31 December 1996, the RRM-E3SM simulations show the jet be-438

ginning to form at the right altitude relative to ERA5, but slightly stronger. On the first439

day of the flood event (1 January 1997), RRM-E3SM (3.5km) best represents the alti-440

tude location (∼950-1000 hPa) and strength (20-25 m/s) of the SBJ. The jet altitude441

and latitudinal location and strength match with the findings of Neiman et al. (2013)442

–14–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

for other couplets of AR-SBJ events identified using a combination of in-situ measure-443

ments including vertical wind profilers and reanalysis products. The RRM-E3SM results444

also corroborate the conclusion made by Hughes et al. (2012) that approximately a six-445

kilometer horizontal resolution is needed to properly represent the SBJ in model sim-446

ulations. However, regardless of RRM-E3SM resolution, the SBJ becomes both weaker447

and/or lower in altitude relative to ERA5 on 3-4 January 1997.448

Resolution influence on land-surface process representation of the 1997449

flood450

Although the 1997 flood was one of the most costly and damaging floods in north-451

ern California history, a non-stationary return period analysis of the Livneh product at452

the 52 gauge sites indicates that it was, at most, a 1-in-20-year event at a few gauge lo-453

cations, based on 4-day precipitation total estimates over the 105-year record covering454

1915-2019 (Figure 8). At 50% of gauge locations, the return period of the event was less455

than 6 years. This implies that the flooding was notable due to it being a compound ex-456

treme shaped by not only the precipitation provided by the sequence of storms, culmi-457

nating in a category 5 AR landfall on 1 January 1997 but also antecedent land surface458

conditions that were primed for snowmelt and runoff generation. The importance of an-459

tecedent conditions and land surface feedbacks was shown by Ivancic and Shaw (2015)460

where only 36% of the 99th percentile discharge events occurred due to a 99th percentile461

precipitation event when evaluated CONUS-wide between 1950-2000.462

To evaluate the role that antecedent and land surface conditions played in shap-463

ing the flood event, we now assess the change in snow water equivalent, or dSWE, for464

the category 5 AR storm duration (Figure 9). Analogously to the storm total precipi-465

tation analysis, we show storm duration dSWE across 50 SNOTEL sites throughout north-466

ern California, southern Oregon, and Nevada compared to the Margulis product. Model467

resolution also plays an important role in the distributions of both positive and nega-468

tive dSWE in the California Sierra Nevada. This is likely due to the influence of topo-469

graphic resolution on the simulated freezing level and the rain-snow partitioning of the470

AR event, which in turn influences the land surface representation of the accumulation471

and ablation of the mountain snowpack at mid-to-high elevations. The 50 SNOTEL sites472

indicate that more negative dSWE occurred over the duration of the 1997 flood (-152473

mm / -6 in). However, at higher elevations, positive dSWE also occurred (+102 mm /474
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+4 in). In comparison, the Margulis product indicates that more positive dSWE occurred475

(up to +254 mm, or +10 inches, in certain locations). Although a general negative dSWE476

skew in the statistical distribution is shown for RRM-E3SM, with every 2x refinement477

in resolution over California the simulations more closely approximate the statistical dis-478

tribution from the 50 SNOTEL location observations.479

Figure 10 shows the effects of resolution on the spatial representation of precipi-480

tation and runoff characteristics. The differences across each RRM-E3SM case are ex-481

plicitly shown in Figure S6. Storm total precipitation is enhanced at finer horizontal res-482

olutions, particularly along the Coast Range and crest of the Sierra Nevada, upwards of483

250 mm in RRM-E3SM (3.5km) relative to RRM-E3SM (14km). However, a general dry484

(wet) bias across RRM-E3SM simulations is seen in northwestern California’s Klamath485

Mountains (Sierra Nevada) when compared with the Livneh product (Figure S7). No-486

tably, the Livneh product had a general dry bias compared with precipitation gauge mea-487

surements (Figure 5 and S5). This indicates that Sierra Nevada crest precipitation over-488

estimates in RRM-E3SM may not be as severe as is shown in Figure S7, corroborates489

the findings of J. Lundquist et al. (2019), and would support the claims made about the490

underrepresentation of gridded climate products’ AR-related precipitation in J. D. Lundquist491

et al. (2015).492

Model resolution also plays a key role in shaping both the rain-snow partitioning493

of precipitation and the efficiency at which water vapor becomes precipitation (Figure494

10 and S6). Snowfall is enhanced by upwards of 20% in high-elevation regions of the Cal-495

ifornia Sierra Nevada, particularly in the headwaters of the American River through the496

Kern River watersheds. Similarly, the precipitation efficiency (the amount of precipita-497

tion per unit of integrated water vapor) is enhanced by upwards of 20% throughout the498

Klamath Mountains, Coastal Ranges, and the Sierra Nevada in RRM-E3SM (3.5km).499

The combination of enhanced and more efficient precipitation and alterations to rain-500

snow partitioning changes the signature of runoff efficiency (the total runoff amount per501

total precipitation amount). Runoff efficiency is generally enhanced by upwards of 60%502

at low- to mid-elevations in northern California in RRM-E3SM (3.5km) compared to RRM-503

E3SM (14km), whereas in the high-elevation southern Sierra Nevada, a decrease is sim-504

ulated. The enhanced runoff efficiency in RRM-E3SM (3.5km) is likely associated with505

more precipitation that is falling on wetter soils and, importantly, more snowmelt (as506

seen with more grid cells with runoff efficiencies at or exceeding 1). Conversely, runoff507
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efficiencies decline in RRM-E3SM (3.5km) where snowfall is enhanced, which agrees with508

SNOTEL sites that indicate that positive dSWE changes occurred during the 1997 flood509

(Figure 9).510

Even without a calibrated hydrologic model, comparing simulated inflow to observed511

inflow provides context for how well the model captures the key hydrologic-focused land-512

atmosphere interactions. This is because, in order to properly estimate reservoir inflows513

in the context of the 1997 flood, it is necessary that the model properly forecast the AR514

translational speed, plume intensity, and landfall location; the antecedent land surface515

conditions (e.g., snowpack and soil moisture); and the land-atmosphere interactions dur-516

ing and after the storm. Furthermore, model evaluation should also be done in decision-517

relevant regions (e.g., watersheds) instead of arbitrary latitude-longitude boxes. There-518

fore, to evaluate the value of the RRM-E3SM forecasts, we investigate reservoir inflows519

from the headwaters of eight major reservoirs, which represent a third (13.3 million-acre520

feet) of California’s surface reservoir storage (Figure 11). Reservoir inflows are computed521

as basin averages of total runoff provided by the land-surface model in RRM-E3SM. In522

the headwaters of the two largest reservoirs (Lakes Shasta and Oroville), all simulations523

overestimate inflows, and resolution systematically increases the volume of water flow-524

ing through the system. This may be due to several factors, including a lack of param-525

eter calibration in the land surface model (e.g., soil characteristics) and/or antecedent526

soil moisture being too high. Unfortunately, we could not find estimates of soil moisture527

content, from either in-situ or remote sensing sources, and were unable to evaluate soil528

moisture as we did precipitation and snowpack. We were also unable to find piezome-529

ter data recording groundwater height changes.530

Although the magnitude of reservoir inflows is biased even in RRM-E3SM (3.5km),531

the shape of the reservoir inflow time series improves at finer resolutions in both Shasta532

and Oroville, with a more distinct peak inflow on 1 January 1997. This resolution de-533

pendence also holds for two other key northern California reservoirs (e.g., Folsom and534

New Melones). Unlike the results for Shasta and Oroville, the antecedent conditions (i.e.,535

reservoir inflows at the beginning of 30 December 1996) in Folsom and New Melones Reser-536

voirs seem to play a lesser role in model performance, with model drift in reservoir in-537

flow estimates starting to occur one to two days after the forecasts have begun. Mov-538

ing further south along the western slopes of the Sierra Nevada to Pine Flat and Ter-539

minus, RRM-E3SM (3.5km) matches reservoir inflows remarkably well, regardless of an-540

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

tecedent condition issues. Finally, RRM-E3SM simulations in the headwaters of Success541

and Isabella reservoirs match neither the amplitude nor shape of reservoir inflows, par-542

ticularly Isabella. The lack of match between simulated and observed inflows is likely543

influenced by infrastructure and/or management decisions made above the reservoirs in544

these headwater regions, especially since RRM-E3SM simulations do not account for these545

factors.546

To better contextualize RRM-E3SM runoff forecasts across resolution, we employ547

the PC causal inference algorithm with conditional mutual information test (Spirtes &548

Glymour, 1991; Ombadi et al., 2020). The influential strength of four hydrometeorolog-549

ical variables (i.e., IVT, precipitation, SWE, and 10 cm soil moisture content) on total550

runoff (overland flow, interflow, and baseflow) across California and within its 10 ma-551

jor reservoir headwater regions is shown in Figure 12 and Figure S8. The higher the stacked552

bar, the more variance is explained in total runoff. Each of the four hydrometeorolog-553

ical variables contributes a value ranging between zero and one, with a maximum pos-554

sible total of four across variables. Across California, our causal analysis framework agrees555

with our prior suggestions that resolution plays an important role in amplifying the strength556

that both soil moisture content and SWE play in total runoff magnitude. With that said,557

atmospheric conditions (IVT and precipitation) heavily influence the total runoff signal558

across California comprising 84-94% of the total variance explained by the four chosen559

hydrometeorological variables (Figure S9). However, this causal relationship does change560

considerably from one reservoir headwater region to another (particularly in the central561

to southern Sierra Nevada).562

Through this causal inference framework, we can also see that in certain reservoir563

headwater regions, resolution plays a systematic role in either adding more interactions564

between total runoff (more components contributing to each stacked bar) and all of the565

hydrometeorological variables (e.g., New Melones) or simplifying interactions to a sin-566

gle (e.g., Oroville) or fewer hydrometeorological variable(s) (e.g., Shasta). In other head-567

water regions, there is an insensitivity to resolution (e.g., Don Pedro and Isabella). In568

New Melones Lake, where runoff interaction diversity increases the most, IVT and SWE569

play no role in shaping runoff in RRM-E3SM (14km) and RRM-E3SM (7km), with a nearly570

a 50/50 split between precipitation and soil moisture, whereas RRM-E3SM (3.5km) shows571

a more equal interaction between all four hydrometeorological variables and runoff. Con-572

versely, in Lakes Shasta and Oroville, three hydrometeorological variables play a key role573
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in runoff forecasts in RRM-E3SM (14km) and RRM-E3SM (7km), yet precipitation be-574

comes the dominant variable of influence in RRM-E3SM (3.5km), 91% and 100%, respec-575

tively (Figure S9). Finally, both Lake Don Pedro and Isabella Lake have an insensitiv-576

ity to resolution where precipitation and soil moisture content play comparable roles in577

shaping total runoff across RRM-E3SM simulations.578

Forecast lead time influence on atmospheric and land-surface process rep-579

resentation of the 1997 flood580

To summarize the resolution dependence of RRM-E3SM simulations found thus581

far, we use Taylor diagrams (Figure 13) to show that although large-scale meteorology582

is relatively insensitive to finer horizontal resolutions (14km to 3.5km), even for land-583

falling AR characteristics (Figure 4), storm characteristics (e.g., storm total precipita-584

tion) and land-atmosphere interactions (e.g., storm duration dSWE) are sensitive to res-585

olution. Dispersion in model results associated with forecast lead time is also shown. This586

will be the focus for the rest of our analysis, but to decrease the dimensionality of our587

analysis we focus on the best-performing simulation, RRM-E3SM (3.5km).588

In RRM-E3SM (3.5km) both storm total precipitation and storm duration dSWE589

are weakly and not systematically sensitive to forecast lead time (Figure 14). The high-590

est storm total precipitation and positive storm duration dSWE occurred in the forecast591

that was initialized on 1996-12-29 at 00Z. This finding is counter to our original hypoth-592

esis that forecast skill should increase as forecast lead time gets closer to 31 December593

1996. This assumption was made because the 30 December 1996 at 12Z forecast has the594

least amount of time to drift from the conditions provided by ERA5 which could influ-595

ence, for example, the AR intensity, landfall location, and translational speed.596

Although forecast lead time does not appear to have a significant influence on storm597

total precipitation and storm duration dSWE over the period of 31 December 1996 to598

4 January 1997, these metrics may mask temporal dependencies. To determine whether599

there are important diurnal and/or day-to-day differences across forecast lead times, Fig-600

ure 15 shows both 6-hourly rates and cumulative 6-hourly totals for precipitation, dSWE,601

and runoff. The cumulative total precipitation estimated at the 52 precipitation gauge602

stations is well bracketed by the six RRM-E3SM (3.5km) forecasts. Hourly rates in pre-603

cipitation show that precipitation diverges most across the six forecasts on 3 January604
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1997 (or four to six days post initialization of the forecast). From the perspective of dSWE,605

evaluated across the 50 SNOTEL sites, the six forecasts generally have similar tenden-606

cies throughout the flood period, but also disagree most on 3-4 January 1997. Negative607

dSWE values, an indication of the magnitude of snow ablation caused by the AR, were608

highest on 3 January 1997 in both observations and forecasts. The forecast spread on609

3 January 1997 was -2 mm/hour to -7 mm/hour, which was generally stronger than was610

observed at SNOTEL sites. Undoubtedly, the spread in precipitation and SWE across611

forecasts from 3-4 January 1997 influenced runoff rates and totals in the reservoir head-612

water regions.613

Finally, we evaluate how RRM-E3SM (3.5km) forecast lead time influences the causal614

strength and relationship between runoff and the four key hydrometeorological variables615

(i.e., IVT, precipitation, SWE, and 10 cm soil moisture content) over the period of 31616

December 1996 to 4 January 1997. Interestingly, California-wide causal strength of the617

hydrometeorological variables on runoff generally is maintained across the six forecast618

lead times. Atmospheric conditions (IVT and precipitation) dominate the runoff signal619

(74-87% range across forecasts for the total variance explained for the four hydromete-620

orological variables chosen). The dominance of atmospheric conditions on runoff across621

forecasts holds in the headwaters of both Lakes Shasta and Oroville. However, akin to622

the resolution-focused results, antecedent conditions and land surface feedbacks play a623

larger role in shaping runoff in the reservoir headwater regions of the central to south-624

ern Sierra Nevada. For example, in the central and southern Sierra Nevada (New Mel-625

ones Lake, Lake Don Pedro, and Isabella Lake) the role of antecedent and land surface626

conditions represents 46-51%, 40-51%, and 30-51%, respectively, on the causal relation-627

ship with runoff. Again, these percentages represent the range across forecasts for the628

total variance explained for just the four hydrometeorological variables chosen. The com-629

parative randomness of forecast lead time relative to resolution on the causal strength630

and relationship of hydrometeorological variables on total runoff is likely due to the dif-631

ficulty of exactly recreating the category 5 AR event life cycle. ARs have complex spa-632

tiotemporal structures that are hard to predict at watershed scales, particularly the AR633

landfall location latitude; the sweeping comma-shaped nature, topographic orthogonal-634

ity, and translational speed of the AR plume at landfall; and the precise precipitation635

magnitude and rain-snow partitioning over the storm duration. This combined with bi-636

ases in the forecast land-surface initial conditions, most of which are not truly constrained637
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by in-situ observations (e.g., soil moisture probe data and groundwater table levels), could638

help to explain the randomness of forecast lead time on total runoff at individual reser-639

voir regions.640

Summary and Conclusions641

We used a storyline approach to recreate California’s flood of record, the New Year’s642

flood of 1997, using a regionally refined Earth system modeling approach, RRM-E3SM.643

This is the first time RRM-E3SM has been used to systematically evaluate a key west-644

ern United States hydrometeorological extreme event. We assessed how both forecast645

lead time and model horizontal resolution focused over California influenced forecast skill646

in recreating the flood event. Across several formal measures of forecast quality and value,647

RRM-E3SM (3.5km) had the highest skill in recreating the 1997 flood compared with648

lower-resolution versions of E3SM validated against in-situ, reanalysis, and gridded cli-649

mate products.650

RRM-E3SM’s ability to simulate the North Pacific large-scale circulation patterns651

and IVT fields and landfalling AR characteristics prior to and during the 1997 flood were652

minimally influenced by the refinement of horizontal resolution over California. RRM-653

E3SM simulations largely agreed with ERA5 in the northern portions of California, par-654

ticularly for extreme AR conditions. However, all RRM-E3SM simulations systemati-655

cally produce excessively high AR categories in southern California; this is due to ele-656

vated amounts of water vapor in southern California and winds that are systematically657

higher than ERA5 throughout California. Regional refinement resolution in E3SM is im-658

portant to the representation of storm total precipitation and storm duration changes659

in snow water equivalent. We find that RRM-E3SM (3.5km) best represents the statis-660

tical distributions of storm total precipitation at 52 precipitation gauge sites, with par-661

ticular improvement in the precipitation maxima. We attribute this to a better repre-662

sentation of both California’s mountainous topography as well as important mesoscale663

circulations in driving precipitation location and magnitude, notably the Sierra barrier664

jet. Enhanced snowfall at higher elevations and snowpack ablation at low-to-mid eleva-665

tions are also better represented in RRM-E3SM (3.5km), as shown by comparison to 50666

snow pillow sites and a gridded climate product.667
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Reservoir inflows represent the integrated watershed response resulting from inter-668

actions between atmospheric processes with topography. These interactions drive the sim-669

ulated precipitation patterns and subsequently interact with land surface processes such670

as snowpack accumulation and melt, soil moisture content, and surface-through-subsurface671

flow. Simulated inflows exhibit mixed forecast skill across RRM-E3SM simulations. In672

general, reservoir inflow time series magnitude and, in some cases, shape were off across673

RRM-E3SM simulations. This is partly due to the integrated surface-through-subsurface674

hydrology being simulated with uncalibrated (or “out-of-the-box”) parameter settings.675

Using these parameter values shows how E3SM’s default settings, often optimized for676

mean state skill, represent extreme runoff. Notably, although uncalibrated, RRM-E3SM677

(3.5km) more consistently matched the time series shape of reservoir inflows across five678

of the eight major reservoirs in California. Future work will leverage the skillfully-resolved679

atmospheric fields, particularly in RRM-E3SM (3.5km), to run offline integrated hydro-680

logic models (Maina et al., 2022) to assess partitioning between overland flow and ground-681

water recharge and/or water infrastructure models (Yates et al., 2022) to assess flood682

inundation potential associated with management decisions.683

In addition to not accounting for water management infrastructure in E3SM, there684

were difficulties in validating certain aspects of the 1997 flood. Specifically, although the685

antecedent conditions (e.g., soil moisture content and groundwater table levels) provided686

by the “Betacast” offline five-year ELM spinup procedure driven by ERA5 meteorology687

undoubtedly shaped reservoir inflow estimates, more observationally-constrained initial688

conditions for the simulations were not available. Soil moisture content data (both in-689

situ and remote sensing-based estimates) were impossible to find at sub-monthly timescales690

prior to the year 2000 and, in particular, in mountains from missing data gaps, partly691

due to the effects of complex terrain and cloudy days on satellite retrievals. Similarly,692

observational estimates of groundwater table depths (e.g., piezometers and/or satellite-693

based estimates) were not publicly available.694

Forecast lead time resulted in a random effect on the hydrometeorological repre-695

sentation of the 1997 flood. We speculate this is because the forecast lead times chosen696

(2-to-4 days prior to the 1997 flood onset) were comfortably within the forecast predictabil-697

ity of large-scale synoptic events like ARs (Haiden et al., 2021) and results were there-698

fore dependent on more chaotic spinup processes, mesoscale processes with the main pre-699

cipitation shield, and small-scale interactions of flow with orography. Although exam-700
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ining the sub-seasonal-to-seasonal forecast skill of E3SM is beyond the scope of this study,701

L’Heureux et al. (2021) has shown that precipitation forecast skill across seven Earth702

system model forecasts for California begins to sharply drop with lead times of 8-14 days.703

Alternatively, to isolate why 2-to-4 day forecast lead time had a relatively random ef-704

fect on storm total precipitation RRM-E3SM can be run similarly to a weather forecast705

model, where data produced outside of the regionally refined domain is swapped with706

reanalysis data (Kruse et al., 2022; Zhang et al., 2022), to better constrain the lateral707

boundary conditions and, ultimately, the lifecycle of the AR propagation and landfall.708

Alternatively, the use of perturbed physics ensembles may help to further constrain which709

subgrid-scale parameterization most influenced drift in AR propagation and landfall and710

hydrometeorological characteristics of the RRM-E3SM forecasts (Mulholland et al., 2017).711

Last, given the noted uncertainties in land surface initial conditions, an AR-induced flood712

event that overlaps with recent high-resolution satellite-based estimates (Vergopolan et713

al., 2022) could be performed with RRM-E3SM to better isolate the role of antecedent714

conditions (e.g., soil moisture content) on flood event characteristics (e.g., reservoir in-715

flows). Practically, the lack of hydrometeorological sensitivity with forecast lead time be-716

tween two to four days prior to the onset of the flood event implies that if a flood man-717

ager is interested in event evolution at a specific point an ensemble forecast approach718

is necessary (e.g., simulations spanning multiple lead times and/or perturbed physics).719

Overall, RRM-E3SM (3.5km) forecast ensemble average skill in recreating the 1997720

flood gives confidence in its utility to aid flood resiliency planning. To further the util-721

ity of these storyline simulations, in future work, we will investigate flood characteris-722

tics if a 1997-like flood event were to have happened without anthropogenic climate change723

or were to happen again at different global warming levels. We hope that these story-724

line recreations of the 1997 flood event in past and future climates can supplement on-725

going efforts in water resource agency flood resiliency planning efforts related to extreme726

events, especially those involving compounding and/or cascading processes.727
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Supplemental Material1172

Figure S1. Percent bias in 4-day storm-total precipitation (31 December 1996 up to 4 Jan-

uary 1997), in three best-available reanalysis products compared against precipitation gauge

stations. Leftmost sub-panel plots represent storm total precipitation and right sub-panel plots

indicate percent biases. Metric (English) units are provided in the bottom (top) color bars.
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Figure S2. Same as Figure 3a, however, IVT is shown for each day of the 1997 flood.

Figure S3. Same as Figure 4, however differences from RRM-E3SM (14km).
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Figure S4. Same as Figure 4, however differences from ERA5.
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Figure S5. Scatter plot comparing storm total precipitation (31 December 1996 up to 4 Jan-

uary 1997) for the 52 NOAA precipitation gauges and the nearest grid cell within each of the

reanalysis products and model simulations. Blue (Red) lines represent a grid cell that had a

higher (lower) precipitation value than the nearest precipitation gauge. R values are provided in

the legend. The name of the NOAA precipitation gauge is overlaid onto each of the reanalysis

product and model simulation dots.
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Figure S6. Same as Figure 10, however differences from RRM-E3SM (14km).
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Figure S7. Same as Figure 5a and 9a, however differences from Livneh and Margulis.
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Figure S8. Chord diagrams depicting the causal inference estimates for the magnitude and

direction of the impact of hydrometeorological variables on total runoff across California (Hy-

drologic Unit Code 18) for 31 December 1996 up to 4 January 1997. The four variables include

integrated vapor transport (IVT), total precipitation (PRECT), snow water equivalent (SWE),

and 10 cm soil moisture content (SOILWATER).
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Figure S9. Same as Figure 12, however, stacked bar components are normalized by the total

variance explained by the four hydrometeorological variables chosen.

Figure S10. Same as Figure 11, however, the RRM-E3SM six-member forecast spread in

reservoir inflows are shown (shaded region) around the ensemble mean (line).
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